
An Optimization Scheduler in the Intranet Grid

Petr Lukasik and Martin Sysel

Department of Computer and Communication Systems
Faculty of Applied Informatics
Tomas Bata University in Zlin

nam. T. G. Masaryka 5555, 760 01 Zlin
Czech Republic

plukasik@tajmac-zps.cz,

sysel@fai.utb.cz

http://www.fai.utb.cz

Abstract. Scheduling of processes is the basic task for a grid comput-
ing. This role is responsible for the allocation of time for computational
agents. The calculation agent can include a wide range of devices, based
on various types of computer systems. Is it possible to efficiently build
a grid infrastructure in the company environment. The grid can be used
in scientific and technical computing, as well as better load distribution
of the individual computing systems and services. The scheduler is a
major component of grid computing. The main task is to effectively dis-
tribute the load of the system and allocate tasks to places that are not
sufficiently utilized at a given moment.
The article also focuses on the relation between conflicting parameters,
which relate to the quality of the planning process. Time calculation of
the optimization algorithm affects the quality of the draft plan. It has a
direct impact on the total period of the job processing. In the strategy of
the scheduling there is a point where extensions of time have no effect on
quality of the draft of the plan but getting worse the overall runtime of
the job. The aim was to compare the common metaheuristic algorithms.
From the measured values to propose a methodology for determining the
optimum time for planning process

Keywords: Grid, JSDL, POSIX, Precedence and Optimization Sche-
duler

1 Introduction

Distribution of tasks and scheduling are essential elements of a grid services.
A tool that allows easy definition of the role and its distribution in the en-
vironment is a prerequisite for high-quality and user-acceptable Grid Services.
The user should have a freedom as well as resources to easily tracking of their
own processing. An important feature is that the Grid service has the least re-
strictive conditions for a successful job execution. (Type or version of software,
operating system and hardware features). The user of the grid should have a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional repository of Tomas Bata University Library

https://core.ac.uk/display/43641239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 An Optimization Scheduler in the Intranet Grid

certain freedom. Not to be tied up of restrictive rules, except the rules relating
to information security and data processing [5, 6].

The aim of this work is the description of the scheduler. The basic functi-
onality is to create a schedule of tasks that will meet the priority, precedence
and optimization requirements for the distribution and processing of batch jobs
in a grid computing environment. The result is the design of optimal scheduling
time in relation to the number of jobs that are released into the processing and
comparison of various scheduling strategies.

The Task is defined by using the standard JSDL (Job Submission Definition
Language). JSDL is an XML-based computational specification for the man-
agement and distribution of batch jobs in a Grid environment, developed by
OGF-JSDL-WG [1],[2],[9]. A current version 1.0 has also the definition of the
POSIX support. JSDL includes support to define a range of computing resources
(the length of processing number of threads, disk space). The parameters to be
defined by the user (type of system, type of processor, memory, network band-
width) are basic inputs for the scheduler [8].

2 Long-Term Job Scheduler

The scheduler is a major component of the Intranet Grid. Logical and temporal
sequence of tasks is the primary activity for him. Is designed as a set of three
main modules.

The priority scheduler is responsible for optimizing the solution of tasks based
on priority. The priority of the process is an optional input parameter that must
be entered by the user when the task starts. Precedence scheduler is responsible
for the order of the processed parts. The optimization solver searches the best
possible use of computing resources. Thereby contributes to optimizing the job
time makespan. Scheduler is subdivided into three independent components.

Fig. 1. A block diagram of the optimization Scheduler

An Optimization Scheduler in the Intranet Grid 3

2.1 A Priority Scheduler.

This scheduler uses a modified cyclic Round-Robin queue. The priority of jobs
is managed by a time-slice tq, which is assigned to a particular job.

The tq determines the activity for a specific task. After the expiration of
this period, the current job is paused and control is passed to the next job. A
Round-Robin mechanism of working time is not prone to neglect the tasks with
lower priority (starvation process).

Each job has a guaranteed periodical running time. The quality of proposed
scheduling strategy is depending on the determination of the optimal time period
tq for the task context switching.

A short period of time switching represents a significant increase of load on
the system. A long interval of time tq degrades Round-Robin scheduler to the
FCFS queue. The timetable of FCFS scheduler is inefficient in this case, see
Sec.(4.1 Priority Scheduler).

2.2 Role of the Precedence Scheduler

The precedence scheduler is responsible for managing the data flow in the indi-
vidual tasks. Performs the role of Mid-Term scheduler for a current task.

This scheduler is designed as a priority FIFO queue with feedback. The sche-
duler monitors the progress of the running tasks in the currnet job which provides
the results for the next tasks. Solves a generic acyclic graph (acyclic Directed
Graph), which describes the workflow of the solved task. Scheme of the prece-
dence graph is defined by the user mandatory.

