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SYNTHESIS AND CHARACTERIZATION OF MANGANESE PYRIDAZYL 
COMPLEXES 

 

Sana Shah    December 2013         33 Pages 

Directed By: Dr. Chad Snyder, Dr. Bangbo Yan and Dr. Darwin Dahl 

Department of Chemistry           Western Kentucky University 

Heterocyclic’s and their fused-ring derivatives have been of interest for 

their use in electronic materials due to their ease of production, synthetic 

versatility, and low cost compared to traditional inorganic materials like silicon.  

Pyridazines have been found to be useful in catalysis gas storage, polymeric 

sensors and biological mimetics.  When a transition-metal is fused into a 

synthesized pyridazine, unique properties such as conductivity and optics are 

allowed. 

In this work, synthesized pyridazine complexes will be analyzed by mass 

spectroscopy, elemental analysis, nuclear magnetic resonance, imaging, x-ray 

crystallography, and infrared spectroscopy. 

We are interested in synthesizing organometallic pyridazines and 

manganese pyridazyl complex for polymer research.  Off-metal synthesis and 

characterization of manganese pyridazyl complex required three intermediate 

steps. The research focuses on the synthesis and characterization of various 

manganese pyridazyl complexes. 
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I. INTRODUCTION 

Pyridazines 

Pyridazine is a hetroaromatic organic compound with the molecular 

formula of C4H4N2.  It contains a six-membered ring with two adjacent nitrogen 

atoms (Figure 1).  Heterocyclic’s and their fused-ring derivatives have been of 

interest for their use in electronic materials due to their ease of production, use of 

green-chemistry (no harsh industrial chemicals in production), synthetic 

versatility, ability to function on flexible substrates and low cost.  Pyridazines 

have also been found to have numerous, real world applications like catalysis,(1) 

polymeric sensors(2) and biological mimetics.(3)  It was found that pyridazines can 

improve the physiochemical properties of drug molecules by increasing their 

water solubility.  Pyridazines are also efficient water oxidation catalysts when 

compared to dinuclear ruthenium complex and have shown high efficiencies in 

catalytic water oxidation with turnover numbers up to 700.(1)   

Pyridazine has no known household usage, but is found in the structures 

of many medicines around the world.  Minaprine and pipofezine are used as 

antidepressants, while hydralazine and cilazapril are used for the treatment of 

hypertension. Pyridazine structures are found mainly in research and industry as 

a building block for most of the complex organic compounds.(4) 

Our current interest focuses on the potential role of pyridazines in next-

generation electronic devices that utilize organics as a semiconducting material.  

Previous studies have shown that these molecular electronic materials possess 

several advantages over traditional inorganic semiconducting materials.  Our 
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research focuses on transition metal chemistry of pyridazines, namely, the 

formation of fused-ring pyridazines complexes to a metal, that is synthesis of 5, 

6-fused pyridazines and their organometallic rhenium and manganese 

complexes.  These fused heterocyclic will serve as synthetic models and building 

blocks for potential organic or organometallic compounding polymers. 
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Figure 1:  Basic Structure of Pyridazine. 
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 Organometallic Semiconductors 

 There are three product categories made using organic semiconductors: 

organic light emitting diodes (OLEDs), organic solar cells, and organic 

electronics.  There are a number of applications in which organic semiconductors 

are used, such as the modern day copy machine and laser printers using organic 

photoconductors.  

Organometallic complexes have potential for use as optically active 

materials in organic photovoltaic (OPV) devices, organic light emitting diodes 

(OLEDs) and organic light emitting fields effects transistors (OLEFETs). 

Organometallic chemistry is the study of chemical compounds containing bonds 

between carbon and metals (Figure 2).  Organic semiconductors are organic 

materials that have semiconducting properties, which have the electric 

conductivity that lies between typical metals and insulating compounds.  

Organometallic semiconductors invention relates to metallic-like organometallic-

films which have semiconducting properties.   

 Organometallic semiconductors have low mobility and low switching 

speeds compared to silicon wafers.  Organic semiconductors are compatible with 

plastic substances, are flexible and have lower manufacturing temperatures. 

