
15

Hybrid Differential Evolution – Scatter Search
Algorithm for Permutative Optimization

Donald Davendra1, Ivan Zelinka1 and Godfrey Onwubolu2
1Tomas Bata University in Zlin, Nad Stranemi 4511, Zlin 76001

2Knowledge Management & Mining
1Czech Republic

2Canada

1. Introduction

Adaptive memory programming approaches have proven effective in finding high quality
solutions to many real world intractable problems. Therefore, over the years, researches
have attempted to combine the best features from different adaptive memory approaches to
derive more powerful hybrid heuristics (Onwubolu, 2002). Combining the best features of
different heuristics will give a new heuristic that is superior to the individual systems from
which these features are derived.
Differential evolution (DE) algorithm (Price, 1999) is an evolutionary approach which does
not inhibit any adaptive memory features. It is however a very powerful and robust
heuristic for continuous optimization. Continuous optimization is a very important aspect of
optimization; however a heuristics application to permutative optimization is imperative if
it is to be generic. Permutative optimization encompasses many aspects of engineering. In
practical settings, it is common to observe features which are discrete, such as the different
discrete nut and bolt sizes, fixed number of machines in a manufacturing plant or discrete
number of buses in a fixed route. All these problems are practical and challenging, which
utilize discrete values. The purpose of this paper is then to introduce an enhanced different
evolution algorithm for discrete optimization which is hybridized by the adaptive memory
heuristic of scatter search (SS) (Glover, 1998).
SS is a highly effective heuristic which is the superset of tabu search (TS) (Glover, 1998). It

has been successfully applied to many permutative optimization problems. The objective of

the proposed hybrid optimization approach is then to isolate its highly effective

intensification and diversification routines and embed it in the EDE structure. The result is a

highly evolved hybrid enhanced differential evolution scatter search (HEDE-SS) heuristic.

The hybrid optimization scheme is applied to two difficult permutative optimization

problems of quadratic assignment problem (QAP) and the flow shop scheduling problem

(FSS). The results generated by the hybrid scheme are then compared with the heuristics of

EDE and SS in order to show that the hybrid scheme is an improvement over the original

heuristics. Additionally, the results of the hybrid scheme is compared with the optimal

results from the operations research (OR) library and with the results obtained by other

heuristics for the same problem instances from the literature. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional repository of Tomas Bata University Library

https://core.ac.uk/display/43639833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Evolutionary Computation

274

This chapter is divided into the following sections; section two presents the two different
discrete optimization problems, section three introduces the EDE, SS and the developed
hybrid approach, section four gives the experimentation and analysis and section five
concludes the research.

2. Permutative optimization

2.1 Quadratic assignment problem

The QAP is a combinatorial optimization problem stated for the first time by Koopmans and
Beckman (1957) and is widely regarded as one of the most difficult problem in this class.
The approach is to have two matrices of size n x m given as:

 () ijA a= (1)

 () ijB b= (2)

 The objective is then to find the permutation which minimizes

 () () () ()
1 1

min =
n n

ij jin
i j

f a bπ ππ π∈∏ = =∑ ∑ (3)

where ()n∏ is a set of permutations of n elements. QAP is considered a NP hard problem

(Shani & Gonzalez, 1976) and problem sizes of larger than 20 are considered intractable.
Many application have been identified for QAP, which include amongst others, the
allocation of plants to candidate locations; layout of plants; backboard wiring problem;
design of control panels and typewriter keyboards; balancing turbine runners; ordering of
interrelated data on a magnetic tape; processor-to-processor assignment in a distributed
processing environment; placement problem in VLSI design; analyzing chemical reactions
for organic compounds; and ranking of archaeological data. The details and references for
these and additional applications can be found in Burkard (1991) and Malucelli (1993).
Two approaches have been identified to solve QAP; exact and heuristic algorithms. Exact

algorithms for QAP include approaches based on dynamic programming by Christofides

and Benavent (1989); cutting planes by Bazaraa and Sherali (1980); and branch and bound

by Lawler (1963) and Pardalos and Crouse (1989). Among these, the branch and bound

algorithms obtain the best solution, but are unable to solve problems of size larger than

n = 20.

For larger sized problems, heuristic approaches have been developed. Some of the most

notable are: simulated annealing by Connolly (1990), tabu searches of Taillard (1991), Battiti

and Tecchiolli (1994) and Sondergeld and Voβ (1996), the hybrid genetic-tabu searches of

Fleurent and Ferland (1994) and more recently the ant colony approach by Gambardella,

Taillard and Dorigo (1999).

2.2 Flow shop scheduling

In many manufacturing and assembly facilities a number of operations have to be done on
every job. Often, these operations have to be done on all jobs in the same order, which
implies that the jobs have to follow the same route. The machines are assumed to be set up

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

275

and the environment is referred to as flow shop (Pinedo, 1995). The flow shop can be
formatted generally by the sequencing on n jobs on m machines under the precedence
condition. The general constraints that are assessed for a flow shop system is the time
required to finish all jobs or makespan, minimizing of average flow time, and the
maximizing the number of tardy jobs.
When searching for an optimal schedule for an instance of the Fm||Cmax problem, the
question can arise weather it suffices merely to determine a permutation in which the job
traverses the entire system, or more logically to check the possibility for one job to bypass
another while waiting in queue for a engaged machine. Changing the sequence of jobs
waiting in a queue between two machines may, at times, result in a smaller makespan.
Where the number of jobs is small, finding the optimal sequence of jobs which results in the
minimal makespan is relatively easy. But more often the number of jobs to be processed is
large, which leads to big-O order of n! Consequently, some type of algorithm is essential in
these large problems in order to avoid combinatorial explosion (Onwubolu, 2002).
The minimization of completion time for a flow shop schedule is equivalent to minimizing

the objective function ℑ .

 ,

1

n

m j

j

C
=

ℑ =∑ (4)

where
,m j

C is the completion time of job j . To calculate
,m j

C the recursive procedure is

followed for any thi machine thj job as follows:

 ()1, , 1, ,
,max

i j i ji j i j
C CC P− −= + (5)

Where,
1,1
C k= (any given value) and

, 1,

1

;

j

i j k
k

C C
=

=∑ ;
, ,1

1

i

i j k
k

C C
=

=∑ where i is the machine

number, j is the job in sequence and
,i j
P is the processing time of job j on machine i.