The precedence scheduler also solves check-pointing of the system. When an
exception occurs, the system can restore the status before failure. Subsequently
this defective part is sent to the processing again. Is able to solve only a transient
type of errors. These errors are defined as temporary and correctable errors
(recoverable errors). Can not solve permanent types of errors. These errors mean
failure of the entire system, including the schedulers and also the server.

2.3 The Optimalization scheduler

The optimization scheduler is designed for the finding the optimum distribution
of computational load for each computing agents connected to the grid.

The aim is to minimize the computational time - makespan. Makespan is
defined as the time difference between the start and end of a sequence of jobs in
an environment of the independent parallel machines. The makespan is a good
indicator for the throughput of the Grid Services.

The optimization scheduler together with a priority scheduler solves the prob-
lem of dynamic scheduling. This is applied during adding another task to an
already running process. It also applies in a case of failure of one of computing
resources. The first input parameter for optimizing scheduler is the capacity of
computing resources. The capacity is evaluated by the system for all computa-
tional agents, see Sec.(3- Evaluation of the Capacity of Computing Resources).

4 An Optimization Scheduler in the Intranet Grid

A second input value is the duration of the task. This value is entered by the
user when the job is started. It is a mandatory input parameter.

3 Evaluation of the Capacity of the Computing
Resources.

The input variables for the evaluation of the computational capacity:

– Memory size: Capacity of the memory .

– network throughput: Rate the data transmission speed in the network.

– Properties of the computing units: The CPU and GPU parameters.

The variables described above are the basic parameters for the test and de-
termine the performance capacity of the computational resources. For the bench-
mark test is designed a simple transcendental equation cos(x) − x = 0, which
can be solved by iteration.

In the first phase, the performance of CPUs is measured. The algorithm
starts with the number of parallel threads based on the number of CPU cores.
The presence of the GPU is also included in the determination of capacity the
computing resources.

The algorithm for evaluation of performance computing resource was chosen
according to the following criteria. The number of tasks running in parallel must
not exceed the number of processor cores. The CPU computational capacity
is an indicator of the performance characteristics of computing resources. The
GPU computational capacity gives the possibility of using the graphics card for
a special parallel tasks.

For evaluating and comparing the performance of sources requires a certain
standard. Based on this standard is evaluated the measured values of any other
sources. For this standard was chosen normal office computer with a standard
power (CPU) + memory without a graphics processing unit (GPU). The per-
formance was measured by the algorithms described above. This standard was
evaluated by the lowest scores from the set Ccpu = (10, . . . , 24), C ∈ N .

The capacity of the GPU was empirically described by the set Cgpu =
(2, . . . , 8), Cgpu ∈ N . Calculations on the GPU requires a different approach
(technology CUDA, OpenCL, OpenGL).

The measurement shows that a significant impact on the capacity of the
system are the I/O operations. It is evident in Fig. 3 and the Hill Climbing
algorithm sorted section. It was suggested the optimal distribution of computing
capacity. Sorting by the length of time duration was assigned to some of the
computational agents, a large number of the tasks with short run-time.

This has a negative impact on processing time. In practice, it has proven
advantageous the random distribution of tasks with different length processing.
Load based on the I/O operations is better distributed.

An Optimization Scheduler in the Intranet Grid 5

Evaluation of the Computational Capacity

GPU is detected GPU not detected

CPU time [ms] 1 000 500 250 125 1 000 500 250 125
CCPU 10 12 13 14 10 12 13 14

GPU time [ms] 100 50 25 15
CGPU 2 4 6 8

C = CCPU + CGPU 12 16 22 24 10 12 13 14

Table 1. Capacity of the Computing Resources

4 Definition of the Time Interval of the Process
Scheduling.

4.1 Priority Scheduler

Priority scheduling is designed as cyclic (Round Robin) queue.

Input parameters:

N The number of tasks running concurrently.
tn The predicted time of the job run - specified by the user.
P ∈ (1, . . . , 5) Priority of the task - specified by the user.
tq Time interval for the job switching.

Output Parameters:

tJ The time allocated for the task.

The time interval that is allocated for the running job affects the behavior
of the priority scheduler[7]. A selection of short time interval significantly in-
creases the system load due to the context switching and also increases the risk
of starvation processes. Starvation may occur so that the following process has
no computing resources at time t. They may be busy with other processes. A long
interval limit degrades cyclic queue to the FCFS. It will handle tasks sequen-
tially. This condition has a negative impact on the optimization of processing
time.

