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Background
Effort estimation is defined as the activity of predicting the amount of effort required to 
complete a development of software project (Keung 2008). It is necessary to predict the 
effort estimation in the early stages of the software development cycle. In the best case, 
estimates should be calculated after a requirement analysis (Karner 1993).

Effort estimation methods can be divided into two major groups algorithmic meth-
ods and non-algorithmic methods. Algorithmic methods carries mathematical formula, 
which is regression model of historical data. The most famous methods are COCOMO 
(Boehm 1984), FP (Atkinson and Shepperd 1994) and UCP (Karner 1993). But there is a 
lot of algorithmic methods. To the second category belong methods like expert judge-
ment and analogy based methods. The most famous methods is Delphi (Rowe and 
Wright 1999).

The use of artificial intelligence may be a promising way to improve the accuracy of 
effort estimations. Accurate and consistent estimates are crucial in software project 
management. These estimates are used for the effective planning, monitoring and con-
trolling of a software development cycle. Project managers may use these estimates to 
arrive at better management decisions. Software engineering is a complicated process 
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because there are a lot of factors—for example, the size of the development team, the 
actual requirements, the programming language used, as well as other factors. These 
factors may have a considerably impact on the accuracy of the effort estimation process.

In this research study, the analytical programming method was used to improve the 
use case points method. The Use Case Points method is widely used for effort estima-
tion in software engineering. The main benefit of this method is that it provides effort 
estimates at a relatively early stage in the software development cycle. Nevertheless, 
this method is fully dependent on the human factor since the project manager has to 
estimate the project parameters and set the weights. There is a low probability that two 
project managers will perform these estimates exactly alike. Therefore, this research 
uses artificial intelligence to account for this dependency on the human factor. At the 
same time, this method is based on straightforward computation and allows a wide 
range of calibration—which can be achieved by setting the weights. The combination 
of analytical programming and the use case points method is used to derive early and 
more accurate effort estimation results. Analytical programming—as a symbolic regres-
sion technique, could be used to create a new model for the use case points method. An 
appropriate fitness function is vital for this task (Harman and Jones 2001). The fitness 
function evaluates solutions and decides whether the solution is acceptable—or not, for 
further processing. There are a large number of prediction accuracy measurement meth-
ods for assessing the accuracy of a predictive model. Thus, in this field, one of the main 
obstacles is to report the accuracy correctly. MMRE or Pred(25) are mainly used for the 
evaluation of the statistical properties of predictive models in the software engineering 
field. Currently, the MMRE method is being criticised by some experts in this field—e.g., 
in Myrtveit et al. (2003), Shepperd et al. (2000) or Kitchenham et al. (2001); however, the 
method is de-facto considered as a standard for reporting the suitability of a proposed 
model. In this study, prediction accuracy measurements will be used as fitness functions 
for the analytical programming.

The Sect. “Related work” of this paper summarise the related work in this field. Section 
“Problem statement” present the research questions for this work. Section “Experiment 
planning” describes the methodology used for this study. Section “Results” is devoted to 
the results of this work. In the next section you can see the limitations of this study. And 
finally, Sect. “Discussion” present discussion and conclude this paper.

The use case points method: short description

This effort estimation method was presented in 1993 by Karner (1993). It is based on a 
similar principle to the function point method. Project managers have to estimate the 
project parameters to four tables. These tables are as follows:

  • Unadjusted use case weight (UUCW)
  • Unadjusted actor weight (UAW)
  • Technical complexity factor (TCF)
  • Environmental complexity factor (ECF)
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Unadjusted use case weight

The UCP method includes three categories for use case classification, which concern the 
use case complexity of the developed system. All the categories with weights are pre-
sented in Table 1. The influence of actor classification (UCW) are assessed by summing 
the number of use case with corresponding weights, see the Eq. 1.

where C ∈ {simple, average, complex} as can be seen in Table 1.

Unadjusted actor weight

The UCP method includes three categories for actor classification, which concern the 
actor complexity of the developed system. All the categories with weights are presented 
in Table  2. The influence of actor classification (UAW) are assessed by summing the 
number of actors with corresponding weights, see the Eq. 2.

where C ∈ {simple, average, complex} as can be seen in Table 2.

