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1. Introduction  

Systems and models with dead time or aftereffect, also called hereditary, anisochronic or 
time-delay systems (TDS), belonging to the class of infinite dimensional systems have been 
largely studied during last decades due to their interesting and important theoretical and 
practical features. A wide spectrum of systems in natural sciences, economics, pure 
informatics etc., both real-life and theoretical, is affected by delays which can have various 
forms; to name just a few the reader is referred e.g. to (Górecki et al., 1989; Marshall et al., 
1992; Kolmanovskii & Myshkis, 1999; Richard, 2003; Michiels & Niculescu, 2008; Pekař et al., 
2009) and references herein. Linear time-invariant dynamic systems with distributed or 
lumped delays (LTI-TDS) in a single-input single-output (SISO) case can be represented by a 
set of functional differential equations (Hale & Verduyn Lunel, 1993) or by the Laplace 
transfer function as a ratio of so-called quasipolynomials (El’sgol’ts & Norkin, 1973) in one 
complex variable s, rather than polynomials which are usual in system and control theory. 
Quasipolynomials are formed as linear combinations of products of s-powers and 
exponential terms. Hence, the Laplace transform of LTI-TDS is no longer rational and so-
called meromorphic functions have to be introduced. A significant feature of LTI-TDS is (in 
contrast to undelayed systems ) its infinite spectrum and transfer function poles decide - 
except some cases of distributed delays, see e.g. (Loiseau, 2000) - about the asymptotic 
stability as in the case of polynomials. 
It is a well-known fact that delay can significantly deteriorate the quality of feedback control 
performance, namely stability and periodicity. Therefore, design a suitable control law for 
such systems is a challenging task solved by various techniques and approaches; a plentiful 
enumeration of them can be found e.g. in (Richard, 2003). Every controller design naturally 
requires and presumes a controlled plant model in an appropriate form. A huge set of 
approaches uses the Laplace transfer function; however, it is inconvenient to utilize a ratio 
of quasipolynomials especially while natural requirements of internal (impulse-free modes) 
and asymptotic stability of the feedback loop and the feasibility and causality of the 
controller are to be fulfilled.  
The meromorphic description can be extended to the fractional description, to satisfy 
requirements above, so that quasipolynomials are factorized into proper and stable 
meromorphic functions. The ring of stable and proper quasipolynomial (RQ) 
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meromorphic functions (RMS) is hence introduced (Zítek & Kučera, 2003; Pekař & Prokop, 
2010). Although the ring can be used for a description of even neutral systems (Hale & 
Verduyn Lunel, 1993), only systems with so-called retarded structure are considered as 
the admissible class of systems in this contribution. In contrast to many other algebraic 
approaches, the ring enables to handle systems with non-commensurate delays, i.e. it is 
not necessary that all system delays can be expressed as integer multiples of the smallest 
one. Algebraic control philosophy in this ring then exploits the Bézout identity, to obtain 
stable and proper controllers, along with the Youla-Kučera parameterization for reference 
tracking and disturbance rejection. 
The closed-loop stability is given, as for delayless systems, by the solutions of the 
characteristic equation which contains a quasipolynomial instead of a polynomial. These 
infinite many solutions represent closed-loop system poles deciding about the control 
system stability. Since a controller can have a finite number of coefficients representing 
selectable parameters, these have to be set to distribute the infinite spectrum so that the 
closed-loop system is stable and that other control requirements are satisfied. 
The aim of this chapter is to describe, demonstrate and implement a new quasi-optimal 
pole placement algorithm for SISO LTI-TDS based on the quasi-continuous pole shifting – 
the main idea of which was presented in (Michiels et al., 2002) - to the prescribed 
positions. The desired positions are obtained by overshoot analysis of the step response 
for a dominant pair of complex conjugate poles. A controller structure is initially 
calculated by algebraic controller design in RMS. Note that the maximum number of 
prescribed poles (including their multiplicities) equals the number of unknown 
parameters. If the prescribed roots locations can not be reached, the optimizing of an 
objective function involving the distance of shifting poles to the prescribed ones and the 
roots dominancy is utilized. The optimization is made via Self-Organizing Migration 
Algorithm (SOMA), see e.g. (Zelinka, 2004). Matlab m-file environment is utilized for the 
algorithm implementation and, consequently, results are tested in Simulink on an 
attractive example of unstable SISO LTI-TDS. 
The chapter is organized as follows. In Section 2 a brief general description of LTI-TDS is 
introduced together with the coprime factorization for the RMS ring representation. Basic 
ideas of algebraic controller design in RMS with a simple control feedback are presented in 
Section 3. The main and original part of the chapter – pole-placement shifting based 
tuning algorithm – is described in Section 4. Section 5 focuses SOMA and its utilization 
when solving the tuning problem. An illustrative benchmark example is presented in 
Section 6. 

2. Description of LTI-TDS 

The aim of this section is to present possible models of LTI-TDS; first, that in time domain 
using functional differential equations, second, the transfer function (matrix) via the Laplace 
transform. Then, the latter concept is extended so that an algebraic description in a special 
ring is introduced. Note that for the further purpose of this chapter the state-space 
functional description is useless. 

2.1 State-space model 

A LTI-TDS system with both input-output and internal (state) delays, which can have point 
(lumped) or distributed form, can be expressed by a set of functional differential equations 
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where ∈x n  is a vector of state variables, ∈u m stands for a vector of inputs, ∈y l 
represents a vector of outputs, Ai, A(τ), Bi, B(τ), C, Hi are matrices of appropriate 
dimensions, 0 i Lη≤ ≤  are lumped (point) delays and convolution integrals express 
distributed delays (Hale & Verduyn Lunel, 1993; Richard, 2003; Vyhlídal, 2003). If i ≠H 0  
for any i = 1,2,...NH, model (1) is called neutral; on the other hand, if i =H 0  for every i = 
1,2,...NH, so-called retarded model is obtained. It should be noted that the state of model 
(1) is given not only by a vector of state variables in the current time instant, but also  
by a segment of the last model history (in functional Banach space) of state and input 
variables 

 ( ) ( ), , ,0t t Lτ τ τ+ + ∈ −x u  (2) 

Convolution integrals in (1) can be numerically approximate by summations for digital 
implementation; however, this can destabilize even a stable system. Alternatively, one can 
integrate (1) and add a new state variable to obtain derivations on the right-hand side only. 
In the contrary, the model can also be expressed in more consistent functional form using 
Riemann-Stieltjes integrals so that both lumped and distributed delays are under one 
convolution. For further details and other state-space TDS models the reader is referred to 
(Richard, 2003). 

