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Numerous studies have analyzed isotopic variation of meteoric and dripwater in 

karst environments for paleoclimate reconstructions or aquifer recharge capacity. What is 

poorly understood is how the isotopic signal of δ18O and δ2H is transferred through the 

hydrologic cycle based upon storm type, frequency, intensity, and teleconnection activity 

in the tropical karst areas. At Harrison’s Cave, Barbados, a Hobo Onset event data logger 

was attached to a tipping bucket rain gauge to count the tips and record the total rainfall 

every 10 minutes. In the cave a Hobo data logger was used to record relative humidity 

and temperature at 10-minute intervals. Rainwater, dripwater, and stream water samples 

were collected at a weekly resolution and refrigerated before sample analysis. The study 

period was from July, 2012 to October, 2013, with data from the data loggers only until 

June, 2013 due to inability to reach the study site. The samples were analyzed using the 

Picarro Cavity Ring Down Spectroscopy Unit-Water L1102-I through laboratories at the 

University of Kentucky and the University of Utah. The samples were reported in per mil 

and calibrated. The teleconnection (NAO, AMO, and ENSO) and other atmospheric data 

were obtained from the Climate Prediction Center or the NOAA Earth System Research 

Laboratory-Physical Sciences Division. 

 The weekly isotope signatures were linearly regressed against total rainfall for 

Harrison’s Cave and surface temperature with no statistically significant correlation, 
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indicating the amount effect was not present at a weekly resolution. The amount-

weighted precipitation δ18O values were calculated on a monthly basis and compared to 

TRMM monthly rainfall and island-wide monthly rainfall, and a statistically significant 

negative correlation was found between both datasets. This confirmed that the amount 

effect dominates the island’s rainfall isotopic signature at a monthly resolution, and that 

specific atmospheric influences represented in weekly rainfall were less influential on a 

weekly basis. It is hypothesized that the variation in weekly rainfall is due to quick 

initiating, rain-out, and dissipation of convective storm systems over the island.  

 In terms of evaporative influences, the samples do not deviate much from the 

Global Meteoric Water Line (GMWL), indicating minimal evaporation, which is typical 

for tropical locations. When the d-excess parameters were calculated, there were distinct 

variations with minimal evaporation occurring in the 2013 calendar year. This is 

attributed to coastal storm formation in the tropics. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.0 Introduction 

Due to global climate change, the hydrologic cycle may experience shifts in relation 

to long-term effects from atmospheric and ocean variability, thus causing increased 

variability in precipitation intensity and frequency (IPCC 2013). These effects include 

flooding, drought, and sea level rise, all of which play a role for Caribbean island nations 

as they solely rely on passing storms to replenish groundwater supplies (“GEO Barbados” 

2000; “Barbados First …” 2001; “Freshwater Country …” 2004; Huang 2007). In 2010, 

residents of Barbados experienced a severe water shortage due to persistent drought 

(Barbados Water Authority 2010). This has occurred several times in the past, including 

most recently as of early 2013. Droughts such as these, and extreme precipitation events, 

are devastating to the population of Barbados, which is listed as a water-scarce country 

by the United Nations, because infrastructure, tourism, agriculture, and the available 

water quantity to sustain human life is jeopardized (“Barbados First …” 2001; 

“Freshwater Country …” 2004; Huang 2007). This study presents a characterization of 

the varying nature of rainfall seasonality and amount to the potential availability of water 

resources for the population of Barbados. 
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1.1 Literature Review 

1.1.1 Karst Environments 

 Karst features on Barbados are a main tourist attraction. Karst environments are 

characterized by distinctive hydrology and landforms that form from highly soluble 

rocks, including limestone and dolomite (Ford and Williams 2007; Palmer 2007). Karst 

landscapes are characterized by landforms including streams, caves, closed depressions, 

fluted rock outcrops, springs, and extensive aquifer systems (Ford and Williams 2007; 

Palmer 2007). Harrison’s Cave in Barbados is an example of a karst ecotourism site. The 

cave is formed as infiltrating precipitation incorporates carbon dioxide from the overlying 

soil and forms carbonic acid.  

  As drainage continues, acidic water percolates through the bedrock becoming 

saturated with CaCO3 (calcium carbonate), this process continues increasing the pCO2 

and dissolution until dripwater enters the cave system. The high pCO2 of the dripwater 

and the low pCO2 of the cave create a pressure gradient and results in degassing (Mickler 

et al. 2004; Mickler et al. 2006; Palmer 2007). This drives the dissolution/precipitation 

reaction to the right in Equation 1-1, and results in calcium carbonate precipitation, which 

then can form speleothems, or calcite cave formations. When this process occurs on the 

cave ceiling, stalactites form, as the dripwater clings to the formation before it falls to the 

cave floor. When it falls to the floor, calcite is deposited in layers to form stalagmites 

over geologic timescales, and these deposits are often suitable for paleoclimate 

reconstruction (Figure 1-1). 

 CaCO3 + CO2 + H2O ↔ Ca2+ 2HCO3
-      Eq. 1-1 
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Figure 1-1: Karst dissolution diagram (from Fairchild et al. 2006). 

 

Dissolution also forms karst aquifers, which contain conduits that permit the rapid 

transport of groundwater, often in turbulent flow conditions (White 1998; Klimchouk et 

al. 2000; Huang 2007; Palmer 2007). A conduit is a pipe-like opening with apertures 

ranging from one centimeter to a few decameters (White 1998). A major source of water 

to the conduit comes from runoff that enters sinkholes, swallets, and gullies (White 1998; 

Klimchouk et al. 2000; Palmer 2007).  

 The unique hydrogeologic characteristics of karst aquifers being highly 

interconnected between the surface and subsurface make them particularly vulnerable to 

anthropogenic pollution (Huang 2007; Day 1983). Harmful material, such as chemical 

contaminants and human waste, are transported to and through the aquifer, and can alter 

water quality and quantity. Unprotected sinkholes, in many cases, are used as farmland or 
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for waste disposal. Rapid internal runoff through contaminated sinkholes and sinking 

streams contributes polluted surface runoff through conduit systems much faster than the 

diffuse flow of water through the typical rock matrix or in non-karst porous media.  

Karst hydrology also leads to a rapid response to drought and flood scenarios due 

to the aforementioned characteristics. Closed depressions flooded by rising regional and 

local water levels often remain flooded for long periods of time (Klimchouk et al. 2000; 

Huang 2007; Palmer 2007). Droughts are exacerbated due to the limited representation of 

surface streams in karst regions, as most of the water is underground, making it difficult 

to access. Recharge to karst aquifers depends upon rainfall, and alterations in 

precipitation amount from passing storms can easily and quickly alter the groundwater 

supply. In addition, heavy rainfall can easily cause flooding in karst areas due to rising 

water tables and surface runoff not being channeled into the subsurface quickly enough.  

 The over-extraction of groundwater from coastal aquifers can lead to serious 

problems with saltwater intrusion. The natural recharge/discharge thresholds can 

influence whether or not saltwater intrusion takes place at an outlet, more inland, or at 

greater depths (Huang 2007; Ivkovic et al. 2012). When the aquifer is extracted beyond 

its capacity to retain freshwater, the mixing of saline water takes place rapidly, rendering 

the fresh water unfit for human use (Milanovic 2004). Salinity tests of extracted 

groundwater conducted by Farrell et al. (2002) revealed that groundwater extraction on 

the island has exceeded a sustainable yield. This could worsen saltwater intrusion, which 

is a problem that has been occurring for several decades (Huang 2007). 
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1.1.2 Stable Isotopes 

 The stable isotopic analysis of oxygen (O) and hydrogen (H) can be used to 

analyze the path of water through the hydrologic cycle. The isotopes 16O and 1H are 

abundant in nature, but 18O and 2H are not. When water molecules go through a phase 

change (e.g., condensation or evaporation), preferential incorporation of certain stable 

isotopes occurs. Isotopes are measured in ratios of heavier isotopes to lighter isotopes 

(18O/16O and 2H/1H), and measured ratios are compared to a standard to calculate the 

difference and provide a ratio value. The standard for reporting water isotopes is the 

Vienna Standard Mean Ocean Water (V-SMOW) for O and H (Clark and Fritz 1997; 

Fuller et al. 2008). The results of stable isotope ratio calculations are reported as delta (δ) 

values. The equation to obtain those values is shown below in Equation 1-2 (Angelini et 

al. 2003; Sharp 2007; Lachniet and Patterson 2009). 

 

Equation 1-2 

  

The values reported are either negative (depleted) or positive (enriched) (in 

comparison to 18O isotope) with respect to the VSMOW-standard. The variation in values 

(enriched or depleted) depend on differences in mass as a result of minor differences in 

physical-chemical behavior and the effects of temperature and other influences on water 

as it travels through the hydrologic cycle in various states of matter; this is referred to as 

fractionation. (Daansgard 1964; Clark and Fritz 1997; Jones et al. 2000; Angelini et al. 
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2003; Jones and Banner 2003; Banner 2004; Mickler et al. 2004; Mickler et al. 2006; 

Lachniet and Patterson 2009; Polk et al. 2012). Fractionation is influence by temperature, 

as it is needed to have water change state, and there are two main fractionation types. 

One, is referred to as equilibrium fractionation, which exists when a chemical reaction 

and proceed forward and backward (e.g.: calcite formation). The other, kinetic 

fractionation occurs when a chemical reaction goes forward (e.g., evaporation and 

condensation).  

1.1.3 Environmental Interaction Influences on Hydrologic Processes 

 Oxygen and hydrogen isotope signatures of rainfall fractionate based upon 

temperature as a result of changes in altitude, latitude, continental orientation, and rainfall 

amount (Angelini et al. 2003; Fuller et al. 2008; Lachniet and Patterson 2009). Figure 1-2 

indicates the fractionation influences of oxygen as water travels through the hydrologic 

cycle and falls as precipitation. The temperature effect is characterized by the depletion 

of δ18O values with colder surface temperatures (Wackerbarth et al. 2012). In colder 

climates, the oxygen isotope relationship between 18O/16O usually is depleted in rainfall 

due to the lack of energy necessary for water to change state (Lachniet and Patterson 

2009). The altitude effect occurs when an air mass is lifted and condensation of 

atmospheric vapor and rainout of the condensed phase cool off as a consequence of 

adiabatic expansion leading to a depleted δ18O values (Rozanski et al. 1993; Gat et al. 