 Various heterocycles have been incorporated into conducting polymers, 

resulting in semiconducting properties when doped.  Recently, many heterocycle-

containing molecules like bis-5`-hexylthiophen-2`-yl-2,6-anthracene, which is a 

derivative of anthracene, has been shown to behave as an organic thin-film 

transistor.(5)  There is a critical challenge in being able to make environmentally 
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stable organic thin-film transistor’s (OTFT’s).  Since aromatic heterocycles 

compounds can undergo charge transfer, these compounds have interesting 

electrical properties. 
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Figure 2: Structure of Organometallic compound (Rhenium Complex) 
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Conductive Organometallic Compounds 

 It is impossible for anyone to get through a day without using more than a 

dozen synthetic organic polymers.  Our clothes are polymers, our food is 

packaged in polymers, and our appliances and cars contain a number of polymer 

compounds.   

Polymers are macromolecules composed of repeating structural units 

connected by covalent bonds.  A conductive polymer is composed of organic 

materials that have the ability to conduct electricity.  Typically, polymers behave 

as insulators while metals conduct electricity.  Conductive polymers may mimic 

metallic conductivity and can be used as semiconductors.  Biosensors, strain 

gauges, organic solar cells or organic light-emitting diodes are some of the 

applications for which conductive polymers have been studied extensively. (6) 

Polyacetylene (Figure 3a), the simplest conducting polymer, was first 

synthesized by Natta et al. as a black powder and was found to be a 

semiconductor with the conductivity in the range of 10-11 to 10-3 S/cm.  The range 

depends upon how the polymer was processed and manipulated.  Later, when a 

polymer chemist, Hideki Shirakawa, an inorganic chemist, Alan MacDiamid, and 

a physicist, Alan Heeger, were attempting to synthesize polyacetylene, a thin 

silvery film was produced as a result of a mistake.(7)  Shirakawa and coworkers 

discovered the simplest conducting polymer, polyacetylene with doped halogens, 

winning them a Nobel Prize in Chemistry in the year 2000.(8) 

The discovery of polyacetylene, the first highly conducting polymer, in 

1977, resulted in huge research efforts on synthesizing conductive organic 
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materials.  Conducting polymer films and coatings have properties such as low 

densities, high strength, ease of fabrication, design flexibility (can be stretched 

into thin films), stability, and low cost.(9)  Even though the performance and 

stability of organic semiconductors were poor in the beginning, there have been 

great improvements in synthesis and processing new organic materials suitable 

for organic semiconductors.(10)(11) 

Some of the other well known polymers include polyaniline (Figure 3b), 

polypyrrole (Figure 3c), and polythiophene (Figure 3d).  Among the three 

polymers, polyaniline is considered the most promising polymer due to its simple 

synthesis, controllable electrical conductivity, and good environmental stability.  

In efforts of producing conductive polymers that are air-stable, tractable and have 

low band gaps, polythiophene and polypyrrole have been investigated.  Since 

polythiophene and polypyrrole have lone pair electrons of sulfur and nitrogen 

atom respectively, the lone pair atoms tend to stabilize the positive charges of 

the p-doped polymers through resonance.   

Poly(p-phenylene vinylene) (Figure 3e) is the only polymer that has been 

successfully processed into a highly ordered crystalline thin film which forms to 

yield samples with extremely high levels of crystalline. Poly (p-phenylene 

vinylene) is also the first conjugated polymer which was reported in light-emitting 

diodes.(12)   

Undoped conjugated polymers can be semiconductors or insulators.  

Conjugated polymers can be organic semiconductors, in which the 

semiconducting behavior is associated with the π molecular orbitals delocalized 
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along the polymer chains.  A precursor made with poly(p-phenylene vinylene), 

can be used as the active element in a large-area light-emitting diode.  Since                  

poly(p-phenylene vinylene) polymer is combined with good structural properties, 

ease of fabrication and also light emission in the green-yellow part of the 

spectrum with reasonably high efficiency, the polymer can be useful in the 

development of large-area light-emitting displays.(12) 
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Figure 3: Structure of (a) polyacetylene, (b) polyaniline, (c) polypyrrole, (d) 
polythiophene, (e) poly[p-phenylene vinylene] 
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Cymantrene 

 Cyclopentadienyltircarbonylmanganese, also known as cymantrene 

(Figure 4), is a 5-membered ring with Mn(CO)3 hanging from the ring and has a 

formula of C5H5-Mn(CO)3.   

