
Prediction accuracy measurements as a
fitness function for software effort estimation
Tomas Urbanek*  , Zdenka Prokopova, Radek Silhavy and Veronika Vesela

Background
Effort estimation is defined as the activity of predicting the amount of effort required to
complete a development of software project (Keung 2008). It is necessary to predict the
effort estimation in the early stages of the software development cycle. In the best case,
estimates should be calculated after a requirement analysis (Karner 1993).

Effort estimation methods can be divided into two major groups algorithmic meth-
ods and non-algorithmic methods. Algorithmic methods carries mathematical formula,
which is regression model of historical data. The most famous methods are COCOMO
(Boehm 1984), FP (Atkinson and Shepperd 1994) and UCP (Karner 1993). But there is a
lot of algorithmic methods. To the second category belong methods like expert judge-
ment and analogy based methods. The most famous methods is Delphi (Rowe and
Wright 1999).

The use of artificial intelligence may be a promising way to improve the accuracy of
effort estimations. Accurate and consistent estimates are crucial in software project
management. These estimates are used for the effective planning, monitoring and con-
trolling of a software development cycle. Project managers may use these estimates to
arrive at better management decisions. Software engineering is a complicated process

Abstract 

This paper evaluates the usage of analytical programming and different fitness func-
tions for software effort estimation. Analytical programming and differential evolution
generate regression functions. These functions are evaluated by the fitness function
which is part of differential evolution. The differential evolution requires a proper
fitness function for effective optimization. The problem is in proper selection of the
fitness function. Analytical programming and different fitness functions were tested
to assess insight to this problem. Mean magnitude of relative error, prediction 25 %,
mean squared error (MSE) and other metrics were as possible candidates for proper
fitness function. The experimental results shows that means squared error performs
best and therefore is recommended as a fitness function. Moreover, this work shows
that analytical programming method is viable method for calibrating use case points
method. All results were evaluated by standard approach: visual inspection and statisti-
cal significance.

Keywords:  Effort estimation, Software engineering, Use case points, Analytical
programming, Differential evolution, Prediction accuracy measures

Open Access

© 2015 Urbanek et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Urbanek et al. SpringerPlus (2015) 4:778
DOI 10.1186/s40064-015-1555-9

*Correspondence:
turbanek@fai.utb.cz
Department of Computer
and Comunication systems,
Tomas Bata University in Zlin,
Nad Stranemi 4511, Zlin,
Czech Republic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional repository of Tomas Bata University Library

https://core.ac.uk/display/43638995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-6307-2824
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1555-9&domain=pdf

Page 2 of 17Urbanek et al. SpringerPlus (2015) 4:778

because there are a lot of factors—for example, the size of the development team, the
actual requirements, the programming language used, as well as other factors. These
factors may have a considerably impact on the accuracy of the effort estimation process.

In this research study, the analytical programming method was used to improve the
use case points method. The Use Case Points method is widely used for effort estima-
tion in software engineering. The main benefit of this method is that it provides effort
estimates at a relatively early stage in the software development cycle. Nevertheless,
this method is fully dependent on the human factor since the project manager has to
estimate the project parameters and set the weights. There is a low probability that two
project managers will perform these estimates exactly alike. Therefore, this research
uses artificial intelligence to account for this dependency on the human factor. At the
same time, this method is based on straightforward computation and allows a wide
range of calibration—which can be achieved by setting the weights. The combination
of analytical programming and the use case points method is used to derive early and
more accurate effort estimation results. Analytical programming—as a symbolic regres-
sion technique, could be used to create a new model for the use case points method. An
appropriate fitness function is vital for this task (Harman and Jones 2001). The fitness
function evaluates solutions and decides whether the solution is acceptable—or not, for
further processing. There are a large number of prediction accuracy measurement meth-
ods for assessing the accuracy of a predictive model. Thus, in this field, one of the main
obstacles is to report the accuracy correctly. MMRE or Pred(25) are mainly used for the
evaluation of the statistical properties of predictive models in the software engineering
field. Currently, the MMRE method is being criticised by some experts in this field—e.g.,
in Myrtveit et al. (2003), Shepperd et al. (2000) or Kitchenham et al. (2001); however, the
method is de-facto considered as a standard for reporting the suitability of a proposed
model. In this study, prediction accuracy measurements will be used as fitness functions
for the analytical programming.

The Sect. “Related work” of this paper summarise the related work in this field. Section
“Problem statement” present the research questions for this work. Section “Experiment
planning” describes the methodology used for this study. Section “Results” is devoted to
the results of this work. In the next section you can see the limitations of this study. And
finally, Sect. “Discussion” present discussion and conclude this paper.

