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Polyoxoniobates (PONbs) are a small family of highly electron-rich clusters.  The 

development of new solids composed of these clusters have applications in green energy 

and electronics.  However, the high charge environment of PONbs typically requires 

alkaline synthetic conditions that are unsuitable for introducing other metals and organic 

molecules, making synthesis of new systems difficult.   To date, very few transition 

metals and organic ligands have been incorporated into these PONb solids, and 

lanthanide metal inclusion, which generally improves photoconductivity due to long-

lived f-orbital excitations, has not yet been fully realized.   Here, the synthesis of a new 

class of lanthanide niobate cluster [Ln4(H2O)8(SO4)5(NbO3)2]·3H2O; Ln= Dy, Tb under 

acidic conditions is reported.  

Structures were determined by crystallography and time-dependent density 

functional theory (TD-DFT) was used to provide insight into photo-induced electronic 

transitions.  Supporting computational methods that are currently being developed for 

modeling these emerging cluster systems are described.  
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CHAPTER I 

INTRODUCTION 

 

Outline 

 

 This chapter discusses the relevance of new solid-state materials for optimizing 

current green energy applications.  The structure and properties of these emerging solids 

are introduced and the major directions of research in this field are identified. 

 

Introduction 

 

 Understanding electron transfer in emergent photoactive systems is a fundamental 

challenge in the development of optimized materials for green energy applications.  

Although the production of an electric current from light is generally well understood, 

this understanding is based upon the most widely used photoconductive technology─ the 

silicon photovoltaic (PV) cell.  In order to improve the efficiency of PV materials, as well 

as develop novel ways that photocurrent can be utilized, a broader perspective of 

photoconductivity is necessary.   Systems that utilize light for other applications besides 

generating an electric current include photocatalysts that convert CO2 into green fuels 

like methanol or ethanol, or porous materials that store hydrogen, or other molecules for 

photochemical reactions. 1 The United States Department of Energy (DOE) projects CO2 

emissions from fossil fuels to decline due to new emission standards, and increased 

funding for new non-petroleum energy sources.2  In the same annual report, the DOE 

expects that nuclear power will account for much more of the nation’s electricity 

generation in the future by providing nuclear energy incentives, funding for building new 

plants, and research into small scale reactors.  Moving away from fossil fuels will also 

require the development of improved materials for green energy applications. 
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Silicon solar cells, which are currently the most energy efficient solar technology, 

have power efficiencies around 18%, with theoretical limits around 32%.3   Hydrogen 

production from water hydrolysis using current electrolyzers is very efficient, at around 

80%─ making maximum photovoltaic-driven hydrolysis around 14% efficient, with a 

theoretical limit of 24%.  Although these theoretical limits seem discouraging at first, 

they could be raised up to 40% by developing tandem systems, such as those optimized 

for water oxidation and hydrogen production.3  Furthermore, photosystems that could 

generate multiple charge carriers per absorbed photon, absorb UV light more efficiently, 

or absorb IR photons, and could raise the theoretical thermodynamic limit to 66%.3 

Regardless of the application, the components of any photoactive system have one 

thing in common─ the need for a better way to conduct electricity produced by light.  In 

general this means two things: absorbing light more efficiently, and making the charge 

produced last much longer. One of the biggest trade-offs here is that with current 

materials, lowering the energy it takes to absorb a photon or shift the system to absorb 

more visible light, makes the lifetime of the charge produced much shorter.   Increasing 

the charge lifetime of a system could be done by raising its absorption energy, i.e., 

shifting its absorbance to the UV region.  However, while UV photoconductivity is very 

efficient itself, the majority of sunlight is not ultraviolet, which makes overall efficiencies 

in current solar devices low.  Indeed, much of the current research in photovoltaics is 

directed at increasing the range of available light that may be used to produce electricity. 

Rare-earth, or lanthanide metals have been shown to improve photovoltaic 

devices in simple sandwich-type active layers.  This is likely due to the long lifetime of 

excited states in rare-earth metals, which decay through phosphorescence.4   Organic 
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molecules such as dyes are also commonly used to extend the range of light into the 

visible region.  Solid-state materials, which contain organic dyes, lanthanide-transition 

metal clusters, and polyoxometalate (POM) clusters are developing technologies.  POM 

systems show promise in optimizing the photoconductivity of lanthanide hybrid systems 

because of their high charge density, which provides the photosystem with many 

electrons per atom.4 While some POM-lanthanide systems that include organic ligands 

have been realized in the last decade, this field is relatively underdeveloped, and 

inclusion of higher charge density POMs, like PONbs, into these systems remains largely 

incomplete.   Although not entirely understood, the charge transfer properties of 

emerging lanthanide and POM systems present new possibilities for known systems, and 

are also desirable synthetic targets towards more efficient green energy applications.  
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CHAPTER II 

LITERATURE REVIEW 

 

Outline 

 

This chapter introduces the structure and properties of metal-organic framework 

(MOF), and polyoxometalate (POM) solids.  This chapter reviews lanthanide metal 

inclusion in organic-POM solids, and includes the POMs composed of the metals W, V, 

Mo, and Nb.  The purpose of this review is to identify undeveloped lanthanide POM 

materials, and validate the synthetic pursuit of an optimized target system composed of 

Nb.  This chapter also reviews the few current computational methods used for POM 

excited states, validating the need to develop TD-DFT methods for emerging lanthanide-

POMs to provide insight into their electronic structure, and electron-transfer. 

Introduction 

The advancement of green energy applications will be accelerated through the 

optimization of atomically engineered photoactive materials.1   Solar cells, hydrogen fuel 

cells, and reduction of carbon dioxide to green fuels, such as ethanol and methanol, are 

examples of applications that would benefit from the development of new inorganic 

materials.  Metal-organic frameworks (MOFs) and polyoxometalates (POMs) are two of 

the major classifications of materials that have attracted extensive research studies 

because of their potential applications in these areas. 

The term hybrid is used to describe a system that contains both organic molecules 

and inorganic metals─ the connecting bridges that create extended structures such as 

MOFs.  The oxygen or nitrogen groups contained within ligands, are considered the ends 

of a bridge, and bonds to transition metals or other atoms act as anchoring points for the 

linkages.  Some ligands, such as 2,2-bipyridine “cap” a metal, by forming multiple 
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coordinate covalent bonds to the metal and leaving other sites on the metal for linking.  

Aromatic ligands are generally better at absorbing light than the smaller organic ligands, 

and as such are desirable to use as linkers in photovoltaic applications.  Transition metals 

have been the most common metallic species used in MOF chemistry; however, in recent 

years both main group and rare earth metals have also been incorporated into metal-

organic network topologies.8   

Polyoxometalates (POMs), i.e., metal-oxide anionic clusters of various sizes, have 

also been linked together by organic ligands to form MOFs.9 POM clusters are generally 

composed of tungsten, molybdenum, vanadium, or niobium.  Ligands may also be used 

to connect other metals to POM clusters, and even link these clusters together.  The 

photoactivity of POMs is of great interest in modern inorganic chemistry due to their high 

charge densities, and versatile coordination environments.  In POMs, transition metals 

typically have high oxidation states, and when co-coordinated to several oxygens, 

provide a rich electron source in photoactive systems.  Furthermore, certain aromatic 

ligands have the desirable property of absorbing visible light, whereas POMs by 

themselves typically absorb in the UV range.  This is significant in developing green 

applications because new charge-dense, porous materials that absorb more of the visible 

spectrum of light are possible. 

Rare earth metals, or lanthanides, exhibit novel electronic and optical properties 

due to their partially filled f atomic orbitals.  One such property is phosphorescence; the 

spin-forbidden radiative relaxation of a photoexcited electron to the ground state from an f 

orbital.  The long relaxation rates of rare earth phosphorescence increases charge-lifetime 

in hybrid systems, making rare earth metals ideal candidates as co-sensitizers towards the 
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photoconductive optimization of hybrid POM systems.4  There are relatively few rare-earth 

MOFs reported, and even fewer examples incorporating POMs.  Although lanthanide 

coordination polymers have been extensively studied, the inclusion of POMs into the 

diverse chemistry of lanthanide polymeric networks remains incomplete.10 The lanthanide 

POMs that are known are mainly in the tungsten POM family.  However, tungsten POMs 

have also been extensively researched.   Non-tungsten POMs─ those containing 

molybdenum, vanadium, and niobium, have higher charge densities per atom and thus the 

potential, with additional research, to produce more photocurrent and become viable 

candidates for  green energy applications.  The focus of this review is primarily on the 

importance of developing molybdenum (POMo), vanadium (POV), and niobium (PONb) 

for photovoltaic applications.   

