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This thesis consists of two main chapters along with an introduction and

conclusion. In the introduction, we address the inspiration for the thesis, which

originates in a common calculus problem wherein travel time is minimized across

two media separated by a single, straight boundary line. We then discuss the

correlation of this problem with physics via Snells Law.

The first core chapter takes this idea and develops it to include the concept

of two media with a circular border. To make the problem easier to discuss, we talk

about it in terms of running and swimming speeds. We first address the case where

the starting and ending points for the passage are both on the boundary. We find

the possible optimal paths, and also determine the conditions under which we travel

along each path. Next we move the starting point to a location outside the

boundary. While we are not able to determine the exact optimal path, we do arrive

at some conclusions about what does not constitute the optimal path.

In the second chapter, we alter this problem to address a rectangular

enclosed boundary, which we refer to as a swimming pool. The variations in this

scenario prove complex enough that we focus on the case where both starting and

ending points are on the boundary. We start by considering starting and ending

points on adjacent sides of the rectangle. We identify three possibilities for the

fastest path, and are able to identify the conditions that will make each path

vi



optimal. We then address the case where the points are on opposite sides of the

pool. We identify the possible paths for a minimum time and once again ascertain

the conditions that make each path optimal.

We conclude by briefly designating some other scenarios that we began to

investigate, but were not able to explore in depth. They promise insightful results,

and we hope to be able to address them in the future.
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INTRODUCTION

We have all likely seen the problem in a calculus textbook. A generic person

wants to travel from point A to point B. One piece of the journey is along a

straight stretch (a road, a beach, etc.). The other part of the journey typically goes

in a straight line, but may proceed at any angle, and is at a different speed. The

task is to find the path that will take the least amount of time.

This problem was in particular made famous in [6] where the author explores

the problem with his dog at the beach. The straight line is the coastline, and the

other portion of the path is through the water to a thrown tennis ball. He finds that

most of the time his dog “chose a path that agreed remarkably closely with the

optimal path.”

While we do not include a trip with a beloved canine in our exploration, this

thesis expands on this idea. We look at how the problem is changed when the shape

of the border, locations of starting and ending points, and rates of travel are

changed.

This type of optimization problem has extensions and applications in various

other areas of study. It is closely related to Snell’s Law and the Least Time

Principle in physics. If we consider our swim rate to be zero, this becomes an

obstacle problem and extends into graph theory with visibility graphs. While we use

the concepts of running and swimming as the means of traveling through different

media in order to make the speeds, paths, and travel times easier to identify and

discuss, we can generalize all of our results so that running is the same as traveling
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through any medium at some speed r and swimming is the same as traveling

through a second medium at some speed s.

Our work will focus on closed boundaries instead of the standard

straight-line border. We will begin with a circular border, which can be thought of

as a circular pond, and then move to a rectangular shape, such as a swimming pool.

In optimizing our travel time, we will find that it simplifies things to consider

different cases. One standard set of cases that will appear in each situation is based

on the ratio of our run speed to our swim speed: is running faster than swimming or

vice versa? In some of our scenarios, one of these will prove to be trivial while in

others, the results are quite complex.

Another set of cases that we will consider is based on the location of our

points. There are three possibilities for the location of each point: on the boundary,

inside the boundary, and outside the boundary. We will refer to these as On, In,

and Out respectively. As we have a starting point and an ending point, and know

that traveling in one direction would take the same amount of time as traveling in

the opposite direction (meaning that order does not matter and we can switch our

starting and ending points without altering the results), we have six possible

combinations among these point locations. We will focus on the On to On case and

the Out to On case.

Although the scenarios may seem similar in many ways, we will find that

small changes provide interesting outcomes.
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Snell’s Law

Snell’s Law as summarized in [9], “gives the relationship between angles of

incidence and refraction for a wave impinging on an interface between two media

with different indices of refraction.”

To understand Snell’s Law, we must understand the concept of refraction.

Refraction occurs when a wave encounters a boundary between media at an angle,

such as a light wave passing from air into a pane of glass. In [2], Henderson explains

that when the light wave passes from air into glass, it causes a decrease in the speed

and wavelength of the light wave due to the fact that glass is more optically dense

than air. In particular, when the wave approaches the boundary at an angle, this

causes the light to bend, which is called refraction.