3. A hybrid approach to discrete optimization

3.1 Enhanced differential evolution

Developed by Price and Storn (2001), differential evolution (DE) algorithm is a very robust
and efficient approach to solve continuous optimization problems. A discrete optimization
approach for DE was initially explored by Davendra (2001) and since then by many other
researchers (see for details Onwubolu (2001), Onwubolu (2004) and Lampinen and Storn
(2004)). The EDE approach by Davendra and Onwubolu (2009) is used as the DE approach
for this hybrid system.
Onwubolu and Davendra (2004) developed the approach of a discrete DE, which utilized
the highly effective approach of Forward Transformation and Backward Transformation by
Onwubolu (2001) in the conversion of a discrete solution into a continuous solution and vice
versa, for the operation of the DE internal mutation schema. This approach was highly
effective in solving the scheduling problem of flow shop (FSS). EDE was proposed as an
enhancement of the discrete DE in order to improve the quality of the solutions perturbed
by DE (Davendra & Onwuolu, 2009).
The basic outline of EDE is given in Figure 1.

www.intechopen.com

 Evolutionary Computation

276

• Initial Phase
1. Population Generation: An initial number of discrete trial solutions are generated

for the initial population.

• Conversion
2. Forward Transformation: This conversion scheme transforms the parent solution

into the required continuous solution.
3. DE Strategy: The DE strategy transforms the parent solution into the child

solution using its inbuilt crossover and mutation schemas.
4. Backward Transformation: This conversion schema transforms the continuous

child solution into a discrete solution.

• Mutation
5. Relative Mutation Schema: Formulates the child solution into the discrete solution

of unique values.

• Improvement Strategy
6. Mutation: Standard mutation is applied to obtain a better solution.
7. Insertion: Uses a two-point cascade to obtain a better solution.
8. Repeat: Execute steps 2-7 until reaching a specified cutoff limit on the total

number of iterations.

• Local Search
9. Local Search: Is initiated if stagnation occurs

Fig. 1. EDE outline

3.2 Scatter search
Scatter search (SS) and its generalized form path relinking (PR) are heuristics which are
build on the principles of surrogate constraint design (Glover, 1977). In particular they are
designed to capture information not contained separately in the original solutions, and take
advantage of auxiliary heuristic solution methods to evaluate the combinations produced
and generate new solutions.
The two principles that govern SS are;

(1) Intensification
(2) Diversification

Intensification refers to the role of isolating the best performing solutions from the
populations in order to obtain a group of good solutions. Diversification in turn isolates the
solutions which are the furthest from the best solutions and combined them with the best
solutions. This new pool of solutions is the reference set where crossover occurs in order to
create solutions from new solution regions by the combination of the intensified solutions
and diversified solutions. Intensification and diversification are commonly termed as
adaptive memory programming.
Many applications of discrete programming have emerged from SS. Some of these are:
Vehicle Routing (Taillard, 1996), Quadratic Assignment (Cung et al, 1997), Job Shop
Scheduling (Yamada & Nakano, 1996), Flow Shop Scheduling (Yamada & Reeves, 1997) and
Linear Ordering (Laguna, et al., 1997).

3.3 Hybrid approach
EDE is a highly randomized algorithm (Davendra, 2003), which utilizes a high number of
randomly generated values for its operation. SS on the other hand is one of the new

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

277

optimization algorithms which have adaptive memory programming, enabling it to retain
its long term memory in order to find good search space (Glover, 1998). This hybrid
approach brings together the highly effective intensification and diversification aspects of SS
(Glover, 1998) into the operational domain of EDE.
Figure 2 gives the outline for the hybrid structure.

Fig. 2. Hybrid EDE/SS outline

3.3.1 Initialization

The first process in the hybrid EDE SS (HEDE-SS) is the initialization of the population and the
operational parameters. HEDE-SS has several operational parameters as given in Table 1.

The lower ()lo

jx bound and the upper ()hi

jx bound specify the range of the solution. The size of

the population NP is usually in the range of 100 to 500 solutions. The size of each solution D

is dependent on the problem size at hand. EDE has two tuning parameters of CR and F

which are also initialized; []0,1CR∈ and ()0,1F∈ + . The Strategy number refers to the type

www.intechopen.com

 Evolutionary Computation

278

of DE crossover employed for the problem. The Mutation refers to the type of Relative

Mutation schema used for the discrete solution. The RefSet size is the number of solutions

that are combined for the intensification and diversification.

Parameter Syntax Range Description

Population size NP NP ≥ 4 The population size for HEDE-
SS

Solution size D D ≥ 4 The size of each solution

Lower bound ()lo

jx () 1lo

jx ≥ The lower bound of the solution

Upper bound ()hi

jx ()hi

jx = D The upper bound of the
solution

Crossover
constant

CR []0,1CR∈ The crossover used for DE
perturb

Scaling factor F ()0,1F ∈ + Scaling factor for perturb

Strategy number Strategy { }1,2,...,10Str∈ The strategy to employ

Relative mutation Mutatio
n

{ }1,2,3Mut∈ Mutation to employ

Reference Set RefSet RefSet ≥ 4 Size of RefSet for SS

Generations
maxG

maxG = 500 Number of generations of EDE

Table 1. Operational parameters for HEDE-SS

The solution created is discrete and given as:

(6)

Each solution created is random, and multiple identical solutions can exist within an EDE
population as long as it is discrete.

3.3.2 Conversion

The conversion routine is used to transform each discrete solution into a continuous
solution since the canonical form of DE only operates in the continuous domain. These
solutions after DE internal crossover are retransformed into a discrete solution. The two
conversion schemas were developed by Onwubolu (2001). For implementation details
please see Onwubolu and Davendra (2004), Onwubolu (2004), Davendra (2001) and
Davendra (2003).
The forward transformation is given as:

 , ,j i j ix x ′= (7)

where ,j ix represents a discrete solution and ,j ix ′ represents a continuous solution.
Price and Storn (2001) described ten different working crossover schemas for DE. Each
schema developed has a different approach to optimization through the crossover utilized.

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

279

The ten strategies are divided into two groups of different crossover schemas; exponential
and binomial.
Exponential refers to the fact that crossover will only occur in one loop until it is within the

CR bound. The first occurrence of a random number selected between 0 and 1, going beyond

the parameter set by CR stops the crossover schema and all the values remaining are left

intact.

Binomial on the other hand states that crossover will occur on each of the values whenever a
randomly generated number between 0 and 1, is within the CR bound.
The ten different strategies are given in Table 2.