2001; Gonfiantini et al. 2001). The latitude effect is a result of spatial location of an air 

mass. The higher the latitude, the greater the depletion of δ18O values as a result of colder 

temperatures (Gat et al. 2001).  When a storm system travels inland the continental effect 
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occurs, leading to a depletion of the δ18O values, as the vapor source is no longer 

represented to continue storm generation.  

The last influence, rainfall amount, is the most important in tropical and 

subtropical regions. The more rainfall occurs, at a high rain rate, leads to a depletion of 

δ18O values. This phenomena is known as the “amount effect” and is a dominant control 

on the isotopic value of precipitation in the tropics and subtropics (Angelini et al. 2003; 

Lachniet and Patterson 2009; Polk et al. 2012). As a storm system rains-out, the heavier 

18O signatures fall first from the cloud, and as rainout continues the lighter isotopes (16O) 

will fall last leading to the depletion seen in the final rainfall sample. This isotopic 

influence is manifested further by the location of the base of the cloud, diffuse exchanges 

between the droplet and surrounding vapor, and droplet size (Lachniet and Patterson 

2009; Polk et al. 2012). 
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Figure 1-2: Oxygen Isotope Fractionation Influences (from Polk 2009). 

In order to determine the direct fractionation influences of environmental 

interaction on precipitation or groundwater in tropical regions, water samples must be 

collected and analyzed. A comparison between precipitation and groundwater samples 

can be used to determine the recharge rate of total water to the aquifer. Previous research 

at Harrison’s Cave focused on estimating recharge through isotopic and conventional 

methods. Jones et al. (2000) conducted a study to determine the unique seasonal and 

spatial variations of recharge. Conventional and isotopic methods were compared to one 

another to determine similarities, differences, and shortcomings in the methodology. 



9 

 

Conventional methods (e.g., groundwater discharge measurements or modeling) are more 

field intensive and contain more uncertainties, which arise from poorly constrained model 

input parameters, such as porosity and permeability, in karst aquifers. 

 Isotopic analysis requires statistical analysis of data obtained through isotope ratio 

mass spectroscopy (IRMS). The isotopic values obtained during previous research in 

Barbados indicated that the amount effect is the dominating environmental influence on 

the isotopic values of rainfall (Jones and Banner 2003; Mickler et al. 2004; Mickler et al. 

2006; Huang 2007; Lachniet and Patterson 2009), and subsequently the replenished 

groundwater. The temperature and altitude effects are negligible due to the tropical 

climate and low topographic relief. The results showed that recharge to the aquifer fed by 

the stream running through Harrison’s Cave occurs during the wettest months of the year 

(August-November), with less recharge occurring at higher elevations (Jones and Banner 

2003; Mickler et al. 2004). Evaporation and transpiration are two factors that limit 

recharge during the wettest months.  

 Evaporation during the development of rainfall can be illustrated using the Global 

Meteoric Water Line (GMWL). This line represents the relationship between δ2H and 

δ18O values in worldwide freshwater (Clark and Fritz 1997). Local Meteoric Water Lines 

(LMWL) will differ from global lines due to varying geographic and climatic parameters 

(i.e. origin of the vapor mass and seasonality of precipitation) (Clark and Fritz 1997). 

Figure 1-3 represents various LMWLs super imposed on the GMWL. In the figure 

variation between Florida (FL) and Alaska (AK) are related to latitude, altitude, and 

continental orientation. Alaska has a higher latitude and larger surface area for the storm 

system to travel across. These aspects are related to depleted signatures, which explain 
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why it is in the lower right corner compared to Florida. This is associated with minimal 

depletion due to its location close to the equator and the small surface area for storm 

systems to travel across. 

 Any detailed study of precipitation source or groundwater recharge using oxygen 

and hydrogen isotopes should attempt to define, as accurately and precisely as possible, 

the LMWL. Using precipitation datasets spanning decades at high resolutions for isotopic 

calibration (e.g., weekly or every 12 hours) could aid in improving the confidence limits 

of the LMWL, thus leading to a better interpretation of precipitation sourcing and 

variability (Clark and Fritz 1997; Angelini et al. 2003).  

 

 

 

 

 

 

 

  

 

Figure 1-3: Various LMWLs super imposed on the GMWL to indicate mutually 

exclusive relationship (from Kendall and Coplen 2001). 
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Evaporative effects on the water can also be determined through the use of the 

LMWL/GMWL to identify the d-excess parameter, which is any deviation from the 

GMWL. The d-excess parameter can determine the evaporation source area of a storm 

and relative humidity (Clark and Fritz 1997). If the d-excess values are low (1-10), this 

typically is indicative of coastal storm systems with minimal evaporation as the storm is 

close to the collection site. If the d-excess values are high (>10), then these storm systems 

are further from the collection site and highly influenced by evaporation.  

The resolution (e.g., weekly or seasonally) at which the evaporative effects could 

be used to identify seasonal rainfall influences on dripwater was explored by Mickler et 

al. (2004) in terms of equilibrium deposition of calcite in Barbados. The high-resolution 

sampling of calcite growing on a glass plate (over 6- and 18-month time periods) from 

sites within Harrison’s Cave shows intra-annual isotopic variability. The timing of 

maximum monthly δ18O values corresponds to maximum monthly rainfall amounts and 

higher drip rates. Understanding the mechanisms behind precipitating calcite under 

modern rainfall and climate conditions may help to determine the types and extent of 

fractionation in dripwaters due to varying recharge conditions under changing 

precipitation regimes (Mickler et al. 2004; Mickler et al. 2006; Wackerbarth et al. 2012).  

 The ability to determine seasonal variation in dripwater alters the capacity of 

speleothems to record and convey past climate variations. Speleothems are accurate 

indicators of paleoclimate changes in rainfall and extent of vapor in the vadose zone 

because they reveal groundwater chemistry through the analysis of oxygen and hydrogen 

isotopes in calcite lamina. The location of speleothems within caves at low altitude and 

latitude areas gives the proxy an advantage, because high-resolution climate records are 
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scarce those geographic regions (Mickler et al. 2006). According to Mickler et al. (2006), 

Holocene age speleothems are usually controlled by kinetic isotopic fractionation effects. 

These effects aid in determining the isotopic composition of groundwater and the 

environment of Harrison’s Cave at the time of calcite precipitation. 

 An isotopic calibration of precipitation and cave dripwater isotopic interaction can 

shed light on how modern precipitation patterns are discerned through the examination of 

cave dripwater and speleothem calcite. Polk et al. (2012) used modern values of isotopes 

in precipitation and dripwater to determine a calibration of annual rainfall isotopic 

variability for paleoclimate reconstruction using stalagmites. This high-resolution study 

was done in sub-tropical Florida, but few high-resolution studies exist in the tropics to 

test the influence of the amount effect and its relation to storm event characteristics.  

 

1.2 Atmospheric Characteristics 

Meteorological features are categorized based upon their spatial and temporal 

resolution on an atmospheric scale. In terms of previous isotopic research (Angelini et al. 

2003; Berkelhammer et al. 2012; Polk et al. 2012), the primary categories of atmospheric 

spatial scale analyzed, particularly for isotope hydrometeorology, are synoptic and 

mesoscale. Synoptic scale meteorological features cover thousands of kilometers over 

many days, and include features such as large hurricanes and frontal systems. Mesoscale 

meteorological features have a spatial resolution of tens to hundreds of kilometers with a 

life cycle of hours, and are associated with mesoscale convective systems (MCSs) and 

isolated thunderstorms. 
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An analysis conducted by Berkelhammer et al. (2012) related isotopic values to 

mesoscale and synoptic characteristics of storm events (e.g., point of evaporation (storm 

source region), track of a storm event) in the western United States. The analysis was 

conducted through an isotope-enabled Global Climate Model (GCM) simulation 

(IsoGSM) using measurements from five years of storm events, from 2001-2005, at four 

sites in California. The results indicated that approximately 40% of storm event isotopic 

variability arises from a combination of convective near-surface precipitation and high 

relative humidity in days prior to the storm’s landfall (Berkelhammer et al. 2012). 

Additional variability arises from different source regions, which advect moisture of 

distinct isotopic compositions. The advection of subtropical and tropical moisture is 

important in producing the most isotopically-enriched precipitation, and is derived from 

field correlation and Lagrangian trajectory analysis, using HYSPLIT (Berkelhammer et 

al. 2012).  

By examining precipitation events at a finer scale resolution (e.g., weekly or 

hourly), one can correlate mesoscale characteristics from radar data to isotope signatures 

of rainfall. Angelini et al. (2003) analyzed rainwater samples that were collected every 12 

hours to obtain a time series of oxygen and deuterium values through successive rain 

events in the Amazon basin. The ground-based observations were complemented by 

satellite imagery provided by the Tropical Rainfall Measuring Mission Large-Scale 

Biosphere Atmosphere (TRMM-LBA) field program. The imagery was used to classify 

and track individual storms throughout the basin based upon size, shape, and point of 

origin. The methodology for identification is ideal when conducting an isotopic analysis, 
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the next step in refining these methods would be to create a model that would predict 

numerous aspects (e.g., size, shape, path, and isotopic signatures) of these storm systems. 

Global climate models are used in accompaniment of isotope tracers. Although 

this is a new technique, it is valuable in creating an instrumental proxy along with 

understanding the hydrological dynamics in a study area. It is anticipated that any pattern 

observed will correlate with active ocean-atmospheric processes. Tracking the storm 

from the body of water where initial evaporation took place and understanding its 

mesoscale characteristics can aid in correlating rainfall amount and recharge from those 

storm events. 

 It is important to note that in west-central Florida, the evaporative processes 

during the summer reduce the amount of recharge to the aquifer from storm events (Polk 

et al. 2012). This is extremely pertinent, as 60% of the average annual rainfall occurs 

during that time period. Barbados has a similar evaporative environment during its wet 

season (boreal cool season); yet, it is proposed the majority of the recharge occurs during 

that time (Jones et al. 2000; Jones and Banner 2003). Therefore, it is necessary to 

determine if evaporative effects are occurring on Barbados in relation to storm intensity 

and frequency, or under certain teleconnection influences, as this could alter the amount 

of recharge during periods of heavy rainfall under a changing climate.  