The use case points method: short description

This effort estimation method was presented in 1993 by Karner (1993). It is based on a
similar principle to the function point method. Project managers have to estimate the
project parameters to four tables. These tables are as follows:

• • Unadjusted use case weight (UUCW)
• • Unadjusted actor weight (UAW)
• • Technical complexity factor (TCF)
• • Environmental complexity factor (ECF)

Page 3 of 17Urbanek et al. SpringerPlus (2015) 4:778

Unadjusted use case weight

The UCP method includes three categories for use case classification, which concern the
use case complexity of the developed system. All the categories with weights are pre-
sented in Table 1. The influence of actor classification (UCW) are assessed by summing
the number of use case with corresponding weights, see the Eq. 1.

where C ∈ {simple, average, complex} as can be seen in Table 1.

Unadjusted actor weight

The UCP method includes three categories for actor classification, which concern the
actor complexity of the developed system. All the categories with weights are presented
in Table 2. The influence of actor classification (UAW) are assessed by summing the
number of actors with corresponding weights, see the Eq. 2.

where C ∈ {simple, average, complex} as can be seen in Table 2.

Technical complexity factor

The UCP method includes 13 technical factors, which concern the technical complexity
of the developed system. All the technical factors are presented in Table 3. The influence
of technical complexity factors (TCF) are assessed by assigning a value from 0 to 5 to
each of them. This value is multiplied by a weight of a factor and totaled, see the Eq. 3.

Environmental complexity factor

The UCP method includes 8 environmental factors, which concern the environmen-
tal complexity of the developed system. All the environmental factors are presented in

(1)UUCW =
∑

i∈C

uClassification(c) ∗ uWeight(c),

(2)UAW =
∑

i∈C

aClassification(c) ∗ aWeight(c),

(3)TCF = 0.6+

(

0.01 ∗

13
∑

i=1

Valuei ∗Weighti

)

Table 1  UCP table for estimation unadjusted use case weight

Use case classification No. of transactions Weight

Simple 1–3 transactions 5

Average 4–7 transactions 10

Complex 8 or more transactions 15

Table 2  UCP table for actor classification

Actor classification Weight

Simple 1

Average 2

Complex 3

Page 4 of 17Urbanek et al. SpringerPlus (2015) 4:778

Table 4. The influence of environmental complexity factors (ECF) are assessed by assign-
ing a value from 0 to 5 to each of them. This value is multiplied by a weight of a factor
and totaled, see the Eq. 4.

Final equations

The Eq. 5, is used for the calculation of the number of use case points. This number of
use case points then has to be multiplied by productivity factor in order to obtain the
effort estimation result, i.e., Eq. 6. This productivity factor was chosen by Karner (1993),
and was set to default value 20 h per UCP. The calibration of use case points will be per-
formed by replacing the Karner’s equation for new model. This new model will be built
by analytical programming method.

(4)ECF = 1.4 +

(

−0.03 ∗

8
∑

i=1

Valuei ∗Weighti

)

(5)UCP = (UUCW +UAW) ∗ TCF ∗ ECF

(6)EE = UCP ∗ PF

Table 3  UCP table for technical factor specification

Factor Description Weight

T1 Distributed system 2.0

T2 Response time/performance objectives 1.0

T3 End-user efficiency 1.0

T4 Internal processing complexity 1.0

T5 Code re-usability 1.0

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability to other platforms 2.0

T9 System maintenance 1.0

T10 Concurrent/parallel processing 1.0

T11 Security features 1.0

T12 Access for third parties 1.0

T13 End user training 1.0

Table 4  UCP table for environmental factor specification

Factor Description Weight

E1 Familiarity with development process used 1.5

E2 Application experience 0.5

E3 Object-oriented experience of team 1.0

E4 Lead analyst capability 0.5

E5 Motivation of the team 1.0

E6 Stability of requirements 2.0

E7 Part-time staff −1.0

E8 Difficult programming language −1.0

Page 5 of 17Urbanek et al. SpringerPlus (2015) 4:778

Optimization tools

In this research, we use analytical programming method with differential evolution algo-
rithm to calibrate use case points method.

Analytical programming

Analytical programming (AP), is a symbolic regression method. The core of analytical
programming is a set of functions and operands. These mathematical objects are used
for the synthesis of a new function. Every function in the analytical programming set
core has its own varying number of parameters. The functions are sorted according to
these parameters into general function sets (GFS). For example, GFS1par contains func-
tions that have only 1 parameter—e.g., sin(), cos(), or other functions. AP must be used
with any evolutionary algorithm that consists of a population of individuals for its run
(Zelinka et al. 2011; Oplatkova et al. 2013). In this paper, Differential evolution (DE) is
used as an analytical programming evolutionary algorithm.

