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Abstract 

Sterilization is the final surface treatment procedure of all implantable devices and is one of 

the key factors which have to be considered before implementation. Since different 

sterilization procedures for all implantable devices influence mechanical properties as well as 

biological response, the influence of different sterilization techniques on titanium nanotubes 

was studied. Commonly used sterilization techniques such as autoclaving, ultra-violet light 

sterilization, hydrogen peroxide plasma sterilization as well as the not so frequently used 

gaseous oxygen plasma sterilization were used. Three different nanotube diameters; 15 nm, 

50 nm and 100 nm were employed to study the effects of various sterilization techniques. It 

was observed that autoclave sterilization resulted in destruction of nanotubular features on all 

three studied nanotube diameters, while UV-light and both kinds of plasma sterilization did 
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not cause any significant morphological changes on the surfaces. Differences between the 

sterilization techniques employed influenced cytocompatibility, especially in the case of 

nanotubes with 100 nm diameter.  

Key words: TiO2 nanotubes, sterilization, surface, cytocompatibility, electrochemical 

anodization 

1.  Introduction 

Due to its superior mechanical properties Titanium (Ti) is widely used in medicine, especially 

as an orthopaedic, dental or even vascular implant. Ti implants have an essential role in 

medicine and biotechnology as they possess unique mechanical properties and have 

anticorrosive and biocompatible surface properties due to the formation of a protective 

titanium dioxide (TiO2) layer [1,2]. It has been shown that the spontaneously formed oxide 

layer on Ti surface is not uniform and that it varies in thickness from 2-10 nm [3,4], which 

influences on biological response (e.g. cells or tissue). Recently many attempts were made to 

improve Ti surface properties, mainly by nanostructuring, which includes formation of TiO2 

nanotubule (NT) surface [5]. NTs have high potential, not only as biomaterials [6-8], but also 

as materials used for photocatalysis, photoelectrolysis, sensing and for solar cells [9-13]. The 

excellent and unique potential of NT surfaces in medicine and biotechnology is due to their 

high surface to volume ratio and the possibility that an NT can be fabricated in different 

diameters and lengths. This allows for the design of nanostructured surfaces for their specific 

application, because biological (e.g. cells or tissue) and physiological systems (e.g. blood 

coagulation or immune response) can respond differently to distinct topographic features. In 

vitro studies have already shown that surface features at the nanometer scale stimulate and 

control several molecular and cellular events on the tissue/implant interface, which can be 

observed by differences in cell morphology, orientation, cytoskeleton organization, 

proliferation and gene expression [14-18]. Moreover, several studies have revealed 

considerable impact of TiO2 NT surfaces on osteoblasts differentiation [19,20] as well as on 

proliferation and subsequent mineralization of the extracellular matrix [21], which makes 

such surfaces ideal for their use in orthopaedic applications as well as for dental implants. The 

estimated market size of orthopaedic implants in 2009 alone was estimated at $33 billion with 

prognosis of 7.1% year-to-year increase [22]. This clearly shows that there is an enormous 

demand for orthopaedic implants with superior properties. NT surfaces certainly have a high 

potential for use as orthopaedic implants due to their simple and inexpensive fabrication and 

also their appropriate biological response. They have been shown to increase bone 

growth/regeneration [23,24], are antibacterial [25-27] and reduce inflammation [28,29]. Many 

https://www.researchgate.net/publication/14792264_Titanium_and_titanium_alloys_as_dental_materials?el=1_x_8&enrichId=rgreq-1c70d095-a493-4da8-a878-8987a6debc76&enrichSource=Y292ZXJQYWdlOzI5NDExMjAwMjtBUzozMzAwNDAxMjMzNzk3MTJAMTQ1NTY5OTEwNTcxMg==
https://www.researchgate.net/publication/7645735_Coadsorption_of_Horseradish_Peroxidase_with_Thionine_on_TiO2_Nanotubes_for_Biosensing?el=1_x_8&enrichId=rgreq-1c70d095-a493-4da8-a878-8987a6debc76&enrichSource=Y292ZXJQYWdlOzI5NDExMjAwMjtBUzozMzAwNDAxMjMzNzk3MTJAMTQ1NTY5OTEwNTcxMg==
https://www.researchgate.net/publication/9026606_Metal_Oxide_Nanoarchitectures_for_Environmental_Sensing?el=1_x_8&enrichId=rgreq-1c70d095-a493-4da8-a878-8987a6debc76&enrichSource=Y292ZXJQYWdlOzI5NDExMjAwMjtBUzozMzAwNDAxMjMzNzk3MTJAMTQ1NTY5OTEwNTcxMg==
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studies deal with the effects of Ti NTs on the biological response, however results are not 