Hybrid Lanthanide Polyoxomolybdates (POMo) 

Of the POMs considered in this review, it is easiest to attach rare earth metals and 

organic ligands to those containing molybdenum (POMo).  This makes POMo ideal 

candidates, for the development of new hybrid rare-earth POMs.   The potential systems 

that may be developed from current lanthanide-POMo and hybrid POMo systems are 

promising. Aromatic nitrogen containing ligands, such as imidazole and bi-imidazole, 

coordinated to metals, such as Co, Zn, Na and Ni, have been shown to coordinate with 

POMo, although without lanthanides, in hydrothermal work-ups.11-13   An, et. al, have 

recently developed the only known POMo series that contains both rare-earth atoms and 

organic molecules.  Their structures are a family of α -chromium polyoxomolybdates 

coordinated to aromatic amines of the form 

Ln[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O, (Ln = Ce, La, Pr, and Nd).14,15    
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 Other groups have developed POMo with cores consisting of multiple lanthanide 

atoms.16-18  These cores vary in size from two to several lanthanides, and are decorated by 

POMo clusters of different sizes.  However, these POMo do not contain organic 

molecules.  Adopting synthetic procedures similar to those of An et. al, and precursor 

POMo containing complex rare earth cores, such as those of Yamase, new POM 

structures with organic ligands suitable for green energy applications may be possible.16 

Hybrid Lanthanide Polyoxovanadates (POV) 

In contrast to POMo, there are only two polyoxovanadates (POV) that contain a 

lanthanide metal, and none that contain both lanthanides and organic ligands.  The two 

known lanthanide POV have the formulas [Ln(H2O)7]2[V10O28]·11H2O; (Ln= Ce, Gd), 

and [{Ln(H2O)7}2As6V15O42(H2O)]·nH2O ( Ln= La, Sm, Ce).19, 9   However, the POV 

clusters are likely the easiest of the POMs to complex with transition metals and organic 

ligands. Hybrid POV chemistry is rich with new systems that have been developed, and 

has recently been reviewed elsewhere.20   The diversity in POV chemistry is due to a 

range of stable synthetic intermediates.  These intermediates proceed through the 

oxidation of reduced metavanadate, or through the coordination of a metavanadate 

species directly to a transition metal cation.  These stable intermediates, composed of 

metavanadates and transition metals, are accessible even in highly acidic environments, 

giving rise to a chemistry that is easily adaptable to other systems.20   Hybrid POV are 

mainly composed of small clusters, the Lindqvist  type cluster containing six vanadium 

atoms, or the lancunary keggin structure, a type of “sandwich” composed of other small 

cluster fragments.  Hybrid POV systems include aromatic chromophores that can be 

linked to metals such as Ni, Cu, and Mn.  Mixed-metallic and even halogen containing 
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POV are known, such as the structure [M(4, 4'-bpy)2]2[VIV
7VV

9O38X].(4,4'-bpy)m(H2O)n, 

where M = Ni, Co, Mn; X = F, Br, Cl .21  POMs such as these, which contain mixed 

oxidation states, are good conductors of electricity due to their magnetic properties, and 

as such can perhaps improve conductivity in green energy applications. 

The accessible syntheses of the POV through stable intermediates, have provided 

two significant hybrid structures unique to POV with no corresponding POM analogs.  

The first unique POV is an organic-inorganic coordination polymer of the form: 

[M2(biim)3V4O12] (M = Cu, Co; biim = bis-imidazole).22  While this does not appear 

immediately significant, to the best of the author’s knowledge, this is the only known 

hybrid POM composed of only four POM metals.  Generally, the smaller the POM, the 

more charge there is per atom, which makes this structure a highly charge dense POV, 

and optimal for energy applications.  The second POV structure with no similar POM 

analog is composed of a unique vanadium ring, or callix.  This complex features a Ni 

center, and is capped by another POV, with the formula: (H3DETA)2{[VIV
14VV

4O4-

2(H2O)] [Ni(DETA)(HDETA)]4(H2O)6}[HVIV
14VV

4O42(PO4)] where 

DETA=diethylenetriamine.23  Circular metal structures like this have been found to 

exhibit magnetism at the molecular level.   Due to the enhancement of electricity by 

magnetism, utilizing magnetic POM structures to develop conductive materials that also 

absorb light, are worth investigation in developing alternative materials for green energy 

applications.  It may be suggested that the POV family is the best starting point for 

building hybrid-lanthanide POMs due to their reliable syntheses, and their known 

compounds containing transition metals, which may be utilized to link rare-earths.   
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Despite the range of accessible hybrid POVs compared to the other 

polyoxometalates, there are no known hybrid-lanthanide-POVs.  The known lanthanide-

POVs are not coordinated with organic ligands, and have only been recently reported as 

sandwich-type crystals of the form: [Ln(H2O)7]2[V10O28]·11H2O, (Ln= Ce , Gd),19 and 

the second mixed-nuclear Keggin of the form: [{Ln(H2O)7}2As6V15O42(H2O)]·nH2O; (Ln 

= La, Sm, Ce).9   

Lanthanide Polyoxoniobates (PONb) 

Polyoniobates (PONb) have the highest charge density of the POMs considered 

here, which makes them the most desirable POM cluster for the development of energy 

applications.  However, like the POVs there are no known hybrid rare-earth PONb 

structures.  Furthermore, the PONb are fewest in number compared to the other families of 

POMs.  This is mainly due to the high charge density of PONb intermediates, making them 

stable only in very basic environments.  PONb are also regarded as the most difficult to 

synthesize, being sensitive to reaction conditions, involving water sensitive precursors, and 

often requiring time-intensive methods and crystal growth rates, such as diffusion of a 

solvents into an active PONb solutions.  It is not suprising that many of the PONb solids 

are strictly inorganic, being composed in many cases of mixed metals.24-26 Indeed the only 

known PONb coordinated to lanthanides were synthesized by Yamase using high-

temperature conditions.  These are large and purely inorganic structures with complex 

lanthanide cores decorated by several hexaniobate clusters.27 

 A common starting material for PONb systems are the PONb alkali salts 

developed by Nyman et. al of the form M9Nb6O19, (M= K, Rb, Cs).28   For example, these 

hexaniobate precursors have been used by the same group to form PONb composites with 
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some metal oxides commonly used in solar cells.29   These composites have the forms:  

K12[Ti2O2][SiNb12O40]·16H2O, and  Na14[H2Si4Nb16O56]·5H2O, and represent the 

potential for PONb to be adapted into known green applications.  Additionally, organic 

cations such as tetramethylammonium may be used in aqueous (hydrothermal) or organic 

solvent based (solvothermal) reactions to stabilize the hexa- or decaniobate anion.30  

Although few PONb systems exploit the use of this starting material, it may be possible 

with more research on the fundamental properties of hybrid PONb, to coordinate PONb 

with more elaborate organic dyes, such as those designed to harvest light.   These 

polyconjugated ligands are typically soluble in organic solvents, and realizing new 

systems including them is likely only to be possible in solvothermal reactions.   

There are few known hybrid PONb, and of these clusters, there are none that 

contain lanthanide atoms.  The first series of Cu hybrid PONb was accomplished by Ma 

et al. by diffusion with nitrogen-containing ligands.31 
 Only recently, the same group 

reported using hexaniobate alkali precursors in hydrothermal reactions to afford 

compounds with larger PONb.32   These clusters have the general form of an aromatic 

nitrogen-containing capping ligand, coordinated to a transition metal, which is then 

coordinated to the PONb.   Interestingly, these structures show the ability to 

accommodate several different transition metals, which before, had only been Cu and 

have the form M(L)3]{[M(L)2]2[Nb10O28]}·8H2O , (M= Cu, Ni, Co, Zn; L= 1,10 phen. or 

2,2 bpy).32 

Very recently, using straightforward hydrothermal methods, the Casey group 

synthesized a di- transition-metal cored PONb of the form [Cr2(OH)4Nb10O30]8− using 

hydrous Nb2O5 . 33   This represents an approach that may be potentially adopted to 
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accommodate rare-earth atoms through a transition-metal bond.   Also, because an 

organic base was used in this system, it may be possible to incorporate aromatic ligands 

into this type of PONb using organic solvents.  The most remarkable property of this 

cluster, however, is that it absorbs light in the visible range with no assistance from 

organic ligands, with peaks around 440 nm and 594 nm (Figure 1). 

 

The Casey group attributes this interesting visible absorption to CrIII transitions.  

However, this is one of the only known POMs that exhibits this property, extending the 

range of PONb significantly.  Although computational methods were used and validated 

by experimental UV spectra, further computational research is needed to explain this 

phenomenon so that this property may exploited in the design of new systems.   