The function of analytical programming can be seen in Fig. 1. In this case, the evo-
lutionary algorithm is a differential evolution. The initial population is generated using
differential evolution. This population, which must consist of natural numbers, is used
for analytical programming purposes. The analytical programming then constructs the
function on the basis of this population. This function is evaluated by its fitness function.
If the termination condition is met, then the algorithm ends. If the condition is not met,
then differential evolution creates a new population through the mutation and recom-
bination processes. The whole process continues with the new population. At the end

Fig. 1  Scheme of analytical programming with differential evolution algorithm

Page 6 of 17Urbanek et al. SpringerPlus (2015) 4:778

of the analytical programming process, it is assumed that one has a function that is the
optimal solution for the given task.

Differential evolution

Differential evolution is an optimisation algorithm introduced by Storn and Price (1995).
This optimisation method is an evolutionary algorithm based on population, muta-
tion and recombination. Differential evolution is easy to implement and has only four
parameters which need to be set. The parameters are: generations, NP, F and Cr. The
generations parameter determines the number of generations; the NP parameter is the
population size; the F parameter is the weighting factor; and the Cr parameter is the
crossover probability (Storn 1996). In this research, the differential evolution is used as
an analytical programming engine.

The fitness function

The fitness function is a mathematical formula that assesses the appropriateness of the
solution of a given task. The selection of the appropriate fitness function is one of the
most important tasks in designing an evolutionary process (Harman and Jones 2001).
In the case of this study, the prediction accuracy measurements are used as fitness func-
tions. These measurements are commonly used for the evaluation of the predictive
model. It is assumed that this use of predictive accuracy measurements allows one to
determine the behaviour of different fitness functions. These knowledge will be impor-
tant for future research.

Related work
Some work has been done to enhance the effort estimation based on the use case points
method. These enhancements cover the review and calibrating the productivity factor
such as the work of Subriadi and Ningrum (2014). Another enhancement could be the
construction investigation and simplification of the use case points method presented by
Ochodek et al. (2011). The recent work of Silhavy et al. (2014) suggest a new approach
“automatic complexity estimation based on requirements”, which is partly based on use
case points method. Or using fuzzy inference system approach to improve accuracy of
the use case points method (Nassif et al. 2011). Surveys such as that conducted by Kitch-
enham et al. (2001), have shown that MMRE measures the spread (i.e. standard devia-
tion). Therefore, this measurement is not suitable for accuracy predictions. The same
study also showed that Pred(25) is a measurement of Kurtosis. Thus far, several stud-
ies such as Burgess et al. (2001), Chavoya et al. (2013) and Chavoya et al. (2013) have
tested the efficiency of using the genetic programming method for more accurate effort
estimation. In 2010, Ferrucci et al. (2010) published a paper in which they used a sim-
ilar principle to assess accuracy by using different fitness functions. The authors used
genetic programming and the function point method for their research. Genetic pro-
gramming can suffer on bloat effect and constant resolving. In this research study on the
other hand, a combination of analytical programming and the use case points method
were used. There is no bloat effect in analytical programming because model is built by
giving the length of the model. The problem of constant resolving can be solve by meta-
evolution or non-linear fitting, e.g., Levenberg-Marquardt algorithm.

Page 7 of 17Urbanek et al. SpringerPlus (2015) 4:778

Problem statement
The overall research question to be answered within the study is whether there is a possibility
to outperformed the Karner’s equation by analytical programming method and is there a fit-
ness function which outperforms the other fitness functions. This section presents the design
of the research questions we carried out to get an insight in the use of analytical program-
ming for effort estimation. The research questions of our study can be outlined as follows:

• • RQ-1 Comparing the estimates achieved by applying analytical programming with the
estimates obtained by standard use case points method equation.

• • RQ-2 Analysing the impact of different fitness functions on the accuracy of the estima-
tion models built with analytical programming.

The first research question (RQ-1) aims to get an insight on the estimation accuracy of
analytical programming and understand the actual effectiveness of this technique with
respect to the estimates by standard use case points method. For this reason, we first
calibrate the UCP equation to produce the best estimates. Then, we try to outperformed
this estimates by the method of analytical programming. The same process was carried
out for standard calibration of UCP method. To address research question (RQ-2) we
experimented with ten different fitness functions as reported and discussed in experi-
ment planning section. To asses the performance of fitness function we used descriptive
statistics and Wilcox signed rank test.