Technical complexity factor

The UCP method includes 13 technical factors, which concern the technical complexity 
of the developed system. All the technical factors are presented in Table 3. The influence 
of technical complexity factors (TCF) are assessed by assigning a value from 0 to 5 to 
each of them. This value is multiplied by a weight of a factor and totaled, see the Eq. 3.

Environmental complexity factor

The UCP method includes 8 environmental factors, which concern the environmen-
tal complexity of the developed system. All the environmental factors are presented in 

(1)UUCW =
∑

i∈C

uClassification(c) ∗ uWeight(c),

(2)UAW =
∑

i∈C

aClassification(c) ∗ aWeight(c),

(3)TCF = 0.6+

(

0.01 ∗

13
∑

i=1

Valuei ∗Weighti

)

Table 1 UCP table for estimation unadjusted use case weight

Use case classification No. of transactions Weight

Simple 1–3 transactions 5

Average 4–7 transactions 10

Complex 8 or more transactions 15

Table 2 UCP table for actor classification

Actor classification Weight

Simple 1

Average 2

Complex 3
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Table 4. The influence of environmental complexity factors (ECF) are assessed by assign-
ing a value from 0 to 5 to each of them. This value is multiplied by a weight of a factor 
and totaled, see the Eq. 4.

Final equations

The Eq. 5, is used for the calculation of the number of use case points. This number of 
use case points then has to be multiplied by productivity factor in order to obtain the 
effort estimation result, i.e., Eq. 6. This productivity factor was chosen by Karner (1993), 
and was set to default value 20 h per UCP. The calibration of use case points will be per-
formed by replacing the Karner’s equation for new model. This new model will be built 
by analytical programming method.

(4)ECF = 1.4 +

(

−0.03 ∗

8
∑

i=1

Valuei ∗Weighti

)

(5)UCP = (UUCW +UAW ) ∗ TCF ∗ ECF

(6)EE = UCP ∗ PF

Table 3 UCP table for technical factor specification

Factor Description Weight

T1 Distributed system 2.0

T2 Response time/performance objectives 1.0

T3 End-user efficiency 1.0

T4 Internal processing complexity 1.0

T5 Code re-usability 1.0

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability to other platforms 2.0

T9 System maintenance 1.0

T10 Concurrent/parallel processing 1.0

T11 Security features 1.0

T12 Access for third parties 1.0

T13 End user training 1.0

Table 4 UCP table for environmental factor specification

Factor Description Weight

E1 Familiarity with development process used 1.5

E2 Application experience 0.5

E3 Object-oriented experience of team 1.0

E4 Lead analyst capability 0.5

E5 Motivation of the team 1.0

E6 Stability of requirements 2.0

E7 Part-time staff −1.0

E8 Difficult programming language −1.0
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Optimization tools

In this research, we use analytical programming method with differential evolution algo-
rithm to calibrate use case points method.

Analytical programming

Analytical programming (AP), is a symbolic regression method. The core of analytical 
programming is a set of functions and operands. These mathematical objects are used 
for the synthesis of a new function. Every function in the analytical programming set 
core has its own varying number of parameters. The functions are sorted according to 
these parameters into general function sets (GFS). For example, GFS1par contains func-
tions that have only 1 parameter—e.g., sin(), cos(), or other functions. AP must be used 
with any evolutionary algorithm that consists of a population of individuals for its run 
(Zelinka et al. 2011; Oplatkova et al. 2013). In this paper, Differential evolution (DE) is 
used as an analytical programming evolutionary algorithm.

The function of analytical programming can be seen in Fig. 1. In this case, the evo-
lutionary algorithm is a differential evolution. The initial population is generated using 
differential evolution. This population, which must consist of natural numbers, is used 
for analytical programming purposes. The analytical programming then constructs the 
function on the basis of this population. This function is evaluated by its fitness function. 
If the termination condition is met, then the algorithm ends. If the condition is not met, 
then differential evolution creates a new population through the mutation and recom-
bination processes. The whole process continues with the new population. At the end 

Fig. 1 Scheme of analytical programming with differential evolution algorithm
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of the analytical programming process, it is assumed that one has a function that is the 
optimal solution for the given task.