overall consistent. It has been shown that enhanced functions of osteoblast cells are obtained 

on NTs between 15 to 70 nm in diameter [5,7,9,10,30]. Parke et al. reported that NTs with a 

diameter between 15 and 30 nm enhance the activity of osteoblast, while cell proliferation and 

migration on tube diameters larger than 70 nm was significantly reduced [31]. Moreover Oh 

et al. [21] reported that the cell seeding density and type of sterilization used (wet or dry 

autoclaving) significantly influence adhesion and proliferation of osteoblast cells on NT 

surfaces, especially for the case of 70 and 100 nm diameter. Prominent differences in 

osteoblast proliferation after 24 and 48 h of incubation on freshly prepared TiO2 NTs surfaces 

and TiO2 NTs surfaces following heat treatment were also observed. It was shown that 

osteoblast cell proliferation on heat treated NTs was improved, which was explained by the 

presence of the anatase phase in the TiO2 NT after heat treatment, as well as by possible 

remaining fluorine (introduced during HF anodization) on freshly prepared NTs [32]. Because 

small changes in surface properties of the NTs significantly influence on the proliferation and 

migration of cells it is important to explore the effects of different treatment techniques on 

physical and chemical properties of NT surfaces. Sterilization presents the final surface 

treatment step of medical materials and may influence the NTs surface morphology and their 

chemical composition. Therefore the sterilization of NT surfaces presents an important aspect 

which should be considered, while preparing NT surfaces for medical applications. Not only 

in terms of possible infections but also in terms of altered surface properties and its influence 

on cytocompatibility. As different sterilization techniques and their influence on NT 

morphology and surface chemistry are still not fully understood [27,32], it was our aim to 

study the effects of different sterilization techniques on the topological, physical and chemical 

properties of TiO2 NT surfaces with different diameters. We were particularly interested in 

observing changes in surface morphology of NT and their influence on cytocompatibility in 

vitro.  

For the purpose of our work, NT surfaces with different diameters were produced by 

electrochemical anodization and the influence of various sterilization techniques on specific 

surface morphology was studied. Changes in surface morphology after common sterilization 

techniques, such as autoclaving, ultra-violet (UV) light exposure and commercial hydrogen 

peroxide (H2O2) plasma, were assessed using scanning electron microscopy (SEM), atomic 

force microscopy (AFM) and water contact angle measurements (WCA). Moreover, a non-

commercial sterilization technique by gaseous oxygen plasma was studied, as it represents an 

interesting approach for sterilization as well as for modification of the top surface layer of 

NTs, with a high potential to improve surface biocompatibility. Effects of sterilization 

https://www.researchgate.net/publication/7645735_Coadsorption_of_Horseradish_Peroxidase_with_Thionine_on_TiO2_Nanotubes_for_Biosensing?el=1_x_8&enrichId=rgreq-1c70d095-a493-4da8-a878-8987a6debc76&enrichSource=Y292ZXJQYWdlOzI5NDExMjAwMjtBUzozMzAwNDAxMjMzNzk3MTJAMTQ1NTY5OTEwNTcxMg==
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techniques on cytocompatibility in vitro were studied using model human osteoblasts (HOb), 

by applying conventional colorimetric viability assay coupled with SEM imaging.  

2. Materials and Methods 

2.1 Preparation of titanium dioxide nanotubes 

Titanium dioxide (TiO2) nanotubular (NT) surfaces were obtained by electrochemical 

anodization of Ti foils of 0.1 mm thickness, 99.6% purity. Prior to anodization, Ti foils were 

degreased by successive ultrasonication steps in acetone, ethanol and deionized (DI) water 

respectively for 5 minutes each and dried in a nitrogen stream. Ethylene glycol based 

electrolytes containing specific concentrations of water and hydrofluoric acid were used to 

obtain desired dimensions of NT, as was shown in our previous work [33,34]. All the 

anodization experiments were carried out at room temperature with platinum gauze as the 

counter electrode and Ti foil as anode, with a working electrode distance of 15 mm. As-

formed, TiO2 nanostructured surfaces were kept in ethanol for 2 hours to remove all organic 

components from the electrolyte, washed with distilled water and dried in a nitrogen stream. 

The three different diameters of NT were prepared; 15 nm (NT15), 50 nm (NT50) and 100 

nm (NT100) which were further analysed for their morphological features, wettability and in 

vitro cytocompatibility.  

