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Abstract: The article focuses on volatility change point detection using SPC (Statistical Process Control) meth-
ods, specifically time-series control charts and stochastic differential equations (SDEs). Contribution will review
recent advances in change point detection for the volatility component of a process satisfying stochastic differen-
tial equation (SDE) based on discrete observations, and also by using time-series control charts. Theoretical part
will discuss methodology of time-series control charts and SDEs driven by a Brownian motion. Research part
will demonstrate the methodologies in a simulation study focusing on analysis of the AR(1) process by means of
time-series control charts and SDEs. The aim is to make use of change point detection in time series of production
processes and highlight versatility of control charts not only in manufacturing but also in managing financial cash
flow stability.
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1 Introduction
Traditional Statistical Process Control (SPC) meth-
ods, e.g. Shewhart’s and CUSUM control charts as-
sume data to be independent. However, the assump-
tion has been challenged when data were found to
be serially correlated in many real-world applications.
With autocorrelation, performance of the traditional
methods is considerably reduced. Majority of the
studies focus on mean shift detections while variabil-
ity shift detections in autocorrelated structures of the
time series are omitted due to special causes affecting
system’s variability.

This paper will focus on change point prob-
lem for process volatility via stochastic differential
equation with observations collected at discrete in-
tervals. The instant the change occurred in volatil-
ity regime is identified retrospectively by maxi-
mum likelihood method on approximated likelihood.
For continuous-time observations of diffusion pro-
cesses, Lee, Nishiyama and Yoshida (2006) consid-
ered change point estimation for the drift. We will
only assume regularity conditions in the drift process.

Contribution’s aim to compare behavior of
λLS,max and λ̄LS control charts by Atienza et al.
(1998) [2] and utilized for detecting AR(1) process
shift level, an approach to detect time-series volatility
change point by stochastic differential equations for

discrete processes. Their performance will be evalu-
ated and compared with SCC (Special Causes Con-
trol modified Shewhart’s control chart for residuals)
by Alwan and Roberts and Monte Carlo simulation in
the R Programming Language’s spc library [32] will
be used as a comparison tool.

2 Literature Review
The article first provides brief overview of works per-
taining to time-series volatility change point identifi-
cation in SPC of manufacturing companies. The topic
is actively researched as autocorrelation and mean
shifts in time series when analyzing automatically-
collected data are frequent.

Author has studied change point detection us-
ing parametric and non-parametric procedures exten-
sively. In some cases, studies were carried out for
known underlying distributions, e.g., binomial, Pois-
son, Gaussian and normal. The chapter discusses se-
lected works on change point detection.

Traditional SPCs assume data to be independent.
However, the assumption has been challenged when
data were found to be serially correlated in many
real-world applications. With autocorrelation, perfor-
mance of the traditional methods is considerably re-
duced. This prompted work by Alwan and Roberts
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(1988) [1] who proposed expected monitoring error
after selecting suitable time series model for a given
process. The method is intuitive in case autocorre-
lation is explained in the model, and residuals are
process-independent random errors; it can therefore
be used to monitor residuals. Literature dealing with
SPC is divided into two categories: those based on
time-series models, and those independent on them.
For the former, three approaches were devised: mon-
itoring residuals, direct observations, and using novel
statistical characteristics their brief outline is provided
further on. Wardell et al. (1994) [29] and Lua and
Reynolds (1999) [23] exponentially-weighted moving
averages (EWMA) to monitor residuals. Castagliola
and Tsung (2005) [3] investigated influence of non-
normality on control charts and created modified She-
whart control chart for residuals special causes con-
trol (SCC) which is more robust when non-normality
is encountered.

CUSUM is a widely used change point detec-
tion algorithm. Basseville and Nikiforov (1993) [11]
described four different derivations. The first is
intuition-based and uses ideas connected to simple
signals integrations with adaptive thresholds; the sec-
ond is based on repeated use of sequential probabil-
ity ration test; the third uses off-line point of view
for multiple hypotheses testing; the fourth is based
on open ended tests. The principle of CUSUM stems
from stochastic hypothesis testing method (Chen et
al., 2005 in [8]).