Differential evolution

Differential evolution is an optimisation algorithm introduced by Storn and Price (1995). 
This optimisation method is an evolutionary algorithm based on population, muta-
tion and recombination. Differential evolution is easy to implement and has only four 
parameters which need to be set. The parameters are: generations, NP, F and Cr. The 
generations parameter determines the number of generations; the NP parameter is the 
population size; the F parameter is the weighting factor; and the Cr parameter is the 
crossover probability (Storn 1996). In this research, the differential evolution is used as 
an analytical programming engine.

The fitness function

The fitness function is a mathematical formula that assesses the appropriateness of the 
solution of a given task. The selection of the appropriate fitness function is one of the 
most important tasks in designing an evolutionary process (Harman and Jones 2001). 
In the case of this study, the prediction accuracy measurements are used as fitness func-
tions. These measurements are commonly used for the evaluation of the predictive 
model. It is assumed that this use of predictive accuracy measurements allows one to 
determine the behaviour of different fitness functions. These knowledge will be impor-
tant for future research.

Related work
Some work has been done to enhance the effort estimation based on the use case points 
method. These enhancements cover the review and calibrating the productivity factor 
such as the work of Subriadi and Ningrum (2014). Another enhancement could be the 
construction investigation and simplification of the use case points method presented by 
Ochodek et al. (2011). The recent work of Silhavy et al. (2014) suggest a new approach 
“automatic complexity estimation based on requirements”, which is partly based on use 
case points method. Or using fuzzy inference system approach to improve accuracy of 
the use case points method (Nassif et al. 2011). Surveys such as that conducted by Kitch-
enham et al. (2001), have shown that MMRE measures the spread (i.e. standard devia-
tion). Therefore, this measurement is not suitable for accuracy predictions. The same 
study also showed that Pred(25) is a measurement of Kurtosis. Thus far, several stud-
ies such as Burgess et al. (2001), Chavoya et al. (2013) and Chavoya et al. (2013) have 
tested the efficiency of using the genetic programming method for more accurate effort 
estimation. In 2010, Ferrucci et al. (2010) published a paper in which they used a sim-
ilar principle to assess accuracy by using different fitness functions. The authors used 
genetic programming and the function point method for their research. Genetic pro-
gramming can suffer on bloat effect and constant resolving. In this research study on the 
other hand, a combination of analytical programming and the use case points method 
were used. There is no bloat effect in analytical programming because model is built by 
giving the length of the model. The problem of constant resolving can be solve by meta-
evolution or non-linear fitting, e.g., Levenberg-Marquardt algorithm.
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Problem statement
The overall research question to be answered within the study is whether there is a possibility 
to outperformed the Karner’s equation by analytical programming method and is there a fit-
ness function which outperforms the other fitness functions. This section presents the design 
of the research questions we carried out to get an insight in the use of analytical program-
ming for effort estimation. The research questions of our study can be outlined as follows:

  • RQ-1 Comparing the estimates achieved by applying analytical programming with the 
estimates obtained by standard use case points method equation.

  • RQ-2 Analysing the impact of different fitness functions on the accuracy of the estima-
tion models built with analytical programming.

The first research question (RQ-1) aims to get an insight on the estimation accuracy of 
analytical programming and understand the actual effectiveness of this technique with 
respect to the estimates by standard use case points method. For this reason, we first 
calibrate the UCP equation to produce the best estimates. Then, we try to outperformed 
this estimates by the method of analytical programming. The same process was carried 
out for standard calibration of UCP method. To address research question (RQ-2) we 
experimented with ten different fitness functions as reported and discussed in experi-
ment planning section. To asses the performance of fitness function we used descriptive 
statistics and Wilcox signed rank test.