2.2 Input-output model 

This contribution is concerned with retarded delayed systems in the input-output 
formulation governed by the Laplace transfer function matrix (considering zero initial 
conditions) as in (3). Hence, in the SISO case (we are concerning about here), the transfer 
function is no longer rational, as for conventional delayless systems, and a meromorphic 
function as a ratio of retarded quasipolynomials (RQ) is obtained instead. 
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A (retarded or neutral) quasipolynomial of degree n has the generic form  
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where 0njx ≠  in the neutral case for some j, whereas a RQ owns 0njx =  for all j. 

However, the transfer function representation in the form of a ratio of two quasipolynomials 
is not suitable in order to satisfy controller feasibility, causality and closed-loop (Hurwitz) 
stability (Loiseau 2000; Zítek & Kučera, 2003). Rather more general approaches utilize a field 
of fractions where a transfer function is expressed as a ratio of two coprime elements of a 
suitable ring. A ring is a set closed for addition and multiplication, with a unit element for 
addition and multiplication and an inverse element for addition. This implies that division 
is not generally allowed. 

2.3 Plant description in RMS ring 

A powerful algebraic tool ensuring requirements above is a ring of stable and proper RQ-
meromorphic functions (RMS). Since the original definition of RMS in (Zítek & Kučera, 2003) 
does not constitute a ring, some minor changes in the definition was made in (Pekař & 
Prokop, 2009). Namely, although the retarded structure of TDS is considered only, the 
minimal ring conditions require the use of neutral quasipolynomials at least in the 
numerator as well. 
An element ( ) MST s ∈R  is represented by a proper ratio of two quasipolynomials  

 ( )
( )
( )

y s
T s

x s
=  (5) 

where a denominator ( )x s  is a quasipolynomial of degree n and a numerator can be 
factorized as  

 ( ) ( ) ( )expy s y s sτ= −  (6) 

where ( )y s  is a quasipolynomial of degree l and τ ≥ 0. ( )T s  is stable, which means that 
there is no pole s0 such that { }0Re 0s ≥ ; in other words, all roots of ( )x s  with { }0Re 0s ≥  are 
those of ( )y s . Moreover, the ratio is proper, i.e. l ≤ n.  
Thus, ( )T s  is analytic and bounded in the open right half-plane, i.e. 

 
{ }

( )
Re 0
sup

s

T s
≥

< ∞  (7) 

As mentioned above, in this contribution only retarded systems are considered, i.e. ( )x s , 
( )y s  are RQs. Let the plant be initially described as 

 ( )
( )
( )

b s
G s

a s
=  (8) 

where ( )a s , ( )b s  are RQs. Hence, using a coprime factorization, a plant model has the form 

 ( )
( )
( )

B s
G s

A s
=  (10) 
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where ( ) ( ), MSA s B s ∈R  are coprime, i.e. there does not exist a non-trivial (non-unit) 
common factor of both elements. Note that a system of neutral type can induce problem 
since there can exist a coprime pair ( ) ( ),A s B s  which is not, however, Bézout coprime – 
which implies that the system can not be stabilized by any feedback controller admitting the 
Laplace transform, see details in (Loiseau et al., 2002). 

3. Controller design in RMS 

This section outlines controller design based on the algebraic approach in the RMS ring 
satisfying the inner Hurwitz (Bounded Input Bounded Output - BIBO) stability of the closed 
loop, controller feasibility, reference tracking and disturbance rejection. 
For algebraic controller design in RMS it is initially supposed that not only the plant is 
expressed by the transfer function over RMS but a controller and all system signals are over 
the ring. As a control system, the common negative feedback loop as in Fig. 1 is chosen for 
the simplicity, where ( )W s  is the Laplace transform of the reference signal, ( )D s  stands for 
that of the load disturbance, ( )E s  is transformed control error, ( )0U s  expresses the 
controller output (control action), ( )U s  represents the plant input, and ( )Y s  is the plant 
output controlled signal in the Laplace transform. The plant transfer function is depicted 
as ( )G s , and ( )RG s  stands for a controller in the scheme. 
 

 
Fig. 1. Simple control feedback loop 

Control system external inputs have forms 

 ( )
( )
( )

( )
( )
( )

,W D

W D

H s H s
W s D s

F s F s
= =  (11) 

where ( )WH s , ( )DH s , ( )WF s , ( )DF s  ∈  RMS. 

The following basic transfer functions can be derived in the control system in general 
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where 
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 ( ) ( ) ( ) ( ) ( )M s A s P s B s Q s= +  (14) 

and ( )Q s , ( )P s  are from RMS and the fraction (13) is (Bézout) coprime (or relatively prime). 
The numerator of ( )M s ∈ RMS agrees to the characteristic quasipolynomial of the closed 
loop. 
Following subsections describes briefly how to provide the basic control requirements. 

3.1 Stabilization 

According to e.g. (Kučera, 1993; Zítek & Kučera, 2003), the closed-loop system is stable if 
and only if there exists a pair ( ) ( ), MSP s Q s ∈R  satisfying the Bézout identity 

 ( ) ( ) ( ) ( ) 1A s P s B s Q s+ =  (15) 

a particular stabilizing solution of which, ( ) ( )0 0,P s Q s , can be then parameterized as 
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Parameterization (16) is used to satisfy remaining control and performance requirements. 