 Cyclopentadienylmanganese carbonyl’s chemistry dates back to 1954 

which is shortly after the discovery of ferrocene with the synthesis of 

mononuclear derivate (η5- C5H5)Mn(CO)3, also known as cymantrene. (13)  In our 

research we are synthesizing derivatives of cymantrene.  The research 

presented here-in modeled derivatives of cymantrene.  However our unique 

feature was building a pyridazine structure around cymantrene. 
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Figure 4: Basic structure of Cymantrene 
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II. EXPERIMENTAL PROCEDURE 

All reactions were carried out using standard Schlenk techniques under a 

nitrogen atmosphere unless otherwise noted.  NMR solvents CDCl3, acetone-d6, 

and DMSO-d6 (Aldrich) were used without further purification.  

Dicyclopentadiene, THF, hydrazine hydrate (Aldrich), and thallium (I) ethoxide 

(Strem) were used without further purification. Fulvenes, 1,2-

C5H3(COC6H4Br)(COHC6H4Br) (1a), was prepared according to the literature 

methods. Ethyl ether and THF were dried over sodium benzophenone ketyl. 

1H and 13C NMR spectra were recorded on a JEOL-500 MHz NMR 

spectrometer at ca. 22 oC and were referenced to residual solvent peaks.  All 13C 

NMR spectra were listed as decoupled.  Infrared spectra were recorded on 

Spectrum One FT-IR Spectrometer.  Electron ionization (EI) mass spectra were 

recorded at 70 eV on a Varian 500-MS Series LC/MS ion trap at Western 

Kentucky University’s Advanced Materials Institute as well as on a DART SVP 

MS Thermo Scientific LTQ-XL at Eastern Kentucky University’s Department of 

Chemistry.  Melting points were taken on a standard Mel-Temp apparatus.  X-ray 

diffraction data were collected at 90 K on a Nonius KappaCCD diffractometer at 

the University of Kentucky.  Elemental analyses were performed at Western 

Kentucky University’s Advanced Materials Institute and Atlantic Microlabs, Inc in 

Norcross, GA.  Elemental analysis of the thallium salts 3a afforded carbon and 

hydrogen values outside the acceptable range than those theoretically 

calculated.  However, we attributed this observation to the presence of thallium 

impurities commonly present in these types of salts.  These traces of inorganic 
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byproducts did not affect the reactivity of compound 3a itself and further 

purification was not attempted.   

Synthesis of 1,2-C5H3(CO-(5-BrC6H4)(COH-(5-BrC6H4)) (1a) 

In a 250 mL 3-necked round bottom flask, n-butyl lithium in hexanes (2.5 

M, 13 mL, 0.0325 mol) was added to 50 mL of anhydrous diethyl ether at 0 °C.  

Freshly cracked cyclopentadiene (2.40 mL, 0.0364 mol) diluted with diethyl ether 

(10 mL) was then added dropwise to the reaction.  A white suspension 

immediately formed.  After stirring for approximately 15 minutes, 1a (5.19 g, 

0.0248 mol) was dissolved into 10 mL of diethyl ether and the solution was 

added dropwise to the reaction flask, causing a brick red suspension to form.  

The suspension was allowed to warm to room temperature and was stirred for 

one hour.  The reaction mixture was hydrolyzed with dilute acetic acid (5%) and 

extracted three times with methylene chloride.  The organic layers were 

collected, dried over MgSO4, and filtered, and the volatiles were removed in 

vacuo to yield a red-orange semisolid.  Re-crystallization using methylene 

chloride and pentane afforded 1a (2.32g,46%) as a red-orange solid.  Mp: 111–

121 °C.  1H NMR (500 MHz, acetone-d6, ppm):  δ 6.65 (s, 1H, CHCHCH), 6.84 

(s, 2H, CHCHCH), 7.47 (d, 2H, CHCHBr), 8.08 (d, 2H, CHCHBr).  13C NMR (125 

MHz, acetone-d6, ppm):  δ 115.1 (CHCHCH), 122.4 (CHCHCH), 123.1 (ipso 

Cp), 124.9, 128.4, 139.5, 153.1 (Ar), 167.6 (C=O).  IR (KBr, cm–1): 1567 (C=O), 

3146 (CH), 3435 (OH).  MS(DART-LTQ): m/z 412.99 (M+ + H).  Analysis Calc. 

for C15H8O4Br2:  C, 43.7; H, 1.9.  Found:  C, 46.1; H, 2.1. 
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Synthesis of 1,2-C5H3(CC6H4BrNH)(CC6H4BrN) (2a) 