2.2. Sterilization of TiO2 NT 

Sterilization with autoclave  

NT surfaces were transferred into glass petri dishes, and autoclaved at for 15 min (high 

pressure and saturated steam at 105-135 °C; Tabletop autoclave A-21CA; Kambič 

laboratorijska oprema, Semič, Slovenia). For transferring and handling the NT samples, 

sterile tweezers (70 % ethanol (EtOH) and fire-exposed) were used. 

 

Sterilization with ultra-violet (UV) light radiations 

Sterile tweezers (70 % EtOH and fire-exposed) were used to transfer the NT surfaces into a 

12-well culture plate. Approximately 1 mL of 70% EtOH was added in the well plate to dip 

NT sample completely. After 10 min incubation, EtOH was removed and the sample was left 

open in a sterile laminar hood until EtOH evaporated completely. Then, the samples were 

exposed to UV light at 253.7 nm wavelength (at a distance of app. 40 cm from the UV-light 

source; PHILIPS TUV 36W G13, Philips, Nevada Industrial, USA) in a sterile laminar hood 

for 20 min. The intensity of UV-light, used for sterilisation of the TiO2 surfaces, was 
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measured spectrophotometrically using a Flame UV-VIS spectrophotometer (Ocean optics, 

USA; device source: FLMS00202; light source: Osram Lumilux combi EL-N 36W), in the 

interval between 240 and 850 nm, with the sensor placed at the same position as the irradiated 

samples. A standard output low pressure mercury lamp (Hg LP lamp; SEN Lights, Crystec 

Technology Trading GmbH, Germany) was used for sensor calibration from 180 to 600 nm 

and the classic rectangular method was applied for the integration. The results were expressed 

as uWatt/cm². The analysis of the UV-VIS spectrum (240 to 850 nm) showed the main peak 

at 254 nm and the rectangular integration analysis collective showed communal intensity of 

1.35·10
4
 Watt/cm

2
.  

 

Commercial hydrogen peroxide plasma  

 

NT surfaces were packed in self-sealed sterilization packaging (Arrowpack, Ljubljana, 

Slovenia) and treated with hydrogen peroxide plasma (Sterrad S100, Johnson&Johnson 

Medical Ltd, NJ, USA) for 54 min (short cycle).  

 

Oxygen plasma treatment 

 

Treatment of NT surfaces was conducted by oxygen plasma in the plasma reactor. Detailed 

information about the plasma reactor is published in our previous paper [35]. Shortly the 

gaseous plasma was created with an inductively coupled RF generator, operating at a 

frequency of 13.56 MHz and an output power set at 200 W. Commercially available oxygen 

was leaked into the discharge chamber. The pressure was fixed at 75 Pa as at this pressure the 

highest degree of dissociation of oxygen molecules has been measured using a catalytic probe 

[36]. The samples were treated for 60s and then packed in sterile containers. Scheme 1 is 

schematic representation of the RF plasma reactor. 

2.3 Water contact angle (WCA) measurements 

The wettability of NT surfaces of different diameters as well as of plain Ti foil was studied by 

water contact angle (WCA) measurements. A droplet of demineralized water (3 μL volume) 

was put on the NTs surface and images of Ti and NT surfaces were captured before and after 

sterilization procedure. For each sample 10 measurements were performed in order to 

minimize the statistical error. The relative humidity was kept at 45 % and the temperature at 

25 °C. The contact angles were measured by an Advex Instruments See System E equipped 

with a CCD camera and a PC computer, which enabled us to make high resolution pictures 

[33]. The values of WCA were determined by the See System 6.3 software, which enables 
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fitting of the water drop on the surface in order to allow a relatively precise determination of 

WCA. An estimated error for each WCA value was less than 3.0°.  

 

2.4 Morphology analysis by Scanning Electron Microscopy (SEM) and Atomic Force 

Microscopy (AFM) 

To observe changes in the morphological features of NTs , SEM (Jeol JSM-7600F, USA) 

analysis was employed. The analysis was done at accelerating voltage of 8keV and the 

samples with cells were prior to SEM analysis sputtered with gold (5 nm coating). Changes in 

surface morphology of the 100 nm NT surfaces and Ti surfaces after different sterilization 

techniques were analysed by atomic force microscopy (AFM, Solver PRO, NT-MDT, Russia) 

in tapping mode in air. Samples were scanned with a standard Si cantilever with a force 

constant of 22 N/m and at a resonance frequency of 325 kHz (tip radius was 10 nm and the tip 

length was 95 µm). The average surface roughness (Ra) was measured from representative 

images of 1x1 µm
2
 area and at a scan rate set at 1.3 Hz. 