Convention (DE/x/y/z)* Representation

DE/best/1/exp ()1 2i best r ru x F x x= + −i

DE/rand/1/exp ()1 2 3i r r ru x F x x= + −i

DE/rand-to-best/1/exp () ()1 2i i best i r ru x F x x F x x= + − + −i i

DE/best/2/exp ()1 2 3 4i best r r r ru x F x x x x= + − − −i

DE/rand/2/exp ()5 1 2 3 4i r r r r ru x F x x x x= + − − −i

DE/best/1/bin ()1 2i best r ru x F x x= + −i

DE/rand/1/bin ()1 2 3i r r ru x F x x= + −i

DE/rand-to-best/1/bin () ()1 2i i best i r ru x F x x F x x= + − + −i i

DE/best/2/bin ()1 2 3 4i best r r r ru x F x x x x= + − − −i

DE/rand/2/bin ()5 1 2 3 4i r r r r ru x F x x x x= + − − −i

Table 2. DE Crossover schemas
* x – type of solution used for crossover, y – number of solutions used, z – type of crossover
used.

Each problem class has to be tuned as to what are its optimal operating parameters.
Once the DE internal crossover schemas have operated, the backward transformation changes

the values generated into discrete values. The backward transformation is the reverse of the

forward transformation and is given as:

 , ,j i j ix x′ = (8)

3.3.3 Relative mutation

The solution obtained from the backward transformation is not always discrete. In Onwubolu

and Davendra (2004) up to 80 per cent of all solutions generated were infeasible. A new

approach has been developed in order to retain discrete solutions after transformation. Two

types of infeasible solution may exist:

(1) Out-of-bound values
(2) Repetitive values

www.intechopen.com

 Evolutionary Computation

280

Out-of-bound values are easily handled by HEDE-SS. All bound offending values are
simply dragged to the bound they violate.

() ()

,

, () ()

,

 if

 if

lo lo

j j i j

j i hi hi

j j i j

x x x
x

x x x

⎧ <⎪= ⎨ >⎪⎩
 (9)

In order to remove repetition from the solution, three relative mutation schemas have been
developed; front mutation (FM), back mutation (BM) and random mutation (RM).

3.3.3.1 Front Mutation

Front mutation (FM) is the schema which transforms the solution into a discrete solution
through the ascending order of index. The solution is firstly sorted into feasible and
infeasible values starting from index one. This implies that the value which occurs first in
the solution is considered feasible, whereas its next occurrence is infeasible.

{ }{ }1, 1,, ,

,

1, 1,, ,

,..., if

,..., if

i j ij i j i

j i

i j ij i j i

x xx x
x

x xx x

−
−

⎧ ∉⎪= ⎨ ∈⎪⎩ �
 (10)

In FM all infeasible values are replaced with feasible values starting from index one. A
random value is generated between the lower and upper bound for each infeasible value,
and checked to see whether it already exists in the solution. If repetition is detected, then
another random value is generated.

[] { }1, ,

1,

,..., where

rand

rand

i D irand

x rnd D
x

x xx

⎧ =⎪= ⎨ ∉⎪⎩ (11)

Each infeasible value within the solution is thus replaced and the solution in now discrete.
FM converts any integer solution into a discrete solution, however a forward bias is shown.
FM converts from the front, starting with index one of the solutions. A reverse mutation
process is also developed termed the back mutation.

3.3.3.2 Back Mutation

Back mutation (BM) is a mutation schema which is the complete opposite of the FM. In BM,
all the values in the solutions are sorted from the back of the solution starting with the index
D. The value occurring last within the solution is considered feasible whereas its earlier
placement is considered infeasible.

{ }{ }1, ,, ,

,

1, ,, ,

,..., if

,..., if

j i D ij i j i

j i

j i D ij i j i

x xx x
x

x xx x

+
+

⎧ ∉⎪= ⎨ ∈⎪⎩ �
 (12)

As in FM, for each infeasible value, a random number between the lower and upper bounds
is obtained and checked against all the values in the solution. If it is unique then it replaces
the infeasible value starting from index D.
BM is the opposite of FM; however a reverse bias now exists. A bias is not favorable since it
limits the search space of a population, and again does not represent a realizable system.
The third mutation schema random mutation is totally random, with both its sorting and
replacement.

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

281

3.3.3.3 Random Mutation

Random mutation (RM) is a total random based mutation schema. There exists no bias in this
schema as it does with FM and BM. The first process in this schema is to create a random
array which contains the indexes for the solution to be checked for repetition.

{ }
() ()

1 1 2 3 = , , ,...,

 where

 1,2,....,

D

lo hi

y y y y

x y x

j D

ℜ
≥ ≤

=
G G

 (13)

The value 1y points to the first value to be checked, and so on until all values within the

solutions are checked for repetition.

{ }{ }1 1

1 1

, ,, ,

,

, ,, ,

,..., if

,..., if

jj j

j

jj j

y i y iy i y i

y i

y i y iy i y i

x xx x
x

x xx x

−

−

⎧ ∉⎪= ⎨ ∈⎪⎩ �
 (14)

Repetitive values are now isolated, however their replacement is yet to be determined.
Another random array is now created which will index the infeasible values in their order of
replacement.

{ }
() ()

2 1 2 3 = , , ,...,

 where

 1,2,....,

D

lo hi

z z z z

x z x

j D

ℜ
≥ ≤

=
G G

 (15)

The value in the solution pointed by the index 1z is checked for repetition. If repetition is

indicated from the previous step, then the repetitive value in replaced by a unique random

value as given in equation 13. Using the index array 2ℜ , all the values in the solution which

are infeasible are replaced with feasible values.
RM is truly random, from the point of selection of infeasible values to its replacement. The
random arrays enforce random initiation of infeasible values and its replacement. All three
mutation schemas; FM, BM and RM are able to convert an integer solution into a discrete
solution.

3.3.4 Improvement strategies
Each discrete solution obtained is improved by the two improvement routines of mutation
and insertion. Mutation is referenced from GA, where it has been highly successful in finding
local optimal solutions (Goldberg, 1989). Mutation refers to the application of a single swap
of values in a solution, in order to exploit better search space. In order for mutation to
operate two random numbers are generated.

[]1 2

1 2

, 1,

 where as

r r rand D

r r

∈
≠ (16)

These random numbers are the indexes of the positions of the two values in the solution

which are to be swapped. The value in the solution
1 ,r ix indexed by 1r is swapped by the

value
2 ,r ix indexed by 2r . The new solution is evaluated with the objective function. Only if a

www.intechopen.com

 Evolutionary Computation

282

better objective function is achieved, then the new solution is retained, else the reverse

process occurs to obtain the original solution.