Computational Methods for POMs 

The successful prediction of electronic structures in MOFs, POM coordination 

polymers, and hybrid lanthanides will allow investigation into the origin of charge 

transfer in emergent photoactive systems.  The fundamental properties of these structures 

are not entirely understood, and development of computational methods will enable 

design considerations in realizing an optimized photoactivity.1 Although some properties, 

Figure 1. A recent di- transition-metal cored PONb of the form [Cr2(OH)4Nb10O30]8−.  This cluster absorbs in the visible range with 
no assistance from organic molecules. 
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and transition states of POMs have been calculated,  only very recently have the excited 

states of POMs been predicted by time-dependent density functional theory (TD-DFT), 

with very good agreement to experimental UV-Vis spectra.33- 35   The UV spectra of any 

system, successfully predicted by TD-DFT, can be used to understand where electron 

density is transferred within the system upon absorption of light.  Generally, each peak in 

a UV spectra corresponds to a transition from the ground electronic to an excited state.  

When transition state orbitals are analyzed visually, regions of electron density transfer 

corresponding to each peak can be shown in sets of pairs from a ground state (hole) to an 

excited state (particle).  This technique is known as natural transition orbital (NTO) 

analysis, and the pairs representing each peak are known as NTOs or NTO hole-particle 

pairs.7  Also, frequently there may be several NTOs contributing one peak.  In these 

cases, each NTO is assigned a weight based on how much it contributes to the peak. 

Basis sets are used in computational chemistry as a kind of electronic map, or 

starting point for applying predictive calculations to individual atoms in a molecule.  For 

POMS, rather than calculating the interactions between every electron in the system, the 

heavy atoms, or those with a very large number of electrons like transition metals, 

typically use basis sets that treat the inner electrons as a pseudopotentials, to conserve 

computational resources.  There are only a few basis sets which support lanthanide 

atoms, and although the Casey group successfully calculated the excited state spectra of a 

bi-metallic POM, there are currently no TD-DFT studies on lanthanide-POMs.33  
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CHAPTER III  

TWO ISOSTRUCTURAL LANTHANIDE POLYOXONIOBATES 

 

Outline 

This chapter discusses the synthesis and characterization of the compounds 

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O, and [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O.  The crystal 

structures of these solids were determined by single crystal XRD, and results are 

presented.  The solid UV-Vis spectra of these two compounds are very similar, indicating 

O→Nb, not O→lanthanide centered transitions (verified by TD-DFT in Chapter IV).   

The solid photoluminescence-emission spectra for both compounds each verify 

characteristic Dy 3+, and Tb3+ emissions. 

Synthesis of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O (1) 

A Solution of Na2S2O3 (0.176 mmol), was added to a solution of K2Cr2O7 (0.0426 

mmol), Dy3(NO3)3 (0.25 mmol), and H2O (83.33 mmol), and stirred for 2 minutes at 

room temperature until becoming slightly dark, and cloudy.  Tetramethylammonium 

hydroxide (TMAOH: (CH3)4N(OH)) (0.550 mmol) was added, and hydrous niobium 

oxide,  Nb2O5· (xH2O) (0.1337 mmol based on Nb, 0.25 g, 76% w/w) was added to the 

suspension.  The resulting yellow mixture was transferred to a Teflon bag, sealed, and 

placed in a Teflon-lined steel autoclave.  The system was heated to 160° C at 0.72° C/min 

then kept at 160° C for 18 hrs., and left to cool.  Dark pink crystals suitable for single-

crystal XRD were separated from light green solids, and separated manually from the 

remaining pink crystal-like solids.  Yield = 5.2%, based on Dy assuming the composition 

of 1.  

Reacting the system for longer than 18 hours does not seem to improve yield.  

However, annealing using the same conditions increases yield from 5.2% to 12.2 %, 
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fewer pink solids are observed, and the overall crystal size is decreased.   The reaction 

proceeds in the pH range of 5.1-6.1 (by adjusting TMAOH), and crystal size is slightly 

larger at lower pH.  The crystals are stable in air and are insoluble in both acidic and 

basic aqueous solutions, as well as organic solvents (THF, DMF, methanol, ethanol, 

chloroform, dichloromethane).   

Synthesis of [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O (2) 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O (2) is prepared using the same conditions as (1), 

except Tb3(NO3)3 is used instead of Dy3(NO3)3 .  Yield = 3.5%, based on Tb assuming 

the composition of 2.   The crystals are stable in air and are insoluble in both acidic and 

basic aqueous solutions, as well as organic solvents (THF, DMF, methanol, ethanol, 

chloroform, dichloromethane).   

Structures of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 

 

The single crystal XRD structure of the cluster Ln4(H2O)8(SO4)5(NbO3)2]·3H2O; 

Ln= Dy, Tb, is shown in Figure 2.  The crystal system is monoclinic with the space-

group P2 1.  Lanthanides within the cluster are coordinated to two water molecules.  Each 

lanthanide is bridged by a SO4
2- ion to another lanthanide within the cluster, and SO4

2- 

ions connect an additional lanthanide along the a direction to an adjacent cluster, as 

Figure 2.  Structure of Ln4(H2O)8(SO4)5(NbO3)2]·3H2O, Ln=Tb, Dy, shown along the c direction (left), and a 
direction (right).  Purple polyhedra LnO8, blue polyhedral NbO6, yellow polyhedral SO4.  
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shown in Figure 2.  These clusters are connected by a SO4
2- ion along the c direction, and 

in this sense the lanthanide niobate cores are linked together, and share six SO4
2- ions. 

 

 The extended structure of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O represented in Figure 

3 shows SO4
2-  ions shared within the Dy-PONb core, and how these SO4

2-  ions are 

shared between adjacent clusters.  Crystallographic data  and structure refinement for 

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O are listed in Table 1.   

  

Figure 3.  Structure of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O with extended structure Dy atoms showing 
connectivity to adjacent clusters  through Shared SO4

2- bridges.  Repeated atoms  are numbered 
appropriately.  Grey spheres Dy, blue spheres Nb, red spheres O, yellow spheres S.  Hydrogen 
atoms are omitted for simplicity. Dy-O (Å) range 2.301-2.435,average =2.301; Nb-O (Å) range 
1.931-2.044, average =2.050; S-O (Å) range 1.435-1.502, average 1.470. 
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Crystal data and structure refinement for [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O. 

Empirical formula  Dy4 Nb2 O37S5OH22 

Formula weight  1610.28 

Temperature  295  K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 10.515(3) Å = 90°. 

 b = 12.678(4) Å = 109.634(15)°. 

 c = 11.824(5) Å  = 90°. 

Volume 1484.5(9) Å3 

Z 2 

Density (calculated) 3.544 Mg/m3 

Absorption coefficient 11.905 mm-1 

F(000) 1608 

Crystal size 0.63 x 0.26 x 0.20 mm3 

Theta range for data collection 1.83 to 39.27°. 

Index ranges -15<=h<=18, -21<=k<=21, -20<=l<=20 

Reflections collected 37018 

Independent reflections 15273 [R(int) = 0.0616] 

Completeness to theta = 39.27° 88.8 %  

Absorption correction None 

Max. and min. transmission 0.1993 and 0.0498 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15273 / 1 / 421 

Goodness-of-fit on F2 1.081 

Final R indices [I>2sigma(I)] R1 = 0.0625, wR2 = 0.1721 

R indices (all data) R1 = 0.0629, wR2 = 0.1725 

Absolute structure parameter 0.635(13) 

Extinction coefficient 0.0050(3) 

Largest diff. peak and hole 5.469 and -12.701 e.Å-3 

Table 1.  Crystallographic data for [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O  
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 The extended structure of [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O represented in Figure 

4 shows  SO4
2-  ions shared within the Tb-PONb core.  Crystallographic data and 

structure refinement for [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O is listed in Table 2.   

 

  

Figure 4.  Structure of [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O showing the symmetric unit, and 
connectivity to adjacent clusters by SO4

2- bridge at O 23.  Grey spheres Dy, blue spheres Nb, red 
spheres O, yellow spheres S.  Tb-O (Å) range 2.332-2.446, average =2.405; Nb-O (Å) range 1.932-
2.043, average =1.982; S-O (Å) range 1.436-1.507, average 1.473. 
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  Table  2.  Crystallographic data for [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O. 

Empirical formula  Nb2O37 S5Tb4H22 

Formula weight  1595.36 

Temperature  298 K 

Wavelength  0.71073 Å 

Crystal system  P21 

Space group  monoclinic 

Unit cell dimensions a = 10.5680(6) Å = 90°. 

 b = 12.7438(8) Å = 110.393(2)°. 

 c = 11.8435(7) Å  = 90°. 

Volume 1495.07(15) Å3 

Z 2 

Density (calculated) 2.892 Mg/m3 

Absorption coefficient 10.484 mm-1 

F(000) 1164 

Crystal size 0.40 x 0.40 x 0.10 mm3 

Theta range for data collection 1.83 to 39.17°. 