1.3. Atmospheric-Oceanic Teleconnections and Other Circulation Features 

 The North Atlantic and Atlantic basin contain the Gulf of Mexico and the 

Caribbean Sea, and are influenced by the North Atlantic Oscillation (NAO), Atlantic 

Multidecadal Oscillation (AMO), and the El Niño Southern Oscillation (ENSO) shown in 
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Figure 1-4 . The phases of these teleconnections, and other circulation features, such at 

the Intertropical Convergence Zone (ITCZ), influence the regional and global 

hydroclimatological regime of landmasses bound to certain hemispheres. The presence of 

extreme precipitation, drought, and temperature fluctuations are in part due to the 

differing phases of teleconnections dominating during varying years.  

 

 

 

 

 

 

 

 

Figure 1-4: Various teleconnection patterns that occur across the globe with Barbados 

highlighted in yellow (from Polk 2009). 
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1.3.1 North Atlantic Oscillation (NAO) 

 The North Atlantic Oscillation (NAO) is a strong contributor to atmospheric 

changes over the Atlantic Ocean and plays an important role in climate variability over 

eastern North American, Europe, and the Caribbean (Durkee et al. 2008; Shelton 2009).  

It is described as a large-scale atmospheric mass redistribution between the Arctic and 

subtropical Atlantic (relationship between the Bermuda-Azores High and Icelandic Low). 

Atmospheric pressure and wind variations associated with NAO alter heat and moisture 

transport between the continents and Atlantic Ocean by influencing the number and path 

of winter storms (Hurrell 1996; Hurrell and Dickson 2004; Durkee et al. 2008; Shelton 

2009). The positive phase is characterized by warm moist air, mild winters in Europe, 

and above average temperatures in the eastern United States. The negative phase is 

known for a weak north-to-south pressure gradient, weaker westerly winds, and colder 

than normal winter temperatures in Europe and the United States (Durkee et al. 2008).   

 In tropical regions, NAO research explores the relationship between the dust 

concentration on Barbados and the Sahel drought (Prospero and Nees 1986). Satellites 

METEOSAT and TOMS, provide temporal frequency and spatial coverage to analyze 

aerosols over the ocean and land over the last 20 years. Changes in the strength and 

location of the Bermuda-Azores anticyclone exert a strong influence on winter dust 

transport (Chiapello et al. 2005). A bi-linear regression with NAO and drought in the 

Sahel indicated that there is a progressive increase of residual dust export to Barbados 

between 1966 and 2000 (Chiapello et al. 2005).  
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1.3.2 Atlantic Multidecadal Oscillation (AMO) 

 The AMO, also more recently described as the Atlantic Multidecadal Variability, 

is the leading mode of low frequency sea-surface temperature (SST) variability in the 

North Atlantic basin fluctuating at 0.4°C range (Kerr 2000). The SST fluctuation is 

believed to result from internal ocean-atmosphere variability associated with the intensity 

of the Atlantic thermohaline circulation and associated meridional transport of warm, 

saline water (Kerr 2000). The measured record extends from 1865 to present with a 65-80 

year cycle for the warm and cold phases (Enfield et al. 2001). The warm periods extend 

from 1860-1880 and 1940-1960 and the cold phase from 1970-1990 (Enfield et al. 2001).  

 The multidecadal timescale can mask anthropogenically-induced climate 

variations; therefore, the understanding of mechanisms generating the AMO can increase 

the confidence in detection of anthropogenic climate change (Dima and Lohmann 2007). 

The multidecadal signal is transferred from the Atlantic to the Pacific through the tropics 

where the ITCZ acts as a zonal waveguide through which the decadal signal phase is 

propagated (Dima and Lohmann 2007). As of 2013, paleoclimate research indicates that 

the AMO primarily influences Barbadian rainfall variability on decadal timescales, while 

the ITCZ modulates rainfall on a multicentennial scale (Ouellette 2013).  

 

1.3.3 Intertropical Convergence Zone (ITCZ) 

The ITCZ is a narrow circulation feature near the equator where northern and 

southern air masses converge, typically producing low pressure and altering rainfall 

variability in the tropics. Fluctuations in the ITCZ can alter the seasonality of wet and dry 

periods in the Caribbean and Central America (Haug et al. 2001). ITCZ hemispheric 
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shifts are based upon seasonality, latitude, ocean proximity, and temperature. In January, 

the ITCZ shifts to a more southerly location compared to its position in July, due to the 

tilt of the Earth and solar declination. Temperature differences between the land and 

ocean cause the ITCZ to maintain a curved pattern throughout the year. 

 Studies from the Cariaco Basin in the tropical Atlantic indicate a strong coupling 

between the tropical circulation and high latitude climate change through the last glacial-

interglacial transition (Haug et al. 2001; Kang et al. 2009). El Niño-Southern Oscillation 

(ENSO) variations are known to cause a shift in ITCZ migration in the basin and increase 

the frequency of oscillations, which disrupt regional climate (Peterson et al. 2000; Haug 

et al. 2001). Besides ENSO and high latitude forcing in the north Atlantic, ITCZ shifts 

could also be influenced by the NAO (Rajagopalan et al. 1998). Pinpointing the source of 

shifting between the teleconnection processes could help predict flooding and drought 

occurrences in the equatorial regions. 

 Scholl et al. (2009) conducted an isotopic analysis of storm events in terms of 

teleconnections, altitude, and orographic lift in Puerto Rico. Echo tops, a radar product, 

provide the maximum altitude of radar-detected precipitation over the duration of the rain 

event. These are relevant for determining the isotopic composition of rain, because the 

corresponding air temperature at this altitude is an indication of the lowest temperature 

which water vapor may be condensing. Atmospheric temperatures at various cloud 

heights affect temporal patterns of stable isotopes in tropical rainfall. As the ITCZ shifts 

south, it becomes prevalent in controlling the timing of the rainy and dry season. If echo 

top altitude variations are similar, the results determined from Puerto Rico could be 

applied to other areas, such as Barbados, as the ITCZ shifts southward. 
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1.3.4 El Niño-Southern Oscillation (ENSO) 

 A 1,000-year record for ENSO variation was created by Cane (2005) indicating a 

3-7 year periodicity in the cycle. The ENSO cycle is defined by the shift in SST in the 

eastern equatorial Pacific and is directly related to an alteration in atmospheric pressure 

and circulation, known as the Walker Circulation. The Southern Oscillation Index (SOI) 

can be an indication in the shift of El Niño or La Niña events as it measures trade wind 

strength by analyzing the difference in sea level pressure from the western and eastern 

Pacific. The exact cause of ENSO cyclicity is yet to be determined, but the influence on 

climate and weather phenomena is well documented (Landsea 1999; Adler et al. 2000; 

Taylor et al. 2002; Adler et al. 2003; Haddad et al. 2004; Charlery et al. 2006; Curtis et 

al. 2007; Shelton 2009; Klotzback 2011) 

 ENSO is the dominant mode of interannual variability in global and hemispheric 

land precipitation (Shelton 2009). ENSO influences various regions on a seasonal basis. 

The strongest signals are in the eastern tropical Pacific, yet influence temperature and 

precipitation in the tropics and mid-latitudes. The ENSO precipitation signal over North 

America influences the Gulf Coast region, northern Mexico, Texas, and the Caribbean 

Islands.  

Klotzbach (2011) found that the positive and negative AMO phases of the 

oscillations were analyzed in reference to their relationship with ENSO and the 

generation of tropical cyclone activity. The positive AMO phase could increases 

hurricane activity, and the negative phase decreases along the eastern US and into the 

northern Gulf Coast region. The combination of ENSO with the AMO enhances the 

tropical storm generation relationship. The analysis of two different teleconnections 
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opens the door for understanding the interaction and relation to storm generation and 

predicting the seasonality of severe events. Klotzbach (2011) focused on the US landfalls, 

while touching on the Caribbean region, and may be relevant to Barbados. 

 Numerous Caribbean studies focus on ENSO’s relationship in generating 

precipitation over the region. Taylor et al. (2002) focused on the early and late parts of 

the wet season discerning the synoptic and ocean modulators of rainfall. Changes in 

tropospheric characteristics and sea surface temperatures (SSTs) were linked to a strong 

El Niño/La Niña influence. The analysis of the mechanisms were completed through a 

statistical analysis of various datasets, including precipitation, SST anomalies, and vector 

wind, and used in composite maps to represent the seasonality of the data sets. Taylor et 

al. (2002) divided the areas into regions to conduct the geostatistical analysis. In a study 

conducted by Curtis et al. (2007), the tropics were also divided into regions based on 

SSTs. They compared regions to daily frequency precipitation data from the Tropical 

Rainfall Measuring Mission (TRMM) precipitation radar (PR) to determine seasonal 

variations, and discovered that ENSO-related precipitation anomalies were present in 

seasonal rainfall and were consistent with other TRMM related research (Adler et al. 

2000; Adler et al. 2003; Haddad et al. 2004). 

 Charlery et al. (2006) built upon this study by examining the NAO’s influence on 

the rainfall pattern of different ENSO phases through a statistical analysis that gives 

meaning to the continuously used terms of “weak,” “moderate,” and “strong” ENSO 

events. Remote sensing techniques were not utilized in this study and only one weather 

station was used on the island (Grantley Adams International Airport) to determine the 
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relationship between the teleconnections. The results indicated that NAO variations are 

not only dependent on ENSO, but also rainfall event intensity in low latitude regions. 

 

1.4 Research Questions  

 

 Precipitation variability and intensity have been shown to affect the recharge rate 

of karst aquifers on Barbados (Jones et al. 2000; Jones and Banner 2003). Accurate 

forecasting of precipitation extremes is necessary to determine how much rainfall can be 

utilized as potable water once it is stored in the subsurface. Part of this is understanding 

the various ways by which moisture sources evolve to form precipitation in Barbados, 

and how this is manifested as groundwater recharge and in paleoclimate proxies.  

The motivation for this thesis project lies in lack of data on ocean-atmospheric 

interactions that correspond to isotopic signatures of rainfall on the island. This 

information can also be applied to paleoclimate reconstructions, as current climate 

behaviors can shed light on previous surface/subsurface tropical karst interactions, such 

as stalagmite formation.   