Nazario et al. (1997) [12] developed a sequential
test procedure for transient detections in a stochastic
process which can be expressed as an autoregressive
moving average (ARMA) model. Preliminary anal-
ysis shows that if an ARMA(p, q) time series ex-
hibits transient behavior, its residuals behave as an
ARMA(Q, Q) process, with Q ≤ p + q. They fur-
ther showed residuals in the model before parame-
ter change behave approximately as a sequence of in-
dependent random variables; afterwards they become
correlated. Based on this fact, Nazario et al. derived
a new sequential test to determine when the transient
behavior occurs in a given ARMA time series [33].

Blazek et al. (2001) [13] developed efficient
adaptive sequential and batch-sequential methods for
early detection denial-of-service attacks. Both algo-
rithms used thresholding of test statistics to achieve
a fixed rate of false alarms and are based on change
point detection theory: detecting changes in statisti-
cal models as soon as possible while controlling rate
of false alarms. There are three attractive features to
the approach: first, both methods are self-learning,
enabling adaptation to varying network loads and us-
age patterns; second, they allow detecting attacks with
small average delays for a set false alarm rate; third,

they are computationally simple, and hence can be im-
plemented online [34].

Lund et al. (2007) [14] looked at change point
detection in periodic and autocorrelated time series
using classic change point tests based on sums of
squared errors. The method was successfully applied
in the analysis of climate changes.

Moskvina and Zhigljavsky (2003) in [15] devel-
oped an algorithm based on sequential application of
singular-spectrum analysis (SSA) whose main idea is
to perform singular value decomposition (SVD) of a
trajectory matrix obtained from the original time se-
ries and subsequently reconstructing it.

Mboup et al. (2008) in [16] presented a method
based on direct online estimation of signal’s singular-
ity points. Using piecewise local polynomial repre-
sentation, the problem is transformed into delay esti-
mation. A change point instant is a solution of a poly-
nomial equation coefficients of which are composed
by short-time window iterated integrals of the noisy
signal. The method showed good robustness to vari-
ous types of noises.

Auret and Aldrich (2010) [17] used random for-
est models to detect change points in dynamic sys-
tems; Wei et al. (2010) in [18] Lyapunov exponent
and change point detection theory for anomaly detec-
tion; Aldrich and Jemwa, (2007) in [19] phase meth-
ods to detect changes in complex process systems.

Vincent (1998) in [20] presented a technique for
identifying inhomogeneities in Canadian temperature
series by applying linear regression models to deter-
mine whether the series is homogeneous. Vincent’s
procedure is a type of ”forward regression” algorithm
in that the significance of non-change point parame-
ters in the regression model is assessed before (and
after) a possible change point is introduced. The most
parsimonious model is selected to describe the data
and then used to generate residuals which are tested
for autocorrelation to determine whether there are in-
homogeneities in the series. At first, it considers the
entire period and then divides the series into homo-
geneous segments. Each is defined by some change
points and every one corresponds to either an abrupt
change in mean level or a change in the trend [35].

3 Problem Formulation
Here, article present mathematical background for de-
tecting time-series volatility shifts using control charts
and stochastic differential equations for discrete pro-
cesses, later utilized to compare ARL performance
and sensitivity to mean shifts. Research part will
demonstrate the methodologies in a simulation study
focusing on analysis of the AR(1) process by means
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of time-series control charts and SDEs. Their per-
formance will be evaluated and compared with SCC
(Special Causes Control modified Shewhart’s control
chart for residuals) by Alwan and Roberts and Monte
Carlo simulation in the R Programming Language’s
spc library [32] will be used as a comparison tool.