3.2 Reference tracking and disturbance rejection 

The question is how to select ( ) MST s ∈R in (16) so that tasks of reference tracking and 
disturbance rejection are accomplished. The key lies in the form of ( )WEG s  and ( )DYG s  in 
(12). Consider the limits 
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where D⋅  means that the output is influenced only by the disturbance, and symbol W⋅  
expresses that the signal is a response to the reference. Limit (17) is zero if ( )0lims DY s→ < ∞  
and ( )DY s  is analytic in the open right half-plane. Moreover, for the feasibility of ( )Dy t , 

( )DY s  must be proper. This implies that the disturbance is asymptotically rejected if 
( )DY s ∈  RMS. Similarly, the reference is tracked if ( )WE s ∈  MSR . 

In other words, ( )DF s  must divide the product ( ) ( )B s P s  in MSR , and ( ) ( )A s P s  must be 
divisible by ( )WF s  in MSR . Details about divisibility in  MSR  can be found e.g. in (Pekař & 
Prokop, 2009). Thus, if neither ( )B s  has any common unstable zero with ( )DF s nor ( )A s  
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has any common unstable zero with ( )WF s , one has to set all unstable zeros of ( )DF s  and 
( )WF s  (with corresponding multiplicities) as zeros of ( )P s . Note that zeros mean zero 

points of a whole term in MSR , not only of a quasipolynomial numerator. Unstable zeros 
agrees with those with { }Re 0s ≥ . 

4. Pole-placement shifting based controller tuning algorithm 

In this crucial section, the idea of a new pole-placement shifting based controller tuning 
algorithm (PPSA) is presented. Although some steps of PPSA are taken over some existing 
pole-shifting algorithms, the idea of connection with pole placement and the SOMA 
optimization is original. 

4.1 Overview of PSSA 

We first give an overview of all steps of PPSA and, consequently, describe each in more 
details. The procedure starts with controller design in MSR introduced in the previous 
section. The next steps are as follows: 
1. Calculate the closed-loop reference-to-output transfer function ( )WYG s .  Let numl  and  

denl , respectively, be numbers of unknown (free, selectable) real parameters of the 
numerator and denominator, respectively. Sign num denl l l= + . 

2. Choose a simple model of a stable LTI system in the form of the transfer function 
( ),WY mG s  with a numerator of degree numn  and the denominator of degree denn . 

Calculate step response maximum overshoots of the model for a suitable range of its numn  
zeros and denn  poles (including their multiplicities). If num numn n≤  and den denn n≤ , 
respectively, are numbers of all real zeros (poles) and pairs of complex conjugate zeros 
(poles) of the model, it must hold that num numn l≤  and den denn l≤ , respectively. 

3. Prescribe all poles and zeros of the model with respect to calculated maximum 
overshoots (and maximal overshoot times). If the poles and zeros are dominant (i.e. the 
rightmost), the procedure is finished. Otherwise do following steps. 

4. Shift the rightmost (or the nearest) zeros and poles to the prescribed locations 
successively. If the number of currently shifted poles and conjugate pairs 

den sp denn n l≤ ≤  is higher then denn , try to move the rest of dominant (rightmost) poles 
to the left. The same rule holds for shifted zeros, analogously. 

5. If all prescribed poles and zeros are dominant, the procedure is finished. Otherwise, 
select a suitable cost function reflecting the distance of dominant poles (zeros) from 
prescribed positions and distances of spectral abscissas of both, prescribed and 
dominant poles (zeros). 

6. Minimize the cost function, e.g. via SOMA. 
Now look at these steps of the algorithm at great length. 

4.2 Characteristic quasipolynomial and characteristic entire function 

Algebraic controller design in the MSR  ring introduced in Section 3 results in a controller 
owning the transfer function ( )RG s  containing a finite number of unknown (free, selectable) 
parameters. The task of PPSA is to set these parameters so that the possibly infinite 
spectrum of the closed loop has dominant (rightmost) poles located in (or near by) the 
prescribed positions. If possibly, one can prescribe and place dominant zeros as well. Note 
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that controller design in MSR  using the feedback system as in Fig. 1 results in infinite 
spectrum of the feedback if the controlled plant is unstable. 
If the (quasi)polynomial numerator and denominator of ( )G s  have no common roots in the 
open right-half plane, the closed-loop spectrum is given entirely by roots of the numerator 

( )m s  of ( )M s , the so called characteristic quasipolynomial.  In the case of distributed 
delays, ( )G s  has some common roots with { }Re 0s ≥  in both, the numerator and 
denominator, and these roots do not affect the system dynamics since they cancel each 
other. In this case, the spectrum is given by zeros of the entire function ( ) ( )/ Um s m s , i.e. the 
characteristic entire function, where ( )Um s  is a (quasi)polynomial the only roots of which 
are the common unstable roots.  
The (quasi)polynomial denominator of ( )WYG s  agrees with ( )m s . Its role is much more 
important than the role of the numerator of ( )WYG s  since the closed-loop zeros does not 
influence the stability. In the light of this fact, the setting of closed-loop poles has the 
priority. Therefore, one has to set denl  free denominator parameters first. Free (selectable) 
parameters in the numerator of ( )WYG s  are to be set only if there exist those which are not 
contained in the denominator. The number of such “additional” parameters is numl . 