Experiment planning
The proposed experiment can be seen in the Fig. 2. The process begins with a cycle that 
loops through the number of used fitness functions. In this case, there are ten fitness 
functions. Ten different seeds were used to assess the reliability of the proposed experi-
ment. In the data preparation loop, the seed was used to split the dataset into to two 
distinct sets. The dataset was split into the ratio of 66  % (i.e., training set) and 33  % (i.e. 
testing set). The dataset is depicted in Table 5. Then, there is a third loop that runs 10 
times. In this loop, the differential evolution process starts to generate an initial popula-
tion. Analytical programming then uses this initial population to synthesise a new func-
tion. After that, the new function is evaluated by the one of the selected fitness functions. 
If the termination condition is met, one can assume that one has an optimal predictive 
model, and this model is then evaluated by the calculation of the least absolute deviation 
(LAD) on the testing set. Then, the results are saved to file for further analysis. It is nec-
essary to note that 10 different seeds are used for every of 10 models, as well as one of 
the 10 fitness functions. Thus, we have a total of 10 × 10 × 10 solutions.

Dataset

The data for this study was collected using document reviews. The use case points 
method dataset was obtained from Poznan University of Technology (Ochodek et  al. 
2011) and from Subriadi’s paper (Subriadi and Ningrum 2014).

Table 5 displays the use case points method data from 24 projects. Only the use case 
points method data with transitions were utilized in this paper in the case of the Poznan 
University of Technology dataset. There are 5 values for each software project: UUCW, 
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UAW, TCF, ECF and actual effort. Software projects 1–14 are from Poznan University of 
Technology. The rest are from Subriadi’s paper. As can be seen Subriadi’s data are quite 
consistent in actual effort. The possible reason is that these projects are related to one 
context, respectively linked to the web development software projects. The distribution 
of actual effort of this dataset can be seen on Fig. 3.

Table 6 shows the analytical programming set-up. The number of leafs (functions built 
by analytical programming can be seen as trees) was set at 30, which can be recognized 
as a relatively high value. However, one needs to find the model that will be more accu-
rate than the Karner’s model. There is no need to generate short and easily memorable 
model, but rather, model that will be more accurate.

Table 7 shows the set-up of differential evolution. The best set-up of differential evolu-
tion is the subject of further research.

Fitness functions

The new model built by the analytical programming method contains the following 
parameters: UUCW, UAW, TCF and ECF. There is no force applied to the analytical pro-
gramming that the models built by the analytical programming method have to contain 
all of these parameters. Ten different fitness functions (i.e., prediction accuracy meas-
urements) were applied in this research.

Fig. 2 Diagram of proposed experiment
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Table 5 Data used for effort estimation

ID UUCW UAW TCF ECF Actual effort 
(man/h)

1 195 12 0.780 0.780 3037

2 80 10 0.750 0.810 1917

3 75 6 0.900 1.050 1173

4 130 9 0.850 0.890 742

5 85 12 0.820 0.790 614

6 50 9 0.850 0.880 492

7 50 6 0.780 0.510 277

8 305 14 0.940 1.020 3593

9 85 12 1.030 0.800 1681

10 130 12 0.710 0.730 1344

11 80 9 1.050 0.950 1220

12 70 12 0.780 0.790 720

13 30 4 0.960 0.960 514

14 100 15 0.900 0.910 397

15 355 15 1.125 0.770 3684

16 145 18 1.080 0.770 1980

17 325 12 1.095 0.935 3950

18 90 6 1.085 1.085 1925

19 125 9 1.025 0.980 2175

20 120 9 1.115 0.995 2226

21 200 12 1.000 0.920 2640

22 175 9 0.950 0.920 2568

23 245 12 0.890 1.190 3042

24 140 6 0.965 0.755 1696
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Fig. 3 The distribution of actual efforts
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Table 8 shows the prediction accuracy measurements used. These equations were used 
for the learning algorithm. Standard accuracy measurements in the software engineering 
field—like MMRE or Pred(25) were chosen. Moreover, accuracy measurements used for 
general purposes—like the LAD or MSE methods were also chosen. For equations from 1 
to 8; when the equation result is closer to zero, then the accuracy of the proposed model 
is higher. On the other hand, this condition does not apply for Eqs. 9 and 10—namely, the 