() () if <

i i i

i

i

x f x f x
x

x otherwise

′′ ′′⎧⎪= ⎨⎪⎩ (17)

The inclusion of mutation introduces some probability of local improvement of a solution.

Insertion also works along the same lines as mutation. Insertion is the cascade of values

between two randomly generated positions in the solution. Insertion is regarded as more

robust than mutation since a number of values are involved in its operation. As in mutation,

two random values are generated given by equation 18. The value in the solution
2 ,r ix

indexed by 2r , is removed and all the values from the value
1 ,r ix indexed by 1r till

2 1,r ix − are

shifted one index up. The value
2 ,r ix is inserted in the place indexed by 1r . The new solution

is evaluated with the objective function. Only if a better objective function is achieved, then

the new solution is retained, else the reverse process occurs to obtain the original solution.

3.3.5 Local search

Stagnation is common amongst population based heuristics. The population converges to
local optima and is unable to find new search regions in order to find the global optima. In
order to help a heuristic just out of the local optima, a local search (LS) routine is embedded
in the heuristic. LS is a brute force approach to find a better solution. It is also time and
memory expensive. In order to minimize time, a non improving population of ten
generations, is classified as stagnation. LS operates on the “best” solution in the population,
since the best solution has the highest probability of being in the vicinity of a better solution.
The LS employed in HEDE-SS is the 2-Opt algorithm by Onwubolu (2002).

3.3.6 Permutative population
A second population is created in order for the intensification and the diversification strategies
to operate. As stipulated by Glover (1998), for a heuristic to employ memory adaptive
programming, each solution in the population should be unique. The “best” solution in the
population is isolated and another population is created using the best solution as the
permutation base given by:

 () () () ()()P h : , : 1 ,..., :1P h h P h h P h= − (18)

The size of the population h is dependent on the size of the solution D and the index h D≤
specified. For details see Glover (1998).

3.3.7 Reference set
The reference set is generated by two aspects of the population; intensified solutions and
diversified solution. The size of the reference set refset is defined at the beginning. It is usual
to have half the solutions in the population as intensified and the rest as diversified.
Intensified solutions are obtained by evaluating the population and removing the specified
refset/2 best solutions from the population into the refset.

Campos et al. (2001) outlined how the diverse solutions are obtained from a population. The

way diverse solutions are computed is through the computation of the minimum distances

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

283

of each solution in the population to the solutions in refset. Then the solution with the

maximum of these minimum distances is selected. Population solutions are included in

refset according to the maxmin criterion which maximizes the minimum distance of each

candidate solution to all the solutions currently in the reference set. The method starts with

refset= Best and at each step refset is extended with a solution jP from the populationℑ to be

refset = refset { }jP∪ , and consequently ℑ is reduced to ℑ = ℑ { }jP . Then the distance of

solution P to every solution currently in the reference set is computed to make possible the

selection of a new population solution according to the maxmin criterion. More formally, the

selection of a population solution is given by

 jP = { }
1,..,

arg max min : 1,..,ij
i refset

jζ= = ℑ (19)

where ζ is the diversity measure which is the distance between solutions iP and jP , which

differ from each other by the number of edges which follows as:

 ()ij i jP Pζ = ∪ ()i jP P∩ (20)

For details see Campos et al. (2001).

3.3.8 Combine solutions

The combination method is a key element in scatter search implementation (Campos et al.,

2001). For the combination method in HEDE-SS, the GA two-point crossover schema is used.

The crossover is similar to the mutation used in EDE. Two random values are generated

which are mutually exclusive and also not equal to any of the bounds.

[]1 2

1 2

, 2, 1

 where as

r r rand D

r r

∈ −
≠ (21)

Two distinct solutions 1P and 2P from the refset are selected starting from the first two

solutions and using the two random values 1r and 2r as indexes to the solutions, the regions

between the two bounds in the two solutions are swapped as follows:

{ }1 11 12 1, ,..., nP x x x= Solution 1

{ }2 21 22 2, ,..., nP x x x= Solution 2

Using the two random numbers as indexes the two solutions are now represented as:

1 2

1 11 12 13 14 15 16 1, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬⎩ ⎭

1 2

2 21 22 23 24 25 26 2, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬⎩ ⎭

The swap between the regions denoted by the two random numbers in now represented as:

www.intechopen.com

 Evolutionary Computation

284

1 2

1 11 12 23 24 25 16 1, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬⎩ ⎭

1 2

2 21 22 13 14 15 26 2, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬⎩ ⎭

The resulting solutions are not discrete and the RM schema is used to transform the solution
into a discrete form.
The LS schema is applied to each new solution as part of the improvement routine of HEDE-
SS. The new solution is evaluated and compared to the worst solution in the refset. If the
new solution improves on the worst solution, it then replaces the worst solution in the refset.
The whole process iterates with solutions selected from the solutions iteratively. On each
iteration from the first solution to the last, the amount of addition to the refset of new
improved solution is recorded. If no new solution is recorded in any iteration, then the refset
has reached a point of stagnation, and the best value in the refset is printed as the best
solution for the HEDE-SS.

3.4 Hybrid pseudo-code

A pseudo code representation of hybrid is given in order for the reader to understand how
all the different routines are combined together.

/* Initial parameters are first obtained */

GET NP, D, maxG , CR, F, Strategy Number, Mutation Type,
()lo

jx
()hi

jx and refset

/* Operational parameters are initialized */

SET minx , best_sol, ObjFun, ObjDist, RefSet

/* Create the initial population of solutions */
FOR (i = 1 to i ≤ NP)
 FOR (j = 1 to j ≤ D)

 GET

 ENDFOR
ENDFOR

/* Find the best solution and solution cost */

minx = ix /* The best solution is initialized as the first solution of the population */

best_sol = 1 /* The best solution index is set to one for the initial solution. */

FOR (i = 1 to i ≤ NP)

 IF (()if x < ()minf x) /* If the current solution has a less functional value

 SET minx = ix than minx , it replace minx as the best and the

 SET best_sol = i index is appropriately updated. */
 ENDIF

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

285

ENDFOR

/* Iterate through the generations */

FOR (k=1; k ≤ maxG)

/* Iterate through the solutions */
 FOR (i = 1 to i ≤ NP)

/* Apply Forward Transformation to each value in the solution */
 FOR (j = 1 to j ≤ D)

 SET (),, 1 j ij i
xx α′ = − + i /* α is a constant */

 ENDFOR

/* The objective function of the parent solution is calculated */

 SET Parent_ObjFun = ()if x

/* Select two random solutions from the population other than the current one ix ′ */