 This thesis provides a hydroclimatological assessment of Barbados from July, 

2012 to December, 2013. The isotopic examination is performed at a weekly resolution in 

combination with 3-Hourly TRMM Satellite Data, 10-minute Harrison’s Cave weather 

station, and daily rainfall from various weather stations on the island. Previous research 

at this study area indicates that the greatest amount of recharge occurs during the three 

wettest months of the year using standard and isotopic methods (Jones and Banner 2003). 

Overall, this research addresses the relationship among isotopic signatures, rainfall 

amount, rainfall intensity, atmospheric characteristics, teleconnections, and the source 
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region of storm events, while providing a calibration of modern rainfall isotopic signals 

for use in paleoclimate reconstructions using speleothem proxies. 

 In order to investigate these relationships, this study addresses the following 

questions: 

 Is the amount effect manifested throughout the hydroclimatological system in 

Barbados? 

 Do teleconnection processes drive seasonal or annual variations in the region’s 

precipitation? 

 What atmospheric variables influence precipitation patterns in Barbados? Do the 

variables vary seasonally and/or annually?  

 Is there a relationship between precipitation amount and the isotopic composition 

of dripwater for use in paleoclimate reconstructions? 

1.5 Summary  

 
The use of δ18O and δ2H isotopes to trace water or vapor through the 

hydrologic cycle has been prevalent since the 1960s. Its application to karst aquifer 

recharge in the Caribbean is still a new area of research. No formal studies have 

attempted to do this at a high resolution (e.g., greater than 1 month) on the island of 

Barbados for more than 3 months. The results presented in this thesis provide a better 

understanding of atmospheric characterization from an isotopic standpoint and can be 

used to help prepare the residents of Barbados for the unknown future of precipitation 

quantity and groundwater storage during a changing global climate.  
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CHAPTER 2 

 

ADDRESSING WATER RESOURCES ISSUES IN BARBADOS THROUGH AN 

ISOTOPIC AND ATMOSPHERIC CHARACTERIZATION OF PRECIPITATION 

VARIABILITY 

 

2.0 Introduction 

 Global and regional scale precipitation patterns are caused by variations in ocean-

atmospheric processes that can occur over long timescales, which in turn cause changes 

to the hydrologic cycle. For Caribbean island nations, such as Barbados, this could 

include changes in the frequency and intensity of tropical storms, easterly disturbances, 

droughts, or convective storms. The majority of Barbados’ precipitation falls during the 

wet season (June-December), with only the wettest months (usually between August and 

November) contributing to recharge (Jones et al. 2000; Jones and Banner 2003). Many 

locations in the Caribbean, including Barbados, lack a robust, long-term instrumental 

record of precipitation, and other methods, such as remote sensing, are used to help 

elucidate precipitation fluctuations. Due to the dominant role of precipitation in 

groundwater recharge, there is a need to quantify and fully understand the combination of 

teleconnections and atmospheric variables that contribute Barbados’ rainfall. Toward that 

end, by using stable isotopes in precipitation, a characterization of modern patterns of 

rainfall variability, storm events, and the contribution of rainfall to aquifer recharge can 

enhance understanding of these complex processes for use in future climate change 

adaptation.  

 Prolonged periods of flooding or drought are influenced by precipitation patterns, 

which could lead to a substantial increase or decrease in recharge to the Barbadian 

aquifer. The consequences could lead to damaged infrastructure, food shortages, tourism 
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impacts, or even worse, water scarcity, thereby resulting in substantial impacts on the 

Barbadian population. As a result, the pressure on groundwater supplies will continue to 

increase, as it is an essential resource for the current population and future growth and 

development. A reconstruction of past climate change using paleoclimate proxies can 

provide an understanding of the natural variance in precipitation. Calibrating these 

reconstructions to modern precipitation variability provides validation of the proxy 

records; thus, a current analysis of precipitation amount, isotopic signal, and intensity 

using various techniques to determine precipitation source and its transport through the 

karst aquifer system is necessary. If water management agencies are able to interpret the 

complex hydroclimatalogical interactions that may result in future water resource issues, 

the consequences could be proactively mitigated.   

 Isotopes of oxygen (δ18O) and hydrogen (δ2H) in water change due to various 

phase changes and kinetic effects that occur as water travels through the hydrologic 

cycle. These isotope signatures are traceable, like a fingerprint, making this a robust 

option use in correlating water quantity to hydroclimatalogical variations. Numerous 

studies focus on the major controls on the isotopic composition of precipitation, as well 

as dripwater in caves (Jones et al. 2000; Jones and Banner 2003; Onac et al. 2008; 

Lachniet and Patterson 2009; Polk et al. 2012). Recognizing the hydrologic and 

atmospheric processes that deplete or enrich the δ18O signal in dripwater and meteoric 

water alludes to the complexity of using isotopes to trace water through the hydrologic 

cycle. These processes include isotopic fractionation as the amount of rainfall, surficial 

evaporation, mixing effects in the epikarst, drip rate, and the effective season of recharge 
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(Jones et al. 2000; Jones and Banner 2003; Mickler et al. 2004; Onac et al. 2008; 

Lachniet and Patterson 2009; Polk et al. 2012).  

 Seasonal atmospheric changes result in a varying amount of precipitation 

depending on the type and strength of the storm, along with the active teleconnections. 

The type, strength, and intensity of the storm can be correlated with the δ18O precipitation 

signatures (Jones et al. 2000; Angelini et al. 2003; Jones and Banner 2003; Bony et al. 

2008; Onac et al. 2008; Lachniet and Patterson 2009; Risi et al. 2010; Polk et al. 2012). 

However, a correlation of storm characteristics with the major teleconnections affecting 

Barbados has yet to be completed. The combination of ENSO (El Niño Southern 

Oscillation), the NAO (North Atlantic Oscillation), and the AMO (Atlantic Multidecadal 

Oscillation), along with the Intertropical Convergence Zone (ITCZ), all can influence 

Barbados’ precipitation (Jones et al. 2000; Charlery et al. 2006; Ouellette 2013). 

 Forecasting the timing and intensity of these teleconnections is difficult, even 

with the expansive instrumental record that exists today. This deals with the various 

phases and intensity changes that occur over decadal, multidecadal, and interannual 

scales. Here, we present an isotopic calibration of precipitation, cave dripwater and 

streamwater, along with an analysis of how atmospheric variables play into the various 

isotopic changes of precipitation on Barbados. This has implications for storm sourcing, 

precipitation variability, and paleoclimate reconstructions.  

 

2.1 Study Area 

 Barbados is located at 13°10’ N latitude and 59°35’ W longitude, about 150 km 

east of the Lesser Antilles in Figure 2-1 (Banner et al. 1991; Machel 1999). The island 
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has a surface area of 432 km2, roughly the size of Baltimore, Maryland, which extends 34 

km north to south and 23 km east to west (Machel 1999; Jones et al. 2000; Donovan 

2005; Huang 2007). The maximum elevation on the island, Mount Hillaby, is at 340 m 

above sea level (Machel 1999). This location is composed of the oldest rock on the 

island, as the island is a sub-aerially exposed accretionary wedge, from the result of the 

Atlantic plate subduction underneath the Caribbean plate. This sedimentary rock is 

known as the Scotland District, which covers roughly 15% of the island. The other 85% 

of the island is characterized by three coral reef terraces. During the Pleistocene, the 

terraces experienced dissolution by rain and groundwater, which deepened gullies and 

enlarged caves. The caves in the area are still forming, as exhibited by the dissolution 

processes at Harrison’s and Cole’s Cave. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Study area map of Barbados including elevation changes. 

Source: GADM (2012); USGS (2004). 
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Harrison’s Cave was established in the mid-1970s as an ecotourism destination in 

central Barbados. The cave is developed within the upper coral reef terrace, only about 1 

km to the south of the edge of the Scotland District, and close to the highest point of the 

island, Mount Hillaby (340 m above sea level) (Donovan 2005). The limestone in this 

area varies between 52 and 66 m in thickness (Donovan 2005). The cave tour is by a 

tram, which is a series of carriages hauled by a battery electric vehicle along a roadway 

that follows a formed course of underground streams. Figure 2-2 depicts the entrance and 

the extent of the 2.3 km long cave. The Great Hall, where sampling occurred, is 15 m tall. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Harrison’s Cave subsurface map. 

Source: Lace (2013).  
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The island’s climate influences the subsurface and surface processes at Harrison’s 

Cave. The climate in Barbados is classified as sub-humid to humid and oceanic tropical 

(Jones and Banner 2003). The rainy season is from June-December, with the dry season 

is from January-May (Jones et al. 2000; Mickler et al. 2006). An estimated 60% of the 

average annual rainfall occurs during the wet season (Jones and Banner 2003). The main 

atmospheric influences driving the weather on Barbados are the ITCZ, ENSO, and NAO 

(Jones et al. 2000; Jones and Banner 2003). Precipitation increases when the ITCZ is 

positioned more northerly during the summer (i.e. the wet season) and drier conditions 

prevail when it is displaced farther south (Haug et al. 2001). The wet season is also 

characterized by tropical weather systems, such as tropical depressions, and local 

convection (Jones et al. 2000). Dry season rainfall is associated with local convection due 

to moist air flowing over the island with an increased land surface temperature (Jones et 

al. 2000). 

 

2.2 Methodology 

A water collection site 30 m above the entrance to Harrison’s Cave was setup to 

sample and record precipitation at Harrison’s Cave. The dripwater and stream water 

samples were collected from July, 2012, to October, 2013, on a weekly basis, except 

when there was a lack of sample or an inability of the staff to access the sites.  

 

2.2.1 Precipitation Collection 

 

 Surface precipitation amount was recorded continuously using a Texas 

Electronics TR-525M Tipping Bucket Rain Gauge, which measured precipitation at 0.1 

mm/tip. An Onset Hobo event data logger connected to the rain gauge recorded the 
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amount of tips per rain event, which was then converted to the rain amount. Precipitation 

and surface temperature were recorded at 10-minute intervals. The data was downloaded 

using Hoboware Pro roughly every 6 months, unless the circumstances did not permit 

collection (e.g., weather, access, etc.). Tipping bucket rain gauges could potentially 

record an incorrect amount of rainfall due to systematic (i.e. wind and evaporation), 

mechanical (i.e. tube clogging), electrical (i.e. power failure), and calibration (i.e. non-

conformance of the bucket size with the constant calibration volume specified by the 

manufacturer) problems (Habib et al. 2001). These issues were minimal throughout the 

study period. 