2.5 Osteoblast cell culture cultivation and its exposure to NT surfaces  

Since osteoblasts are a relevant in vitro model system to study the biological compatibility of 

materials intended for bone implants, we selected primary human osteoblast  (HOb) line for 

assessment of cytocompatibility on sterilized NT surfaces with different diameters of NT. The 

HOb cell line was purchased from the European Collection of Cell Cultures (ECACC; Public 

Health England, Salisbury, UK) and cultured in growth medium for HOb cells (Cell 

applications, Inc. San Diego, CA 92121, USA) in a humidified atmosphere of 5 % CO2/95 % 

air at 37 °C. Cells were routinely subcultured once a week or when they reached 65-70% 

confluence. Before harvesting with Trypsin-0.25% EDTA (Sigma-Aldrich, Steinheim, 

Germany) for approximately 10 minutes at 37 °C, cells were washed three times with 

Phosphate Buffered Saline without Ca
2+

 and Mg
2+

 (PBS; Sigma-Aldrich, Steinheim, 

Germany). Cells were then resuspended in the growth medium, centrifuged at 200 g for 5 

min, and plated at a seeding density of 1×10
4
 cells per cm

2 
of tissue culture 24-well plates 

(Sigma-Aldrich, TPP ®, Steinheim, Germany) containing the plain Ti or nanorough surfaces 

(NT 15, 50 or 100 nm), in 1mL of growth medium. 24 h after seeding and subsequently every 

48 h, the medium was removed (1 mL) and changed with a fresh aliquot. HOB cells were 

grown on surfaces sterilized by the different above-presented techniques. After 1 week of 

growth under controlled conditions (5 % CO2/95 % air at 37 °C), the cells were further 

processed for either fixation for SEM, or for cell viability assays. The fixation procedure for 

SEM analysis is described below. 
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Fixation for Scanning Electron Microscopy (SEM) 

After a predefined time of incubation (1 week), the cell culture medium was removed, cells 

were washed with PBS and fixed for 2 h at room temperature using a modified Karnovsky 

fixative, composed of 2.5% glutaraldehyde (SPI Supplies, West Chester, PA, USA) and 0.4% 

paraformaldehyde (Merck KGaA, Darmstadt, Germany) in 1 M Na-phosphate buffer 

(NaH2PO4 2·H2O and Na2HPO4 2·H2O; all the chemicals from Merck KGaA, Darmstadt, 

Germany). After 3 h, the fixative was removed and 1 M Na-phosphate buffer was added; the 

samples were left in the fridge over the night. Then the samples were washed in the buffer for 

3 × 10 min and the post-fixation of samples was undertaken with 1% osmium tetroxide 

(OsO4) (SPI Supplies, West Chester, PA, USA; 1 × 60 min), followed by washing in dH2O 3 

x 10 min, incubation in thiocarbohydrazide (TCH; Sigma-Aldrich, Steinheim, Germany) for 

20 min, washing in dH2O 3 x 10 min, incubation in OsO4 1 x 20 min and washing in dH2O 3 

x 10 min. Samples were dehydrated with 30 % ethanol (EtOH; Merck KGaA, Darmstadt, 

Germany) (10min), 50% EtOH (10 min), 70% EtOH (10 min; left overnight at 4 °C), 80% 

EtOH (10 min), 90% EtOH (10 min) and absolute EtOH (10 min). Further dehydration steps 

were conducted with a mixture of Hexamethyldisiloxane (HMDS; SPI Supplies, West 

Chester, PA, USA) and absolute EtOH (1:1; v/v; 10 min), 3:1 (HMDS: absolute EtOH, v/v; 1 

min) and absolute HMDS (10 min), which was left to evaporate for 24 h. 

 

Cell viability assessment: MTT assay 

The viability of HOb cells grown on the tested TiO2 NT and Ti foil  surfaces was assessed 

using a common assay based on the activity of NAD(P)H-dependent cellular oxidoreductase 

enzymes, capable of reducing the tetrazolim dye 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT; ≥97.5%, Sigma-Aldrich, Steinheim, Germany) to 

insoluble formazan [37].  

At the end of the pre-selected incubation period (1 week exposure), sample TiO2 NT and Ti 

foil surfaces were washed 3 times with PBS and were transferred into a clean 24-well plate 

and 0.3 mL of freshly prepared growth medium supplemented with 5 mg/mL of MTT (30 µL) 

was added to each well (final concentration 0.5 mg MTT/mL). After 3 h of incubation at 37 

°C, the medium was removed, and formazan crystals were dissolved by addition of 250 µL of 

DMSO per well. For quantification, 250 µL of sample was transferred into 96-well plate and 

absorbance of formazan (A(570 nm) and the formazan background A(690 nm)) was measured 

(Cytation 3 Cell Imaging Multi-Mode Reader, BioTek® Instruments, Inc., Vermont, USA). 