4.3 Closed-loop model and step response overshoots 

The task now is how to prescribe the closed-loop poles appropriately. We choose a simple 
finite-dimensional model of the reference-to-output transfer function and find its maximum 
overshoots and overshoot times for a suitable range of the model poles. 
Let the prescribed (desired) closed-loop model be of the transfer function 

 ( )
( )( )

1 0 1
, 1 22

1 11 0
WY m

b s b s z
G s k k

s s s ss a s a

+ −
= =

− −+ +
 (19) 

where 1 2 1 0 1 0, , , , ,k k b b a a ∈ are model parameters 1z ∈- stands for a model zero and  

1s ∈  - is a model stable pole where 1s  expresses its complex conjugate. To obtain the unit 
static gain of ( ),WY mG s  it must hold true 

 
2

10
1 2

0 1

,
sa

k k
b z

= = −  (20) 

Sign 1 j, 0, 0s α ω α ω= + < ≥  and calculate the impulse function ( ),WY mg t  of ( ),WY mG s  using 
the Matlab function ilaplace as 

 ( ) ( ) ( ) ( )1
, 2 exp cos sinWY m

z
g t k t t t

α
α ω ω

ω

− 
= −    (21) 

Since ( ) ( ), ,WY m WY mi t h t′= , where  ( ),WY mh t  is the step response function, the necessary 
condition for the existence of  a step response overshoot at time tO is 

 ( ), 0, 0WY m O Oi t t= >  (22) 

The condition (22) yields these two solutions: either Ot → −∞  (which is trivial) or 
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2 2
1

1
arccosO

z
t

z

α

ω α ω

 
− = ±  − + 

 (23) 

when considering ( ) [ ]arccos 0,x π∈ . Obviously, (23) has infinitely many solutions. If 

10, 0zα < < , the maximum overshoot occurs at time 

 ( )max min Ot t=  (24) 

One can further calculate the step response function ( ),WY mh t  as 

 ( ) ( ) ( ) ( )
2

1 12
, 1 12

1

exp cos sinWY m

z sk
h t t z t t z

s

α
α ω ω

ω

  −  = − −    
 (25) 

Define now the maximum relative overshoot as 

 
( ) ( )

( )
, max ,

, ,max
,

: WY m WY m
WY m

WY m

h t h
h

h

− ∞
Δ =

∞
 (26) 

see Fig. 2. 
 

 
Fig. 2. Reference-to-output step response characteristics and the maximum overshoot  
Using definition (26) one can obtain 

 ( )
( ) ( ) ( )

max

2
1 1 1

, ,max
1

cos sin
expWY m

t t

z t z s t
h t

z

ω ω α ω
α

ω
=

 − + − 
Δ =    

 (27) 
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Obviously, , ,maxWY mhΔ  is a function of three parameters, i.e. 1 , ,n α ω , which is not suitable 
for a general formulation of the maximal overshoot. Hence, let us introduce new parameters 

, zαξ ξ as 

 1, z

z
α

α
ξ ξ

ω ω
= − = −  (28) 

which give rise from (23), (24) and (27) to 

 

( ) ( ) ( ) ( )( )

( )

2
, ,max max, max, max,

max, max 2

1
exp cos 1 sin

min arccos
1

WY m norm z norm z norm
z

norm

h t t t

t t

α α α

α ω

α ω

ξ ξ ξ ξ ξ
ξ

ξ ξ
ω

ξ ξ

Δ = − − + + −

  
−  = = ±    − +  

 (29) 

where max,normt  represents the normalized maximal overshoot time. 
We can successfully use Matlab to display function ( ), ,max ,WY m zh αξ ξΔ  and ( )max, ,norm zt αξ ξ  
graphically, for suitable ranges of , zαξ ξ  as can be seen from Fig. 3 – Fig. 7.  
Recall that model  (19) gives rise to 1, 2, 1, 1num den num denn n n n= = = = . 
 

   

      

Fig. 3. Maximum overshoots ( ), ,max ,WY m zh αξ ξΔ  (a) and normalized maximal overshoot 
times ( )max, ,norm zt αξ ξ  (b) for [ ]0.1,2αξ = , { }0.2,0.4,0.6,0.8,1zξ = . 
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Fig. 4. Maximum overshoots ( ), ,max ,WY m zh αξ ξΔ  (a) and normalized maximal overshoot 
times ( )max, ,norm zt αξ ξ  (b) for [ ]0.1,2αξ = , { }2,3,4,5,10zξ = . 

 

          

Fig. 5. Maximum overshoots ( ), ,max ,WY m zh αξ ξΔ  (a) and normalized maximal overshoot 
times ( )max, ,norm zt αξ ξ  (b) for [ ]2,10αξ = , { }0.2,0.4,0.6,0.8,1zξ = . 

 

                  

Fig. 6. Maximum overshoots ( ), ,max ,WY m zh αξ ξΔ  (a) and normalized maximal overshoot 
times ( )max, ,norm zt αξ ξ  (b) for [ ]2,10αξ = , { }2,3,4,5,10zξ = . 
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Fig. 7. Maximum overshoots ( ), ,max ,WY m zh αξ ξΔ  (a) and normalized maximal overshoot 
times ( )max, ,norm zt αξ ξ  (b) for [ ]1,5,4.5αξ = , { }2.8,3,3.2,3.4,3.6zξ =  - A detailed view on 
“small” overshoots. 

The procedure of searching suitable prescribed poles can be done e.g. as in the following 
way. A user requires , ,max 0.03WY mhΔ = (i.e. the maximal overshoot equals 3 %), 4αξ =  (i.e. 
“the quarter dumping”)  and max 5t = s. Fig. 7 gives approximately 2.9zξ =  which yields 

max, 1.2normt ≈ . These two values together with (28) and (29) result in 

1 0.96 0.24j,s = − + 1 0.7z = − . 