1,2-C5H3(COC6H4Br)(COHC6H4Br) (1a, 421 mg, 0.970 mmol) was 

dissolved in methanol (20 mL) in a 25 mL round-bottom flask.  An excess of 

hydrazine hydrate (2.00 mL, 2.06 g, 41.2 mmol) was added to the solution.  The 

solution was stirred 24 hours.  To the reaction, water (10 mL) was added and an 

orange precipitate formed immediately. The aqueous suspension was washed 

with dichloromethane (3 x 5 mL) and the organic layers were collected, dried 

(MgSO4), and filtered. The volatiles were removed in vacuo and the crude 

product was triturated with cold hexane to give 1,2-

C5H3(CC6H4BrNH)(CC6H4BrN) (2b, 326 mg, 0.762 mmol, 78.6%) as an orange 

powder.  Mp:  182–187 oC.  1H NMR (500 MHz, CDCl3, ppm):  δ 7.04 (d, 2H, 3J = 

3.5 Hz, CHCHCH), 7.54 (t, 1H, 3J = 3.5 Hz, CHCHCH), 7.67 (d, 1H, 3J = 8.6 Hz, 

CHCHCBr), 7.79 (d, 1H, 3J = 8.6 Hz, CHCHCBr).  13C NMR (125 MHz, CDCl3, 

ppm): δ 109.3 (CHCHCH), 120.3 (CHCHCH), 124.8 (CCHCH), 130.1, 132.4 

(Ph), 133.5 (CN).  IR (KBr, cm–1):  1591 (CN), 3075 (C–H), 3200 (N–H).  MS:  

m/z 428 (M+), 349 (M+ – Br).  HRMS: (M+) calcd 427.9348, obsd 427.9348.  Anal. 

Calcd. for C19H12N2Br2: C, 53.3; H, 2.83; N, 6.54.  Found:  C, 53.1; H, 2.88.; N, 

6.71 

Synthesis of [Tl{1,2-C5H3(CC6H4BrNH)(CC6H4BrN)] (3a)   

Thallium (I) ethoxide was added to a solution of 1,2-

C5H3(COC6H4Br)(COHC6H4Br)  (2a, 269 mg, 0.628 mmol) in THF (30 mL).  An 

orange precipitate formed after 5 minutes.  The solution was stirred for 24 hours 

at 22 oC.  The precipitate was filtered and washed with cold hexane (3 x 10 mL) 
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providing [Tl{1,2-C5H3(CC6H4BrNH)(CC6H4BrN)] (3a, Quantitative yield, 399 mg, 

0.627 mmol) as a yellow solid.  Mp:  178–195 oC (dec).  1H NMR (500 MHz, 

DMSO-d6, ppm): δ 6.44 (d, 1H, 3J = 3.4 Hz, CHCHCH), 6.93 (t, 1H, 3J = 3.4 Hz, 

CHCHCH), 7.66 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 7.99 (d, 1H, 3J = 8.6 Hz, 

CHCHCBr). 13C NMR (125 MHz, DMSO-d6, ppm): δ 110.0 (CHCHCH), 116.5 

(CHCHCH), 127.0 (CCHCH), 131.0, 131.6 (Ph), 155.0 (CN).  IR (KBr, cm–1):  

1591 (CN), 3100 (CH).  MS(EI-pos): m/z 632 (M+), 428 (M+ – Tl.  Anal. Calcd. for 

C19H13N2Br2Tl: C, 36.0; H, 2.07; N, 4.42.  Found:  C, 29.6; H, 1.74.; N, 2.96 

Synthesis of [Mn{1, 2-C5H3(CC6H4OBrCH3NH)(CC6H4OBrCH3N)(CO)3] 4a 

 To a solution of [Tl{1,2-C5H3(CC6H4OBrCH3NH)(CC6H4OBrCH3N }] (3a, 

482 mg, 1.05 mmol) in dry benzene (30 mL) was added [MnBr(CO)5] (473 mg, 

1.16 mmol).  The solution was allowed to reflux for 5 hours.  The solution was 

filtered through a Celite plug using benzene.  The solvent was removed under 

reduced pressure to leave a red semi-solid.  The semi-sold was triturated with 

pentane (2 x 5 mL) to provide a red powder (4a, 74.9%). Mp:  126–136oC (dec).  