 GET
[]

1 2

1 2

 1,
,

 where as

rand NP
r r

r r i

⎧∈⎪⎨ ≠ ≠⎪⎩

/* Perform D binomial trials, change at least one parameter of the trial solution ix
′ and

perform mutation */

 GET []1,t rand D= /* A random starting point is obtained */

 FOR (z =1 to z ≤ D)

/* If a randomly generated value is less than CR or the counter is within the specified limit */

 IF (([]0,1rand < CR) OR (z = D-1)) THEN

/* DE’s internal mutation schema operates */
 () ()1 2i i best i r ru x F x x F x x′ ′ ′ ′= + − + −i i

/* If condition is not correct the original solution is retained for the new generation */
 ELSE

 SET i iu x′=

 ENDIFELSE

/* Increment the counter t */

 1t z= +

 ENDFOR

/* Apply Backward Transformation to each value in the solution to obtain the original */
 FOR (j = 1 to j ≤ D)

 SET (), ,1j i j i
x x β′= + i /* β is a constant */

 ENDFOR

www.intechopen.com

 Evolutionary Computation

286

/* Check if the solution is feasible or not */
 FOR (j = 1 to j ≤ D)

/* If infeasible solutions are found */

 IF ({ }1, 2, 2, ,, ,
, , ,..., /i i i D ij i j i

x x x xx x∈ OR () ()
,

hi lo
j ix x x> <)

/* Relative Mutation Schema first drags all out of bound values to the bound it violates */
 FOR (j = 1 to j ≤ D)

 SET

() ()

,

, () ()

,

 if

 if

lo lo

j j i j

j i hi hi

j j i j

x x x
x

x x x

⎧ <⎪= ⎨ >⎪⎩

 ENDFOR

/* Front mutation is chosen to show how the solution is made discrete */
 FOR (j = 1 to j ≤ D)

/* If a value within the solution is found to be repetitive, a unique random value is created to replace
it */

 IF ({ }1, 2, 2, ,, ,
, , ,..., /i i i D ij i j i

x x x xx x∈)

 GET [] { }1, ,

1,

,..., where

rand

rand

i D irand

x rnd D
x

x xx

⎧ =⎪= ⎨ ∉⎪⎩

 SET ,j i randx x=

 ENDIF
 ENDFOR
 ENDIF
 ENDFOR

/* Standard mutation is applied to the solution in the hope of getting a better solution*/

 GET []
1 2

1 2

 1,
,

 where as

rand D
r r

r r

⎧∈⎪⎨ ≠⎪⎩

{ }
{ }

1 2

2 1

1, , , ,

1, , , ,

,.., ,.., ,..,

,.., ,.., ,..,

i r i r i D ii

i r i r i D ii

x x x xu

x x x xu

=
′′ =

/* If the objective function of the new solution is better than the original solution, the new solution is
retained in the population */

 IF(() () < i if x f x′′)

 SET i ix x′′=

 ENDIF

/* Insertion is applied to the solution in the hope of getting a better solution*/

 GET []
1 2

1 2 1 2

 1,
,

 where and

rand D
r r

r r r r

⎧∈⎪⎨ ≠ <⎪⎩

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

287

{ }
{ }

1 2

2 1 1 2 1

1, , , ,

1, , , 1, , ,

,.., ,.., ,..,

,.., , , ,.., ,..,

i r i r i D ii

i r i r i r i r i D ii

x x x xu

x x x x x xu −+

=
′′ =

/* If the objective function of the new solution is better than the original solution, the new solution is
retained in the population */

 IF(() () < i if u f u′′)

 SET i iu u′′=

 ENDIF

/* The objective function of the solution is calculated */

 SET Child_ObjFun = ()if u

/* If the child improves on the parent, then the child is included in the population */
 IF (Child_ObjFun < Parent_ObjFun)

 SET i ix u=

/* The new solution is also compared against the best solution*/

 IF(()if u < ()minf x)

 SET min ix u=

 SET best_sol = i
 ENDIF
 ENDIF
 ENDFOR
ENDFOR

/* Using the best solution minx , generate a permutative population */

SET 2h D=

WHILE(h >1)
 SET s = h

 SET
0

s rh D
r

r

+ ≤⎧∈⎨ >⎩

 WHILE(s >1)

 () ()P h:s , , 2 ,...,s s h s h s rh= + + +

 1s s= −

 ENDWHILE

/* All the sub solutions are appended together for the full solution.

 () () () ()()P h : , : 1 ,..., :1P h h P h h P h= −

 1h h= −

ENDWHILE

www.intechopen.com

 Evolutionary Computation

288

/* Evaluate the population and store the objective function. */
FOR(i=1 to i < h)

 SET
iObjFun = ()if P

ENDFOR

/* Remove the best refset/2 solutions from the population and store in refset.*/
FOR(i=1 to i < refset/2)

 SET best =
1ObjFun

 FOR(j=1 to j < h)

 IF(
jObjFun ≤best)

 SETbest =
jObjFun

 ENDIF
 ENDFOR

/* Remove the solution indexed from the population into the refset. */

 MOVE
best iP refset→

 SET 1h h= −

ENDFOR

/* Remove the diverse refset/2 solutions from the population and store in refset.*/
FOR(i= refset/2 to i < refset)
 FOR(j=1 to j < i)

/* Calculate the distance from each solution in refset to the population. */
 FOR(k=1 to k < h)

 GET ()distance

j k

evaluate refset P→

 ENDFOR

/* Store the maximum of the distance for a particular solution in refset. */

jObjDist = max()evaluate

 ENDFOR

/* Select the minimum of the values in ObjDist and move the corresponding solution to refset. */

 MOVE
min()jObjDist iP refset→

ENDFOR

/* Combine each of the solutions in refset with each other to obtain better solutions. */
FOR(i=1 to i < refset-1)
 FOR(j=i +1 to j < refset)

 GET
[]1 2

1 2

, 2, 1

 where as

r r rand D

r r

∈ −
≠

 FOR(k= 1r to k≤ 1r)

/* Swap the values between the two solutions */

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

289

 ref set
i,k

↔swap ref set
j,k

 ENDFOR

/* A relative mutation schema is applied to the solutions to make it discrete. The pseudo code for it is
described in the first section */

/* Local search is applied to the solution to improve it. */

 Local Search

i irefset refset′→ ,
 Local Search

j jrefset refset′→

/* If this solution improves on the worst solution in Refset, it then replaces that solution in refset. */

 IF(() ()_refset sizerefsetf frefset′ <)

 MOVE
_refset sizerefset refset′ →

 ENDIF
ENDFOR

/* Output the best solution from the refset as the best solution in the heuristic. */

PRINT
bestrefset

4. Experimentation and validation

The validation of this hybrid approach is conducted on the two demanding problems of
QAP and FSS. Each experiment is conducted in two phases. The first phase is to
experimentally obtain the operating parameters of HEDE-SS. The second phase is the
comparison of the hybrid with other established heuristics reported in the literature.