4.4 Direct pole placement 

This subsection extends step 3 of PPSA from Subsection 4.1. The goal is to prescribe poles 
and zeros of the closed-loop “at once”. The drawback here is that the prescribed poles 
(zeros) might not be dominant (i.e. the rightmost). The procedure was utilized to LTI-TDS 
e.g. in (Zítek & Hlava, 2001). 
Given quasipolynomial ( )m s  with a vector [ ]1 2, ,...,

T
lv v v= ∈v  l of l free parameters, the 

assignment of n prescribed single roots iσ , i = 1...n, can be done via the solution of the set of 
algebraic equations in the form 

 [ ]( , ) 0, 1...
i

i s
m i n

σ
σ

=
= =v  (30) 

In the case of complex conjugate poles, one has to take the real and imaginary part 
separately as 

 [ ]{ } [ ]{ }Re ( , ) 0,Im ( , ) 0
i i

i is s
m m

σ σ
σ σ

= =
= =v v  (31) 

for every pair of roots.  
If a root iσ  has the multiplicity p, it must be calculated 

 
d

( , ) 0, 0... 1
d

i

j

ij

s

m j p
s

σ

σ
=

 
= = −   v  (32) 

or 
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d d

Re ( , ) 0, Im ( , ) 0, 0... 1
d d

i i

j j

i ij j

s s

m m j p
s s

σ σ

σ σ
= =

   
= = = −         v v  (33) 

Note that if ( )m s  is nonlinear with respect to v , one can solve a set on non-linear algebraic 
equations directly, or to use an expansion 

 

0

0
0

1

( , )
( , ) ( , )

i

k

i i j
sjj

m s
m m v

v σ

σ σ
==
=

 ∂
≈ + Δ  

∂  
v v

v
v v  (34) 

where 0v  means a point in which the expansion is made or an initial estimation of the 
solution and [ ]1 2, ,...,

T
lv v vΔ = Δ Δ Δv is a vector of parameters increments. Equations (34) 

should be solved iteratively, e.g. via the well-known Newton method. Note, furthermore, 
that the algebraic controller design in MSR  for LTI-TDS results in the linear set (30)-(34) with 
respect to selectable parameters – both, in the numerator and denominator of ( )WYG s . 
It is clear that a unique solution is obtained only if the set of n l=  independent equations is 
given. If n l< , equations (30)-(34) can be solved using the Moore-Penrose (pseudo)inverse 

minimizing the norm 2
2

1

k

i
i

v
=

=v , see (Ben Israel & Greville, 1966). Contrariwise, whenever 

n l>  , it is not possible to place roots exactly and the pseudoinverse provides the 
minimization of squares of the left-hand sides of (30)-(34). 
The methodology described in this subsection is utilized on both, the numerator and 
denominator. 

4.5 Continuous poles (zeros) shifting 

Once the poles (zeros) are prescribed, it ought to be checked whether these roots are the 
rightmost. If yes, the PPSA algorithm stops; if not, one may try to shift poles so that the 
prescribed ones become dominant. There are two possibilities. First, the dominant roots 
move to the prescribed ones; second, roots nearest to the prescribed ones are shifted – while 
the rest of the spectrum (or zeros) is simultaneously pushed to the left. The following 
describes it in more details. 
We describe the procedure for the closed-loop denominator and its roots (poles); the 
numerator is served analogously for all its free parameters which are not included in the 
denominator. Recall that denl  is the number of unknown (selectable) parameters, denn  stands 
for the number of model (prescribed) poles (including their multiplicities), denn  represents 
the number of real poles and conjugate pairs of prescribed poles and spn  is the number of 
currently shifted real poles and conjugate pairs. Generally, it holds that 

 den sp denn n l≤ ≤  (35) 

The idea of continuous poles shifting described below was introduced in (Michiels et al., 
2002). Similar procedure which, however, enables to shift less number of poles since 

sp denn l≤  includes every single complex pole instead of a conjugate pair, was investigated in 
(Vyhlídal, 2003). Roughly speaking, the latter is based on solution of (30) - (34) where 0v  
represents the vector of actual controller parameters, 0= + Δv v v  are new controller 
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parameters and iσ  means prescribed poles (in the vicinity of the actual ones) here. Now 
look at the former methodology in more details. 
The approach (Michiels et al., 2002) is based on the extrapolation 

 0

0

( , ) ( , )
( , ) ( , ) 0, 1... , 1...

i
i

i i i j sp den
s sj

m s m s
m m v i n j l

s vσ σ

σ σ σ
= =

= = =

 ∂ ∂ 
≈ + Δ + Δ = = =  ∂ ∂    

0
0

v v
v v

v v
v v  (36) 

yielding 

 
1( , ) ( , )

i
i

i

s sj j

m s m s

v s vσ σ

σ
−

= =
= =

 Δ ∂ ∂ 
≈ −   Δ ∂ ∂    

0
0

v v
v v

v v
 (37) 

where 0v  represents the vector of actual controller parameters, iσ  means actual poles and 

iσΔ  and jvΔ are increments of poles and controller parameters, respectively. In case of a p-
multiple pole, the following term is inserted in (36) and (37) instead of ( )m s  

 ( )
d

d

p

p
m s

s
 (38) 

However, (38) can be used only if the pole including all multiplicities is moved. If, on the 
other hand, the intention is to shift a part of poles within the multiplicity to the one location 
and the rest of the multiplicity to another (or other) location(s), it is better to consider a 
multiple pole as a “nest” of close single poles. 
Then a matrix 

 i

jv

σ Δ
= ∈ 

Δ  S   denspxln  (39) 

is called the sensitivity matrix satisfying 

 +Δ = Δv S σ  (40) 

where 1 2, ,...,
sp

T

nσ σ σ Δ = Δ Δ Δ σ  and +S  means the pseudoinverse.  

It holds that 

 
{ }Re

Rei i

j jv v

σ σ Δ Δ 
=  

Δ Δ    (41) 

thus, if poles are shifted in a real axis only, it can be calculated 

 { } { }Re Re+
Δ = Δv S σ  (42) 

Otherwise, the following approximation ought to be used 

 { }Re +Δ ≈ Δv S σ  (43) 
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The continuous shifting starts with sp denn n= . Then, one can take the number of denn  
rightmost poles and move them to the prescribed ones. The rightmost closed-loop pole 
moves to the rightmost prescribed pole etc. Alternatively, the same number of dominant 
poles (or conjugated pairs) can be considered; however, the nearest poles can be shifted to 
the prescribed ones. If two or more prescribed poles own the same dominant pole, it is 
assigned to the rightmost prescribed pole and removed from the list of moved poles. The 
number { },sp den denn n l∈  is incremented whenever the approaching starts to fail for any pole. 
If sp denn n> , the rest of dominant poles is pushed to the left. More precisely, shifting to the 
prescribed poles is described by the following formula 

 p s

p s

σ σ
σ δ

σ σ

−
Δ =

−
 (44) 

and pushing to the left agrees with 

 σ δΔ = −  (45) 

where δ  is a discretization step in the space of poles, e.g. 0.001δ = , pσ  is a prescribed pole 
and sσ  means a pole moved to the prescribed one. 
If sp denn l= and all prescribed poles become the rightmost (dominant) ones, PPSA is finished. 
Otherwise, do the last step of PPSA introduced in the following subsection. 