1H NMR (500 MHz, DMSO-d6, ppm): δ 7.66 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 7.99 

(d, 1H, 3J = 8.6 Hz, CHCHCBr). 13C NMR (125 MHz, acetone-d6, ppm): δ 107.7 

(CHCHCH), 120.4 (CHCHCH), 128.3 (CCHCH), 132.0, 132.2 (Ph).  IR (KBr, cm–

1):  1559 (CN), 3041 (CH), 1933, 2034 (MnCO). 
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III. RESULTS AND DISCUSSION 

Fulvene 1a was synthesized by the addition of freshly cracked 

cyclopentadiene to the solution of cold n- butyl lithium in diethyl ether along with 

4-chlorobenzol chloride to provide fulvene.  The percent yield for fulvene was 

74%.  IR spectroscopy displayed stretches at 1567 cm-1 (CO) for the fulvene 1a.  

13C NMR spectroscopy shows a carbonyl at δ 167.6 (CO) for fulvene 1a. 1H NMR 

spectroscopy for fulvene 1a showed the following peaks: δ 6.65 (s, 1H, 

CHCHCH), 6.84 (s, 2H, CHCHCH), 7.47 (s, 2H, CHCHBr), 8.08 (s, 2H, 

CHCHBr), which confirms the fulvene structure (1a). 

Pyridazine complex 2a was synthesized by dissolving fulvene 1a in 

methanol at room temperature, followed by the addition of hydrazine hydrate, 

which eventually gave a product with a percent yield of 78.6% for complex 2a. IR 

spectroscopy showed stretches at 1591 cm-1 (CN) and 3075 cm-1 (CH) for 

pyridazine complex 2a. 13C NMR spectroscopy has a peak at 133.5 (CN) 

confirming the formation of a pyridazine complex.  1H NMR spectroscopy showed 

signals for pyridazine complex 2a at δ 7.04 (d, 2H, 3J = 3.5 Hz, CHCHCH), 7.54 

(t, 1H, 3J = 3.5 Hz, CHCHCH), 7.67 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 7.79 (d, 1H, 

3J = 8.6 Hz, CHCHCBr). 

Thallium salt 3a was synthesized by the addition of thallium (I) ethoxide 

to the pyridazine complex 2a in dry THF.  The percent yield for the thallium 

compound was 99%.  IR spectroscopy showed a wave number at 1591 cm-1 

(CN) and 3100 cm-1 (CH) for the thallium compound 3a.  13C NMR spectroscopy 

shows the peaks at δ 110.0 (CHCHCH), 116.5 (CHCHCH), 127.0 (CCHCH), 
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131.0, 131.6 (Ph), 155.0 (CN). 1H NMR spectroscopy showed signals for thallium 

compound 3a at δ 6.44 (d, 1H, 3J = 3.4 Hz, CHCHCH), 6.93 (t, 1H, 3J = 3.4 Hz, 

CHCHCH), 7.66 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 7.99 (d, 1H, 3J = 8.6 Hz, 

CHCHCBr). 

Manganese complex 4a was synthesized by the addition of manganese 

pentacarbonyl bromide to thallium salt 3a in dry benzene. The solution was 

allowed to reflux for five hours. The percent yield was 75% for manganese 

complex 4a.  IR spectroscopy showed wave number at 1559 cm-1 (CN) and 

3041cm-1 (CH) for manganese complex 3a.  It also displayed two stretches 

indication of the manganese tricarbonyl structure; MnCO stretches at 1933 cm-1 

and 2034cm-1.  13C NMR spectroscopy showed signals at δ 107.7 (CHCHCH), 

120.4 (CHCHCH), 128.3 (CCHCH), 132.0, 132.2 (Ph) for the manganese 

complex 4a. 
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Scheme 1-  
Synthetic route for [Mn{1,2 C5H3(CC6H4OBrCH3NH)(CC6H4OBrCH3N)}(CO)3] 
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Scheme 2 
A. Retro Diels-Alder Reaction Followed by deprotonation via n-butyl lithium 
B.1,2-addition using 4-chlorobenzol chloride.
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Selected Data Characterization of Fulvene 1a 
Percent yield 74.0% 

  

Melting Point: 111oC —121oC 

  

IR (KBr, cm–1): 
1567 (C=O),  
3146 (CH),  
3435 (OH). 

  

1H NMR (500 MHz, acetone-d6, 
ppm): 

δ 6.65 (s, 1H, CHCHCH),  
δ 6.84 (s, 2H, CHCHCH),  
δ 7.47 (d, 2H, CHCHBr),  
δ 8.08 (d, 2H, CHCHBr). 