Index ranges -18<=h<=17, -21<=k<=22, -21<=l<=19 

Reflections collected 50129 

Independent reflections 15999 [R(int) = 0.0468] 

Completeness to theta = 39.17° 93.9 %  

Max. and min. transmission 0.4204 and 0.1022 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15999 / 1 / 426 

Goodness-of-fit on F2 0.951 

Final R indices [I>2sigma(I)] R1 = 0.0692, wR2 = 0.1903 

R indices (all data) R1 = 0.0695, wR2 = 0.1908 

Absolute structure parameter 0.329(14) 

Extinction coefficient 0.0043(3) 

Largest diff. peak and hole 13.168 and -12.845 e.Å-3 
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 PXRD of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 

 

 Simluated powder XRD (PXRD) spectra were calculated with the Diamond 

crytallographic software package from .cif (crystallographic information format) 

structure files refined using the ShelX software package.  The simulated PXRD spectra of 

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O agrees well with the experimental PXRD spectra as 

shown in Figure 5, indicating the solid is highly pure.  This purity further supports that 

experimental electronic spectra correspond to transitions within the solid. 

 

 

 The simulated and experimental PXRD spectra of 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O agrees well with the experimental PXRD spectra as 

shown in Figure 6, indicating this solid is also pure.  This purity also supports that 

Figure 5.  Simulated PXRD (above) and experimental PXRD (below) of 
[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O.  
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experimental electronic spectra correspond to transitions within the solid, and are likely 

not attributed to impurities. 

 

 

 

 

 Solid purity could be further confirmed by elemental analysis using electron 

microscopy techniques such as SEM or TEM.    

Figure 6.  Simulated PXRD (above) and experimental PXRD (below) of 
[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O.  
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Thermal Gravimetric Analysis of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 

 Thermal Gravimetric Analysis (TGA) of [Ln4(H2O)8(SO4)5(NbO3)2]·3H2O, (Ln = 

Dy, Tb) was conducted on a NETZSCH STA 449 F1 Jupiter in nitrogen from 20° C to 

750° C at a heating rate of 10° C/ min., and a purge gas flow rate 20 ml/ min. TGA of 

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O is shown in 

Figure 7. 

 

 

 The TGA of both compounds show three regions of weight loss.  

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O has a -3.35% weight loss from 90 °C – 110 °C 

corresponding to the three lattice water molecules (3.35 wt % calc.) , a 5.51% weight loss 

from 110 °C – 210 °C corresponding to the eight coordinated water molecules (8.94 wt % 

calc.),  and a -5.05% weight loss from 210 °C – 710 °C corresponding to other 

Figure 7.  TGA of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O (blue), and [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 
(magenta).  
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combustion products.  [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O has a -2.01% weight loss from 

90 °C – 110 °C corresponding to the three lattice water molecules (3.39 wt % calc.), a 

4.51% weight loss from 110 °C – 210 ° C corresponding to the eight coordinated water 

molecules (9.02 wt % calc.),  and a -2.30% weight loss from 210 °C – 680 °C 

corresponding to other combustion products.  

Solid UV-Vis spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 

 

 The solid UV-Vis spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O are shown in Figure 8.  The solid spectra was taken on 

a Carey 100 Bio SRS-99-010 Spectratron UV-Vis spectophotometer using double beam 

mode, with baseline correction. The lamp was changed during the 200-800 nm scan to the 

Figure 8.  Solid UV-Vis spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O (black) and 
[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O  (brown). 
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UV lamp at 350 nm.  Samples were prepared by layering a dilute methanol suspension of 

crystals pulverized in a mortar and pestle onto a glass slide.  Notably both compounds 

have two visible absorbances both at 420 nm and 560 nm.  This cluster shows visible 

absorbance unique to polyoxometalates, becoming the second inorganic-POM hybrid 

with this characteristic absorbance, the first lanthanide POM with this characteristic 

absorbance, and the first lanthanide PONb. 

Solid Luminescence-Emission Spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O 

  

 The solid luminescence emission spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O and 

[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O   are shown in Figure 9.  Samples were prepared in a 

similar manner to those used in UV-Vis analysis.  A Perkin Elmer LS55 Fluorescence 

Spectrometer was used in scan mode from 250 to 800 nm probe for absorbance and 

emission wavelengths.  Maximum emission wavelengths were then held fixed for each 

Figure 9. Solid Luminescence-emission spectra of [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O (left) and 
[Tb4(H2O)8(SO4)5(NbO3)2]·3H2O (right). 
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sample, and their corresponding excitation regions were scanned  to determine the 

maximum excitation wavelength.   

 As shown in Figure 9, two separate lines are represented for each absorbance-

emission spectra.  The line on the left in each spectra corresponds to the excitation region 

scanned at the maximum emission wavelength, and the line on the right in each spectra 

corresponds to the luminescence for each system when excited with the maximum 

excitation wavelength, which was determined previously and shown on the left. 

The Tb3+ ion has four distinct luminescence transitions from the 5D4 orbital.  The 

Tb3+  5D4 → 7F6  transition corresponds to an emission at 487 nm, the 5D4 → 7F5 

corresponds to an emission at 544 nm,  the 5D4 → 7F4 corresponds to an emission at 586 

nm, and the 5D4 → 7F5 corresponds to an emission at 620 nm.4 

The Dy3+ ion has three distinct luminescence transitions from the 4F9/2 orbital.   The 

Dy3+  4F9/2 → 6H15/2  transition corresponds to an emission at 493 nm, the 4F9/2 → 6H13/2 

corresponds to an emission at 582 nm,  and the 4F9/2 → 6H11/2  transition corresponds to an 

emission at 586 nm.   Each solid exhibits characteristic lanthanide luminescence emissions.   

[Dy4(H2O)8(SO4)5(NbO3)2]·3H2O luminesces at 617 nm at a maximum excitation of 444 

nm.   [Tb4(H2O)8(SO4)5(NbO3)2]·3H2O luminesces at 518 nm, 552 nm, and 631 nm at a 

maximum excitation of 476 nm. 4  

  



  

25 
 

 

CHAPTER IV COMPUTATIONAL METHODS 

 

Outline 

 This chapter details the computational methods used to calculate electronic 

structure and spectra for Dy4Nb2(SO4)4.  TD-DFT results are in good agreement with the 

experimental solid [Dy4(H2O)8(SO4)5(NbO3)2]·3H2O spectra, and NTO analysis supports 

electron transfer corresponding to the main experimental UV-Vis transitions as variations 

of O→Nb ligand to metal charge transfer (LMCT).  The development of this approach is 

described as a series of TD-DFT studies on a calcium MOF, two small organic-lanthanide 

complexes (Eu(COOH)3, and Eu(NO3)3), and a theoretical lanthanide-PONb. 

Electronic Structure Calculations and Optical Spectra 

Dy4Nb2(SO4)5 

Computational studies were performed using the Gaussian 09 computational 

chemistry package.36   Water molecules were omitted from the SXRD structure for 

simplicity, and the resulting Dy4Nb2(SO4)5  geometry was optimized at the 

PBEPBE/SDD-DF-MWB level (Figure 10), where the exchange correlation functional 

Figure 10. Dy4Nb2(SO4)5 optimized geometry from SXRD structure.  charge=0, multiplicity=1. PBEPBE/SDD-DF-
MWB.  purple spheres: Dy; bue spheres: Nb;yellow spheres: S; red spheres: O. 
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used was that of Perdew, Burke, and Erzenhoff, 37 and the Stuttgart-Dresden 

pseudopotential basis sets used were single-valence-electron Dirac-Fock relativistic (DF) 

for atoms O and S, and neutral Wood-Boring quasi-relativistic (MWB) for the atoms Nb 

and Dy (SDD-DF-MWB).38 Normal modes frequency analysis was performed on the 

optimized Dy4Nb2(SO4)5  geometry, and the structure was confirmed to be a local 

minimum.   

Stability analysis was used to confirm that the singlet wavefunction of the 

optimized geometry was the ground electronic state.  To further confirm the singlet 

ground state, and also search for possible high-spin ground states that may lead to anti-

ferromagnetic coupling, the final optimized Dy4Nb2(SO4)5 singlet geometry was used as 

the input structure for optimizations of multiplicites 3-19.  No lower energy geometries 

were found for higher multiplicities, indicating a singlet ground state.  

Dy4Nb2(SO4)4  TD-DFT Geometries 

Geometry A.  Optimized Dy4Nb2(SO4)4
2+ from SXRD. PBEPBE/SDD-DF-MWB. 

Geometry B.  Dy4Nb2(SO4)4 from optimized Dy4Nb2(SO4)4. PBEPBE/SDD-DF-MWB. 