5. Minimization of a cost function via SOMA 

This step is implemented whenever the exact pole assignment even via shifting fails. In the 
first part of this subsection we arrange the cost function to be minimized. Then, SOMA 
algorithm (Zelinka, 2004) belonging to the wide family of evolution algorithms is introduced 
and briefly described. Again, the procedure is given for the pole-optimization; the zero-
optimization dealing with the closed-loop numerator is done analogously. 

5.1 Cost function 

The goal now is to rearrange feedback poles (zeros) so that they are “sufficiently close” to 
the prescribed ones and, concurrently, they are “as the most dominant as possible”. This 
requirement can be satisfied by the minimizing of the following cost function 

 ( ) ( ) ( ) { }, , , ,
1

Re
denn

R s i p i d i p i
i

F d dσ λ σ σ λ σ σ
=

= + = − + −v v v  (46) 

where ( )dσ v  is the distance of prescribed poles ,p iσ  from the nearest ones ,s iσ , ( )Rd v  
expresses the sum of distances of dominant poles from the prescribed ones and 0λ >  
represents a real weighting parameter. The higher λ  is, the pole dominancy of is more 
important in ( )F v . Recall that (when the dominant poles were moved) 

 ,1 ,2 , ,1 ,2 , ,1 ,2 ,, ,
den den dens s s n p p p n d d d nσ σ σ σ σ σ σ σ σ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥    (47) 

Alternatively, one can include both, the zeros and poles, in (46), not separately. 
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Poles can be found e.g. by the quasipolynomial mapping root finder (QPMR) implemented 
in Matlab, see (Vyhlídal & Zítek, 2003). 
Hence, the aim is to solve the problem 

 ( )arg minopt  F=v v  (48) 

We use SOMA algorithm based on genetic operations with a population of found solutions 
and moving of population specimens to each other. A brief description of the algorithm 
follows. 

5.2 SOMA 

SOMA is ranked among evolution algorithms, more precisely genetic algorithms, dealing 
with populations similarly as differential evolution does. The algorithm is based on vector 
operations over the space of feasible solutions (parameters) in which the population is 
defined. Population specimens cooperate when searching the best solution (the minimum of 
the cost function) and, simultaneously, each of them tries to be a leader. They move to each 
other and the searching is finished when all specimens are localized on a small area. 
In SOMA, every single generation, in which a new population is generated, is called  
a migration round. The notion of specific control and termination parameters, which have  
to be set before the algorithm starts, will be explained in every step of a migration  
round below. 
First, population { }1 2, ,..., PopSizeP = v v v  must be generated based on a prototypal specimen. 
For PPSA, this specimen is a vector of controller free parameters, v , of dimension denD l= . 
The prototypal specimen equals the best solution from Subsection 4.5. One can choose an 
initial radius (Rad) of the population in which other specimens are generated. The size of 
population (PopSize), i.e. the number of specimens in the population, is chosen by the user. 
Each specimen is then evaluated by the cost function (46).  
The simplest strategy called “All to One” implemented here then selects the best specimen - 
leader, i.e. that with the minimal value of the cost function 

 ( )arg minmr mr
L i

i
F=v v  (49) 

where L denotes the leader, i is i-th of specimen in the population and mr means the current 
migration round. Then all other specimen are moved towards the leader during the 
migration round. The moving is given by three control parameters: PathLength, Step, PRT. 
PathLength should be within the interval [1.1,5] and it expresses the length of the path when 
approaching the leader. PathLength = 1 means that the specimen stops its moving exactly at 
the position of the leader. Step represents the sampling of the path and ought to be valued 
[0.11, ]PathLength . E.g. a pair PathLength = 1 and Step = 0.2 agrees with that the specimen 
makes 5 steps until it reaches the leader. [ ]0,1PRT ∈  enables to calculate the perturbation 
vector PRTVector which indicates whether the active specimen moves to the leader directly 
or not. PRTVector is defined as 

 

{ }1 2, ,..., 0,1

1 if

0 else

den

den

T l
l

i i

i

PRTVector p p p

p rnd PRT

p

 = ∈ 
= <

=

 (50) 
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where [ ]0,1irnd ∈  is a randomly generated number for each dimension of a specimen. 
Although authors of SOMA suggest to calculate PRTVector only once in migration round for 
every specimen, we try to do this in every step of the moving to the leader. Hence, the path 
is given by 

 
( ) ( ) ( ) ( )

( )

, 1 ,0 ,0 ,01 diag

1,2,... ; 0,1,... / 1

mr mr mr mr mr mr
i k i L i L ii Step PRTVector Step

i PopSize k round PathLength Step

+ = + − − + −

= = −

v v v v v v
 (51) 

where ( )diag PRTVector  means the diagonal square matrix with elements of PRTVector on 
the main diagonal and k is k-th step in the path. 
If [ ]1,1,...1 T

PRTVector = , the active specimen goes to the leader directly without “zig-zag” 
moves. 
For every specimen of the population in a migration round, the cost function (i.e. value of the 
specimen) is calculated in every single step during the moving towards the leader. If the 
current position is better then the actual best, it becomes the best now. Hence, the new position 
of an active specimen for the next migration round is given by the best position of the 
specimen from all steps of moving towards the leader within the current migration round, i.e. 