  

13C NMR (125 MHz, acetone-d6, 
ppm): 

δ 115.1 (CHCHCH),  
δ 122.4 (CHCHCH),  
δ 123.1 (ipso Cp),  
δ 124.9, δ 128.4, δ 139.5, δ 153.1 (Ar), 
 δ 167.6 (C=O).   

  
Table 1- Selected Data Characterization of Fulvene (1a). 

 

 

 

 

 

 

 

 
 
Figure 5: Structure of Fulvene.   
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Selected Data Characterization of Pyridazine Compound 2a 
Percent yield 78.6% 

  

Melting Point: 182 oC –187 oC 

  

IR (KBr, cm–1):   
1591 (CN),  
3075 (C–H),  
3200 (N–H).   

  

1H NMR (500 MHz, CDCl3, ppm):   
δ 7.04 (d, 2H, 3J = 3.5 Hz, CHCHCH), 
δ 7.54 (t, 1H, 3J = 3.5 Hz,  CHCHCH), 
δ 7.67 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 
δ 7.79 (d, 1H, 3J = 8.6 Hz, CHCHCBr). 

  

13C NMR (125 MHz, CDCl3, ppm): 

δ 109.3 (CHCHCH),  
δ 120.3 (CHCHCH),  
δ 124.8 (CCHCH),  
δ 130.1, δ 132.4 (Ph),  
δ 133.5 (CN). 

  
Table 2- Selected Data Characterization of Pyridazine Compound (2a) 

 

 

 

 

 

 

 

 

 

 
Figure 6a: Structure of Pyridazine Complex. 
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Figure 6b: 1H NMR Spectroscopy for pyridazine complex. 
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Figure 6c: 13C NMR Spectroscopy for pyridazine complex. 
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Figure 6d: X-ray crystallography of pyridazine compound (2a). 
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Selected Data Characterization of Thallium Salt 3a 
Percent yield 99% 

  

Melting Point: 178oC-195oC (Dec) 

  

IR (KBr, cm–1):   1591 (CN),  
3100 (CH).   

  

1H NMR (500 MHz, DMSO-d6, ppm): 

δ 6.44 (d, 1H, 3J = 3.4 Hz, CHCHCH),  
δ 6.93 (t, 1H, 3J = 3.4 Hz, CHCHCH),  
δ 7.66 (d, 1H, 3J = 8.6 Hz, CHCHCBr), 
δ 7.99 (d, 1H, 3J = 8.6 Hz, CHCHCBr). 

  

13C NMR (125 MHz, DMSO-d6, ppm): 

δ 110.0 (CHCHCH),  
δ 116.5 (CHCHCH),  
δ 127.0 (CCHCH),  
δ 131.0, δ 131.6 (Ph),  
δ 155.0 (CN).   

  
Table 3- Selected Data Characterization of Thallium Salt (3a). 

 

 

 

 

 

 

 

 

 
Figure 7a: Structure of Thallium Salt. 
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Figure 7b:  1H NMR Spectroscopy for thallium salt.  
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Selected Data Characterization of Manganese Complex 4a 
Percent yield 75% 

  

Melting Point: 126 oC -136oC 

  

IR (KBr, cm–1): 
1559 (CN) 
3041(CH) 
1934, 2027 (MnCO) 

  

1H NMR (500 MHz, DMSO-d6, ppm): δ 7.66 (d, 1H, 3J = 8.6 Hz, CHCHCBr),  
δ 7.99 (d, 1H, 3J = 8.6 Hz, CHCHCBr). 

  

13C NMR (125 MHz, Acetone-d6, 
ppm): 

δ 107.7 (CHCHCH),  
δ 120.4 (CHCHCH),  
δ 128.3 (CCHCH),  
δ 132.0, δ 132.2 (Ph). 

  
Table 4- Selected Data Characterization of Manganese Complex (4a). 

 

 

 

 

 

 

 

 

 

 
Figure 8a: Structure of Manganese Complex. 
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Structure of Manganese Complex                  
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Figure 8b: 13C NMR Spectroscopy for Manganese Complex. 
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Figure 8c:  IR Spectroscopy for Manganese Complex 4a. 
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IV. CONCLUSION 

A series of reactions were performed which led to the synthesis of       

[Mn{1, 2-C5H3(CC6H4OBrCH3NH)(CC6H4OBrCH3N)(CO)3], pyridizayl 

manganese complex (4a). 