3.1 Change point detection using SDEs
Change point estimation identifies the instant in which
a change occurs in model’s parameter. Several ap-
proaches are possible: we consider a least squares so-
lution other such as maximum likelihood change point
estimation also exist. Assume a diffusion process
(Note: For continuous-time observations the problem
was studied in [9]. Bayesian approach for discrete-
time observations can be found in [27]). solution to

dXt = b (Xt) dt+ θσ (Xt) dWt, (1)

where b (·) and σ (·) are known functions and θ ∈
Θ ⊂ R is the parameter of interest. As in [27], given
discrete observations from (1) on [0, T = n∆n], we
want to retrospectively identify if and when a change
in θ occurred and consistently estimate it before and
after the change point. The asymptotes is ∆n → 0 as
n → ∞ and n∆n = T fixed. (Note: For ergodic dif-
fusion processes and n∆n = T → ∞, the results are
valid under additional mild regularity conditions.) To
simplify, assume the change occurs at k0, one of the
integers in 1, . . . , n. This is a case of volatility change
point estimation frequently occurring in financial ap-
plications. Assume θ = θ1 before the time change and
afterwards with θ1 < θ2 (irrelevant for final results).
To obtain a simple least squares estimator, Euler ap-
proximation is used under the assumption all neces-
sary requirements have been met. It is of the form
(Hinkley, 1971 in [4]).

Xi+1 = Xi + b (Xi)∆n + θσ (Xi) (Wi+1 −Wi)

and standardized residuals

Zi =
(Xi+1 −Xi)− b (Xi)∆n√

∆nσ (Xi)
= θ

(Wi+1 −Wi)√
∆n

.

Zi’s are i.i.d. (independent and identically distributed)
Gaussian random variables. Change point estimator is
obtained from (Inclan and Tiao, 1994 in [5])

k̂0 = arg min
k

(
min
θ1,θ2

{
k∑

i=1

(
Z2
i − θ21

)2
+

+
n∑

i=k+1

(
Z2
i − θ22

)2}) (2)

with, k = 2, . . . , n − 1. [x] will denote the integer
part of real x, k0 = [nτ0] and k = [nτ ], τ, τ0 ∈ (0, 1)

indicate change point on a continuous timescale. Par-

tial sums are defined as Sn =
n∑

i=1
Z2
i , Sk =

k∑
i=1

Z2
i ,

Sn−k =
n∑

i=k+1

Z2
i , θ̄21 and θ̄22 denote least squares es-

timators of θ21 and θ22 for a given k in (2),

θ̄21 =
Sk
k

=
1

k

k∑
i=1

Z2
i ,

and

θ̄22 =
Sn−k

n− k
=

1

n− k

n∑
i=k+1

Z2
i .

They will be refined once a consistent estimator of k0
is found. U2

k denotes the quantity

U2
k =

k∑
i=1

(
Z2
i − θ̄21

)2
+

n∑
i=k+1

(
Z2
i − θ̄22

)2
.

So k̂0 is then k̂0 = arg min
k
U2
k .

To study the asymptotic properties ofU2
k , it is bet-

ter to rewrite it: U2
k =

n∑
i=1

(
Z2
i − Z̄n

)2 − nV 2
k , where

Z̄n = 1
n

n∑
i=1

Z2
i and

Vk =

(
k (n− k)

n2

) 1
2 (
θ̄22 − θ̄21

)
=

SnDk√
k (n− k)

with Dk = k
n −

Sk
Sn
.

U2
k is obtained by lengthy but straightforward al-

gebra. It is useful because minimizing U2
k is equiv-

alent to maximizing Vk and hence Dk. The fol-
lowing estimator is there for easier to consider (Lee,
Nishiyama and Yoshida, 2006 in [10]):

k̂0 = arg max
k
|Dk| = arg max

k
(k (n− k))

1
2 |Vk| .