The background absorbance values (A(690nm)) were subtracted from the absorbance values 

A(570nm). Surface area of the plain Ti foil or NT covered surfaces was estimated from 

photographs of the tested surfaces, using ImageJ v. 1.48. The subtracted absorbance values of 
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cells grown on plasma-treated surfaces (plain Ti or NT 15, 50 or 100) were normalized to the 

absorbance values for cells grown on plain Ti foil.  

3. Results and Discussion 

3.1 Wetting behaviour of TiO2 nanotubes 

Water contact angle (WCA) measurements were made in order to determine the wetting 

behaviour of fresh and sterilized NT and Ti foil surfaces. The pristine Ti foil had a WCA 

value about 77° and its value decreased to about 55° for autoclaved samples and to about 34° 

for UV-light sterilized samples, while the plasma treated Ti foil was practically 

superhydrophilic. All NT surfaces were hydrophilic, as observed in our previous work [33] 

these samples tend to age within about three weeks’ time and slowly become hydrophobic. 

Therefore, all in vitro biological experiments were conducted on freshly prepared NT 

surfaces. The freshly prepared NT surfaces were sterilized and the superhydrophilic effects 

were observed in all cases. Thus different sterilization procedures did not influence 

wettability of NT.  

3.2 Morphology of nanotubular layers after sterilization 

The characterization of NT surfaces was performed by SEM and AFM in order to study the 

changes in morphology on TiO2 NTs after the use of different sterilization techniques. TiO2 

NT surfaces  with nanotube diameter of 15 nm, 50 nm and 100 nm [38] were studied. After 

sterilization with autoclaving, significant changes in surface morphology were observed, 

namely, the nanotubular features of the NT surfaces were to a large extent destroyed (see Fig. 

1, first column of autoclave sterilization). From all three different NT diameters the least 

disrupted nanotubular surface features were observed on NT100 (showing some sintering of 

the structures and thickening of the tube walls). In the case of NT50 the nanotubes were 

destroyed but some porosity was still preserved, whereas the smaller diameter nanotubes 

(NT15) show sintering/collapse of all the NTs, meaning that practically all the NTs features 

are lost. It should be emphasized that the destruction of the NTs was also observed in the z-

direction, as the results from cross-section analysis (data not shown) confirm that the bottom 

of NT were destroyed. In some parts the bottom imprints were still observed, but the tubes 

were mashed together. After UV sterilization, a slight disruption of NT was observed, mainly 

their ordered structure was affected, see Fig. 1, second column of UV sterilization. An intact 

nanotubular surface structure was observed after oxygen plasma or commercial plasma 

sterilization, as shown for oxygen plasma treatment in Fig. 1, third column (data not shown 

for commercial plasma). 
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We suggest that the primary cause of NT destruction in an autoclave might be the combined 

effect of moisture and a high temperature, exceeding 92 
°
C (in the case of steam autoclave 

sterilisation), which induces crystallization of the amorphous TiO2 NTs and results in changed 

morphology [38,39]. Although it is known that anodized TiO2 NTs are generally stable in 

their amorphous phase to temperatures of about 300 ºC [40],  this is not true if the NTs are 

exposed to vapour [38]. The mechanism proposed for water vapour or water crystallization as 

well as the modification in the NTs morphology is discussed by Lamberti et al [39] and Wang 

et al [41]. In our case the temperature of autoclave sterilization was 121 
º
C and the surface 

was exposed to vapour. Briefly, the water vapour molecules interact with the amorphous TiO2 

nanotube walls and condensate as hot water that further acts as a catalyst favouring the 

rearrangement of TiO6
2-

 octahedra [39,42]; in addition, a decrease in the contact angle is also 

reported due to the formation of surface defects that act as adsorption sites for –OH [39]. 

Thus, the observed changes in the NT surface morphology (see Fig 1, first column) can be 

assigned to the combined effects of vapour and temperature exceeding 92 ºC. Moreover, it 

should be emphasised that sterilization with an autoclave is done at higher temperatures, as 

compared with other sterilization techniques employed in this work, thus it is possible that 

fluoride ions from the NT surface evaporate due to high temperature [43]. Fluoride is found in 

low concentration on all the NT surfaces fabricated by anodization due to its presence in the 

electrolytes [33,34] and may as well cause some destruction of NTs. 