4.1 QAP
The problem instances selected for the QAP are from the Operation Research (OR) library
and reported in Gambardella et al. (1999). There are two separate problem modules; regular
and irregular. The difference between regular and irregular problems is based on the flow-
dominance (fd), which is used to differentiate among the classes of QAP instances. It is
defined as a coefficient of variation of the flow matrix entries multiplied by 100. That is:

 = 100 /fd σ μ (22)

where:

2

1 1

1
 =

n n

ij

i j

b
n

μ
= =

•∑∑ (23)

 ()2
1 1

1
 =

1

n n

ij

i j

b
n

σ μ
= =

• −− ∑∑ (24)

4.1.1 Irregular problems
Irregular problems have a flow-dominance statistics larger than 1.2 (Taillard, 1995). Most of
the problems come from practical applications or have been randomly generated with non-
uniform laws, imitating the distributions observed on real world problems.

www.intechopen.com

 Evolutionary Computation

290

The operational parameters of EDE, found through extensive experimentation are given in
Table 3 along with the size of the refset and the relative mutation schema selected which is
RM.

Parameter Strategy CR F NP maxG RefSet Mut

Values 1 0.9 0.3 500 500 30 3

Table 3. HEDE-SS QAP operational values.

Eighteen problem instances are evaluated of four different types; bur, chr, els, kra and tai.
Comparisons were made with other heuristics of the tabu searches of Battiti and Tecchiolli
(RTS), Taillard (TT) and the genetic hybrid method of Fleurent and Ferland (GH). A
simulated annealing due to Connolly (SA) that is cited as a good implementation by
Burkard and Celia was also included. Finally the work covered by Gambardella, Thaillard
and Dorigo with Ant Colony (HAS-QAP) is compared as the best results for these instances
of QAP.

Table 4 compares all the methods on long execution of maxG =500.

Instance
flow
dom

n Optimal TT RTS SA GH
HAS-
QAP

HEDE-
SS

bur26a 2.75 26 5246670 0.208 - 0.1411 0.0120 0 0

bur26b 2.75 26 3817852 0.441 - 0.1828 0.0219 0 0

bur26c 2.29 26 5426795 0.170 - 0.0742 0 0 0

bur26d 2.29 26 3821225 0.249 - 0.0056 0.002 0 0

bur26e 2.55 26 5386879 0.076 - 0.1238 0 0 0

bur26f 2.55 26 3782044 0.369 - 0.1579 0 0 0

bur26g 2.84 26 10117172 0.078 - 0.1688 0 0 0

bur26h 2.84 26 7098658 0.349 - 0.1268 0.0003 0 0

chr25a 4.15 26 3796 15.969 16.844 12.497 2.6923 3.0822 0.023

els19 5.16 19 17212548 21.261 6.714 18.5385 0 0 0

kra30a 1.46 30 88900 2.666 2.155 1.4657 0.1338 0.6299 0

kra30b 1.46 30 91420 0.478 1.061 1.065 0.0536 0.0711 0

tai20b 3.24 20 122455319 6.700 - 14.392 0 0.0905 0

tai25b 3.03 25 344355646 11.486 - 8.831 0 0 0

tai30b 3.18 30 637117113 13.284 - 13.515 0.0003 0 0

tai35b 3.05 35 283315445 10.165 - 6.935 0.1067 0.0256 0

tai40b 3.13 40 637250948 9.612 - 5.430 0.2109 0 0

tai50b 3.10 50 458821517 7.602 - 4.351 0.2124 0.1916 0

Table 4. HEDE-SS comparison with other heuristics for irregular problems.

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

291

The average quality of the solutions produced by the methods is shown, measured in per
cent above the best solution value known from the OR Library. The best results obtained are
indicated in boldface. From Table 4 it is shown that methods involving tabu search and
simulated annealing are not well adapted for irregular problems. The well performing
heuristics are able to produce solutions with at less than 1% with the same computing
power and time. For the bur... problem instances the HAS-QAP heuristic shows optimal
results, however HEDE-SS outperforms HAS-QAP by obtaining the optimal results. The
most challenging problem instance is chr25a. All heuristics apart from HEDE-SS obtain very
poor results, especially HAS-QAP getting over 3 over cent to the optimal. HEDE-SS
outperforms all other heuristic by getting 0.023 per cent to the optimal. The kra… problem
instances are also dominated by EDE, which obtains the optimal result and outperforms all
other heuristics. For the tai problems, HEDE-SS obtains the optimal result for all problem
instances while HAS-QAP fails to obtain consistent results.

4.1.2 Regular problems
Regular problems also know as unstructured problems are identified as having the flow-
dominance statistics less than 1.2 (Taillard, 1995). These instances are randomly generated,
and have good solutions spread over the whole solution set.
A comparison with the established algorithms from the literature is also done for the regular
problems. The same heuristics as for irregular problems are retained for the comparison as
shown in Table 5.

Instance
flow
dom

n Optimal TT RTS SA GH
HAS-
QAP

HEDE-
SS

nug20 0.99 20 2570 0 0.911 0.070 0 0 0

nug30 1.09 30 6124 0.032 0.872 0.121 0.007 0.098 0

sko42 1.06 42 15812 0.039 1.116 0.114 0.003 0.076 0

sko49 1.07 49 23386 0.062 0.978 0.133 0.040 0.141 0

sko56 1.09 56 34458 0.080 1.082 0.110 0.060 0.101 0

tai20a 0.61 20 703482 0.211 0.246 0.716 0.628 0.675 0

tai25a 0.60 25 1167256 0.510 0.345 1.002 0.629 1.189 0

tai30a 0.59 30 1818146 0.340 0.286 0.907 0.439 1.311 0

tai35a 0.58 35 2422002 0.757 0.355 1.345 0.698 1.762 0

tai40a 0.60 40 3139370 1.006 0.623 1.307 0.884 1.989 0

tai50a 0.60 50 4941410 1.145 0.834 1.539 1.049 2.800 0

wil50 0.64 50 48816 0.041 0.504 0.061 0.032 0.061 0

Table 5. HEDE-SS comparison with other heuristics for regular problems.