 ( )1
,arg minmr mr

i i k
k

F+ =v v  (52) 

These specimens then generate the new population. 
The number of migration round are given by user at the beginning of SOMA by parameter 
Migration, or the algorithm is terminated if 

 ( ) ( )max mini i
ii

F F MinDiv− <v v  (53) 

where MinDiv is the selected minimal diversity. 
The final value optv  is equal to Lv  from the last migration round. We implemented the 

whole PPSA with SOMA in two Matlab m-files. 

6. Illustrative example 

In this closing session, we demonstrate the utilization of the PPSA and the methodology 
described above in Matlab on an attractive example. 
Consider an unstable system describing roller skater on a swaying bow (Zítek et al., 2008) 
given by the transfer function 

 ( )
( )
( )

( )( )
( )( )2 2

exp

exp

b sY s
G s

U s s s a s

τ ϑ

ϑ

− +
= =

− −
 (54) 

see Fig. 8, where ( )y t is the skater’s deviation from the desired position, ( )u t  expresses the 
slope angle of a bow caused by force P, delays ,τ ϑ  mean the skater’s and servo latencies 
and b, a are real parameters. Skater controls the servo driving by remote signals into servo 
electronics. 
Let b = 0.2, a = 1, 0.3τ = s, 0.1ϑ = s, as in the literature, and design the controller structure 
according to the approach described in Section 3. Consider the reference and load 
disturbance in the form of a step-wise function. 
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Fig. 8. The roller skater on a swaying bow 

Hence, coprime factorization over MSR can be done e.g. as 

 ( )
( )
( )

( )( )
( )

( )( )
( )

( )
( )
( )

( )
( )
( )

4
0

2 2

4
0

exp

, ,
exp

W D

W D

W D

b s
k k

s mB s H s H ss m s mG s W s D s
s sA s F s F ss s a s

s m s m
s m

τ ϑ

ϑ

− +

+ + += = = = = =
− −

+ +
+

 (55) 

where 0 0m > , kW, kD ∈  . Stabilization via the Bézout identity (15) results e.g. in the 
following particular solution 

 

( )
( )( )

( )( )( ) ( )( )( )

( )
( )( )

( )( )( ) ( )( )( )

43 2
3 2 1 0 0

0 2 2 3 2 3 2
2 1 0 3 2 1 0

43 2
2 1 0 0

0 2 2 3 2 3 2
2 1 0 3 2 1 0

exp exp

exp exp

q s q s q s q s m
Q s

s s a s s p s p s p b s q s q s q s q

s p s p s p s m
P s

s s a s s p s p s p b s q s q s q s q

ϑ τ ϑ

ϑ τ ϑ

+ + + +
=

− − + + + + − + + + +

+ + + +
=

− − + + + + − + + + +

(56) 

using the generalized Euclidean algorithm, see (Pekař & Prokop, 2009), where p2, p1, p0, q3, 
q2, q1, q0∈  are free parameters. In order to provide reference tracking and load disturbance 
rejection, use parameterization (16) while both, ( )WF s  and ( )DF s , divide ( )P s ; in other 
words, the numerator of ( )P s  must satisfy ( )0 0P = . If we take 

 
( )

( )( )( ) ( )( )( )

4
0 0

2 2 3 2 3 2
2 1 0 3 2 1 0exp exp

t s m
T

s s a s s p s p s p b s q s q s q s qϑ τ ϑ

+
=

− − + + + + − + + + +
 (57) 

( )P s  is obtained in a quite simple form with a real parameter t0 which must be set as 

 
4

0 0
0

p m
t

b

−
=  (58) 

Finally, the controller numerator and denominator in MSR , respectively, have forms 
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( )
( )( ) ( )( )

( )( )( ) ( )( )( )

( )
( )( ) ( )( )

( )( )( ) ( )( )( )

43 2 4 2 2
3 2 1 0 0 0 0

2 2 3 2 3 2
2 1 0 3 2 1 0

43 2 4
2 1 0 0 0 0

2 2 3 2 3 2
2 1 0 3 2 1 0

exp

exp exp

exp

exp exp

b q s q s q s q s m p m s s a s
Q s

b s s a s s p s p s p b s q s q s q s q

s p s p s p s m p m s
P s

s s a s s p s p s p b s q s q s q s q

ϑ

ϑ τ ϑ

τ ϑ

ϑ τ ϑ

+ + + + + − −
=  − − + + + + − + + + + 

+ + + + − − +
=

− − + + + + − + + + +

 (59) 

Hence, the controller has the transfer function 

 ( )
( )( ) ( )( )

( )( ) ( )( )

43 2 4 2 2
3 2 1 0 0 0 0

43 2 4
2 1 0 0 0 0

exp

exp
R

b q s q s q s q s m p m s s a s
G s

b s p s p s p s m p m s

ϑ

τ ϑ

+ + + + + − −
=  + + + + − − +  

 (60) 

and the reference-to-output function reads 

( )

( )( ) ( )( ) ( )( )

( ) ( )( )( ) ( )( )( )

43 2 4 2 2
3 2 1 0 0 0 0

4 2 2 3 2 3 2
0 2 1 0 3 2 1 0

exp exp

exp exp

WYG s

b b q s q s q s q s m p m s s a s s

s m s s a s s p s p s p b s q s q s q s q

ϑ τ ϑ

ϑ τ ϑ

 + + + + + − − − +  =  + − − + + + + − + + + + 
 (61) 

which gives rise to the characteristic quasipolynomial 

( )

( ) ( )( )( ) ( )( )( )4 2 2 3 2 3 2
0 2 1 0 3 2 1 0exp exp

m s

s m s s a s s p s p s p b s q s q s q s qϑ τ ϑ = + − − + + + + − + + + + 
 (62) 

Obviously, the numerator of  ( )WYG s  does not have any free parameter not included in the 
denominator, i.e. lnum = 0. Moreover, the factor ( )4

0s m+  has a quadruple real pole; to cancel 
it, it must hold that { }0 1Rem s α>> − = − . Hence lden = 7. Now, there are two possibilities – 
either set zero exactly to obtain constrained controller parameter (then lden = 6) or to deal 
with the numerator and denominator of (61) together in (46) – we decided to utilize the 
former one. Generally, one can obtain e.g.  