Time interval for the job switching

tq =

∑N
n=1 tn
N

(1)

6 An Optimization Scheduler in the Intranet Grid

The time allocated for the task

tj = tq

(
1

Pmax − P + 1

)
(2)

The Exception - starvation process is solved by increasing the priority tasks
on priority P+1. A subsequent operation returns the priority tasks to its original
value.

5 The Optimization Scheduler

The optimization scheduler together with precedence scheduler solves the dis-
tribution of parallel and sequential of tasks on each computer’s agent for the
current job. The aim is to minimize the makespan processing tasks in an iden-
tical computational machine.

Input parameters:

m = (1, . . . ,M) The number of the computational agents.
j = (1, . . . , N) Set of the tasks running concurrently.

Output parameters:

t = tscd + li Run time of the job = time scheduling + makespan.

The batch job i, consumes tij units of time. Load of the computing agent is

li =
∑

(j∈Ji)

ti,j (3)

and

lmax = max
(i∈m)

li (4)

is the maximum load.

The value lmax is called a makespan of the job. In this case, can be said
that grid computing agents belong to a set of identical machines. Identical in
the sense that the job can be started on any of them. In this case is ti,j = tj for
i ∈ M and j ∈ N [3].

The principal task for this scheduler is a minimize of the makespan lmax. The
criterion for optimizing is job time in the process and the best distribution of
load on all computing agents who is available. Total time is the sum of the run
time of the tasks in the current job (makespan) and the time needed to create a
scheduled task. This fact must be included in the design of optimization criteria.

t = tscd + li (5)

An Optimization Scheduler in the Intranet Grid 7

The proposal of the parameters of the scheduler is dependent on two conflict-
ing values. It is necessary to find their optimal size. The quality of the scheduling
process is depending on the algorithm and time during which is running.

For the design of appropriate parameters were studied some metaheuristic
algorithms. The main task was to find the most appropriate algorithm and de-
termining a reasonable time interval tscd for the scheduling process. The time
period for finding the optimal solution has a significant impact on the overall
processing time. It is necessary to compromise between quality the proposed
plan and time to create a suboptimal schedule. Run time of the schedule was
determined from the total task time measurement. It was measured the total
time for 1 000, 3 000 and 10 000 tasks. The time interval for scheduling was 0,
10, 60 and 300 seconds.

Five measurements were performed for each type of algorithm and the time
interval. Fig. 2 shows the average values of these measurements. Time for sche-
duling in the length of 0 seconds downgraded optimization schedule to the FCFS.

The optimal time is derived from the measured values. The optimum time is
deducted in Fig. 3. The values tscd for the individual algorithms were not much
different. Using linear regression has been found the dependency - a straight line
which describes the relationship between a number of the scheduled tasks and
time tscd for the scheduling with sufficient accuracy.

Run time of scheduling algorithm

The number of tasks in the current job 1 000 3 000 10 000

tscd[s]
Strategic Oscillation 30 60 140

Step Count Hill Climbing 30 60 150
Tabu Search 25 60 140

Simulated Annealing 30 70 135

Table 2. Run time of scheduling algorithm tscd[s]

Relation between the number of task in the current job and time for the
scheduling

tscd = 0.0122J + 20.69 (6)

During the measurement was evaluated run time of elaboration for different
optimization algorithms. Measurements were carried out so that each optimiza-
tion algorithm had the task to propose a timetable for 1 000 tasks. For each
algorithm, was performed five measurements. The diameter measurements were
evaluated. The best results were achieved with the Late Acceptance algorithm.
Poor results were measured with the hill climbing algorithm. The result was that

8 An Optimization Scheduler in the Intranet Grid

for some agents were assigned to a large number of short tasks. Thee computing
nodes have been burdened with a large overhead I/O operations. Algorithms
with random task run length showed much better results.

 160

 180

 200

 220

 240

 260

 280

. . H
illC

lim
bing-Sorted

. LateAcceptance

. Sim
ulatedAnnealing

. StepC
ountingH

illC
lim

bing

. StrategicO
scillation

. TabuSearch

. . .

Comparing of scheduling algorithms and makespan

Jobs[n] = 1000
Optimalization time = 20[s] Makespan Average

Fig. 2. Comparing of scheduling algorithms and makespan

6 Conclusion

The aim of this work was the description and design of appropriate strategies
and parameters in the grid computing environments to optimize performance,
response time and throughput of the service. It was shown that for solving job
shop Scheduling type which belong to a category of NP - complete problems
it is necessary to select some compromises between quality results and a total
length of treatment. The dependence on the quality of the final plan and the time
required for calculation defines the point that determines the threshold at which
further improve the quality of the final timetable of the plan is ineffective. The
proposed approximation dependence of scheduled tasks and time of the runtime
scheduling algorithm tscd see (6), describes this dependence well. Approximation
proposal does not address the limitations resulting from Amdahl’s law [4].