Experiment planning
The proposed experiment can be seen in the Fig. 2. The process begins with a cycle that
loops through the number of used fitness functions. In this case, there are ten fitness
functions. Ten different seeds were used to assess the reliability of the proposed experi-
ment. In the data preparation loop, the seed was used to split the dataset into to two
distinct sets. The dataset was split into the ratio of 66 % (i.e., training set) and 33 % (i.e.
testing set). The dataset is depicted in Table 5. Then, there is a third loop that runs 10
times. In this loop, the differential evolution process starts to generate an initial popula-
tion. Analytical programming then uses this initial population to synthesise a new func-
tion. After that, the new function is evaluated by the one of the selected fitness functions.
If the termination condition is met, one can assume that one has an optimal predictive
model, and this model is then evaluated by the calculation of the least absolute deviation
(LAD) on the testing set. Then, the results are saved to file for further analysis. It is nec-
essary to note that 10 different seeds are used for every of 10 models, as well as one of
the 10 fitness functions. Thus, we have a total of 10 × 10 × 10 solutions.

Dataset

The data for this study was collected using document reviews. The use case points
method dataset was obtained from Poznan University of Technology (Ochodek et al.
2011) and from Subriadi’s paper (Subriadi and Ningrum 2014).

Table 5 displays the use case points method data from 24 projects. Only the use case
points method data with transitions were utilized in this paper in the case of the Poznan
University of Technology dataset. There are 5 values for each software project: UUCW,

Page 8 of 17Urbanek et al. SpringerPlus (2015) 4:778

UAW, TCF, ECF and actual effort. Software projects 1–14 are from Poznan University of
Technology. The rest are from Subriadi’s paper. As can be seen Subriadi’s data are quite
consistent in actual effort. The possible reason is that these projects are related to one
context, respectively linked to the web development software projects. The distribution
of actual effort of this dataset can be seen on Fig. 3.

Table 6 shows the analytical programming set-up. The number of leafs (functions built
by analytical programming can be seen as trees) was set at 30, which can be recognized
as a relatively high value. However, one needs to find the model that will be more accu-
rate than the Karner’s model. There is no need to generate short and easily memorable
model, but rather, model that will be more accurate.

Table 7 shows the set-up of differential evolution. The best set-up of differential evolu-
tion is the subject of further research.

Fitness functions

The new model built by the analytical programming method contains the following
parameters: UUCW, UAW, TCF and ECF. There is no force applied to the analytical pro-
gramming that the models built by the analytical programming method have to contain
all of these parameters. Ten different fitness functions (i.e., prediction accuracy meas-
urements) were applied in this research.

Fig. 2  Diagram of proposed experiment

Page 9 of 17Urbanek et al. SpringerPlus (2015) 4:778

Table 5  Data used for effort estimation

ID UUCW UAW TCF ECF Actual effort
(man/h)

1 195 12 0.780 0.780 3037

2 80 10 0.750 0.810 1917

3 75 6 0.900 1.050 1173

4 130 9 0.850 0.890 742

5 85 12 0.820 0.790 614

6 50 9 0.850 0.880 492

7 50 6 0.780 0.510 277

8 305 14 0.940 1.020 3593

9 85 12 1.030 0.800 1681

10 130 12 0.710 0.730 1344

11 80 9 1.050 0.950 1220

12 70 12 0.780 0.790 720

13 30 4 0.960 0.960 514

14 100 15 0.900 0.910 397

15 355 15 1.125 0.770 3684

16 145 18 1.080 0.770 1980

17 325 12 1.095 0.935 3950

18 90 6 1.085 1.085 1925

19 125 9 1.025 0.980 2175

20 120 9 1.115 0.995 2226

21 200 12 1.000 0.920 2640

22 175 9 0.950 0.920 2568

23 245 12 0.890 1.190 3042

24 140 6 0.965 0.755 1696

1000

2000

3000

4000

0 5 10 15 20 25

Project ID [−]

A
ct

ua
l E

ffo
rt

 [m
an

/h
ou

r]

Fig. 3  The distribution of actual efforts

Page 10 of 17Urbanek et al. SpringerPlus (2015) 4:778

Table 8 shows the prediction accuracy measurements used. These equations were used
for the learning algorithm. Standard accuracy measurements in the software engineering
field—like MMRE or Pred(25) were chosen. Moreover, accuracy measurements used for
general purposes—like the LAD or MSE methods were also chosen. For equations from 1
to 8; when the equation result is closer to zero, then the accuracy of the proposed model
is higher. On the other hand, this condition does not apply for Eqs. 9 and 10—namely, the

Table 6  Set-up of analytical programming

Parameter Value

Number of leafs 30

GFS-functions Plus, subtract, divide, multiply, tan, sin, cos

GFS-constants UUCW, UAW, TCF, ECF, K

Table 7  Set-up of differential evolution

Parameter Value

NP 40

Generations 60

F 0.7

Cr 0.4

Table 8  Used prediction accuracy measures

ID Name Equations

1 Least absolute deviations (LAD)
LAD =

n
∑

i=1

∣

∣yi − ŷi
∣

∣

2 Mean absolute error (MAE)
MAE = 1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣

3 Mean squared error (MSE)
MSE = 1

n

n
∑

i=1

(

yi − ŷi
)2

4 Root mean squared error (RMSE)
RMSE =

√

1
n

n
∑

i=1

(

yi − ŷi
)2

5 Mean magnitude of relative error (MMRE)
MMRE = 1

n

n
∑

i=1

|yi−ŷi|
yi

6 Median magnitude of relative error (MdMRE)
MdMRE = median

(

1
n

n
∑

i=1

|yi−ŷi|
yi

)