 Weekly rainwater samples collected for isotopic analysis were obtained from a 

gallon jug placed in a large plastic bucket that was attached via a plastic tube to the rain 

gauge. A 0.5 cm layer of oil was poured into the jug to prevent evaporation. The samples 

were collected in 10 ml vials and sealed with parafilm, labeled, and stored in a 

refrigerator at 4 °C with no air space present. Precipitation occurred every week 

throughout the study period, except the week of March 3rd, 2013. The rainfall amounts 

with corresponding samples were removed if the samples were collected more than a 

week apart. This is due to an extreme variation from the sample resolution that could 

skew the data analysis. A total of 46 weeks of isotope samples (out of a possible 66) with 

corresponding rainfall were collected from Harrison’s Cave.  

 Due to various issues that arose with field research (e.g., equipment failure, user 

error, and lack of individuals able to collect samples), and to increase the robustness of 

the measured precipitation record, data were also obtained from the Caribbean Institute 

for Meteorology and Hydrology (CIMH). Daily precipitation totals were collected from 
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seven stations around the island, then calculated to correspond to the weekly sample 

resolution. The weekly CIMH stations’ totals were combined with Harrison’s Cave 

rainfall totals to obtain the weekly average rainfall for the entire island. 

 

2.2.2. Dripwater and Stream water Collection 

 The drip water samples are collected in the smallest portion of the Great Hall to 

the right of the tourist path coming from the artificial entrance. The samples were 

collected by Harrison’s Cave staff members by hand on a weekly basis in 10ml vials. The 

vials were sealed with no headspace and refrigerated at 4 °C. The stream water samples 

were collected 10 m from the drip water collection site, using the same size vials, 

resolution, and storage technique. Sample collection was impossible some weeks due to 

inaccessibility to the cave from closure, flooding, or staffing issues.  

Next to the dripwater site, an Onset Hobo data logger measured relative humidity 

and temperature changes at 10-minute intervals. This was used to monitor any changes 

that could cause variations in evaporation, which could influence the isotope signatures. 

The readings were converted to weekly averages to match the surface data resolution. 

 

2.2.3 Stable Isotope Analysis 

 A total of 106 Harrison’s Cave dripwater (n=42), stream water (n=18), and 

meteoric water (precipitation) samples (n=46) were analyzed at the University of 

Kentucky Stable Isotope Laboratory in the Earth and Environmental Sciences department 

(UK-EES) and the University of Utah Stable Isotope Ratio Facility for Environmental 

Research (SIRFER). The samples were filtered using .45µm filter paper into 2ml septa 
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exetainer vials. The vials were loaded into an automated sampler, then analyzed using a 

Picarro Cavity Ring Down Spectroscopy Unit-Water L1102-I. The samples were injected 

then exposed to a dissipating light source to obtain the isotopic signature. The number of 

injections varied by laboratory, but this did not introduce any differences or errors to the 

data. SIRFER injected 4 times and used samples from the 3rd and 4th injections to reduce 

the memory effect, and analyzed samples collected after June, 2013. The samples run at 

UL-EES were injected 2 times and both readings were used. The samples were 

normalized to Vienna Standard Mean Ocean Water (VSMOW) using the IAEA standards 

GISP2, VSMOW2, and VSLAP, along with a local standard. The precision of the 

instrument did not vary, and is δ18O< 0.1 ‰ and δ2H<0.5 ‰. 

 The amount-weighted mean annual δ18O and δ2H values for precipitation were 

calculated using Equation 2-1 (Zhang et al. 2007): 

  𝛿18𝑂 =  
∑((𝑃𝑤𝑒𝑒𝑘)(𝛿18𝑂𝑤𝑒𝑒𝑘))

∑ 𝑃𝑡𝑜𝑡𝑎𝑙
                          Eq: 2-1 

and deuterium-excess (d-excess) (i.e. variations in relative humidity, evaporation, and 

point of evaporation for storm source generation) was calculated using Equation 2-2 from 

Daansgard (1964): 

   𝑑 = 𝛿2𝐻 − 8𝛿18𝑂          Eq: 2-2 

 

2.2.4 Remote Precipitation Estimation and Isotopic Comparison 

 Accumulated rainfall data from the Tropical Rainfall Measuring Mission 

(TRMM) product 3B42 was downloaded via TRMM Online Visualization and Analysis 

System (TOVAS) in ASCII format. The 3B42 product estimates precipitation through 

infrared (IR) analysis and has an output of mm/hr for 0.25° x 0.25° grid boxes at the 
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latitude 50° N/S every 3 hours. The data present in each file included latitude, longitude, 

and accumulated rainfall (mm). The coordinate (13.125, -59.625) is the only one that falls 

on Barbados to represent island rainfall. The accumulated total (mm) was then compared 

to isotopic signature from July, 2012, to October, 2013, Harrison’s Cave rainfall values 

(July 2012- June 2013), and weekly average rainfall values over the entire island using 

least-squares regression. 

 

2.2.5 Teleconnections 

 Phases of ENSO and the NAO were obtained from the Climate Prediction Center 

(CPC) and represented in monthly indices. The AMO data was downloaded from the 

NOAA Earth System Research Laboratory- Physical Sciences Division in an unsmoothed 

format. Each teleconnection was compared to monthly rainfall for Barbados, isotope, and 

d-excess values to determine if there is a relationship between the phases, total rainfall, 

storm dynamics, and the amount of evaporation. 

 

2.3 Results and Discussion 

2.3.1 Cave Climate 

 Harrison’s Cave displayed a temperature range between 25.9°C to 26.2°C, 

indicating that the cave environment was stable during the study period as shown in 

Figure 2-3. There is a gap in cave temperature data series from December 12, 2012, to 

January 15, 2013, due to a dead battery in the data logger. This was fixed at the re-launch 

of the logger at the data collection period in January. The average annual temperature 

was 32.3°C at the surface, which corresponds well with the 26°C average temperature for 
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the cave. This indicates there was limited mixing with the surface air and cave entrance 

air. The relative humidity was consistent at 100% (Figure 2-3). Little variation in cave 

temperature and a high relative humidity provide ideal conditions for conducting 

dripwater calibration and isotopic studies, as there is minimal influence from evaporation 

on dripwater samples. In addition, these conditions are highly suitable for the equilibrium 

precipitation of the speleothem calcite (Gascoyne 1992; Jones et al. 2000; Jones and 

Banner 2003; Mickler et al. 2004; Polk et al. 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Temperature data for Harrison’s Cave. Total for July, 2012, to June, 2013, 

exhibiting a 0.26°C variation in the cave. Surface temperature was collected at the 

rainfall collection station. Source: Created by author. 

 

2.3.2 Precipitation Isotopic Data 

 The isotopic signatures for the precipitation collected above Harrison’s Cave have 

a range between – 6.2‰ to 0.9‰ for δ18O (‰ VSMOW) and – 46.6‰ to 21.5‰ for δD 

(‰ VSMOW). The annual amount-weighted mean precipitation δ18O value is -2.3‰, and 
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represents the broad spatial and temporal variation of the storms that contributed to 

rainfall over the island during the study period. In correspondence to sample collection, 

all of the weeks have rainfall isotope values. However, due to available volunteers, 

funding, and environmental circumstances, rainfall amount data collection at the study 

site occurred only until July, 2013. As a result, with the limited sample collection (due to 

the same issues) for the corresponding rainfall samples, collection ceased in February, 

2013, which limits the number of dry season rainfall samples and amount values. The 

data do indicate that the dry season yields less rainfall compared to the wet season. 

Despite the limitations in terms of sample collection and retrieval, sufficient isotope 

samples were collected to construct a local meteoric water line (LMWL) and provide a 

statistically robust dataset. Figure 2-4 shows the LMWL derived from the precipitation 

δ18O and δ2H signatures, determined through least-squares regression as:  

δD= 8.69(δ18O) + 13.45, (R2=0.95), n= 47 

 The LWML slope (8.69) and y-intercept (13.45) are plotted against the Global 

Meteoric Water Line (GMWL) as defined by Rozanski et al. (1993), shown in Figure 2-4. 

The slope and y-intercept between the GMWL and LMWL show little variation, 

indicating that evaporative effects are minimized on Barbados over the study period. The 

LMWL has a higher slope and y-intercept, which is common in tropical isotopic studies 

(Govender et al. 2013). In Jones et al. (2000), the equation for the LMWL was derived 

using data collected directly from Harrisons Cave from March to June, 1997:  

δD= 6.5436(δ18O)  + 4.8234, (R2=0.68), n= 11 

 This slope is far more common in subtropical regions (Kendall and Coplen 2001; 

Onac et al. 2008; Lachniet and Patterson 2009; Polk et al. 2012). Our study has a weekly 
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sampling resolution with many more samples spanning multiple seasons compared to 

Jones et al. (2000), which could provide a different representation of the LMWL and its 

influence from various kinetic processes. Our R2 value is also much higher, indicating a 

stronger correlation among the data with better confidence in our weekly LMWL.  

However, Govender et al. (2013) performed a similar study in Puerto Rico with a 

monthly representation of precipitation δ18O values. Their LMWL had a slope of 7.8 and 

a y-intercept of 10.9 (R2 = 0.89) indicating minimal evaporation and a strong monthly 

rainfall amount. Despite the differences in resolution and latitude, this study is also a 

tropical island location and shows similar reduced evaporative effects and values indica-

tive of precipitation derived close to the coast. The slope differences in our weekly data 

could be explained through complex controls on the isotopic composition of precipitation 

that would limit evaporative processes, such as stages of storm development, internal 

dynamics, and droplet size, which are beyond the scope of this study (Bony et al. 2008; 

Price et al. 2008; Risi et al. 2008; Gao et al. 2013).  

 

Figure 2-4: The LMWL for precipitation above Harrison’s Cave with a slope of 8.69, is 

shown with the GMWL. Source: Compiled by the Author. 



36 

 

2.3.3 Controls on the Isotopic Composition of Precipitation 

 There are several controlling environmental influences on the isotopic 

composition of precipitation, which may account for the variability and range of δ18O and 

δD values in the data set. These are temperature, amount of precipitation, latitude, 

altitude, continental rainout, or convective dynamics. Little isotopic variation can be 

attritbuted to the altitude effect, due to Barbados’ elevation being near sea level for the 

majority of the island, with the exception of the Scotland District, which likely 

contributes little to the groundwater recharge in our study area, and would also drive the 

isotope ratios toward more negative, depleted values. Continental rainout is a non-

existent factor on Barbados, since it is an island with very little surface area for depletion 

to occur as the storm systems cross the country. The same is also true for the latitude 

effect, as the island is very close to the equator. 