By contrast, the NT surfaces treated by UV-light and plasma sterilization methods did not 

show any prominent changes in surface morphology. This is consistent with existing literature 

data reporting a cleaning effect of UV sterilization without surface alteration [27,42,44] that 

decreases the hydrocarbon contamination (that is, the UV treatment removes carbon 

contamination by either the induced photocatalytic activity of TiO2 or their direct 

decomposition by UV) [44,45]. For plasma sterilization methods, the superficial removal of 

contaminants/material or so called etching is observed with slight increase in surface 

roughness as well as  modification in surface activity (e.g. oxygen plasma leads to a higher 

affinity for molecule adsorption) [32] – for an overview see reference [46]. The fact that in 

our study no significant changes in the NTs morphology were observed is mainly governed 

by the lower temperature during the sterilization procedure and the absence of water 

molecules (vapour), which decreases the chances of fluoride evaporation and 

crystallization/modification of NTs. However, in the case of UV-light sterilization we have 

noticed small changes in NT morphology, as the top of the NTs appeared slightly etched and 

there was small debris mostly present at the rim of the tube top, as seen in Fig. 1 (second 

column), which was more evident in the case of NT50 and NT100 ).  
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Additional information about NT morphology alterations after different sterilisations were 

acquired by AFM. Only the images for the NT100 are shown (Fig 2) as the AFM analysis on 

smaller diameter NTs did not provide enough information due to inability of the AFM tip to 

enter the hollow interiors of smaller diameter NTs (less than 50 nm). Disruption of NTs was 

clearly observed for the autoclaved samples (Fig. 2a, phase and height images), where in 

some cases nanotubes seem to be broken and closed at the top, which is in accordance with 

SEM results (Fig 1, first column).  

UV-light sterilization did not have much influence on surface morphology (Fig 2b). Similar 

NTs surface topography was observed for NT100 sterilized either with commercial H2O2 

plasma (data not shown) or oxygen plasma (Fig 2c). From phase images, after both UV-light 

and plasma sterilization (Fig 2b and 2c), a uniform nanotubular structure was clearly seen 

without any disruption of surface topography. In addition, AFM analysis of the pristine Ti foil 

was conducted in order to evaluate surface morphology and the results showed fairly flat 

topography with no special features on the surface (data not shown). The measured surface 

roughness (Ra) on 1x1 µm
2
 of plain Ti foil had Ra of about 11.8 ± 3 nm, while slightly higher 

roughness was detected on autoclaved NT100 surfaces (Ra of about 23 ± 2 nm). The highest 

roughness was measured on both UV-light sterilized and plasma treated NT100 surfaces with 

Ra 37.3 ± 3 and 35.7 ± 2 nm, respectively. Similar values were measured also for the 

untreated NT100. This information is valuable for further in vitro studies, as Ti surface 

morphology plays an important role in cytocompatibility. 

3.3. In vitro cytocompatibility 

Cytocompatibility is a complex of cell characteristics, such as the ability of cells to adhere on 

the surface and subsequently grow, proliferate and differentiate on it in a physiological 

manner. Besides this, appropriate gene expression and extracellular matrix formation are 

also important factors showing the realistic cytocompatibility of any material. However, the 

presented study mainly focused on the impact of various sterilization techniques on surface 

properties of TiO2 NT, thus only the basic cell-surface interactions were detected. 

Specifically, the quantification of viable cells on the NT surfaces was detected using an MTT 

assay and cell morphology was determined by using SEM.  

 

Cell morphology  
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It was observed that all autoclaved NT surfaces exhibited different morphology/behaviour of 

HOb cells regardless of the NT diameter when compared to the autoclaved plain Ti foil. Only 

a limited number of cells, mainly in a non-spread form, was observed on the autoclaved NT 

surfaces, while many fully spread cells were observed on the control material (autoclaved 

plain Ti foil) (Fig 3a and b). The main reason for the observed low interaction of HOb cells 

with the autoclaved NT surfaces may be the disrupted top surface nanotubular features, which 

were observed by SEM and AFM (Fig 1 and Fig 2). The closed nanotubular topography with 

slightly higher roughness and higher wettability in comparison to the autoclaved plain Ti foil 

seem to affect cell physiology and subsequently cell morphology. Cells grown on oxygen 

plasma sterilized control surfaces (plain Ti foil) and on the NT15 surfaces are presented in Fig 

3c and d. In both cases, cells were attached predominantly in a widely spread form. A similar 

phenomenon was also observed for the oxygen plasma treated NT50 and NT100 surfaces 

(images not shown). It can be seen that filopodia of cells grown on the autoclaved plain Ti 

foil (Fig 3a) are not elongated, which indicates a lower strength of interaction of cells with the 

surface [47]. In the case of plasma treated Ti foils filopodia appeared to be elongated (Fig 3c). 