7 MMRE relative to the estimate (MEMRE)
MEMRE = 1

n

n
∑

i=1

|yi−ŷi|
ŷi

8 MdMRE relative to the estimate (MdEMRE)
MdEMRE = median

(

1
n

n
∑

i=1

|yi−ŷi |
ŷi

)

9 R squared (R2)
R2 = 1−

n
∑

i= 1

(yi−ŷi)
2

n
∑

i=1

(yi−ȳ)2

10 Prediction within 25 % Pred(25) Pred(25) = Number of projects, where (MRE≤0.25)

Number of projects

Page 11 of 17Urbanek et al. SpringerPlus (2015) 4:778

R squared (R2) method and the prediction within 25 % Pred(25) method. The result of
the R2 method ranges from 0 to 1, and the accuracy of the proposed model is higher when
R2 is closer to 1. Likewise, the same conditions apply for Pred(25).

Results
In this section, we present the result of our study. Exploratory statistical analysis and
hypothesis testing were utilized to describe research results. All the calculations was
performed on testing dataset, which consist of 8 randomly chosen data from dataset. To
obtain the average error for one project one need to divide the error by value 8.
Figure 4 provide Statistics for each fitness function. As can be seen on this graph, nearly
all fitness functions have a median value about 4000 man/h. On this figure could be also
seen a considerably worse statistical properties for MdEMRE, Pred25 and MdMRE. As
can be notice nearly all fitness functions have a minimum value about 2500 man/h. The
exact values can be seen in Table 9.

Table 9 provides the summary statistics for each fitness function. The minimum value
of the minimum was calculated by MMRE, which is considerably lower then minim val-
ues of other fitness function. The most surprising aspect of the data is in the calculation
of maximum value for MdMRE, MSE, LAD and MAE. These fitness functions does not
reach the penalisation maximum. The penalisation maximum was set to 1,000,000 and
in calculations for almost each equation was reached in about 1–2 %. The median value
for every cost function is about 4000 man/h.

Figure 5 shows the median of predicted error on testing data for Eq. 5. As can be seen
the optimal productivity factor for testing dataset is between 11 and 14. The productivity
factor value of 20, which is widely used, produce median error of 7469 man/h. Minimum
value is 3227 man/h, if the error was set to 11.8. The median value of 3227 man/h was
used as a value which need to be outperformed to have better results than from standard
UCP Eq. 5.

0

2500

5000

7500

MMRE MdMRE MEMRE MdEMRE MSE RMSE LAD MAE R2 Pred25

Fitness function [−]

E
rr

or
 [m

an
/h

ou
r]

Fig. 4  Statistics for each fitness function (one box is calculated from 100 equations and for testing dataset)

Page 12 of 17Urbanek et al. SpringerPlus (2015) 4:778

Optimal productivity factor

The optimal productivity factor was set according to Fig. 5. The minimum value is 3227
man/h, if the productivity factor was set to 11.8. The Wilcox signed rank test for one
sample was used to determine which fitness function have a location shift lower than
3227 man/h. All calculation was performed on 95 % significance level.

Table 10 provides the results of Wilcox signed rank test for one sample. Every fitness
function was tested on NULL hypothesis that this fitness function have lower true loca-
tion than 3227 man/h. The value of “True” means that NULL hypothesis was accepted.
The value of “False” means that alternative hypothesis was accepted. None of the pro-
posed fitness functions have true location lower than 3227 man/h.

Table 11 show the probability that fitness function calculate equation which is below
the standard UCP equation median. As can be seen on this table, the best probability is

Table 9  Summary statistics for each prediction accuracy measure

Fitness function Values are calculated by least absolute deviation (LAD) (man/h)

Min. 1st Qu. Median Mean 3rd Qu. Max.