 There is no significant relationship (R2 = 0.08; p = < 0.05) between average 

weekly temperature and precipitation δ18O values in Figure 2-5. This is likely due to the 

lack of seasonality in temperature variations. Temperature variations effect δ18O 

precipitation mainly in temperate regions, where there is a distinct seasonality (Rozanski 

et al. 1993; Welker 2000; Sharp 2007). The average weekly temperature only varied by 

6.33°C during the study period.  
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Figure 2-5: Temperature vs. δ18O precipitation at Harrison’s Cave indicates a poor 

correlation between the variables. Source: Compiled by the author. 

 

 

There is a weak statistical correlation between the amount of weekly rainfall as 

measured at the Harrison’s Cave site and the isotopic variability in δ18O precipitation, 

with an insignificant negative correlation (R2 = 0.08, p = <0.05) between these parameters 

(Figure 2-6). The amount effect is known to dominate in tropical to subtropical regions 

(Jones and Banner 2003; Angelini et al. 2003; Lachniet and Patterson 2004; Sharp 2007; 

Polk et al. 2012) and, for most datasets, the relationship exists at a monthly resolution. 

The weekly average rainfall from the eight rain gauges was regressed against the weekly 

rainfall δ18O isotope ratios, having an R2 = 0.05 (p = <0.05), which also indicates a weak 

relationship. Onac et al. (2008) also found little correlation between precipitation δ18O 

and weekly rainfall amount in north Florida, but did see the amount effect present in the 
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summer seasonal rainfall values. When the weekly Harrison’s Cave δ18O values are 

plotted based upon wet versus dry season, there is no correlation present. However, 

seasonality, vapor source, and processes occurring in convective storms are likely 

contributing factors to the lack of correlation between weekly precipitation amounts and 

δ18O values, alluding to the complexity of the amount effect that involves factors like 

raindrop evaporation, entrainment, and individual storm processes, particularly on weeks 

where single short rain events dominate the isotopic signal of a sample (Rozanski et al. 

1993; Angelini et al. 2003; Bony et al. 2008; Onac et al. 2008; Risi et al. 2008; Lachniet 

and Patterson 2009; Risi et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Weekly precipitation vs. δ18O at Harrison’s Cave indicating a weak weekly 

correlation with the amount effect. Source: Compiled by the author. 
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One of two possible explanations for the poor weekly correlation with the amount 

effect deals with quick storm initiation, rainout, and dissipation of a convective system 

over Barbados. Figure 2-7 illustrates one possible scenario that could occur as a storm 

travels over the island, with the bottom section indicating the passage of time. First with 

quick evaporation from the ocean surface waters, there is rapid cooling, convection, and 

condensation. When the storm system moves over the island rapid rainfall occurs, 

allowing the 18O-enriched precipitation to fall first, as it is the heavier fraction, but since 

the storm is moving quickly over the island, there is not enough time for complete rainout 

from the cloud to occur. This leaves more enriched rainfall values for sample collection. 

As the storm system moves away from the island, dissipation occurs quickly and the 

storm system no longer exists. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7: Depiction of light precipitation in an unsaturated downdraft contributing to 

enrichment of the isotope samples. Source: Created by the author. 
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A second possible explanation is that the amount effect is difficult to quantify at a 

weekly resolution compared to the monthly resolution. This is because a finer scale 

resolution captures fractionation factors (e.g., storm duration) that may be more apparent 

in the δ18O isotopic values of rainfall, particularly in individual storm events. Therefore, 

the monthly rainfall totals for Harrison’s Cave, and Barbados as a whole from all the rain 

gauges, were calculated, and then compared to the monthly amount weighted δ18O values 

for precipitation. It is important to note that the amount weighted calculations were 

completed using island wide rainfall, and not just Harrison’s Cave monthly values. 

Harrison’s Cave monthly rainfall totals versus the amount weighted monthly δ18O values 

had an R2 = 0.26 (p = <0.05). This value still has little statistical significance, but 

indicates a stronger relationship than that of the weekly precipitation totals. However, 

when the island-wide monthly rainfall totals were regressed against the amount weighted 

δ18O values of precipitation, the R2 = 0.76 (p = <0.05) indicated a significant correlation 

was present (Figure 2-8). Thus, when examined at a monthly resolution and incorporating 

spatially averaged rainfall amount from a larger area, the amount effect exerts a strong 

influence on the δ18O values of precipitation in Barbados, as seen previously in lower 

resolution studies (Jones et al. 2000; Jones and Banner 2003). 
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Figure 2-8: Monthly rainfall versus precipitation δ18O values, showing a strong negative 

correlation that indicates the amount effect’s influence island wide at a monthly 

resolution. Source: Compiled by the author. 

 

2.3.4 Remote Precipitation Estimation and Isotopic Comparison 

  In order to have another independent dataset of precipitation, TRMM 3B42 data 

were used as a proxy for island-wide precipitation amounts. This provides a test of the 

validity of using a method of compiling data at a larger spatial scale, for instances when a 

network of rain gauges may not exist (e.g., oceans). TRMM rainfall values for Barbados 

had a range from 0 to 129 mm per week of accumulation. The average rainfall total was 

24.5 mm per week. The weekly rainfall totals were regressed against precipitation δ18O 

values from the Harrison’s Cave sampling site producing a weak statistically significant 

correlation (R2  = 0.33, p = <0.05) indicating that the TRMM data at a weekly resolution 

partially capture the influence of the amount effect on the rainfall δ18O values. For 

comparison, the TRMM monthly rainfall totals were calculated and regressed against the 

amount-weighted monthly precipitation δ18O values (Figure 2-9) yielding a strong 
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statistically significant negative correlation (R2= 0.87, p = <0.05), thus showing the 

strongest evidence of the amount’s influence on the precipitation δ18O values at a 

monthly resolution when examined using satellite remote sensing data. It is important to 

note that the weighted monthly precipitation δ18O calculations were completed using 

island-wide rainfall, and not just Harrison’s Cave monthly values. This is the first study 

utilizing monthly TRMM rainfall to examine the amount effect, which proves to be a 

useful comparison in elucidating long-term precipitation isotopic variability.   

It is important to note that TRMM data are a precipitation estimation product that 

is highly useful for long-term climatic influences in precipitation. TRMM is not 

necessarily a good estimate of daily precipitation, but daily variations do not indicate 

climatic changes (Nicholson et al. 2003; Chokangamwong and Chiu. 2007; Rozante et al. 

2010; Watson et al. 2014). However, if long timeframes are considered, TRMM values 

may provide a better representation of rainfall for a particular land area. This is a result of 

merged infrared (IR) precipitation rain rate (mm/hr) data from various satellites and rain 

gauges. The merged data are used to obtain rainfall amounts that are not recorded, as 

TRMM has a non-sun synchronous orbit, which leaves gaps in the data collection. 

TRMM estimates rainfall from 50⁰N/S using this method, which combines not only 

TRMM estimates, but includes various satellites and rain gauge data over the 

representative surface area. Thus, TRMM more holistically represents rainfall amounts 

derived from both mesoscale atmospheric and ground surface data.  

The Pearson correlation coefficient of R=0.33 indicates a positive correlation 

between the monthly rain gauge and TRMM precipitation data. When the total monthly 

values were added together for the study period (a total of 1053 mm), TRMM correspond 
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well with the Barbados total monthly rainfall from the rain gauge network (1281 mm); 

thus, the variability within the datasets may not be statistically similar at a monthly 

resolution, but overall are representative of the influence of the amount effect.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9: TRMM monthly precipitation versus amount-weighted precipitation δ18O 

values, indicating that the amounts influence a monthly resolution. 

Source: Compiled by the author. 

 

2.3.5 Deuterium Excess  

 Deuterium excess (d-excess) values for precipitation at Harrison’s Cave are 

between 0.93 and 18.38‰ over the entire study period, with an average of 11.8‰ (Figure 

2-10). The d-excess values for precipitation depend on SST or water source origin, 

relative humidity, and kinetic fractionation during evaporation. The higher the value, the 

more evaporation occurred, leading to a greater signature difference from the LMWL. 

Often, lower d-excess values are indicative of oceanic moisture sources and found in 

areas of high relative humidity, which also has implications for the δ18O and δD values 
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(Price et al. 2008). There are also numerous complexities in isotopic signature changes 

due to air mass source region, temperature, and if the water source has mixing from 

various vapor sources depending on the region (Clark and Fritz 1997; Gat 2001; Jones et 

al. 2000; Angelini et al. 2003; Jones and Banner 2003; Bony et al. 2008; Risi et al. 2008; 

Lachniet and Patterson 2009; Risi et al. 2010; Polk et al. 2012).  

 The deuterium excess values were calculated for precipitation, dripwater, and 

stream water at a weekly resolution. When the d-excess values were plotted against time, 

a clustering was present between values in 2012 and 2013. This indicates that there could 

be annual atmospheric influences present causing less evaporative variation of the isotope 

signatures in 2013. This can potentially be attributed to changes in the teleconnection 

phases over the study period or shifts in storm track (i.e. ITCZ). It also could derive from 

the timing and creation of storms related to the atmospheric-oceanic interactions that 

cause convection to occur. Often, in coastal areas of the tropics, storms occur during 

times of the day when the temperatures are cooler and evaporation is reduced, thus also 

contributing to the lower d-excess values and the complexity of the amount effect’s 

signal in the δ18O values of precipitation (Price et al. 2008). 
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Figure 2-10: Deuterium excess values from Harrison’s Cave rainfall between July 2012- 

October, 2013. Source: Compiled by the author. 