(3)
A side remark: for fixed k (and under suitable hy-
potheses), Dk is approximate likelihood ratio statistic
for testing the null hypothesis of no change in volatil-
ity. Once k̂0 has been obtained the following estima-
tors of θ1 and θ2 can be used (Csörgö and Horvath,
1997 in [24]):

θ̂21 =
Sk̂0
k̂0

(4)

θ̂22 =
Sn−k̂0

n− k̂0
(5)

Results provide consistency of k̂0, θ̂21 and θ̂22 as well
as their asymptotic distributions.
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Lemma 1 In Stanton’s approach, they are Nadaraya-
Watson kernel regression estimators of the following
conditional expectations (Kutoyants, 1994 in [30])

b (x) = lim
t→0

1

t
E {Xt − x|X0 = x}

σ2 (x) = lim
t→0

1

t
E
{
(Xt − x)2|X0 = x

}
.

b (x) and σ2 (x) are seen as instantaneous conditional
means and variances when X0 = x in the process.
For fixed ∆n the two quantities are rewritten as (Ku-
toyants, 2004 in [31])

b (x) =
1

∆n
E {Xi+1 −Xi|Xi = x}+ o (∆n)

∆n
,

σ2 (x) =
1

∆n
E
{
(Xi+1 −Xi)

2|Xi = x
}
+
o (∆n)

∆n
.

If Zi’s have been estimated in this case, the fol-
lowing contrast to identify the change point and be
used (Liechty and Roberts, 2001 in [25]), (Iacus, 2008
in [27]) and (Iacus and Yoshida, 2009 in [28]):

k̃0 = arg min
k

{
k∑

i=1

(
Ẑ2
i −

Ŝk
k

)2
+

+
n∑

i=k+1

(
Ẑ2
i −

Ŝn−k

n−k

)2}
,

(6)

where Ŝk =
k∑

i=1
Ẑ2
i and Ŝn−k =

n∑
i=k+1

Ẑ2
i . We have a

new statistic

V̂k =

(
k (n− k)

n2

) 1
2

(
Ŝn−k

n− k
− Ŝk

k

)
=

ŜnD̂k√
k (n− k)

,

where D̂k = k
n −

Ŝk

Ŝn
.

The change point is identified as a solution of
k̂0 = arg max

k

∣∣∣D̂k

∣∣∣ . Consistency and distributional

results provided in (De Gregorio and Iacus, 2007 in
[26]).

This paper will focus on change point prob-
lem for process volatility via stochastic differential
equation with observations collected at discrete in-
tervals. The instant the change occurred in volatil-
ity regime is identified retrospectively by maxi-
mum likelihood method on approximated likelihood.
For continuous-time observations of diffusion pro-
cesses, Lee, Nishiyama and Yoshida (2006) consid-
ered change point estimation for the drift. We will
only assume regularity conditions in the drift process.

3.2 Detecting outliers and mean shift levels
using control charts based on time-series
models

Consider an ARMA model of the form

ϕ (B)Zt = ϕ0 + θ (B) εt (7)

where Zi is a stationary time series representing a
measurement process,

ϕ (B) = 1− ϕ1B − ϕ2B2 − · · · − ϕpBp

is autoregressive polynomial of order p,

θ (B) = 1− θ1B − θ2B2 − · · · − θqBq

a moving average polynomial of order q, B a back-
shift operator, and {εt} a sequence of independent and
normally-distributed random errors with zero mean
and constant variance σ2. Without loss of generality,
{Zt}’s ϕ0 level will be fixed at zero. Let Ẑt be a pre-
dicted value from a suitably-selected ARMA model.
Then residuals (Chandra, 2001 in [21]){

e1 = Z1 − Ẑ1, e2 = Z2 − Ẑ2, . . . , et =

= Zt − Ẑt, . . .
} ,

where Yt and f (t) represent ”contaminated” time se-
ries with non-standard exogenous disturbances, out-
liers and different time series shift levels. Depending
on the disturbance, f (t) can be either deterministic or
stochastic. For the former, f (t) is of the form

f (t) = ω0
ω (B)

δ (B)
ξ
(d)
t , (8)

where

ξ
(d)
t =

{
1, when t = d,
0, when t ̸= d,

(9)

is a variable expressing whether the disturbance oc-
curred at time d, ω (B) and δ (B) backshift polyno-
mials describing disturbance’s dynamic effect on Yt,
and ω0 a constant denoting disturbance’s initial influ-
ence (Harris and Ross, 1991 in [22]).