MMRE 1264 3556 3966 14,366 4652 1,000,000

MdMRE 1815 3579 4109 4740 6019 12,975

MEMRE 1844 3483 3838 14,136 4368 1,000,000

MdEMRE 1790 3771 4514 15,481 6038 1,000,000

MSE 1813 3268 3769 3921 4106 9613

RMSE 1810 3284 3775 24,047 4533 1,000,000

LAD 1816 3454 3805 12,627 4337 475,584

MAE 1728 3599 3874 4094 4380 7842

R2 1810 3452 3794 24,577 4687 1,000,000

Pred(25) 1815 3758 4107 24,774 5785 1,000,000

6000

9000

12000

15000

5 10 15 20 25

Error rate [−]

M
ed

ia
n

of
 p

re
di

ct
ed

 e
rr

or
 [m

an
/h

ou
r]

Fig. 5  Median statistics of prediction error for standard UCP equation on testing dataset

Page 13 of 17Urbanek et al. SpringerPlus (2015) 4:778

provided by RMSE fitness function. The Pred(25) fitness function show the worst result
only 9 equations from 100 equations are below 3227 man/h.

Standard productivity factor

The standard productivity factor was set to 20. The median value for this productivity
factor is 7469 man/h according to Fig. 5. The Wilcox signed rank test for one sample was
used to determine which fitness function have a location shift lower than 7469 man/h.
All calculation was performed on 95 % significance level.

Table 12 provides the results of Wilcox signed rank test for one sample. Every fitness
function was tested on NULL hypothesis that this fitness function have lower true loca-
tion than 7469 man/h. The value of “True” means that NULL hypothesis was accepted.
The value of “False” means that alternative hypothesis was accepted. All fitness functions
have true location lower than 7469 man/h.

Table 13 show the probability that fitness function calculate equation which is below
the standard UCP equation median. As can be seen on this table, the best probability
is provided by MSE, MAE and MMRE fitness functions. The MdMRE fitness function
show the worst result 81 equations from 100 equations are below 7469 man/h.

Table 10  Hypothesis testing for optimal productivity factor

Fitness function p value NULL hypothesis

MMRE 9.29E−12 False

MdMRE 7.50E−14 False

MEMRE 2.98E−11 False

MdMRE 7.40E−16 False

MSE 5.26E−08 False

RMSE 9.56E−10 False

LAD 1.42E−10 False

MAE 4.24E−10 False

R2 5.27E−11 False

Pred(25) 1.56E−14 False

Table 11  The probability that fitness function calculate equation which is below the opti-
mal standard UCP equation median

Fitness function Probability (%)

MMRE 13

MdMRE 14

MEMRE 19

MdEMRE 10

MSE 23

RMSE 24

LAD 20

MAE 19

R2 21

Pred(25) 9

Page 14 of 17Urbanek et al. SpringerPlus (2015) 4:778

Threats to validity
It is widely recognised that several factors can bias the validity of empirical studies.
Therefore, our results are not devoid of validity threats.

External validity

External validity questions whether the results can be generalized outside the specifi-
cations of a study (Milicic and Wohlin 2004). Specific measures were taken to support
external validity; for example, a random sampling technique was used to draw samples
from the population in order to conduct experiments. Likewise, the statistical tests used
in this paper, they are also quite standard. We note that the Wilcoxon method used in
this paper features prominently. We used a relatively small size dataset, which could
be a significant threat to external validity. Also the employed dataset contains projects
related to one context that might be characterised by some specific properties. Simi-
larly, we do not see how a smaller or larger dataset size should yield reliable results. It
is widely recognised that, SEE datasets are neither easy to find nor easy to collect. This
represents an important external validity threat that can be mitigated only replicating
the study on another datasets. Another validity issue to mention is that either analytical
programming nor differential evolution has been exhausted via fine-tuning. Therefore,

Table 12  Hypothesis testing for standard productivity factor

Fitness function p value NULL hypothesis

MMRE 1 True

MdMRE 1 True

MEMRE 1 True

MdEMRE 1 True

MSE 1 True

RMSE 1 True

LAD 1 True

MAE 1 True

R2 1 True

Pred(25) 1 True

Table 13  The probability that fitness function calculate equation which is below the
standard UCP equation median

Fitness function Probability (%)

MMRE 97

MdMRE 95

MEMRE 95

MdEMRE 81

MSE 97

RMSE 94

LAD 96

MAE 97

R2 94

Pred(25) 86

Page 15 of 17Urbanek et al. SpringerPlus (2015) 4:778

future work is required to exhaust all the parameters of these methods to use their best
versions. Threat to external validity could be also the implementation of the analytical
programming and differential evolution algorithms. Although we used standard imple-
mentations, there is considerable amount of code, which could be the threat to validity.

Internal validity

Internal validity questions to what extent the cause-effect relationship between depend-
ent and independent variables hold (Alpaydın 2014). This paper used random sampling
technique to assess methods. An alternate experimental condition would be to use
N-way cross-validation. In theory, not using cross-validation is a threat to the validity
of our results since we did not check if our results were stable across both random sam-
pling technique and cross-validation.