Figure 11.  Dy4Nb2(SO4)4 TD-DFT geometries. 
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TD-DFT was applied to two different Dy4Nb2(SO4)4 geometries (Figure 11). The 

hybrid exchange-correlation functionials PBEPBE, BP86, and the local M06L exchange-

correlation functionals were used in this study.37,39,40 The Stuttgart-Dresden basis sets 

available in Gaussian09 were used for all three functionals.38 

Both geometries are generally constructed by omitting the vicinal (SO4)2- ion from 

the Dy4Nb2(SO4)5 cluster.  Geometry A is the optimized Dy4Nb2(SO4)4
2+ cluster from 

SXRD, and geometry B is the Dy4Nb2(SO4)4
  cluster taken from the Dy4Nb2(SO4)5

  

geometry shown in Figure 10.  The wavefunctions of both geometries A and B were 

confirmed to be stable.   

Currently, omitting counterions is acceptable in TD-DFT calculations of POMs, 

although solvation models are typically used to include the influence of a dielectric 

medium on the electronic structure of the resulting anionic environments. 33,35  Though 

the formal charge of the Dy4Nb2(SO4)4
2+ is 2, TD-DFT of the neutral geometry A (A0) 

produces better agreement with the energies and oscillator strengths of the experimental 

Figure 12.  Calculated  and experimental spectra of A2+ (left) and A0 (right).  BP86/SDD-DF-MWB. 

A2+   
BP86 

 

A0   
BP86 
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spectra than the formally charged  Dy4Nb2(SO4)4
2+ (A2+), Figure 12.   The experimental 

high intensity absorbance at 556 nm is not predicted by TD-DFT of the formally charged 

A2+ geometry vs. TD-DFT of the neutral A0  geometry, although the remainder of higher 

energy transitions between  both the Dy4Nb2(SO4)4
2+ and Dy4Nb2(SO4)4  geometries are 

similar.  

  NTO analysis was performed for  A2+ and A0, where 2+ and 0 denote 

charge.  The calculated and experimental spectra of A2+ and A0 are shown in Figure 12.   

The calculated spectrum of A2+ consists of three dominant lines at 500, 466, and 413 nm, 

and agrees with the higher energy peak in the corresponding experimental spectrum, 

which shows a slight shoulder at 460 nm, and a band at 420 nm.  The lower energy 

transitions of the simulated spectrum have negligible oscillator strengths, and the strong 

experimental band at 560 nm cannot be determined from this calculation. 

   

(a) 05-1h

 

 (b) 05-1p

 

(c) 10-1h

 

(d) 10-1p

 

(e) 28-1h

 

(f) 28-1p

 
Figure 13.  NTO hole/particle pairs for A2+. 
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The most significant NTO hole/particle pairs for the A2+ transitions are shown in 

Figure 13, and labeled as h or p to denote either a hole or particle, respectively.  The highest 

energy line at 413 nm corresponds to transitions from the ground state to excited state 28.  

For all NTO pairs, the holes contain a significant contribution from the oxygen atoms, and 

the corresponding particles all exhibit an anti-bonding pattern within the Nb2 environment.  

The holes for NTO pairs 5 and 28 contain mainly contributions from the outer oxygen 

atoms, while the hole from NTO pair 10 contains more inner oxygen electron density. 

These transitions are identified as variations of O→Nb LMCT. 

The calculated spectrum of A0 (Figure 12) consists of two dominant lines at 560, 

and 454 nm and agrees with the two dominant peaks in the corresponding experimental 

spectrum, which show bands at 420,  and 560 nm.  The lower energy transitions of the 

simulated spectrum have negligible oscillator strengths, but correspond to two very low 

intensity peaks in the experimental spectra. 

(a) 13-1h 

 

 (b) 13-1

 

(c) 15-1h 

 

(d) 15-1p    

Figure 14.  NTO hole/particle pairs for A0. 
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The most significant NTO hole/particle pairs for the A0 transitions are shown in 

Figure 14, and labeled as h or p to denote either a hole or particle, respectively.  The 

lines at 560 and 454 nm correspond to transitions from the ground state to excited states 

13 and 15, respectively.  For both NTO pairs, the holes contain a significant contribution 

from the oxygen atoms, and the corresponding particles exhibit an anti-bonding pattern 

within the Nb2  environment.  The holes for NTO pairs 13 and 15 contain mainly 

contributions from the outer oxygens.  The particle for NTO pair 13 has some additional 

electron density on the outer sulfur and oxygen atoms, while the particle for NTO pair 15 

does not.  These transitions are identified as variations of O→Nb LMCT.   

As expected due to the removal of electrons from the system, the particles 

(excited states) of the A2+ geometry look similar to the holes (ground states) of the A0 

geometry.  NTO analysis for both charged and neutral geometry A, show variations of 

O→Nb LMCT.  However A0 agrees best with the experimental spectra, and the holes for 

A0 have more electron density on oxygen, and less on Nb, than the particles for  A2+. 

 

Figure 15.  Calculated and experimental spectra of B0. M06L/SDD-DF-MWB. (left) and BP86/SDD-DF-MWB. 
(right).   

B0   
M06L 

 

B0   
BP86 
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The calculated and experimental spectra of B0 using the M06L and BP86 

exchange-correlation functionals are shown in Figure 15.   Two functionals were used to 

validate the B0 geometry, and compare estimations of NTO electron density between  

hybrid and local functionals.   

The calculated spectrum of B0 M06L consists of three dominant lines at 537, 461, 

and 405 nm and agrees well with the corresponding experimental spectrum, which shows 

dominant bands at 420,  and 560 nm, and a slight shoulder at 460 nm.   

  

(a) 18-1h

 

 (b) 18-1p

 

(c) 24-1h

 

(d) 24-1p

 

(e) 30-2h (88%)

 

(f) 30-2p (88%)

 
Figure 16.  NTO hole/particle pairs for B0 M06L. 

The most significant NTO hole/particle pairs for the B0 M06L transitions are 

shown in Figure 16, and labeled as h or p to denote either a hole or particle, respectively.  

The lines at 537, 461, and 405 nm correspond to transitions from the ground state to 

excited states 18, 24, and 30 respectively (Figure 13).  For all NTO pairs, the holes 

contain a significant contribution from an oxygen nonbonding lone pair p, or ᴨ bonding 

orbital, and the corresponding particles all exhibit an anti-bonding pattern within the Nb2 
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environment.  Similar to A0, the particle for NTO pair 18 shows outer sulfur and oxygen 

electron density in addition to the Nb2 centered antibonding pattern, and the particles for 

NTO pairs 24 and 30 also show increasingly less contribution from the outer oxygen and 

sulfur than atoms the lower energy transition 18.  These three transitions are identified as 

variations of O→Nb LMCT. 

The calculated spectrum of B0 BP86 (Figure 12) consists of two dominant lines at 

559 and 414 nm and agrees with the two dominant peaks in the corresponding 

experimental spectrum, which show strong bands at 420 and 560 nm.   

(a) 18-1h

 

 (b) 18-1p 

 

(c) 24-1h

 
(d) 24-1p

 

(e) 43-2h (78%)

 

(f) 43-2p (78%)

 
Figure 17.  NTO hole/particle pairs for B0BP86. 

The most significant NTO hole/particle pairs for the B0 BP86 transitions are 

shown in Figure 17, and labeled as h or p to denote either a hole or particle, respectively.  

The lines at 559 and 414 nm correspond to transitions from the ground state to excited 

states 18 and 43 respectively.  For all NTO pairs, the holes contain a significant 

contribution from an oxygen ᴨ bonding orbital, and the corresponding particles all exhibit 

an anti-bonding pattern within the Nb2 environment.  Similar to A0, and B0 M06L, the 
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particle for NTO pair 18 shows outer sulfur and oxygen electron density in addition to the 

Nb2 centered antibonding pattern, and the particles for NTO pairs 24 and 43 also show 

less contribution from the outer oxygen and sulfur than atoms the lower energy transition 

18.  The BP86 functional calculates electron density on two of the Dy atoms for the 

particle of state 24. These two Dy atoms are bridged by an SO4
2-

  ion in the crystal 

structure, and for particles like this predicted by the hybrid functionals, it is likely that 

electron density is delocalized by the SO4
2-

  bridge in the crystal structure.   These three 

transitions are identified as variations of O→Nb LMCT.   

 The constrained geometry A, is similar to the crystal structure, and has NTO 

hole-particle pairs that are more symmetric and more clearly defined than those of the 

less constrained geometry B.   Using two geometries for the neutral Dy4Nb2(SO4)4, and 

both hybrid and local functionals to account for differences in how electron density is 

estimated in some of the excited states, the major experimental transitions are validated 

generally as variations of O→Nb, LMCT.  This is expected as the cluster is isostructural 

(Dy can be replaced by Tb), and the Tb4Nb2(SO4)5 experimental solid spectra has the 

same absorbances as the Dy4Nb2(SO4)5 (Figure  8.).     