HEDE-SS obtains the optimal result for all instances. The performance of HAS-QAP, which

was the closest heuristic in irregular problems, has decreased in regular problems. The

results obtained by HAS-QAP for nug and sko are within tolerable limits, however for tai

problem instances the results are in excess of 1 per cent to the optimal. HEDE-SS manages to

www.intechopen.com

 Evolutionary Computation

292

obtain optimal results for the nug, sko, tai problem instances. The only serious competition is

seen from GH, which on average outperforms HAS-QAP for the nug and sko problem

instances and RTS which performs best for tai problem instances. The conclusion that can be

drawn is that no one heuristic performs optimally for all problem instances tested apart

from HEDE-SS, which outperforms all other tested heuristics for the regular problems. By

the performance of the compared heuristics it can be observed that regular problems are

more difficult to solve than irregular problem, yet HEDE-SS manages to perform

exceptionally well for both (Davendra & Onwubolu, 2007).

4.2 FSS results

The flow shop experimentation was conducted with the Thaillard benchmark problem sets

(Taillard, 1993). These sets of problems have been extensively evaluated: see Nowicki et al

(1996), Reeves et al (1998). This benchmark set contains 120 particularly hard instances of 12

different sizes, selected from a large number of randomly generated problems. Of these 100

problem instances were evaluated by HEDE-SS and compared with published work. These

instances are: jobs – machines (n x m); 20 x 5, 20 x 10, 20 x 20, 50 x 5, 50 x 10, 50 x 20, 100 x 5,

100 x 10, 100 x 20, 200 x 10, a sample of 10 instances for each set was provided in the OR

Library.

A maximum of ten iterations was done for each problem instance. The population was kept

at 500, and 500 generations were specified for EDE, and the RefSet was kept at 30 for the SS

heuristic as shown in Table 6.

Parameter Strategy CR F NP maxG RefSet Mut

Values 7 0.9 0.4 500 500 30 3

Table 6. HEDE-SS FSS operational values.

The results represented in Table 7 are as quality solutions with the percentage relative

increase in makespan with respect to the upper bound provided by Thaillard (1993). To be

specific the formulation is given as:

() 100

avg

H U

U

×−Δ = (25)

where H denotes the value of the makespan that is produced by the EDE algorithm and U is
the upper bound or the lower bound as computed.
The results are compared with those produced by Particle Swarm Optimization (PSOspv)
(Tasgetiren et al, 2004), DE (DEspv), DE with local search (DEspv+exchange) as in Tasgetiren
et al (2004) and Enhansed DE (EDE) of Davendra and Onwubolu (2009).
As seen in Table 7, HEDE-SS compares very well with other algorithms. HEDE-SS

outperforms PSO and DEspv. The only serious competition comes from the new variant of

DEspv+exchange.. HEDE-SS outperforms DEspv+exchange in all but two data sets of 50x20

and 100x20.

The main indicator of the effectiveness of HEDE-SS is its comparison with EDE. The hybrid

system is better performing than the canonical approach. SS enhances the application of

EDE and thus the hybrid approach can be viewed a s superior heuristic.

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

293

 PSOspv DEspv DEspv+exchange EDE HEDE-SS

 Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66 0.54 0.51

20x10 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77 1.51 0.64

20x20 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57 1.62 0.59

50x5 1.15 0.70 0.88 0.52 0.41 0.37 0.40 0.36 0.32 0.21

50x10 4.83 1.16 4.12 1.10 2.41 0.90 3.18 0.94 2.21 1.32

50x20 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65 3.79 0.81

100x5 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29 0.21 0.33

100x10 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36 1.33 0.42

100x20 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36 3.12 0.56

200x10 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18 0.88 0.29

Table 7. HEDE-SS Taillard problem performance comparisons

5. Conclusion

The hybrid approach of HEDE-SS is highly effective in permutative optimization. This

conclusion is reached through the experimentation that has been conducted in order to

validate this new approach. Optimal results have been achieved by the HEDE-SS on all but

one instance of QAP both regular and irregular problem, and on that instance of chr25,

HEDE-SS outperforms all other listed heuristics.

In FSS problem instances, the hybrid approach is also a strong performer. It easliy improves

the results of EDE and other varients of DE and PSO.

Overall, hybridization can be seen as the next evolution of meta-heuristics. With improving

hardware technologies, it thus becomes viable to have multiple heuristics combined for

better performace. The main concept of using two unique paradigm based systems such as

DE and SS is justified as both complement each other and improve the results.

6. Acknowledgement

The author would like to acknowledge the following research grants for financial support

for this research.

1. Grant Agency of the Czech Republic GARC 102/09/1680

2. Grant of the Czech Ministry of Education MSM 7088352102

7. References

Bazaraa, M.S., &. Sherali., M.D (1980), Benders' partitioning scheme applied to a new

formulation of the quadratic assignment problem. Naval Research Logistics Quarterly

27, 29-41.

www.intechopen.com

 Evolutionary Computation

294

Battitti, R., & Tecchiolli, G. (1994), The reactive tabu search. ORCA Journal on Computing, 6,

126-140

Burkard, R. E. (1991), Location with spatial interactions: The quadratic assignment problem,

In Mirchandani, P.B. and Francis, R. L. (Eds), Discrete Location Theory, John Wiley.

Campos, V., Glover, F., Laguna, M. & Marti´, R. (2001), An Experimental Evaluation of a

Scatter Search for the Linear Ordering Problem. Journal of Global Optimization 21,

397-414.

Christofides, N. & Benavent E. (1989), An exact algorithm for the quadratic assignment

problem. Operations Research 37, 760-768,

Chung, V., Mautor, T., Michelon, P. & Tavares, A. (1997), A scatter search based approach

for the quadratic assignment problem, In Baeck, T., Michalewick, Z., & Yao, X.

(Eds) Proceedings of ICEC’97 165-170, IEEE Press

Connolly, D. T. (1990), An improved annealing scheme for the QAP, European Journal of

Operation Research 46, 93-100.

Davendra, D. (2001), Differential Evolution Algorithm for Flow Shop Scheduling,

Unpublished Bachelor of Science Degree Thesis, University of the South Pacific.

Davendra, D. (2003), Hybrid Differential Evolution Algorithm for Discrete Domain

Problems, Unpublished Master of Science Degree Thesis, University of the South

Pacific.