 

 

2.3.6 Cave Dripwater and Stream water Isotopic Data 

 The isotopic values of Harrison’s Cave dripwater range from – 2.3 and – 3.6‰ for 

δ18O and – 7.4 and – 15‰ for δD. The annual average of  δ18O is – 3.0‰, and the δD 

values average to – 12.1‰. The stream water isotopic values range from – 1.7 and – 

3.2‰ for δ18O and – 10.0 and – 14.7‰ for δD. The annual average of  δ18O is – 2.5‰, 

and the δD values average to – 12.4‰. Figure 2-11 shows the relationship between the 

δ18O and δD values of dripwater and stream water plotted against the LMWL and 

GMWL. The variation of dripwater and streamwater is minimal, as indicated by the 

clustering of both sets of samples at the center of the LMWL and GMWL. This is likely 

indicative of homogenization from mixing of meteoric waters and epikarst storage over 

annual timescales, which is know to occur in eogenetic limestones (Polk et al. 2012).  
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 The dripwater δ18O values have little variation compared to the precipitation δ18O 

values. The annual average δ18O dripwater (– 3.0‰) and stream water (– 2.5‰) 

compares well to the precipitation amount-weighted mean δ18O value (– 2.3‰). The 

annual δ18O average of dripwater is slightly more depleted and can likely be attributed to 

two causes: 1) a lack of evaporation at the surface before percolation; or 2) several 

enriched storms, which could affect the annual weighted precipitation δ18O value amount. 

One other possible explanation for this would be any prior calcite precipitation that 

occurs from the dripwater as it percolates through the bedrock, which could drive the 

δ18O values in a slightly more negative direction (Tooth and Fairchild 2003; Sherwin and 

Baldini 2011). Moreover, the range of groundwater δ18O values (dripwater and stream 

water) only overlaps the precipitation amount weighted values for one week (Figure 2-

11), indicating that most of the recharge occurs during the wettest months of the year, as 

was also found by Jones et al. (2000). The stream water average annual δ18O value of – 

2.5‰ more closely matches that of the annual amount-weighted rainfall δ18O average, 

which is likely indicative of mixing of water in the epikarst with a shorter residence time, 

faster input of meteoric water to the system though discrete inputs, and faster flowpaths 

through the limestone.  

 The annual amount-weighted mean precipitation δ18O value found by Jones et al. 

(2000) for Barbados was – 1.9‰ and their average dripwater δ18O value was – 3.0‰. 

Their study obtained monthly isotope values from 1962-1991 from the GNIP station, and 

weekly values from March to June, 1997. The results from Jones et al. (2000) provide a 

background comparison to our data on a climatic scale of several decades and indicates 

that, over an approximately 50-year period, the dripwater average δ18O value shows no 
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variability, and that the precipitation annual amount-weighted mean δ18O value also 

changes little. Hence, one conclusion is that little change has occurred in the 

homogenization processes, aquifer storage, and general precipitation anomalies over the 

past few decades. The small variation has significant implications for paleoclimate 

reconstructions from speleothems, and also brings into question the aspect of residence 

time of the groundwater. If the residence time is long enough to homogenize the rainfall 

inputs and represent the annual amount-weighted mean precipitation δ18O value, then this 

is highly useful for paleoclimate reconstruction using speleothems (Polk et al. 2012). The 

means that the precipitation can be quantified using the variation in the annual 

precipitation amount-weighted mean δ18O values over longer timescales as they are 

manifested in speleothem calcite.  

Barbados typically has few major hurricanes or tropical storms that bring rainfall 

to the island. The occurrence of major storms is consistent, though annual amounts may 

vary. Barbados has been dealing with droughts for several decades now, with the 1960s 

and 1970s seeing some of the driest months on record, and the most recent drought as 

early as 2013. Therefore, it is not surprising that our dripwater δ18O value corresponds 

well to previous studies spanning this period, given the similar environmental conditions.  

At a weekly resolution, there is about a 1‰ variation in dripwater δ18O values. 

The second most isotopically depleted value of dripwater (– 3.4 ‰ on September 9th, 

2012) also corresponds with the third most depleted precipitation δ18O value (– 5.8‰). 

During that week, rain bands from Tropical Storm Isaac passed over Barbados on August 

22nd, and two weeks previously Tropical Storm Ernesto also contributed rainfall to the 

island. The month of August had 158.1 mm of rainfall at Harrison’s Cave, and after two 



48 

 

tropical storms the dripwater values were depleted compared to the annual average. This 

indicates that there may have been enough rainfall contributing to recharge (driven by its 

high intensity) and pistoning through the epikarst to allow water into the cave at a quicker 

rate compared to the rest of the study period. This would contribute to a more negative 

dripwater δ18O value, representative of a recharge contribution of more depleted tropical 

storm meteoric water, which is an indication of the amount effect’s influence (Polk et al. 

2012) and possibly higher recharge from these storms.  

 

Figure 2-11: Harrison’s Cave dripwater and stream water δ18O and δD signatures plotted 

against the LMWL and GMWL. The signatures of both cluster in a tight pattern due to 

homogenization prior to reaching the collection sites in the cave. 

Source: Compiled by the author. 

2.3.7 Teleconnections and other Atmospheric Influences 

 Teleconnections can influence precipitation patterns and drought at a broad 

regional level at interannual timescales. From July, 2012, to October, 2013, ENSO was in 

a neutral phase and the AMO was in the positive phase. The NAO shifted from positive, 

negative, and neutral throughout the course of this study (Figure 2-12). There appears to 
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be no correlation between NAO phase, Barbados rainfall, and d-excess values. This 

indicates that higher frequency teleconnections (NAO and ENSO) are less influential due 

to the influence of longer scale, low frequency teleconnections, such as the AMO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12: NAO teleconnection states (phases) and relationship to rainfall and 

evaporative influences. Source: NOAA (2014), compiled by the author. 

 

2.4 Conclusions 

 The results of this study show that the amount effect is not necessarily manifested 

in the weekly oxygen isotopic composition of precipitation in Barbados. Rather, the 

amount-weighted monthly precipitation δ18O signal exhibits influence from the amount 

effect when compared to the monthly precipitation variability on the island, and is even 

further statistically significant when compared to TRMM monthly rainfall data. The 

variation in the weekly compared to the monthly data is attributed to (1) the amount 
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effect being prominent at a monthly resolution that captures the broader spatial and 

temporal variation in precipitation patterns; and (2) quick initiation, rainout, and 

dissipation of convective storm systems. 

 TRMM monthly rainfall data, as previously mentioned, have the strongest 

statistical correlation showing the amount effect’s influence on the monthly precipitation 

δ18O values. This is the first time that TRMM rainfall estimates were compared to 

isotopic signatures at a weekly or monthly resolution. The strong correlation with TRMM 

data is attributed to the combination of TRMM measurements, other satellite, and surface 

rain gauge data for an accurate estimation of rainfall amount, as non-sun synchronous 

orbits are not constantly over one location. This also can explain why the island-wide 

rainfall total over the study period is nine inches off of the TRMM estimates. 

 Despite the high number of enriched weekly precipitation δ18O values, the 

isotopic composition of amount-weighted precipitation was -2.3‰, and the average 

annual δ18O dripwater value was – 3.0‰. These values are very similar, which indicates a 

strong relationship between the average annual amount-weighted precipitation δ18O 

values and that of the dripwater, which is useful for calibrating paleoclimate 

reconstructions from stalagmites. This is also significant because Jones et al. (2000) 

calculated the same exact average annual δ18O dripwater value, but with a slightly more 

enriched amount-weighted precipitation value (-1.9‰), possibly due to seasonal changes 

or sampling limitations in their study. This indicates that the homogenization processes 

likely to have not changed over time, but since throughput of the epikarst is rapid, it is 

indicative that long-term changes in climate over the past few decades have remained 

relatively stable from a paleoclimate reconstruction perspective.  
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 This has implications for aquifer recharge in determining that rainfall amount may 

not be as indicative of recharge from storms, as not all rainfall events will contribute to 

the recharge of the aquifer. However, if tropical storm events are present, it could 

contribute to an increased throughput and higher drip rate. Understanding how rainfall 

amount contributes to recharge can give an indication of how present-day dripwater δ18O 

values reflect the input of various storm events, which in turn has influence on the calcite 

deposited when stalagmites grow  

 Future work from this research could involve relating present-day interactions to a 

paleoclimate study at Harrison’s Cave. This could also aid in the investigation of 

teleconnection influences on precipitation patterns, as it appears longer-term 

teleconnections may mask short-term teleconnections. The present day teleconnection 

record could also be expanded with rainfall amount, isotopic signatures, and d-excess 

values, to determine if any of the short-term teleconnections present a significant 

influence on the hydroclimatalogical cycle of Barbados. 

 TRMM rainfall amounts could also be used in the teleconnection analysis. Not 

only that, but the threshold between island wide rainfall and TRMM could be explored to 

show at what point TRMM is no longer a useful tool to demonstrate the amount effect’s 

existence at a monthly resolution. However, TRMM was replaced by the Global 

Precipitation Measurement (GPM) mission in February, 2014. Rainfall estimates from 

GPM could be tested to see if it those data can better provide island-wide precipitation 

estimates for use in isotopic studies. The amount effect’s influence on precipitation δ18O 

values could be further explored through an analysis of mesoscale processes occurring 

during individual storms at a weekly resolution.  
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CHAPTER 3 

 CONCLUSIONS AND SUMMARY 

3.0 Overview 

 Changes in δ18O and δD are driven by temperature, amount of precipitation, 

latitude, altitude, continental rainout, and convective dynamics, plus origin of storm 

evaporation or mixing of air masses in the tropics, subtropics, or any other geographic 

region. A combination of all these variables gives an indication of what atmospheric 

dynamics are influencing rainfall’s δ18O isotopic signal and aids in determining short- 

and long-term changes in storm source, intensity, and frequency. This is useful to 

understand as a changing global climate will alter rainfall patterns, especially in the 

Caribbean, where cyclic flooding and drought are expected to intensify. Isotopic 

hydrologic work was completed in Barbados by Jones et al. (2000), but the relationship 

of precipitation amount and the composition of calcite dripwaters had not been correlated 

for use in paleoclimate reconstruction. The purpose of this study was to determine this 

relationship, as well as relate precipitation to teleconnections and the amount effect to 

analyze any atmospheric variables that fraction isotopic signatures at a weekly scale. 

Additionally, it provided a first test of using TRMM data to examine the amount effect in 

tropical rainfall isotope values, which appears to work well as a proxy for rainfall at 

monthly time scales.  