Notably the hybrid exchange-correlation functionals predict Dy electron density 

in some of the NTO particles of the A0 and B0 geometries to a greater degree than the 

local M06L exchange-correlation functional.  This is evident in the particle of NTO pair 

15 for geometry B0 BP86 (Figure 15) and the particles of NTO pair 13 for geometry A0,  

shown in Figure 18.   

 



  

34 
 

 

The large density of states for geometry A0 around 400nm using the PBEPBE, 

BP86, and M06L functionals, correspond to UV transitions.  Because of this, the final 

spectra of A0, using BP86 (as shown in Figure 12.) was blue-shifted 40 nm. As 

mentioned, the hybrid exchange-correlation functionals estimate electron density on the 

Dy atoms for some of the A0 and B0 particles to a greater extent than the local M06L 

funcional.  Examples of decreasing electron density for a Dy in an NTO particle are 

shown in Figure 16.—the A0 particles for NTO pairs 13 using PBEPBE (red), BP86 

(blue), and M06L (orange.    This, as well as particle 24 for B0BP86  (Figure  17.), is 

ultimately why M06L was selected as the method of choice.    

Figure 18.  TD-DFT of geometry A0, Dy4Nb2(SO4)4 with different functionals. red: PBEPBE, blue: BP86, brown: 
M06L.  (right) , and NTO particles for state 13, geometry A0, with different functionals (left).   
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CHAPTER V 

CONCLUSIONS 

 

Outline 

 This chapter summarizes the synthetic and computational results of this project.  

The synthetic, and spectroscopic significance of the [Ln4(H2O)8(SO4)5(NbO3)2]·3H2O; Ln 

= Dy, Tb system to the field of POM, and PONb chemistry is discussed and summarized.  

The computational method applied to the Ca2-btc-pzc MOF, and the computational 

method  developed to accommodate lanthanides in transition metal-oxide clusters is also 

summarized and discussed. 

Summary 

Nb clusters offer a charge environment unique to POM clusters.  The charge 

densities per PONb atom in these systems are high due to the Nb (V) oxidation state, and 

represent a rich electron source for new electronically active POM applications, that may 

lead to improved conductive properties.  Some heterometallic PONbs have been recently 

synthesized that exhibit the unique property of visible, red-shifted absorbance.  The the 

[Ln4(H2O)8(SO4)5(NbO3)2]·3H2O; Ln = Dy, Tb system is the second known PONb cluster 

to exhibit this property, and the first lanthanide PONb.   Though the mechanisms of this 

synthesis are not clear, this represents the first acidic PONb workup, providing an 

approach that may be adapted for the development of new PONb.    

 

Although charge lifetimes in lanthanide POMs have not been studied, the 

absorbance and luminescence properties of the the [Ln4(H2O)8(SO4)5(NbO3)2]·3H2O; Ln 

= Dy, Tb system are significant to photoactive POM chemistry because they represent a 

charge dense electron source with a lowered absorbance energy, that due to the known 
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property of long charge lifetimes in f-orbital containing systems, may not have the direct 

consequence of a shortened charge lifetime, that typically occurs when the band gap is 

lowered.   

There are relatively few computational methods used for POM and MOF solids, 

and the development of methods for organic-inorganic frameworks, and heterometallic 

lanthanide systems will enable the investigation of properties such as electron-transfer, 

spin effects, bonding, and synthetic mechanisms in emerging solids.   Although a 

coordination environment for the Ca2-btc-pzc compound that included Ca2+ ions was not 

found that conclusively predicted the electronic spectra, the main experimental transitions 

of this MOF can be identified by applying TD-DFT and NTO analysis to the free ligands.   

Furthermore, the Stuttgart-Dresden pseudoptential basis sets were used in DFT, and TD-

DFT studies to predict the electronic spectra of some small lanthanide hybrids, as well as 

heterometallic lanthanide clusters.  NTO analysis of the Dy4(Nb2O6)(SO4)4 system 

represents the first NTO analysis of a lanthanide POM, and using SDD basis sets for 

these systems represent a straightforward, reliable approach that is relatively non- 

demanding on computational resources, and can be used in NTO analysis.   
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APPENDIX A 

COMPUTATIONAL TERMS 

Density functional theory 

Density functional theory (DFT) is a computational approach for determining the 

energy of a molecular system by solving the Kohn-Sham equations, where the total 

electronic energy is a functional of the ground-state electron density.     The Kohn-Sham 

orbitals are then non-interacting single electron wavefunctions; in other words, each 

Kohn-Sham orbital is an eigenstate of a single potential that is not explicitly dependent 

on the other electrons.  In DFT, the wavefunction is a single Slater determinant of 

orbitals, and is used to calculate the electron density.  The approach of DFT is to 

determine a charge density and obtain successively better approximations to that charge 

density by adjusting variational parameters (i.e., the Kohn-Sham molecular orbital 

coefficients).  The ground state  correlation energy is approximated with the exchange, as 

a functional of the orbitals- and is called the exchange-correlation functional.  In DFT, 

when the total energy of the system is minimized with respect to variational parameters, 

the resulting one-particle equations the same as those in the Hartree-Fock method (except 

for how electron exchange correlation is incorporated).   

Hartree-Fock exchange, often referred to as ab initio, is evaluated on all of the 

Hartree-Fock orbitals of the system, an exact Hamiltonian is assumed to obtain 

successively better approximations of the wavefunction, and additional methods, such as 

MP2, are often used to incorporate correlation energy. DFT results are similar to those 

obtained from ab initio methods, but due to the correlation being inherently included, at a 

significantly reduced computational cost.77 
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Geometry optimizations and normal mode frequency analysis 

Geometry optimizations find transition state geometries by locating extrema on 

the potential energy surface of a molecular system.  The minimum energy geometry is 

typically used to model the UV-Vis spectra, because we assume that most molecules will 

be close to the equilibrium geometry.  As temperature increases spectral peaks broaden.  

One reason for this is that the molecular ensemble is distributed over more geometries in 

the ground state.    A geometry optimization is successful when a point on the potential 

energy surface (typically a minimum) is found; i.e. the convergence criteria is met, or the 

forces are zero and the next step is very small.  However, molecules with several 

torsional degrees of freedom such as alkanes, may have a range of geometries which 

based on the cutoff criteria are equivalent to the minimum.  In these cases, cutoff criteria 

such as step size, displacement, maximum force, and root-mean-square force may need to 

be adjusted to find an acceptable stationary point, or different starting geometries may 

need to be used.  At a stationary point, it is typical for normal mode frequency analysis to 

be conducted in order to verify that a local minimum has been obtained.  Normal mode 

analysis, often referred to as frequency calculations, determine the normal modes of 

vibration for a system, and thus can be used to predict IR spectra.   If there are any 

imaginary frequencies in the predicted spectra of an equilibrium geometry,  the structure 

is not a local minimum and convergence criteria may need to be adjusted.78,79 

Time-dependent density functional theory 

Time-dependent density-functional theory (TD-DFT) extends the ideas of ground-

state DFT to the treatment of the time-dependent Schrodinger equation.   In TD-DFT the 

exchange-correlation potential is used to calculate the ground-state electron density with 
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respect to time, the initial wavefunction, and the initial Kohn-Sham wavefunction.   

Based on the strength of the time-dependent Kohn-Sham potential, it may be used to 

describe strong field phenomena, such as systems in laser fields,80 or weak field 

phenomena, such as the UV-Vis spectra of a system.  When a molecular system is 

excited, the density rearranges in response to the applied field.   In terms of single 

excitations of the system, once a molecular structure is known, a Fourier-transform of the 

time-dependent dipole matrix hence yields the optical spectrum- the eigenvalues 

correspond to transition frequencies or energies, and the eigenvectors produce oscillator 

strengths.   