If ω (B) /δ (B) = 1, the disturbance is an addi-
tive outlier. AO (Note: Additive outliers affect single
observation. After the disturbance, the time series re-
turns to normal. Data coding error is additive out-
lier) affects time-series’ mean only if t = d. The
root cause is often a data coding error. In discrete
production processes, AO may occur when mixed in-
formation from different base materials is gathered.
If ω (B) /δ (B) = θ (B) /ϕ (B), equation (9) repre-
sents innovative outliers influencing Yt up to t = d
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after which the effect recedes exponentially. In con-
tinuous chemical processes, IO (Note:Innovative out-
liers are compounded with noise at a particular time-
series point. In a stationary time series, they affect
several observations, in a non-stationary ones, every
observation from an initial point) is very likely caused
by contamination. Parameters will be strongly influ-
enced in t = d during preventive maintenance, e.g.,
when a component (conduit etc.) is replaced with a
contaminated one. After t = d, the contamination ef-
fect recedes. If ω (B) /δ (B) = 1/ (1−B), the dis-
turbance in equation (9) constitutes level shift, chang-
ing Yt’ beginning in t = d upwards or downwards
which lasts until t > d. LS (Note: Level shift outliers
behave like step functions, i.e., affecting every obser-
vation from an initial point in the series by a constant.
For a stationary process, the shift changes its mean
after the initial point, and the process turns into a
non-stationary one) is primarily caused by change in
material or process setup quality. We use ωAO, ωIO

and ωLS to denote whether ω0 is tied to AO, IO or LS.
From equations (8) and (9):

ϕ (B)

θ (B)
Yt =

ϕ (B)ω (B)

θ (B) δ (B)
ξ
(d)
t ω0 + εt.

If yt = [ϕ (B)/θ (B)]Yt and

xt = [ϕ (B)ω (B)/θ (B) δ (B)] ξ
(d)
t ,

yt = ω0xt + εt a simple regression model. ω0 is es-

timated using (Bai, 1994 in [6]) ω̂0 =

T∑
t=1

ytxt

T∑
t=1

x2
t

with

Var (ω̂0) = σ2

T∑
t=1

x2
t

, where T is sample size. Using

the equations, the following ω0 estimates for the three
disturbance types described above are obtained:

ω̂AO,t =

 ρ2AO,t

(
yt −

T−t∑
i=1

πiyt+i

)
t = 1, 2,
. . . , T − 1

yt t = T,
(10)

ω̂IO,t = yt, t = 1, 2, . . . , T, (11)

ω̂LS,t =

 ρ2LS,t

(
yt −

T−t∑
i=1

ηiyt+i

)
t = 1, 2,
. . . , T − 1

yt t = T,
(12)

where ρ2AO,t =

(
1 +

T−t∑
i=1

π2i

)−1

, ρ2IO,t = 1, ρ2LS,t =(
1 +

T−t∑
i=1

η2i

)−1

, πi and ηi represent Bi coefficients

in polynomials

π (B) = 1− π1B − π2B2 − . . . = ϕ (B)/θ (B)

and

η (B) = 1− η1B − η2B2 − . . . = π (B)/(1−B).

Weights π are computed by multiplying
both sides of π (B) , and θ (B) to get
θ (B)

(
1− π1B − π2B2 − . . .

)
= ϕ (B) . For

ARMA(1, 1):

1− ϕB = (1− θB)
(
1− π1B − π2B2 − . . .

)
=

= 1− (π1 + θ)B − (π2 − θπ1)B2−
− (π3 − θπ2)B3 − . . .

Comparing the coefficients such as powers of B,
π1 = ϕ − θ, π2 = θπ1 and πj = θπj−1 = θj−1π1
for j > 1 are calculated. Similar approach can be
utilized for weights η. For ARMA(1, 1), they are η1 =
ϕ − θ − 1 and ηj = ηj−1 + θj−1π1 for j > 1. For
AR(1), it holds that πj = ϕj and ηj = ϕ−1 for j ≥ 1
(Kim, Cho and Lee, 2000 in [7]). A characteristic can
therefore be constructed for testing the existence of
AO, IO and LS in time d:

λj,d =
ω̂j,d

[Var (ω̂j,d)]
1/2

=
ω̂j,d

ρj,dσ
, (13)

where j = AO, IO,LS.
Under the null hypothesis of outliers and level

shifts not present, and for known d and ARMA model
parameters in equation (7), λAO,t, λIO,t and λLS,t are
sampled from asymptotic distribution, e.g., N(0,1).
In practice, the parameters are usually unknown and
need to be replaced by consistent estimates (Lee, Ha,
O. Na and S. Na, 2003 in [8]). To detect AO, IO or
LS at an unspecified position we will compute the fol-
lowing statistic:

λj,max = max
1≤t≤T

{|λj,t|} , (14)

where j = AO, IO,LS.
The null hypothesis of AO, IO or LS not present

is rejected when λj,max is higher than a critical value.
However, sampling distribution in equation (14) is
challenging to determine exactly. Chen and Liu
(1993) considered broad spectrum of π weights in
percentile estimation with the help of Monte Carlo
simulation, and noted the percentiles tied to equation
(12) are substantially lower than those tied to equa-
tions (10) and (11). For instance, when T = 200, they
claimed the first percentile estimation for λLS,max lies
between 3.3 and 3.5 while for λAO,max and λIO,max

it lies between 4.0 and 4.2 in AR(1).
SPC focuses on detecting presence of exogenous

variance sources exhibited by changes in a process
level or variance. If the change is caused by AO, IO or
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LS, the root cause can be narrowed down, facilitating
quick response and correction of problems linked to
changed signal of a process change.

Next, article will show how SPC process moni-
toring system based on detecting outlier statistics and
changes in its level can be created.

4 Problem Solution
Control charts λLS,max and λ̄LS by Atienza et al.
(1998) utilized for process level shifts detection in
AR(1) will be compared to volatility changes detec-
tion using stochastic differential equations for discrete
processes. Their performance will be compared with
SCC by Alwan and Roberts (special causes control
chart modified Shewhart’s control chart for residu-
als). Monte Carlo simulations in the R Programming
Language’s spc library will be used as a comparison
tool.

5 Monitoring System
Earlier mathematical background suggests a regula-
tion procedure for process level shifts detection either
by monitoring λLS,max or

λ̄LS,t =

T∑
t=1

λLS,t

T
.

This article focus on LS in AR(1) when devising the
control charts, and plot shift estimates obtained from
SDE based on volatility change-point estimator for
diffusion processes based on least squares to the graph
of the original time series. As the drift coefficient is
unknown, dXt = b (Xt) dt+Θ·dWt is considered and
b is estimated non-parametrically. We start with a set
of m observations from a controlled process (i.e., sta-
tistically managed). The first phase sees it very likely
affected by outliers and level shifts whose presence
may lead to substandard model identification and in-
correct assessment of process deviations. Methods al-
lowing outlier detection and model parameter estima-
tion should thus be preferred.

The analysis shows λLS,t control charts to be sen-
sitive to correctly selecting m, e.g., m = 100 gives in-
correct information about Average Run Length (ARL
(Note:Average Run Length (ARL) denotes mean num-
ber of steps before the statistic crosses a regulation
band, or before CL change (shift) is detected)). Satis-
factory ARL is achieved with m = 200, usually cor-
responding to at most several seconds or minutes in
real-time process monitoring for SPC, even when m
is high.

When the initial set of observations is at avail-
able, λLS,t can be computed. Using the regulation
apparatus we only need to preserve m newest ob-
servations, i.e., when a new observation is added,
the oldest one is discarded. With m points, m
values for λLS,t is calculated. Suppose we start
with a set {Z1, Z2, . . . , Zm} and m respective val-
ues for λLS,t, {λLS,1, λLS,2, . . . , λLS,m}. When
Zm+1 is supplied, {Z2, Z3, . . . , Zm+1} scale is used
to calculate {λLS,2, λLS,3, . . . , λLS,m+1}. Starting
from the initial set m, after arbitrary number of
steps i we have {Zi+1, Zi+2, . . . , Zm+i} from which
{λLS,i+1, λLS,i+2, . . . , λLS,m+i} is computed. Math-
ematically, we follow

λLS,max,i = max
i+1≤t≤m+i

{|λLS,t|} ,

with i = 1, 2, 3, . . . , or

λ̄LS,i =

m+i∑
t=i+1

λLS,t

m
, i = 1, 2, 3, . . .