Discussion
The study started out with a goals of answering the overall research questions (RQ-1) of
whether analytical programming technique outperformed the standard UCP equation.
This question is answered in the result section. If the UCP method is optimized, via cali-
brating weight or via production factor, the analytical programming method is not effi-
cient enough to outperform standard UCP equation. The evidence can be seen in result
section in Table 10. As can be seen in this table, there is no fitness function with less
median value then the standard UCP equation has on the significance level 95 %. On the
other hand, if the productivity factor and the whole UCP is set to default value, there is
a possibility, that model built by analytical programming outperform the standard UCP
equation with any of proposed fitness functions.

There is also a another question (RQ-2), which must be answered. The results for
answering this question is not as conclusive as we wanted to. For answering this question
we need to study Tables 9, 11 and 13 from result section very carefully. From Table 9, can
be seen that, MSE have the lowest median value as well as mean value and 3rd. quartile
from the all of fitness functions. The maximum values, which can be seen in this table are
caused by penalisation process of the evolution. With this in mind, we used median for
comparison between fitness functions. The overall worst measurement result, measured
by the median (MdMRE, MdEMRE), could be in its sensitivity to extreme values. The
median is considered as an insensitive measure of centrality on data containing extreme
values. Therefore, these measurements could be less suitable for the fitness functions.
As can be seen in Tables 11 and 13, the MSE have a higher probability, that this fitness
function built a model, which outperformed the standard UCP equation. If the standard
productivity factor is used there is a 97 % probability, that MSE built a model more accu-
rate then standard UCP equation. If the productivity factor is optimized there is a 23 %
probability that MSE fitness function built a model, which outperformed standard UCP
equation. The minimum from the whole study was calculated by MMRE fitness function.
Nevertheless this minimum value was marked as a outlier as can be seen in Fig. 4.

Conclusion
The current study found that the prediction accuracy measurement, which measures the
median, performs worse than those that measure the mean or total value. Surprisingly,

Page 16 of 17Urbanek et al. SpringerPlus (2015) 4:778

the MMRE measurement, which has raised a lot of controversy in the effort estima-
tion field, could be considered as an average suitable fitness function. The results also
revealed that fitness functions have a reasonably influence on the calculated predictions.
Analytical programming method can be seen as a viable method for effort estimation.
However, this is true if and only if the UCP method is not optimized. The MSE fitness
function could be seen as the best fitness function due to her statistical properties. The
findings of this study have a number of important implications for future research of
the using of analytical programming as an effort estimation technique. More research
is required to determine the efficiency of analytical programming for this task. It would
be interesting to compare Karner’s model with one of the model built by analytical
programming.

Authors’ contributions
TU carried out the use of prediction accuracy measurement studies, performed the statistical analysis and drafted the
manuscript.RS and ZP suggest this study, helped with design and continuously reviewing this manuscript.VV helped to
draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study was supported by the internal Grant of Tomas Bata University in Zlin No. IGA/CebiaTech/2015/034 funded
from the resources of specific university research. We are also immensely grateful to my colleagues Ales Kuncar and
Andras Chernel for their comments on the earlier version of the manuscript, although any errors are our own and should
not tarnish the reputations of these esteemed persons.

Competing interests
The authors declare that they have no competing interests.

Received: 1 October 2015 Accepted: 24 November 2015

References
Alpaydın E (2014) Introduction to Machine Learning 1107:105–128. doi:10.1007/978-1-62703-748-8-7. 0904.3664v1
Atkinson K, Shepperd M (1994) Using function points to find cost analogies. In: 5th European Software Cost Modelling

Meeting. Ivrea, Italy, pp 1–5
Boehm WB (1984) Software Engineering Economics. IEEE Trans Softw Eng SE 10(1):4–21. doi:10.1109/TSE.1984.5010193
Burgess CJ, Lefley M, Le M (2001) Can genetic programming improve software effort estimation? A comparative evalua-

tion. Inf Softw Technol 43(14):863–873. doi:10.1016/S0950-5849(01)00192-6
Chavoya A, Lopez-Martin C, Meda-Campaña ME (2013) Software development effort estimation by means of genetic

programming. Int J Adv Comput Sci Appl 4(11)
Chavoya A, Lopez-Martin C, Meda-Campaña ME (2013) Software development effort estimation by means of genetic

programming. Int J Adv Comput Sci Appl 4
Ferrucci F, Gravino C, Oliveto R, Sarro F (2010) Genetic programming for effort estimation: an analysis of the impact of

different fitness functions. In: Search Based Software Engineering (SSBSE), 2010 Second International Symposium
on, vol. 25. doi:10.1109/SSBSE.2010.20

Harman M, Jones BF (2001) Search-based software engineering. Inf Softw Technol 43:833–839. doi:10.1016/
S0950-5849(01)00189-6