Table 6 Set-up of analytical programming

Parameter Value

Number of leafs 30

GFS-functions Plus, subtract, divide, multiply, tan, sin, cos

GFS-constants UUCW, UAW, TCF, ECF, K

Table 7 Set-up of differential evolution

Parameter Value

NP 40

Generations 60

F 0.7

Cr 0.4

Table 8 Used prediction accuracy measures

ID Name Equations

1 Least absolute deviations (LAD)
LAD =

n
∑

i=1

∣

∣yi − ŷi
∣

∣

2 Mean absolute error (MAE)
MAE = 1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣

3 Mean squared error (MSE)
MSE = 1

n

n
∑

i=1

(

yi − ŷi
)2

4 Root mean squared error (RMSE)
RMSE =

√

1
n

n
∑

i=1

(

yi − ŷi
)2

5 Mean magnitude of relative error (MMRE)
MMRE = 1

n

n
∑

i=1

|yi−ŷi|
yi

6 Median magnitude of relative error (MdMRE)
MdMRE = median

(

1
n

n
∑

i=1

|yi−ŷi|
yi

)

7 MMRE relative to the estimate (MEMRE)
MEMRE = 1

n

n
∑

i=1

|yi−ŷi|
ŷi

8 MdMRE relative to the estimate (MdEMRE)
MdEMRE = median

(

1
n

n
∑

i=1

|yi−ŷi |
ŷi

)

9 R squared (R2)
R2 = 1−

n
∑

i= 1

(yi−ŷi)
2

n
∑

i=1

(yi−ȳ)2

10 Prediction within 25 % Pred(25) Pred(25) = Number of projects, where (MRE≤0.25)

Number of projects
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R squared (R2) method and the prediction within 25  % Pred(25) method. The result of 
the R2 method ranges from 0 to 1, and the accuracy of the proposed model is higher when 
R2 is closer to 1. Likewise, the same conditions apply for Pred(25).

Results
In this section, we present the result of our study. Exploratory statistical analysis and 
hypothesis testing were utilized to describe research results. All the calculations was 
performed on testing dataset, which consist of 8 randomly chosen data from dataset. To 
obtain the average error for one project one need to divide the error by value 8.
Figure 4 provide Statistics for each fitness function. As can be seen on this graph, nearly 
all fitness functions have a median value about 4000 man/h. On this figure could be also 
seen a considerably worse statistical properties for MdEMRE, Pred25 and MdMRE. As 
can be notice nearly all fitness functions have a minimum value about 2500 man/h. The 
exact values can be seen in Table 9.

Table 9 provides the summary statistics for each fitness function. The minimum value 
of the minimum was calculated by MMRE, which is considerably lower then minim val-
ues of other fitness function. The most surprising aspect of the data is in the calculation 
of maximum value for MdMRE, MSE, LAD and MAE. These fitness functions does not 
reach the penalisation maximum. The penalisation maximum was set to 1,000,000 and 
in calculations for almost each equation was reached in about 1–2 %. The median value 
for every cost function is about 4000 man/h.

Figure 5 shows the median of predicted error on testing data for Eq. 5. As can be seen 
the optimal productivity factor for testing dataset is between 11 and 14. The productivity 
factor value of 20, which is widely used, produce median error of 7469 man/h. Minimum 
value is 3227 man/h, if the error was set to 11.8. The median value of 3227 man/h was 
used as a value which need to be outperformed to have better results than from standard 
UCP Eq. 5.

0
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Fitness function [−]

E
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 [m
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Fig. 4 Statistics for each fitness function (one box is calculated from 100 equations and for testing dataset)
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Optimal productivity factor

The optimal productivity factor was set according to Fig. 5. The minimum value is 3227 
man/h, if the productivity factor was set to 11.8. The Wilcox signed rank test for one 
sample was used to determine which fitness function have a location shift lower than 
3227 man/h. All calculation was performed on 95 % significance level.