Natural Transition Orbital Analysis 

Natural transition orbital (NTO) analysis is used to characterize electronically 

excited states.  When an excited state, or TD-DFT spectrum is calculated, electronic 

transitions may be represented as a molecular picture: an ensemble of excitations where 

each has a ground state energy and intensity corresponding to the promotion of an 

electron from a single occupied molecular orbital to a single unoccupied one.  However, 

this singular molecular orbital electronic transition description is typically only 

appropriate for the HOMO-LUMO transition; this is known as Koopman’s theorem.  In 

actuality there may be several electronic promotions from occupied to unoccupied states 

which make up a transition or amplitude.  For these transitions, NTO analysis provides a 

mathematical means to transform all of the molecular orbitals contributing to an 

excitation, into a smaller set of weighted “NTO hole-particle pairs.” For an electronic 

transition, the NTO holes represent vacant regions of charge density upon excitation, and 

the NTO particles represent regions of space that are filled after the charge density 
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rearranges.  Often, graphical representations of NTO hole-particle pairs correspond to 

chemically intuitive regions of electron density transfer, and may be used to describe the 

nature of electronic tranisitions.7 
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APPENDIX B 

Development of Computational Methods 

Calcium Metal Organic Frameworks 

Some studies on magnesium and calcium have been reported previously,43 and 

recent studies have shown that doping alkaline earth metals or alkaline metals in MOFs 

may enhance their ability for gas storage due to the stronger binding capability of these 

metals to certain gases such as CO2 or H2 .44,45   The assembly of MOFs from calcium 

and polycarboxylate linkers, including aliphatic or aromatic carboxylate ligands, is 

receiving increased interest due to their flexibility as multidentate ligands.46-53 

 

Figure 19.  (a) The asymmetric unit; (b) the coordination environment of Ca; (c) the coordination environment of Ca; 
(d) the coordination environment of the btc and pzc ligands in compound 1. 

A crystalline alkaline earth metal coordination polymer phase, 

[Ca2(btc)(pzc)(H2O)3] (1) was synthesized by Yan and co-workers54 and is represented in 

Figure 19.  Electronic structure calculations using density functional theory (DFT) 

methods36  were performed on the hydrated and ionic free ligands, as well as on various 

truncations of the coordination environment derived from the experimental SXRD crystal 
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structure.  The free ligand excited state calculations were in good agreement with the 

experimental UV-Vis spectra.  Coordination environments, which included the calcium 

atom itself, or the calcium represented as a static 2+ charge, were not in good agreement 

with the experimental spectra.  However, the basis sets and exchange correlation 

functionals used during these attempts provided direction into the development of a 

computational approach for metal-organic hybrid structures.   

Free acids (H3btc and Hpzc) and ions (btc and pzc) in water 

Geometry optimizations were performed to obtain gas phase minima of the free 

H3btc and Hpzc acids, and the btc (-3) and pzc (-1) anions.   These calculations were 

carried out using the PBEPBE/cc-pVDZ model chemistry37, 55 and a normal modes 

frequency analysis was used to confirm that the final structures were local minima.  To 

model the effects of an implicit water solvent, geometry optimizations and frequency 

calculations were carried out for all species using a self-consistent reaction field 

(SCRF).56    Finally, the electronic transitions of the solvated species were calculated 

using the TD-DFT 57-63 method and the dominant transitions were examined using natural 

transition orbital (NTO) analysis.  The results of these calculations are in good agreement 

with the experimental UV spectrum of H3btc and Hpzc in aqueous solution. 

H3btc in water 

The calculated and experimental spectra of H3btc in water are shown in Figure 

20.   The calculated spectrum consists of four dominant lines at 253, 242, 229, and 217 

nm  and agrees well with the corresponding experimental spectrum, which shows a band 

at 209 nm and a shoulder at 238 nm.  The lower energy transitions of the simulated 
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spectrum have negligible oscillator strengths, and the very weak experimental band at 

294 nm cannot be determined from this calculation. 

   

Figure 20. Calculated (left) and experimental (right) UV spectra of H3btc in water. 

The most significant NTO hole/particle pairs for these transitions are shown in 

Figure 21, and labeled as h or p to denote either a hole or particle, respectively.  The 

lowest energy line at 253 nm corresponds to transitions from the ground state to excited 

states 9 and 10.  The first NTO pair of both states represents 28% of the electronic 

transition, while the second pair is the more dominate contribution with a weight of 72%.  

For all NTO pairs, the holes contain a significant contribution from the carbon-oxygen π 

bond, and the corresponding particles all clearly exhibit a π* anti-bonding pattern within 

the phenyl ring.  Although hydroxyl group electron density contributions are non-

bonding,  the transitions for this spectral line are identified as π → π*, and also involve 

some charge transfer from the carboxylic acid groups to the phenyl ring. 
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Figure 21. NTO hole/particle pairs for the calculated electronic transitions of H3btc at 253 nm. 

 

The next line at 242 nm corresponds to transitions from the ground state to 

excited states 13 and 14.  The NTO hole/particle pairs for these transitions are shown in 

Figure 22.  Similar to the previous transitions, the contributions made by NTO pairs 1 

and 2 are 27% and 68%, respectively, for state 13 and 29% and 66%, respectively, for 

state 14.  The NTO holes consist of both n-type character on the hydroxyl oxygen atoms 

and π bonding within carbonyl groups; however, there is more contribution from carbon-

carbon π bonds within the phenyl ring.  These transitions are classified as π→ π* type 

transitions. 
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Figure 22. NTO hole/particle pairs for the calculated electronic transitions of H3btc at 242 nm. 

The spectral line at 229 nm corresponds to transitions to states 18 and 19.  The 

NTO hole/particle pairs for these transitions are shown in Figure 23.  Again, there are 

two dominant NTO pairs for each transition; however, the weights are more or less equal: 

45% and 47% for state 18 and 44% and 49% for 19.  For both transitions, the NTO holes 

exhibit a very clear π bonding pattern within the phenyl ring and the NTO particles have 

π* anti-bonding character.  These are classified as π→ π* transitions. 

 

Figure 23. NTO hole/particle pairs for the calculated electronic transitions of H3btc at 229 nm. 

 



  

46 
 

The highest energy line at 217 nm corresponds to transitions from the ground 

state to states 20 and 21, and the NTO hole/particle pairs are shown Figure 24.  There is 

only one dominant pair for state 20, and it has a weight of 87% (all other NTO pairs all 

have weights less than 10%).  For state 21, there are two NTO pairs with weights greater 

than 10%.  The first NTO pair represents 11% of the transition, and the second pair 

contributes 87%.  For both state 20 and 21, the dominant NTO pairs are consistent with 

π→ π* transitions; however, there are clearly more nodes in the NTO particle, which 

would correspond to a higher energy π* orbital. 

 

Figure 24. NTO hole/particle pairs for the calculated electronic transitions of H3btc at 217 nm. 

Hpzc in water 

The simulated and experimental spectra of Hpzc in water are shown in Figure 25.  

There are two dominant spectral lines in the calculated spectrum at 254 and 219 nm, and 

these transitions are associated with the observed bands at 268 nm and 205 nm in the 

experimental UV spectra of Hpzc in water.  From this calculation we are not able to 

identify an electronic transition corresponding to the observed band at 312 nm. 



  

47 
 

 

Figure 25. Calculated and experimental (curve) UV spectra of Hpzc in water. 

The 254 nm line in the simulated spectra corresponds to an electronic transition to 

state 6, and the line at 219 nm corresponds to a transition to state 10.  There are two 

dominant NTO hole/particle pairs for each of these transitions, shown in Figure 26.  The 

first NTO pair represents 12% of the transition and the second pair has a weight of 88%, 

while the two NTO pairs corresponding to the higher energy transition have weights of 

10% and 88%.  In both transitions, the hole for the dominant NTO pair shows a strong π 

bonding character.  Additionally, there is also a non-negligible π bonding contribution 

from the carbonyl group.  The corresponding NTO particles are clearly π* anti-bonding, 

and these transitions are classified as π → π* type transitions. 
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Figure 26. NTO hole/particle pairs for the electronic transitions of Hpzc at 254 and 219 nm. 

 

btc and pzc ions in water 

The simulated electronic spectra for both the btc ion, and pzc ion in water are 

shown in Figure 27.   The calculated spectrum of the pzc ion in water is not significantly 

different from hpzc in water, and similarly the observed experimental band at 312 nm 

could not be identified from this calculation.  However, in the case of the btc ion the 323 

nm line at low energy could possibly correspond to the very weak observed band in the 

experimental spectrum at 294 nm.  Although the calculated transition is significantly 

lower in energy, this seems to be the only transition for H3btc or btc with a significant 

oscillator strength and a wavelength greater than 280 nm. 
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Figure 27. Calculated UV spectrum of btc ion (left) and pzc ion (right) in water. 

The calculated 323 nm line of the btc anion is due to transitions to states 14 and 

15.  The NTO hole/particle pairs for these transitions are shown in Figure 28.  There are 

two dominant NTO pairs for each transition.  The weights for state 14 are 24% and 76%, 

for NTO pairs 1 and 2 respectively, and the weights for state 15 are 21% and 79% for 

NTO pairs 1 and 2, respectively.  The NTO holes appear to resemble p-type lone pair 

orbitals on the oxygen atoms.  However, closer inspection shows that for each hole the 

phase on adjacent oxygen atoms are opposite of one another.  This is likely to due to the 

anti-symmetric combination of two neighboring carbon-oxygen π-type bonds, such that 

there is a node on the bridging carbon atom. The corresponding particles have a π* anti-

bonding pattern within the phenyl ring.  These transitions are thus identified as π→ π* 

type. 
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Figure 28. NTO hole/particle pairs for the electronic transitions of btc ion at 323 nm. 