The yield for the fulvene (1a) was 74%.  The pyridazine complex’s percent 

yield was at 78.6%.  Thallium salt had a percent yield of 99%.  Manganese 

complex yield was 75%. 

IR spectroscopy was used to confirm the presence of (CO) at 1567cm-1 for 

the fulvene compound (1a).   Carbonyl group in pyridizayl manganese 

complex (4a) was found at 1933cm-1 and 2034cm-1.  The carbonyl group (CO) 

was always found approximately at 2000cm-1 and 1900 cm-1, which confirms 

the presence of carbonyl group in the manganese pyridazyl group. 

13C NMR spectroscopy confirmed the presence dicarbonyl and 

manganese tricarbonyl for compounds 1a-4a. 1H NMR spectroscopy 

confirmed the presence of cyclopentadiene and its substituent for compounds 

1a-4a. 

  



 

32 

REFERENCES 

1. Xu, Y; Akerman, T; Gyollai,V; Zou, D; Eriksson, L; Duan, L; Zhang, R; 

Akermark,B; A., L. A New Dinnclear Ruthenium Complex as a n Efficient 

Water Oxidation Catalyst. Inorg. Chem. 2008, 48, 2717. 

2. Yang,Jye-Shane; Swager, T. Porous Shape Persistent Fluorescent Plymer 

Films: An Approach to TNT Sensory Materials. J. Am.Chem. Soc. 1998, 

120, 5321. 

3. Volonterio, Alessandro; Moisan, Lionel; Rebek, Julius. Synthesis of 

Pyridazine-Based Scaffolds as alpha-Helix Mimetics. Org. Lett. 2007, 9, 

3733. 

4. Allanasi, Orazio, A; Favi, Gianfrano; Perrulli, Francesca, R; Santeusanio, 

Stefania.  A novel and convenient protocol for Synthesis of Pyridazine. 

Org. Lett. 2009, 11, 309. 

5. Meng, Hang; Sun, Fangpng; Goldfinder, Marc, B; Jaycox, Gary; Li, Zhingang; 

Marshall, Will; Blackman, Gregory. High Performance, Stable Organic, 

Thin-Film, Field-Effect Transistors Based on bis-5`-alkylthiophen-2`-yl-2,6-

anthracene Semiconductors. J. Am. Chem. Sci. 2005, 127, 2406. 

6. Daugaard, Anderes, E; Hvilisted, Soren; Hasen, Thomas, S; Larsen, Niels, B. 

Conductive Polymer Functionalized by Click Chemistry. Macromolecules. 

2008, 41, 4321. 

7. Shirakawa, Hindeki. Nobel Lecture: The discovery of Polyacetylene film-the 

drawing of an era of conducting polymers. Rew. Mod. Phys. 2007, 73, 

713. 



 

33 

8. Hall, Nina. Twenty-Five years of Conducting Polymers. Chem. Commun. 2003. 

9. Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin. Investingations on the 

Mechanical Propeites of conducting Polymer Coating-Substrate Stuctures 

and Their Influencing Factors. Int. J. Mol Sci. 2009, 10, 5257. 

10. Chen, Huajie; et al. Synthesis and characterization of novel semiconductors 

based on thienol[3,4-b][1]benzothiophere cores and their applications in 

the organic thin-film transistors. J. Phy Chem C. 2011, 115, 23984. 

11. Zaumseil, Jana; Sirringhaus, Henning. Electron and Ambipolar Transport in 

Organic Field-Effect Transistors.Chem. Rev. 2007, 107, 1296. 

12. Burroghes, J, H; Bradley,D, D, C; Brown, A, R; Marks, R, N; Mackay, K; 

Friend, R, H; Burns, P, L; Holmes, A, B. Light-emitting diodes based on 

conjugated polymers. Burroughes. Nature, 1990, 347, 539. 

13.  Zhang, Xiuhui; Li, Qian-Shu; Xie, Yaoming; King, R. Bruce; Schaefer, Henry 

F. III. Unsaturated Binuclear Cyclopentadienylmanganese Carbonyl 

Derivatives related to Cymantrene. Organometallics, 2008, 27 61.



 

 

 


	Western Kentucky University
	TopSCHOLAR®
	12-1-2013

	Synthesis and Characterization of Manganese Pyridazyl Complexes
	Sana Shah
	Recommended Citation