Karner G (1993) Resource estimation for objectory projects. Object Syst SF AB:1–9
Keung JW (2008) Theoretical maximum prediction accuracy for analogy-based software cost estimation. Software Engi-

neering Conference. In: APSEC ’08. 15th Asia-Pacific, pp 495–502. doi:10.1109/APSEC.2008.43
Kitchenham BA, MacDonell SG, Pickard L, Shepperd MJ (2001) What accuracy statistics really measure. IEE Proc Softw Eng

148:81–85. doi:10.1049/ip-sen:20010506
Milicic D, Wohlin C (2004) Distribution patterns of effort estimations. In: IEEE Conference Proceedings of Euromicro 2004,

Track on software process and product improvement, pp 422–429
Myrtveit TF, Stensrud E, Kitchenham B (2003) Ingunn: a simulation study of the model evaluation criterion MMRE. IEEE

Trans Softw Eng 29:1–30. doi:10.1109/TSE.2003.1245300
Nassif AB, Capretz LF, Ho D (2011) Estimating software effort based on use case point model using sugeno fuzzy

inference system. In: Tools with Artificial Intelligence (ICTAI), 23rd IEEE International Conference on, pp 393–398.
doi:10.1109/ICTAI.2011.64

Ochodek M, Nawrocki J, Kwarciak K (2011) Simplifying effort estimation based on Use Case Points. Inf Softw Technol
53(3):200–213. doi:10.1016/j.infsof.2010.10.005

http://dx.doi.org/10.1007/978-1-62703-748-8-7.%200904.3664v1
http://dx.doi.org/10.1109/TSE.1984.5010193
http://dx.doi.org/10.1016/S0950-5849(01)00192-6
http://dx.doi.org/10.1109/SSBSE.2010.20
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1109/APSEC.2008.43
http://dx.doi.org/10.1049/ip-sen:20010506
http://dx.doi.org/10.1109/TSE.2003.1245300
http://dx.doi.org/10.1109/ICTAI.2011.64
http://dx.doi.org/10.1016/j.infsof.2010.10.005

Page 17 of 17Urbanek et al. SpringerPlus (2015) 4:778

Oplatkova ZK, Senkerik R, Zelinka I, Pluhacek M (2013) Analytic programming in the task of evolutionary synthesis of a
controller for high order oscillations stabilization of discrete chaotic systems. Comput Math Appl 66(2):177–189.
doi:10.1016/j.camwa.2013.02.008

Rowe G, Wright G (1999) The Delphi technique as a forecasting tool: issues and analysis. Int J Forecast 15(4):353–375.
doi:10.1016/S0169-2070(99)00018-7

Shepperd M, Cartwright M, Kadoda G (2000) On building prediction systems for software engineers. Empir Softw Eng
5:175–182. doi:10.1023/A:1026582314146

Silhavy R, Silhavy P, Prokopova Z (2014) Automatic complexity estimation based on requirements. In: Latest trends on
systems, vol. II. Santorini, Greece

Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over con-
tinuous spaces. Technical Report TR-95-012, vol. 11, pp. 1–15. doi:10.1023/A:1008202821328. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf

Storn R (1996) On the usage of differential evolution for function optimization. Proc North Am Fuzzy Inf Process:519–523.
doi:10.1109/NAFIPS.1996.534789

Subriadi AP, Ningrum PA (2014) Critical review of the effort rate value in use case point method for estimating software
development effort. J Theroretical Appl Inf Technol 59(3):735–744

Zelinka I, Davendra D, Senkerik R, Jasek R, Oplatkova Z (2011) Analytical programming—a novel approach for evolution-
ary synthesis of symbolic structures. In: Ethem Alpaydin. 2004. Introduction to Machine Learning (Adaptive Compu-
tation and Machine Learning). The MIT Press. Rijeka, InTech, p 584

http://dx.doi.org/10.1016/j.camwa.2013.02.008
http://dx.doi.org/10.1016/S0169-2070(99)00018-7
http://dx.doi.org/10.1023/A:1026582314146
http://dx.doi.org/10.1023/A:1008202821328
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.5398&rep=rep1&type=pdf
http://dx.doi.org/10.1109/NAFIPS.1996.534789

	Prediction accuracy measurements as a fitness function for software effort estimation
	Abstract
	Background
	The use case points method: short description
	Unadjusted use case weight
	Unadjusted actor weight
	Technical complexity factor
	Environmental complexity factor
	Final equations

	Optimization tools
	Analytical programming
	Differential evolution

	The fitness function

	Related work
	Problem statement
	Experiment planning
	Dataset
	Fitness functions

	Results
	Optimal productivity factor
	Standard productivity factor

	Threats to validity
	External validity
	Internal validity

	Discussion
	Conclusion
	Authors’ contributions
	References