The remaining high energy spectral lines at 221 nm and 208 nm are identified 

similarly to their corresponding calculated H3btc transitions.   However, additional nodes 

are produced, again likely due to molecular symmetry.    

The line at 221 nm is due to transitions to excited states 27 and 28.  The two NTO 

hole/particle pairs for both of these transitions are shown in Figure 29.  The weights are 

45%-45% for pairs 1 and 2, respectively, for both states 27 and 28.  The NTO holes have 

a π bonding character and the NTO particles are π*, and as mentioned are identified as 

π→ π* type transitions. 
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Figure 29. NTO hole/particle pairs for the electronic transitions of btc ion at 221 nm. 

The highest energy line at 208 nm is due to transitions to excited states 30 and 31, 

and there is only one NTO hole/particle pair with a weight of 83% for each state.  The 

NTO pairs are shown in Figure 30.  The NTO holes for both states are similar to the anti-

symmetric combination of carbon-oxygen π bonds observed on the carbonyl groups, and 

the corresponding particles are high energy  π* anti-bonding orbitals with several nodes. 

This line is classified as a π→ π* transition. 

 

Figure 30. NTO hole/particle pairs for the electronic transitions of btc ion at 208 nm. 

 

Compound 1 

 A series of TD-DFT calculations were also performed on btc and pzc using 

molecular geometries taken directly from the SXRD crystal structure for compound 1.  

These calculations were performed for both the anions and, with the anions in an 
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electrostatic potential field of calcium ions represented as static (2+) charges.  The 

simulated spectra for these calculations are compared in Figure 31.  Panels (a) and (b) 

show the spectra for the bare btc ion in compound 1, and the bare pzc ion in compound 1, 

respectively.  Panels (c) and (d) show the calculated spectra including calcium ions as 

charges.  Indeed, the electronic transitions are modified by the presence of the charges; 

however, the resulting spectra do not seem to correlate with the observed UV VIS spectra 

for these compounds.  Although, the btc ion from compound 1 shows a number of states 

between 240 and 350 nm that may be connected with observed absorption bands; the 

calculated oscillator strengths are not in good agreement with the experimental data.  

 

Figure 31. Calculated UV spectra for btc and pzc molecular structures extracted from SXRD data. Panels (a)-(b) do not 
include calcium ion charges and panels (c)-(d) do include calcium ion charges. 
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Coordination Environments 

Additionally, TD-DFT calculations were performed on non-optimized SXRD 

derived asymmetric units, as shown in Figure 19., without vicinal waters.  The fully local 

M06L functional, 42 and the hybrid PBEPBE functional were used both with and without 

the long-range correction (lc-) of Iikura et. al.,64  and with both the LANL2DZ 65 and the 

cc-pVDZ basis sets.  Convergence errors were observed for the asymmetric unit when 

utilizing the lc-M06L/cc-pVDZ, lc-M06L/LANL2DZ, M06L/cc-pVDZ, and lc-

pbepbe/cc-pVDZ model chemistries.   For these structures, molecular orbital coefficient 

and valence-core electron mixing errors were encountered.   

Due to the orientation of the aromatic rings in the asymmetric unit, planar isomers 

as well as extended coordination environments (without overlapping aromatic rings) were 

also attempted.   Calculations completed normally for geometries comprised of 

asymmetric units which were planar, and for a planar asymmetric unit with a full calcium 

environment as shown in Figure 32.  For this structure, calculations terminated normally 

using the lc-M06L/LANL2DZ and M06L/cc-pVDZ model chemistries.  However, the 

first several states produced by both methods were unusually low in energy, 

corresponding to some visible and several IR transitions, which are not experimentally 

reasonable.  NTO hole-particle pairs of these states were Rydberg in nature, 66 and in 

coordination environments with all of the calcium atoms included, electron density was 

observed between calcium atoms where the carboxylate groups of overlapping aromatic 

rings would typically bridge, shown in Figure 32.   
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Figure 32.  Rydberg particle state at 850 nm of a planar asymmetric unit of (1) with full Calcium coordination 
environment. 

Considering the periodic environment of the experimental structure, these states 

could not be entirely discarded as artifacts nor determined to be independent of the other 

states.   A more detailed model of the coordination environment, which explicitly 

includes water molecules, vicinal Ca2+ atoms (or representative charges), or one that is 

able to accommodate overlapping aromatic ligands, may be necessary to reproduce the 

experimental spectrum.  

Benchmark Calculations with Pseudopotential Basis Sets 

The MOF coordination environments whose TD-DFT calculations terminated 

normally with Rydberg hole-particle states, suggested that other pseudopotential basis 

sets could be investigated as methods to predict electronic structure in hybrid compounds.   

A computational approach that could predict the electronic structure of small heavy-metal 

-organic compounds, should be used to as a starting point to investigate larger systems.  

Based on the need for a further developed approach to accommodate heavier atoms into 

organic systems, a general method was developed to predict the UV-Vis spectra of 

organic-lanthanide complexes with TD-DFT.     
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Using approaches for polyoxometalates and hybrid transition-metal systems, 

several basis sets, functionals, and levels of theory were attempted on small lanthanide 

heterometallic oxides and organic lanthanides containing the smaller atoms, cerium, 

dysprosium and neodymium.   The purpose of this was to determine if known approaches 

could be adjusted to theoretical targets.  Although calculations completed for arbitrary 

geometries of one lanthanide in simple coordination environments with oxygen and 

hydrogen, applying methods intended for larger systems such as mixing the basis sets 

LANL2DZ, Def-2TZVP, WTBS, SARC-ZORA, and CRENBL, hybrid functionals such 

as BP86, PBEPBE, X3LYP, M06L, and long-range corrections,  extended geometries 

were generally unsuccessful. 41, 67-73   Common errors similarly included convergence 

failures, core-valence electron mixing, and difficulties with the DFT grids.   

Based on the optimization and transition state work of Okuda et. al., and Qu et. al.74,75 

the Stuttgart-Dresden pseudopotential (SDD) basis sets38-40 included in Gaussian09 were 

applied as benchmark test and excited state calculations were carried 76   out for a small, 

well-known organic-lanthanide complex, europium acetate. The X3LYP functional was 

used, and when SDD basis sets were applied to the entire molecule, transitions were 

observed which corresponded to the larger intensity transitions of europium acetate, 

shown in Figure 33.  
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 Different coordination numbers are possible for one lanthanide atom, and 

choosing an appropriate coordination number, i.e. how many additional oxygen atoms are 

bonded to the lanthanide, affects spectral detail.  Notably, more peaks are observed as 

additional, smaller intensity transitions, when the coordination number was nine, versus 

seven for optimized Eu(COOH)3 geometries.   

Eu(NO3)3, which forms complexes in aqueous solution, was also used to 

benchmark the pseudopotential basis set method, and explore the compatablility of a 

solvation model.  The electronic and experimental spectra of Eu(NO3)3 are in good 

agreement, and are shown in Figure 34. 

 

Figure 33.  Calculated and experimental(left) UV spectra of EuIII –aquoion (a), EuIII –acetate 
complex in solution (b) and in the crystal at 293 K (c) and at 4K (d). 
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 To test this method for use in a lanthanide POM system, a theoretical lanthanide 

hexaniobate cluster, Eu-Nb6O19, was constructed using the crystal structure of Nb6O19.  The 

structure successfully optimized, and TD-DFT was carried out on the optimized geometry.  

NTO analysis was applied to the TD-DFT results of the Eu-Nb6O19 cluster to qualitatively 

represent regions of electron density transfer (Figure 35.).  

 

 

   

 

 

 

 

 

eV  

Figure 35.  (left) TD-DFT spectra of theoretical Eu-Nb6O19 cluster (y axis = f) using SDD basis sets.  NTO pair 
(center & right)  of the first excited state  at 3.677eV/337.19 nm.  The ground state “hole” (center) and the 
excited state “particle” (right) of Eu-Nb6O19 show regions of electron density transfer composing 100% of the 
calculated transition. 

Figure 34.  Experimental standard(left) and experimental (curve)  vs. TD-
DFT(magenta) (right) spectra UV spectra of Eu(NO3)3 in water. 
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 These results represent the first successful TD-DFT calculation, and NTO 

analysis of a lanthanide POM.  This method could be used to explain electron transfer in 

emerging POMs, and thus be used to pre-design new systems with electronic properties 

optimized for green energy applications. 
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