 
( ) ( )

( )( )

4 3 2
1 0 3 1 2 1 1 1 0

0 4 2 2
0 1 1 1exp

b z m q z q z q z q
p

m z z a zϑ

+ + + +
= −

− −
 (63) 

from (61). 
Choose  , ,max 0.5WY mhΔ = , 0.5αξ =  and max 10t = s. From Fig. 3 we have 0.9zξ = , 

max, 2normt ≈  which gives 10.2, 0.18, 0.1zω α= = − = − . Then take e.g. 0 5m = . Inserting plant 
parameters in (63) yields 

 ( )0 0 1 2 35.4078 0.18 0.0324 0.005832p q q q q= − + −  (64) 

The concrete quasipolynomial which roots are being set, thus, reads 

( ) ( )( ) ( )( )
( )( )

2 2 3 2
1 2 1 0 1 2 3

3 2
3 2 1 0

exp 0.1 5.4078 0.18 0.0324 0.005832

0.2exp 0.4

m s s s s s p s p s q q q q

s q s q s q s q

= − − + + + − + −

+ − + + +
 (65) 
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Initial direct pole placement results in controller parameters as  

 3 2 1 0 2 1 01.0051, 0.9506, 1.2582, 0.2127, 1.1179, 0.4418, 0.0603q q q q p p p= = = = = = =  (66) 

and poles locations in the vicinity of the origin are displayed in Fig. 9. 
 

 
Fig. 9. Initial poles locations 

The process of continuous roots shifting is described by the evolution of controller 
parameters, the spectral abscissa (i.e. the real part of the rightmost pole ,1dσ ) and the 
distance of the dominant pole from the prescribed one ,1 ,1d pσ σ− , as can be seen in Fig. 10 
– Fig. 12, respectively. Note that p0 is related to shifted parameters according to (64). 
 

 
Fig. 10. Shifted parameters evolution 
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Fig. 11. Spectral abscissa evolution 

 

 
Fig. 12. Distance of the rightmost pole from the prescribed one 

When shifting, it is suggested to continue in doing this even if the desired poles locations are 
reached since one can obtain a better poles distribution – i.e. non-dominant poles are placed 
more left in the complex space. Moreover, one can decrease the number of shifted poles 
during the algorithm whenever the real part of a shifted pole becomes “too different” from a 
group of currently moved poles. 
The final controller parameters from the continuous shifting are 

 3 2 1 0 2 1 04.7587, 2.1164, 2.6252, 0.4482, 0.4636, 0.529, 4.6164q q q q p p p= = = = = = =  (67) 

and the poles location is pictured in Fig. 13. 
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Fig. 13. Final poles locations 

As can be seen, the desired prescribed pole is reached and it is also the dominant one. Thus, 
optimization can be omitted. However, try to perform SOMA to find the minimal  
cost function (16) with this setting: Rad = 2, PopSize = 10, D = 6, PathLength = 3, Step = 0.21, 
PRT = 0.6, Migration = 10, MinDiv = 10-6, . Yet, the minimum of the cost function remains in 
the best solution from continuous shifting, i.e. according to (67), with the value of the cost 
function as ( ) 42.93 10F −= ⋅v  . 

7. Conclusion 

This chapter has introduced a novel controller design approach for SISO LTI-TDS based on 
algebraic approach followed by pole-placement-like controller tuning and an optimization 
procedure. The methodology has been implemented in Matlab-Simulink environment to 
verify the results. 
The initial controller structure design has been made over the ring of stable and proper 
meromorphic functions, RMS, which offers to satisfy properness of the controller, reference 
tracking and rejection of the load disturbance (of a nominal model). The obtained controller 
has owned some free (unset) parameters which must have been set properly. 
In the crucial part of the work, we have chosen a simple finite-dimension model, calculated 
its step-response maximum overshoots and times to the overshoots. Then, using a static pole 
placement followed by continuous pole shifting dominant poles have been attempted to be 
placed to the desired prescribed positions. 
Finally, optimization of distances of dominant (the rightmost) poles from the prescribed 
ones has been utilized via SOMA algorithm. The whole methodology has been tested on an 
attractive example of a skater on a swaying bow described by an unstable LTI TDS model. 
The procedure is similar to the algorithm introduced in (Michiels et al., 2010); however, 
there are some substantial differences between them. Firstly, the presented approach is 
made in input-output space of meromorphic Laplace transfer functions, whereas the one in 
(Michiels et al., 2010) deals purely with state space. Second, in the cited literature, a number 
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poles less then a number of free controller parameters is set exactly and the rest of the 
spectrum is pushed to the left as much as possible. If it is possible it is necessary to choose 
other prescribed poles. We initially place the poles exactly; however, they can leave their 
positions during the shifting. Anyway, our algorithm does not require reset of selection 
assigned poles. Moreover, we suggest unambiguously how the prescribed poles (and zeros) 
positions are to be chosen – based on model overshoots. Last but not least, in (Michiels et al., 
2010), the gradient sampling algorithm (Burke et al., 2005) on the spectral abscissa was used 
while SOMA together with more complex cost function is considered in this chapter. 
The presented approach is limited to retarded SISO LTI-TDS without distributed delays 
only. Its extension to neutral systems requires some additional conditions on stability and 
existence of a stabilizing controller. Systems with distributed delays can be served in similar 
way as it is done here, yet with the characteristic meromorphic function instead of 
quasipolynomial. Multivariable systems would require deeper theoretic analysis of the 
controller structure design. The methodology is also time-comsupting and thus useless for 
online controller design (e.g. for selftuners). 
In the future research, one can solve the problems specified above, choose other reference-
to-output models and control system structures. There is a space to improve and modify the 
optimization algorithm. 
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