Similar behaviour was noticed for cells grown on oxygen plasma sterilized NT surfaces; cells 

seemed to interact closely with each other as well as with the surface, which is seen from their 

elongated form and long filopodia (Fig 3d). It can be concluded from Fig 3 that oxygen 

plasma treatment, even on plain Ti foil, improves the strength of interaction of HOb cells with 

the surface. This effect is quite interesting, especially if we compare the autoclaved Ti foil 

and plasma sterilized Ti foil. Improved interaction of HOb cells could be explained by the 

increased thickness and density of the oxygen layer on the surface of Ti foil, which is formed 

after exposure to highly reactive oxygen species in plasma, as well as due to 

superhydrophilicity of the Ti foil surface after such treatment. All plasma treated surfaces are 

superhydrophilic, while the autoclaved Ti foil has WCA of about 55º. 

In order to better observe alterations in the morphology of filopodia of cells, grown on 

oxygen plasma treated surfaces, higher magnification images are presented in Fig 4. From 

these images (Fig 4) it can be seen that cells on plain oxygen plasma treated Ti foil and on the 

oxygen plasma treated NT15 and NT50 surfaces are in elongated form and have long 

filopodia, while less elongated cell morphology was observed on the NT100 surfaces treated 

by oxygen plasma (Fig 4d). It seems that the large hollow interior of NT100 influences 

adhesion and proliferation of HOb cells, which could be mainly explained by difference in 

protein adsorption for different nanotopographic features [34]. 

A comparison of HOb attachment on oxygen plasma treated NT15, NT50 and NT100 

surfaces is presented in Fig 5. Some alterations in morphology of HOb cells were observed 
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for cells grown on NT15 and NT50 surfaces, namely, cells appeared to be more spread, which 

presumably stimulates filopodia to connect with the nanorough 15 nm and 50 nm surfaces. 

More extended filopodia are indeed observed for NT15 surfaces and NT50 surfaces, even at 

lower magnification, as cells developed prolonged shape of filopodia reaching far and 

interacting with nearby cells (Fig 5c, upper panel). However this was not observed for the 

NT100 surfaces, as cells did not seem to interact so strongly and practically no extended 

filopodia were observed on these surfaces (Fig 5c, upper panel). At higher magnification, 

interaction of filopodia with the NT surfaces are presented (Fig 5, lower panel). From these 

images we can observe that filopodia of HOb cells are highly interacting with the surface of 

NT15 and NT50 surfaces, while lower interaction seems to take place on NT100 surfaces.  

Cell viability 

The number of viable cells was assessed by MTT assay after one week of cultivation on Ti 

foil and different NT surfaces. The lowest number of cells, grown on the plain Ti foil and 

NT100 surfaces sterilized with UV-light, in comparison to the other tested surfaces (NT15, 

NT50 with both UV-light and oxygen plasma sterilization and plain Ti foil and NT100 with 

oxygen plasma) was observed. Interestingly all the oxygen plasma treated surfaces exhibited 

improved viability of HOb cells at given experimental conditions in vitro (seeding density of 

1 x 10
4
 cells/cm

2
; 1-week exposure; MTT assay) (Fig 6). The latter observed phenomenon 

suggests that oxygen plasma treatment of Ti and NT surfaces was effective in enhancing cell 

viability of HOb cells. Cell viability was increased by a factor of 1.4 already on plasma 

sterilised plain Ti foil in comparison to the UV-sterilised Ti foil. Moreover, according to the 

MTT assay, the morphological features of the surface also influenced on cell viability. 

Namely, regardless of the sterilisation procedure (UV or plasma treatment), a reduced 

viability of cells grown on NT100 was observed compared with plain Ti foil, NT15 or NT50 

samples. 

This above is in line with results obtained by other groups [16,31] as well as with our studies 

on HOb morphology obtained by SEM (Fig 4). The results from the MTT assay clearly show 

that not only different surface nanotopography, but also the type of sterilization used, 

significantly influences cell-surface interactions. Although no morphological features were 

altered after UV-light or oxygen plasma treatment of NT, some differences in 

cytocompatibility in vitro were detected. Namely, a significantly higher number of viable 

cells was observed on oxygen plasma treated NT100 surfaces in comparison to UV-light 

sterilized NT100. Although both surfaces had a similar surface roughness and exhibited 

superhydrophilic character, the observed changes could be ascribed to altered chemical 

composition of the surface upon application of different sterilisation techniques. It is already 
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known that autoclave sterilization of titanium implants is associated with increased 

hydrocarbon contamination, while UV-light sterilization decreases hydrocarbon 

contamination which is associated with formation of abundant Ti-OH functional groups [43]. 