Segmentation into three separate objects priority precedence and optimiza-
tion has led to simplify the design of the scheduler.

Measurements showed that the effect of time for task scheduling has similar
results for all investigated optimization algorithms. For all types of algorithms
that were examined, it is possible to use the same methodology to determine the
length of time (tscd) for the scheduling algorithm.

An Optimization Scheduler in the Intranet Grid 9

The aim of future work is to verify the properties of other stochastic opti-
mization algorithms based on the principle of evolutionary strategies. Particu-
larly Ant Colony Optimization, which observes the behavior of ants in search of
food. Ant Colony Optimization well simulates the concept of finding the shortest
path. The advantage of this algorithm is less sensitive to premature convergence
to the insignificant local extremes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Tabu Search

 1000 jobs

 3000 jobs

10000 jobs

T1=proc.time grid
T2=proc.time scd

T3=proc.time (T1+T2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Tabu Search

 1000 jobs

 3000 jobs

10000 jobs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Simulated Annealing

 1000 jobs

 3000 jobs

10000 jobs

T1=proc.time grid
T2=proc.time scd

T3=proc.time (T1+T2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Simulated Annealing

 1000 jobs

 3000 jobs

10000 jobs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Strategic Oscillation

 1000 jobs

 3000 jobs

10000 jobs

T1=proc.time grid
T2=proc.time scd

T3=proc.time (T1+T2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]

Scheduling time[s]

Strategic Oscillation

 1000 jobs

 3000 jobs

10000 jobs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]
Scheduling time[s]

Step Count Hill Climbing

 1000 jobs

 3000 jobs

10000 jobs

T1=proc.time grid
T2=proc.time scd

T3=proc.time (T1+T2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
[s

]
Scheduling time[s]

Step Count Hill Climbing

 1000 jobs

 3000 jobs

10000 jobs

Fig. 3. Measured values of the makespan

10 An Optimization Scheduler in the Intranet Grid

References

1. Ali Anjomshoaa, EPCC, Fred Brisard, CA, Michel Drescher, Fujitsu, Donal Fellows,
UoM An Ly, CA Stephen McGough, LeSC Darren Pulsipher, Ovoca LLC Andreas
Savva, Fujitsu GFD-R.136 Job Submission Description Language (JSDL) Specifica-
tion http://forge.gridforum.org/projects/jsdl-wg 28 July, 2008 Copyright (C) Open
Grid Forum (2003-2005, 2007-2008). All Rights Reserved.

2. Marty Humphrey, UVA Chris Smith, Platform Computing, Marvin Theimer, Mi-
crosoft, Glenn Wasson, UVA JSDL HPC Profile Application Extension, Version 1.0
July 14, 2006 Updated: October 2, 2006 Copyright Open Grid Forum (2006-2007).
All Rights Reserved.

3. Souza, A. Combinatorial Algorithms Lecture Notes, Winter Term 10/11, Humboldt
University Berlin,

4. Sun, X.-H. and Chen, Y. Reevaluating Amdahls law in the multicore era Journal of
Parallel and Distributed Computing , 2010, 70, 183 - 188

5. Ezugwu, A. E. and Frincu, M. E. and Junaidu, S. B. A Multiagent-Based Approach
to Scheduling of Multi-component Applications in Distributed Systems, Advances
in Intelligent Systems and Computing, Artificial Intelligence Perspectives and Ap-
plications, Springer International Publishing, 2015, 347, 1-12

6. Lukasik, P. and Sysel, M. A Task Management in the Intranet Grid, Modern Trends
and Techniques in Computer Science; Springer International Publishing,2015, Ad-
vances in Intelligent Systems and Computing. Springer International Publishing,
2015, ISBN 978-3-319-18472-2 (Print) DOI 10.1007/978-3-319-18473-9, 2015, 349,
77-85

7. Noon, A. and Kalakech, A. and Kadry, S. A New Round Robin Based Scheduling
Algorithm for Operating Systems: Dynamic Quantum Using the Mean Average,
IJCSI International Journal of Computer Science Issues, 2011, 8, 224-229

8. Rodero, I.; Guim, F.; Corbalan, J.; Labarta, J., How the JSDL can exploit the
parallelism?, Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on , vol.1, no., pp.8 pp.,282, 16-19 May 2006 doi:
10.1109/CCGRID.2006.55 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&

arnumber=1630829\&isnumber=34197

9. Marvin Theimer, Microsoft Corporation, Chris Smith, Platform Computing Corpo-
ration An Extensible Job Submission Design May 5, 2006 Copyright (C) Global Grid
Forum (2006). All rights reserved, Copyright (C) 2006 by Microsoft Corporation and
Platform Computing Corporation All rights reserved.