Table 10 provides the results of Wilcox signed rank test for one sample. Every fitness 
function was tested on NULL hypothesis that this fitness function have lower true loca-
tion than 3227 man/h. The value of “True” means that NULL hypothesis was accepted. 
The value of “False” means that alternative hypothesis was accepted. None of the pro-
posed fitness functions have true location lower than 3227 man/h.

Table 11 show the probability that fitness function calculate equation which is below 
the standard UCP equation median. As can be seen on this table, the best probability is 

Table 9 Summary statistics for each prediction accuracy measure

Fitness function Values are calculated by least absolute deviation (LAD) (man/h)

Min. 1st Qu. Median Mean 3rd Qu. Max.

MMRE 1264 3556 3966 14,366 4652 1,000,000

MdMRE 1815 3579 4109 4740 6019 12,975

MEMRE 1844 3483 3838 14,136 4368 1,000,000

MdEMRE 1790 3771 4514 15,481 6038 1,000,000

MSE 1813 3268 3769 3921 4106 9613

RMSE 1810 3284 3775 24,047 4533 1,000,000

LAD 1816 3454 3805 12,627 4337 475,584

MAE 1728 3599 3874 4094 4380 7842

R2 1810 3452 3794 24,577 4687 1,000,000

Pred(25) 1815 3758 4107 24,774 5785 1,000,000
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Fig. 5 Median statistics of prediction error for standard UCP equation on testing dataset
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provided by RMSE fitness function. The Pred(25) fitness function show the worst result 
only 9 equations from 100 equations are below 3227 man/h.

Standard productivity factor

The standard productivity factor was set to 20. The median value for this productivity 
factor is 7469 man/h according to Fig. 5. The Wilcox signed rank test for one sample was 
used to determine which fitness function have a location shift lower than 7469 man/h. 
All calculation was performed on 95 % significance level.

Table 12 provides the results of Wilcox signed rank test for one sample. Every fitness 
function was tested on NULL hypothesis that this fitness function have lower true loca-
tion than 7469 man/h. The value of “True” means that NULL hypothesis was accepted. 
The value of “False” means that alternative hypothesis was accepted. All fitness functions 
have true location lower than 7469 man/h.

Table 13 show the probability that fitness function calculate equation which is below 
the standard UCP equation median. As can be seen on this table, the best probability 
is provided by MSE, MAE and MMRE fitness functions. The MdMRE fitness function 
show the worst result 81 equations from 100 equations are below 7469 man/h.

Table 10 Hypothesis testing for optimal productivity factor

Fitness function p value NULL hypothesis

MMRE 9.29E−12 False

MdMRE 7.50E−14 False

MEMRE 2.98E−11 False

MdMRE 7.40E−16 False

MSE 5.26E−08 False

RMSE 9.56E−10 False

LAD 1.42E−10 False

MAE 4.24E−10 False

R2 5.27E−11 False

Pred(25) 1.56E−14 False

Table 11 The probability that fitness function calculate equation which is below the opti-
mal standard UCP equation median

Fitness function Probability (%)

MMRE 13

MdMRE 14

MEMRE 19

MdEMRE 10

MSE 23

RMSE 24

LAD 20

MAE 19

R2 21

Pred(25) 9
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Threats to validity
It is widely recognised that several factors can bias the validity of empirical studies. 
Therefore, our results are not devoid of validity threats.

External validity

External validity questions whether the results can be generalized outside the specifi-
cations of a study (Milicic and Wohlin 2004). Specific measures were taken to support 
external validity; for example, a random sampling technique was used to draw samples 
from the population in order to conduct experiments. Likewise, the statistical tests used 
in this paper, they are also quite standard. We note that the Wilcoxon method used in 
this paper features prominently. We used a relatively small size dataset, which could 
be a significant threat to external validity. Also the employed dataset contains projects 
related to one context that might be characterised by some specific properties. Simi-
larly, we do not see how a smaller or larger dataset size should yield reliable results. It 
is widely recognised that, SEE datasets are neither easy to find nor easy to collect. This 
represents an important external validity threat that can be mitigated only replicating 
the study on another datasets. Another validity issue to mention is that either analytical 
programming nor differential evolution has been exhausted via fine-tuning. Therefore, 