Whereas for the case of oxygen plasma treatment of titanium foil as well as of NTs, the 

surface is exposed to highly reactive oxygen species, which interact with the surface and 

decrease hydrocarbon contamination and form a denser oxide (TiO2) layer on the surface (for 

the case of oxygen plasma treatment). It should be emphasized that Ti foil also exhibits a 

naturally formed TiO2 layer on the surface, which is altered after exposure to oxygen plasma. 

Much of the changes in surface properties of the TiO2 layer can be attributed to changes in 

surface chemistry and wettability, which strongly influence its overall bioactivity. Such 

treatment influences the top oxide layer which becomes denser, has lower hydrocarbon 

contamination and becomes more hydrophilic.  

Therefore differences in cell viability between UV-light and oxygen plasma sterilization of 

NT100 could be ascribed to the formation of a thicker oxygen layer, which is already known 

to be correlated with improved biocompatibility of the surface. Moreover, according to the in 

vitro cytocompatibility results, a similar explanation can be given for the observed differences 

between the plain Ti foils treated by UV-light and oxygen plasma. 

4. Conclusions 

 

The results of the present study indicate that different sterilization techniques may have a 

significant influence on surface properties of TiO2 NT surfaces and, consequently, also on 

their cytocompatibility in vitro. It was shown that steam autoclaving is not an appropriate 

sterilization technique for TiO2 NT surfaces, as it results in distraction of NT features. UV-

light, commercial H2O2 plasma sterilization and oxygen plasma treatment techniques did not 

influence on NT surface features. However, differences between these sterilization techniques 

were observed, as it was shown that the type of sterilization significantly influences on in 

vitro cytocompatibility of HOb cells with TiO2 NT. Although it was shown that NT features 

play an important role in cell-material interactions, the influence of the final surface treatment 

procedure (sterilization) has to be considered. Therefore determining the appropriate 

sterilization technique for TiO2 NT surfaces is one of the key factors which should be 

carefully selected before their application in cellular and tissue systems. 
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Scheme 1. Schematic representation of the radiofrequency (RF) plasma reactor used 

for treatment of NT and Ti foil. 1: sample, 2: plasma glow region, 3: RF coil, 4: 

working gas,5: inlet valve, 6: vacuum meter,7: vacuum pump,  8: outlet valve, 9: air 

inlet. 

Figure 1. SEM images of nanotubes with 15 nm (NT15), 50 nm (NT50) and 100 nm 

(NT100) in diameter after sterilization with autoclave (first column), UV-light 

(second column) and after oxygen plasma treatment (third column). Scale bar: 1µm. 

Figure 2. AFM images of nanotubes with 100 nm in diameter sterilized with a) 

autoclave, b) UV-light and c) plasma treatment. In upper panel are the phase images 

and in lower panel the corresponding 3D images of the surface. 

Figure 3. SEM images of interaction of HOb cells with a) Ti foil, sterilized with 

autoclave, b) nanotubes with NT15 sterilized with autoclave, c) Ti foil, sterilized with 

plasma treatment and d) NT15 sterilized with plasma treatment. 

Figure 4. High magnification SEM images of HOb cell interacting with a.) Ti foil, b.) 

NT15, c.) NT50 and d.) NT100. 

Figure 5. SEM image of HOb cells interacting with plasma treated surface a.) NT15, 

b.) NT50 and c.) NT100. 

Figure 6. Cell viability expressed by MTT assay, for cells grown on the UV-light or 

plasma (P) sterilized surfaces. Comparative values of cell viabilities of plasma treated 

samples were calculated with respect to the reference material (plan Ti-foil); marked 

as a horizontal line). Abbreviations: plain = plain Ti-foil, P = plasma treated surface, 

15 = NT15 nm, 50 = NT50 nm, 100 = NT 100 nm.  Number of analysed samples: 1 

(NT 50), 2 (plain, NT 15, NT 100) or 3 (all the plasma treated surfaces) per tested 

group.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Fig. 5 
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Fig. 6 
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Highlights 

 

 Topographic features of TiO2 nanotubes were altered by sterilization in autoclave. 

 The type of sterilization influences on in vitro cytocompatibility of HOb cells with 

TiO2 nanotubes. 

 Highly reactive oxygen plasma improves the interaction of TiO2 surfaces with HOb 

cells. 

 Nanotubes with 100 nm in diameter had the lowest cytocompatibility with Hob cells. 