Davendra, D. & Onwubolu, G (2007) Enhanced Differential Evolution hybrid Scatter Search

for Discrete Optimisation. Proceeding of the IEEE Congress on Evolutionary

Computation, Sept 25-28, Singapore. Pp. 1156–1162

Davendra, D. & Onwubolu, G. (2009) Forward Backward Transformation. In Differential

Evolution – A handbook for the combinatorial-based permutitive optimization. Onwubolu

G. and Davendra (Eds), D. Spriner, Germany.

Dorigo, M. & Gambardella, L. M. (1997), Ant Colony System: A Co-operative Learning

Approach to the Traveling Salesman Problem. IEEE Transaction on Evolutionary

Computations 1, 53-65.

Fleurent, C., & Ferland, J. A. (1994), Genetic Hybrids for the Quadratic Assignment Problem,

Operations Research Quarterly 28, 167 – 179.

Gambardella, L. M., Thaillard, E. D., & Dorigo, M. (1999), Ant Colonies for the Quadratic

Assignment Problem, Journal of Operational Research 50, 167-176.

Glover, F. (1998), A Template for Scatter Search and Path Relinking, In Hao, J. K., Lutton, E.,

Schoenauer, M. & Snyers, D. (Eds) Lecture Notes in Computer Science 12363, 13 – 54.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley Publishing Company, Inc.

Koopmans, T. C. & Beckmann, M. J. (1957), Assignment problems and the location of

economic activities. Econometrica 25, 53-76.

Laguna, M., Martí, R. & Campos, V. (1997), Tabu Search with Path Relinking for the Linear

Ordering Problem. Research Report, University of Colorado.

Lampinen, J. & Storn, R. (2004). Differential Evolution, In Onwubolu, G. C., Babu,

B. (eds.), New Optimization Techniques in Engineering, Springer Verlag, Germany,

123-163.

Lawler, E. L. (1963), The quadratic assignment problem. Management Science 9, 586-599.

www.intechopen.com

Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization

295

Malucelli, F. (1993), Quadratic assignment Problems: Solution Methods and Applications.

Unpublished Doctoral Dissertation, Departimento di Informatica, Universita di Pisa,

Italy.

Nowicki, E. & Smutnicki, C. (1996). A fast tabu search algorithm for the permutative flow

shop problem. European Journal of Operations Research, 91, 160-175

Onwubolu, G., C. (2001), Optimization using Differential Evolution Algorithm, Technical

Report TR-2001-05, IAS, October 2001.

Onwubolu G., C. (2002), Emerging Optimization Techniques in Production Planning and Control,

Imperial Collage Press, London.

Onwubolu, G., C., & Clerc. M. (2004), Optimal path for automated drilling operations by a

new heuristic approach using particle swamp optimization. International Journal of

Production Research, 42, 3, 473-491.

Onwubolu, G., C. & Davendra, D. (2006). Scheduling flow shops using differential evolution

algorithm. European Journal of Operations Research, 171,674-679

Onwubolu G., C. & Davendra D. (2009) Differential Evolution – A handbook for the

combinatorial-based permutitive optimization. Spriner, Germany.

OR Library: http://mscmga.ms.ic.ac.uk/info.html

Pardalos, P. M., & Crouse, J. (1989), A parallel algorithm for the quadratic assignment

problem, Proceedings of the Supercomputing 1989 Conference, ACM Press, 351-360.

Ponnambalam, S. G., Aravindan, P. & Chandrasekhar, S. (2001). Constructive and

improvement flow shop scheduling heuristic: an extensive evaluation, Production

Planning and Control 12, 335-344.

Price, K. (1999), An introduction to differential evolution, In Corne, D., Dorigo, M.,

& Glover, F. (Eds.), New Ideas in Optimization, McGraw Hill International, UK, 79-

108.

Price, K., & Storn, R. (2001), Differential Evolution homepage (Website of Price and Storn) as

at 2001. http://www.ICSI.Berkeley.edu/~storn/code.html

Reeves, C. & Yamada, T. (1998). Genetic Algorithms, path relinking and flowshop

sequencing problem. Evolutionary Computation 6, 45-60.

Sahni, S. & Gonzalez, T. (1976), P-complete approximation problems, Journal of the ACM, 23,

555-565.

Sondergeld, L., & Voβ. S. (1996), A star-shaped diversification approach in tabu search, in

Osman, I., and Kelly, J. (eds) Meta-Heuristics: Theory and Applications, Kluwer

Academic Publishers: Boston, 489-502.

Taillard, E. (1991), Robust taboo search for the quadratic assignment problem, Parallel

Computing, 17, 443-455

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operations Research, 64, 278-285.

Taillard, E. (1995), Comparison of Iterative Searches for the Quadratic Assignment Problem.

Location Science, 3, 87–105.

Taillard, E., D. (1996), A heuristic column generation method for the heterogeneous VRP.

CRT-96-03, Centre de recherché sur les transports, Université de Montréal.

Tasgetiren, M. F., Sevkli, M. Liang, Y-C., & Gencyilmaz, G. (2004). Particle swamp

optimization algorithm for permutative flowshops sequencing problems, 4th

www.intechopen.com

 Evolutionary Computation

296

International Workshops on Ant Algorithms and Swamp Intelligence, ANTS2004, LNCS

3127, Brussel, Belgium. September 5-8, 389-390.

Tasgetiren, M. F., Liang, Y-C., Sevkli, M. & Gencyilmaz, G. (2004). Differential Evolution

Algorithm for Permutative Flowshops Sequencing Problem with Makespan

Criterion, 4th International Symposium on Intelligent Manufacturing Systems, IMS2004,

Sakaraya, Turkey. September 5-8, 442-452.

Yamada, T. & Nanako, R. (1996), Scheduling by Genetic Local Search with Multi-Step

Crossover. 4th International Conference on Parallel Problem Solving from Nature, 960-

969.

www.intechopen.com

Evolutionary Computation
Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7
Hard cover, 572 pages
Publisher InTech
Published online 01, October, 2009
Published in print edition October, 2009

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based
optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern
recognition and bioinformatics. This book also presents new algorithms based on several analogies and
metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In
this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to
discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on
the field of evolutionary computation and applied sciences. The intended audience is graduate,
undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this
field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Donald Davendra, Ivan Zelinka and Godfrey Onwubolu (2009). Hybrid Differential Evolution – Scatter Search
Algorithm for Permutative Optimization, Evolutionary Computation, Wellington Pinheiro dos Santos (Ed.), ISBN:
978-953-307-008-7, InTech, Available from: http://www.intechopen.com/books/evolutionary-
computation/hybrid-differential-evolution-scatter-search-algorithm-for-permutative-optimization