Graph indicates the process is not statistically
managed, λLS,max or λ̄LS,t crosses its respective reg-
ulation band set based on λLS,max and λ̄LS,t sampling
distributions of which are challenging to quantify due
the statistics being functions of dependent variables. It
is thus recommended to simulate and input standard or
acceptable ARL under the assumption the process is
statistically managed. To determine regulation bands
to produce the ARL value in a statistically-managed
state, a software tool should be run. Starting points for
simulations in the λLS,max diagram are reproducible
from Chen and Liu (1993).

5.1 Performance, characteristics and behav-
ior of control charts

For AR(1) with ϕ > 0, expected residual value at
and t = d is ωLS when a level shift occurs in range
ωLS . For t > d, the value is (1− ϕ)ωLS . In case of
SCC, it is highly probable the shift will be detected as
soon as it occurs; afterwards, the probability decreases
rapidly, especially when ϕ → 1. SCC is expected to
perform better than CUSUM when the shift in t = d
generates high residuals (e.g., more than 3 in abso-
lute expression). However, if SCC fails to detect the
occurrence, CUSUM is recommended instead. Both
have their advantages and disadvantages for monitor-
ing autocorrelated processes.

The λLS,t control chart combines desirable prop-
erties of SCC and CUSUM: it is capable to detect sud-
den and small changes in the process level. To demon-
strate, two LS scenarios for AR(1) with ϕ = 0.9 and
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σ = 1 were selected. The former is depicted in Fig-
ure 1; here, the change did not produce high residuals.
First 200 observations are from AR(1) with ϕ = 0.9
and zero mean, the shift occurs at t = 201. Three
control charts were constructed: SCC, CUSUM on
residuals and λLS,max. SDE was used in the orig-
inal time series. Parameters for the ARL were se-
lected in statistically-managed state to be approxi-
mately 370. SCC (Figure 2B) failed to identify the
change in 201 ≤ t ≤ 400 interval; CUSUM, λLS,max

and SDE detected it almost at the same time, the lat-
ter at t = 208 with parameters Θ1 = 574952.9 and
Θ2 = 63678.35.

The second scenario analyzes λLS,max for LS
producing high residuals. Time series in Figure 3A
originate from identical process as in Figure 2A. Com-
pared to previous demonstration, LS in t = 201 gener-
ates high residuals, causing SCC to signal ”out of reg-
ulation bounds”. CUSUM on residuals failed in the
task. Figure 3D shows λLS,max managed to detect the
shift in t = 201, as did SDE. Examples in Figures 2
and 3 prove λLS,max (t = 202) and SDE (t = 201
with Θ1 = 363861.2 and Θ2 = 54765.15) achieved
better results than SCC and CUSUM on residuals.

5.2 Comparison of performance and behav-
ior using ARL

For different ϕ and δ, performance of λLS,max and
λ̄LS , SCC, and SDE was compared using Monte
Carlo simulation. However, shifts in δ is measured
by standard deviation. Every run consisted of 5,000
iterations, the algorithm was written in the R Pro-
gramming Language. AR(1) was simulated using the
spc package, sde package was used to load stochas-
tic differential equations. m = 200, regulation
bands for λLS,max and λ̄LS were set so that ARL
in a statistically-managed state approximately corre-
sponded to ARL in SCC with ±3σ.

Figure 1 shows dominance of control charts based
on λLS,max, and SDE further exacerbated when
ϕ > 0. This is expected as λLS,max integrates bene-
fits of SCC and CUSUM on residuals. Compared to
λLS,max, the λ̄LS diagram performs better when de-
tecting small shifts but is less sensitive for big shifts,
especially when ϕ is high.