 Most previous research focuses on monthly collection of isotope samples in 

relation to aquifer storage, paleoclimate studies, and the amount effect. These studies are 

geographically centered on the tropics and subtropics with little explanation on internal 

storm dynamics and complexities that occur as result of various stages in thunderstorm 



53 

 

development. This also extends into using remotely sensed satellite precipitation totals to 

compare with isotopic signatures to determine if areas with minimal stations can this type 

of data to determine whether or not the amount effect dominates. Previous research 

looked at satellite data relating storm size, origin, and convective nature to isotopic 

signatures of tropical precipitation (Angelini et al. 2003). Other data can indicate that 

TRMM is a poor indicator of daily precipitation (Chokangamwong and Chiu 2007). 

Despite the efforts of TRMM research in the tropics, the correlation of isotopic signatures 

to remotely sensed rainfall totals has not been completed in a karst environment, where 

the precipitation totals can be correlated to subsurface storage, leading to the ability to 

determine the amount of time needed for surface water to reach the subsurface for 

storage. This study supports the ability of TRMM data to capture the influence of the 

amount effect on rainfall δ18O values and thus its potential to be used for studying long-

term precipitation variability and karst aquifer recharge impacts.  

  

3.1 Broader Impacts 

 TRMM is a useful precipitation estimate tool and has evolved since its 

implementation in 1997 (Kummerov et al. 1998). Studies have discussed the over and 

under estimation of TRMM in terms of rainfall, especially at a fine scale resolution 

(Nicholson et al. 2003; Chokangamwong and Chiu 2007; Watson et al. 2014). However, 

at a coarse resolution TRMM precipitation estimates have greater accuracy and are best 

used for climate analysis. 

 TRMM was the first precipitation radar in space, and can be compared to isotopic 

signatures to detect the amount effect. Due to the coverage area (.25°x.25°), this 
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instrument better estimates island-wide precipitation. Precipitation estimates from 

TRMM data were able to provide supporting evidence of the amount effect at a monthly 

resolution. This indicates that TRMM has potential to determine if the amount effect 

exists in an area with minimal rain gauge coverage. However, at finer scale resolutions, 

TRMM cannot discern which atmospheric variations cause changes in rainfall amount 

leading to enrichment or depletion of δ18O precipitation, as it is strictly an estimation 

tool. 

 This also raises the question of the resolution of sample analysis with the amount 

effect, as surface gauge-station-values may differ from TRMM values. At a high 

resolution, the amount effect is muted in correspondence with rainfall isotope signatures. 

However, when the amount-weighted mean monthly precipitation δ18O values were 

compared to monthly island-wide rainfall the amount effect dominated. This indicates 

high-resolution data reveals generalized weekly atmospheric influences. These include 

the stage of convective storm development and evaporative processes.  

 A previous study focused on monthly resolution precipitation analysis at 

Harrison’s Cave (Jones et al. 2000). Additionally, the researchers collected dripwater 

over a short period. When the data collected for this current study were aggregated into a 

monthly resolution and compared to the Jones et al. (2000) data in terms of average 

annual dripwater δ18O values, they appeared identical. This indicates that climate 

variations are not very apparent in the dripwater signatures. 

 Despite this lack of variation, there is still a good record for the annual average 

dripwater isotopic signal. This can give information on the precipitation that contributes 

to stalagmite growth. With this information it is possible to relate present day processes 
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that contribute to stalagmite growth to past δ18O isotopic signatures of calcite. This can 

further provide information on paleohydrologic processes and the rainfall variability 

captured in the dripwater signal that contributes to stalagmite growth for paleoclimate 

reconstructions.  
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APPENDIX 1: RAW ISOTOPIC WEEKLY DATA 

 

Date 
Rainfall 
δ18O 

Rainfall 
δD 

Drip 
δ18O 

Drip 
δD 

Stream 
δ18O 

Stream 
δD 

7/20/12 -2.5 -11.4         

7/29/12 -1.9 -4.2 -3.0 -9.8     

8/4/12 -6.2 -39.0 -3.0 -10.8     

8/12/12 -1.7 -2.1 -3.0 -10.6     

8/19/12 -1.6 -0.6 -3.0 -10.8     

8/25/12 -5.8 -33.6 -3.4 -13.6     

9/3/12 -3.1 -13.2 -3.1 -10.9     

9/10/12 -2.8 -10.4 -3.0 -10.8     

9/17/12 -2.8 -11.3         

9/24/12 -2.8 -9.9 -3.5 -19.3     

10/1/12 -2.0 -0.9 -3.0 -14.5     

10/8/12 -2.3 -6.4 -3.0 -12.2     

10/15/12 -5.5 -31.2 -3.0 -13.0     

10/22/12 -2.5 -7.6 -3.0 -11.9     

10/29/12 -2.6 -6.0 -3.0 -12.3     

11/5/12 -0.9 9.3 -2.9 -11.5     

11/12/12 -0.9 6.8 -2.3 -7.4     

11/19/12 -2.5 -3.2 -3.2 -14.8     

11/26/12 -3.5 -12.7 -2.6 -9.2     

12/3/12 -1.3 1.2 -2.9 -11.4     

12/10/12 -1.1 6.8 -2.8 -10.9     

12/17/12 -0.4 10.0 -3.0 -11.4     

12/24/12 -0.6 12.3 -2.9 -11.3     

1/7/13 -0.4 14.7 -2.9 -11.0     

1/22/13 -0.5 10.3         

1/28/13 -0.3 12.8 -2.9 -10.3     

1/31/12 -1.9 3.6 -3.0 -13.0     

2/5/13 -3.8 -15.5 -3.0 -12.4     

2/11/13 0.2 15.6 -2.9 -11.2 -2.79 -10.18 

2/18/13 0.9 20.9 -2.9 -10.9 -2.90 -10.08 

3/4/13         -3.16 -14.07 

5/2/13 0.8 21.5 -2.9 -11.5 -2.94 -10.82 

6/1/13 -0.9 9.1 -2.9 -11.2     

6/10/13 -1.2 0.4 -2.8 -10.2     

6/17/13 -0.3 5.2 -3.6 -13.6 -2.8 -13.5 

6/24/13 -5.9 -46.6 -3.0 -12.5 -1.7 -11.3 

7/1/13 -0.5 6.7 -3.0 -12.2 -2.5 -11.9 

7/8/13 -2.5 -13.6 -3.2 -13.0 -2.4 -14.7 
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7/15/13 -5.1 -33.7 -2.8 -12.2 -3.2 -13.9 

7/22/13 -0.6 2.1 -2.8 -13.1 -2.9 -13.1 

7/29/13 -1.6 -2.6         

9/9/13 -3.5 -21.2 -3.0 -14.1 -2.7 -12.5 

9/16/13 -0.7 0.7 -3.1 -15.2 -2.7 -11.8 

9/23/13 -2.6 -9.2 -2.9 -15.0 -1.7 -11.3 

9/30/13 -2.2 -8.5 -2.6 -11.5 -2.6 -11.5 

10/7/13 -1.4 -0.3     -2.5 -11.7 

10/14/13 -1.5 -3.7 -2.8 -13.1 -2.5 -11.8 

 

Source: Collected by the author. 
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APPENDIX 2: d-excess 

 

Date D-Excess 

7/20/12 -8.9 

7/29/12 -2.3 

8/4/12 -32.8 

8/12/12 -0.4 

8/19/12 1.0 

8/25/12 -27.8 

9/3/12 -10.1 

9/10/12 -7.6 

9/17/12 -8.5 

9/24/12 -7.1 

10/1/12 1.1 

10/8/12 -4.1 

10/15/12 -25.7 

10/22/12 -5.1 

10/29/12 -3.4 

11/5/12 10.2 

11/12/12 7.7 

11/19/12 -0.7 

11/26/12 -9.2 

12/3/12 2.5 

12/10/12 7.9 

12/17/12 10.4 

12/24/12 12.9 

1/7/13 15.1 

1/22/13 10.8 

1/28/13 13.1 

1/31/13 5.5 

2/5/13 -11.7 

2/11/13 15.4 

2/18/13 20.0 

5/2/13 20.7 

6/1/13 10.0 

6/10/13 1.6 
 

Source: Collected by the author. 
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APPENDIX 3: WEEKLY RAINFALL FOR HARRISONS CAVE, BARBADOS, AND 

ISLAND-WIDE TRMM 

 

  

Date Harrisons Cave Rainfall (mm) 
Barbados 

(mm) TRMM (mm) 

7/20/12 43.5 50.84 7.74 

7/29/12 24.7 22.33 41.46 

8/4/12 35.5 32.74 56.52 

8/12/12 47.1 75.66 46.02 

8/19/12 29.6 39.17 46.02 

8/25/12 46.6 88.81 87.24 

9/3/12 45.5 32.33 26.52 

9/10/12 4.8 7.57 1.71 

9/17/12 13.9 32.91 26.49 

9/24/12 37.2 60.49 16.05 

10/1/12 16 31.26 1.11 

10/8/12 15.4 14.91 12.96 

10/15/12 41.3 54.41 119.1 

10/22/12 14.7 11.38 0 

10/29/12 2.7 13.31 64.26 

11/5/12 2.7 4.04 0.69 

11/12/12 22.4 24.33 13.62 

11/19/12 2.3 13.44 1.14 

11/26/12 0.5 4.64 0.9 

12/3/12 6.3 6.32 2.13 

12/10/12 41.2 16.07 7.41 

12/17/12 24.7 -28.71 5.43 

12/24/12 72.1 46.50 24.24 

1/7/13 26.9 76.39 4.5 

1/22/13 34.9 36.60 3.69 

1/28/13 9.2 7.57 1.23 

1/31/12 8.4 6.77 0.06 

2/5/13 2.9 2.90 1.8 

2/11/13 1.4 2.23 2.94 

2/18/13 4.7 8.26 0 

3/4/13       

5/2/13       

6/1/13       

6/10/13 33.7 30.27 3.48 

6/17/13   23.96 0.51 

6/24/13   23.96 39.51 
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7/1/13 158.8 30.61 66.06 

7/8/13   30.06 75.93 

7/15/13   17.96 129 

7/22/13   12.06 5.28 

7/29/13   0.50 5.4 

9/9/13       

9/16/13   37.83 11.52 

9/23/13   25.46 1.74 

9/30/13   5.00 0.51 

10/7/13   48.67 43.83 

10/14/13   49.33 47.55 

Source: Collected by the author. 
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