Table 12 Hypothesis testing for standard productivity factor

Fitness function p value NULL hypothesis

MMRE 1 True

MdMRE 1 True

MEMRE 1 True

MdEMRE 1 True

MSE 1 True

RMSE 1 True

LAD 1 True

MAE 1 True

R2 1 True

Pred(25) 1 True

Table 13 The probability that  fitness function calculate equation which is below  the 
standard UCP equation median

Fitness function Probability (%)

MMRE 97

MdMRE 95

MEMRE 95

MdEMRE 81

MSE 97

RMSE 94

LAD 96

MAE 97

R2 94

Pred(25) 86



Page 15 of 17Urbanek et al. SpringerPlus  (2015) 4:778 

future work is required to exhaust all the parameters of these methods to use their best 
versions. Threat to external validity could be also the implementation of the analytical 
programming and differential evolution algorithms. Although we used standard imple-
mentations, there is considerable amount of code, which could be the threat to validity.

Internal validity

Internal validity questions to what extent the cause-effect relationship between depend-
ent and independent variables hold (Alpaydın 2014). This paper used random sampling 
technique to assess methods. An alternate experimental condition would be to use 
N-way cross-validation. In theory, not using cross-validation is a threat to the validity 
of our results since we did not check if our results were stable across both random sam-
pling technique and cross-validation.

Discussion
The study started out with a goals of answering the overall research questions (RQ-1) of 
whether analytical programming technique outperformed the standard UCP equation. 
This question is answered in the result section. If the UCP method is optimized, via cali-
brating weight or via production factor, the analytical programming method is not effi-
cient enough to outperform standard UCP equation. The evidence can be seen in result 
section in Table 10. As can be seen in this table, there is no fitness function with less 
median value then the standard UCP equation has on the significance level 95 %. On the 
other hand, if the productivity factor and the whole UCP is set to default value, there is 
a possibility, that model built by analytical programming outperform the standard UCP 
equation with any of proposed fitness functions.

There is also a another question (RQ-2), which must be answered. The results for 
answering this question is not as conclusive as we wanted to. For answering this question 
we need to study Tables 9, 11 and 13 from result section very carefully. From Table 9, can 
be seen that, MSE have the lowest median value as well as mean value and 3rd. quartile 
from the all of fitness functions. The maximum values, which can be seen in this table are 
caused by penalisation process of the evolution. With this in mind, we used median for 
comparison between fitness functions. The overall worst measurement result, measured 
by the median (MdMRE, MdEMRE), could be in its sensitivity to extreme values. The 
median is considered as an insensitive measure of centrality on data containing extreme 
values. Therefore, these measurements could be less suitable for the fitness functions. 
As can be seen in Tables 11 and 13, the MSE have a higher probability, that this fitness 
function built a model, which outperformed the standard UCP equation. If the standard 
productivity factor is used there is a 97 % probability, that MSE built a model more accu-
rate then standard UCP equation. If the productivity factor is optimized there is a 23 % 
probability that MSE fitness function built a model, which outperformed standard UCP 
equation. The minimum from the whole study was calculated by MMRE fitness function. 
Nevertheless this minimum value was marked as a outlier as can be seen in Fig. 4.

Conclusion
The current study found that the prediction accuracy measurement, which measures the 
median, performs worse than those that measure the mean or total value. Surprisingly, 
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the MMRE measurement, which has raised a lot of controversy in the effort estima-
tion field, could be considered as an average suitable fitness function. The results also 
revealed that fitness functions have a reasonably influence on the calculated predictions. 
Analytical programming method can be seen as a viable method for effort estimation. 
However, this is true if and only if the UCP method is not optimized. The MSE fitness 
function could be seen as the best fitness function due to her statistical properties. The 
findings of this study have a number of important implications for future research of 
the using of analytical programming as an effort estimation technique. More research 
is required to determine the efficiency of analytical programming for this task. It would 
be interesting to compare Karner’s model with one of the model built by analytical 
programming.
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