6 Discussion
Traditional control charting procedures are based on
the assumption process observations are i.i.d. With
advent of high-speed data collection, the assumption
is usually violated, i.e., autocorrelation among mea-
surements which causes significant deterioration in

Figure 1: ARL comparison: SCC, λLS,max, λ̄LS and
SDE. (Source: own work, R)

Figure 2: Performance of SCC, SUCUM on residuals,
λLS,max and SDE when detecting level shifts for low
residuals at the change point. (Source: own work, R)

Figure 3: Performance of SCC, SUCUM on residuals,
λLS,max and SDE for detecting level shifts for high
residuals at the change point. (Source: own work, R)
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control charting performance becomes inherent for a
stable process. Several methods for handling autocor-
related processes have been proposed, the most pop-
ular utilizes Shewhart’s, CUSUM or EWMA charts
of appropriately-fitted ARMA model. However, they
exhibit poor sensitivity, particularly for positively au-
tocorrelated processes. As an alternative, we have ex-
plored statistics used in a time-series procedures for
outlier and level shift detection. The study focused on
level shifts in autocorrelated processes with emphasis
on the AR(1) model. The results showed time-series
charts are found to be sensitive for detecting small
shifts and we exploited the fact these control charts
can be used in certain situations where data are auto-
correlated.

As for the sub-series identified by the change
point estimate and estimators of their parameters:
both are consistent and asymptotically normal at the
are of

√
n with n the number of observations. Least

squares estimator τ̂0 seems to have good performance
in terms of bias and variability for models with con-
stant or bounded drifts while it fares badly in presence
of unbounded drift as time T grows.

7 Conclusion
Most traditional control charts are based on the as-
sumptions process observations are independent and
sampled from identical distributions. With prolifera-
tion of high-speed automatic data collection, the for-
mer is usually violated, i.e., autocorrelation becomes
inherent characteristic of a stable process and substan-
tial performance degradation follows. Several ways to
address the problem have been devised, the most pop-
ular utilizing Shewhart’s, CUSUM or EWMA control
charts on residuals of approximately-fitted ARMA
model. They nevertheless have low sensitivity, es-
pecially when positively-autocorrelated processes are
involved. As an alternative, we investigated statistics
used in time-series procedures for outlier and mean
shift detection.

The study focused on mean level shifts for au-
tocorrelated processes with emphasis on the AR(1)
model. The results proved the apparatus for mon-
itoring the changes can be based on SDE, λLS,max

or λ̄LS . λLS,max combines beneficial properties of
Shewhart’s and CUSUM diagrams, exhibiting supe-
rior ARL performance in comparison with other meth-
ods. Unlike SCC and λLS,max, λ̄LS is more sensi-
tive to small shifts, and less sensitive to large shifts.
The proposed regulation apparatus is expandable to
identify additive and innovative outliers. Intervention
type identification affecting the process allows ob-
serving sources of statistical unmanageability, an im-

portant step in special causes of variance elimination.
It can be also used for more general autoregressive in-
tegrated moving averages (ARIMA).

Stochastic differential equations rank among the
most widely-used stochastic models to describe con-
tinuous financial time series. Although data are col-
lected at discrete intervals, model structure enables
detailed data analysis. Analyzing AR(1), it revealed
(unlike time-series control charts) another variability
change point and appears to be preferable for change
point detection. SDEs also provide robustness of the
estimates.

The time series model based approach is easy to
understand and effective in some situations. However,
it requires identifying appropriate time series model
from a set of initial in-control data. This may not be
easy to establish in practice and may be too compli-
cated to practicing engineers. Hence, the model-free
approach has recently attracted much attention.

Such autocorrelation causes significant deterio-
ration in control charting performance. In order to
address this, several approaches for handling auto-
correlated processes have been proposed, the most
popular one utilizing either Shewhart, CUSUM or
EWMA chart of the residuals of the appropriately fit-
ted ARMA model. However, procedures of this type
demonstrate poor sensitivity, especially when dealing
with positively autocorrelated processes.

Uncorrelated observations appear when automati-
cally collecting data, usually by software upgradeable
to include SPC for data processing. In such a system,
serviceability of the procedure can be optimized.
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