When light passes a border between media in which it travels at different

speeds, it will bend according to the angle at which it hits the boundary and the

speed at which it travels in each medium. When light travels from a medium in

which it travels faster to one in which it travels slower, it will bend toward the

normal line at this point. Similarly, if the light is traveling from a slower medium to

a faster medium, it will bend away from the normal.

Henderson provides an insightful analogy to explain why this happens.

Consider a tractor that is traveling over asphalt toward a rectangular patch of grass

with asphalt on the other side as well as depicted in Figure 0.0.1. When the wheels

of the tractor enter the grassy area, they sink into the ground and move slower.

However, since the tractor is traveling at an angle, the wheel closer to the grass will

slow down before the other wheel. So when the tractor encounters the boundary, for

3



Figure 0.0.1. Refraction Tractor Analogy

a brief period of time, one wheel is turning slower than the other causing the tractor

to turn toward the wheel that entered first. In particular, it will turn toward the

normal line until both wheels are on the grass. Once this happens, the wheels will

turn at the same speed again and the tractor will continue on in a straight line.

Similarly, when the tractor reaches the other side of the grassy area, the wheel

closer to the border (the same wheel as before) will reach the border first and begin

to spin faster than the other, causing the tractor to turn away from the wheel that

exited the grass first, and hence away from the normal line. The same thing would

happen when a beam of light passes through a rectangular piece of glass.

Snell’s Law is also based on the Least Time Principle, otherwise known as

Fermat’s Principle. It states that a beam of light traveling between two points will

always travel at a minimum time, although it is pointed out in [8] that the original

statement of the principle was not general and is more accurately stated that the

path will be a minimum, maximum, or saddle point.
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So although we know how a beam of light will refract when passing between

media, can we predict by how much it will refract? That is, can we find the angle at

which it will depart from the boundary? Snell’s Law answers this question. In

determining Snell’s Law, we actually use the angles with the normal line rather than

the boundary (although these will be complementary angles so we can determine

the angle in question given the angle with the boundary).

Theorem 0.0.1 (Snell’s Law). A beam of light is passing from medium 1

with a refractive index of n1 to medium 2 with a refractive index of n2. It

approaches the boundary at an angle of θ1 (known as the angle of incidence) with

the normal line and departs at an angle of θ2 (known as the angle of refraction) with

the normal line. Then

n1 sin θ1 = n2 sin θ2.

Proof. We are told in [7] that the refractive index of a medium is equal to the

velocity of light in empty space divided by its velocity in the medium. So if we let v

be the velocity of light in a vacuum, and r be light’s speed in the medium with

refractive index n1, then n1 =
v

r
. Similarly, if we let s be the speed of light in the

medium with refractive index n2, and then n2 =
v

s
. Furthermore, let A be our

starting point with distance a1 to the normal line and distance a2 to the boundary,

and B be our ending point with distance b1 to the normal line and b2 to the

boundary. Then we can illustrate the setup of this problem as in Figure 0.0.2.

Now, we can set up a time function, T , to represent the time it will take to

travel a path from A to B, depending on where we hit the boundary. Let d be the

horizontal distance from A to B so that d = a1 + b1. Since A and B are stationary, d
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Figure 0.0.2. Snell’s Law

will be fixed while a1 and b1 will change, so we will have that b1 = d − a1. Then we

can write T as a function of a1 (with a2 and b2 as constants):

T (a1) =

√
a21 + a

2
2

r
+

√
(d − a1)2 + b22

s
.

The Least Time Principle tells us that the light will travel along an optimal

path, or at least one that provides a critical point. So we can find where the light is

hitting the boundary by setting the derivative equal to zero. So our critical point is

where

T ′(a1) =
2a1

2r
√
a21 + a

2
2

+
2(d − a1)(−1)

2s
√

(d − a1)2 + b22
= 0

a1

r
√
a21 + a

2
2

−
(d − a1)

s
√

(d − a1)2 + b22
= 0

a1

r
√
a21 + a

2
2

=
(d − a1)

s
√

(d − a1)2 + b22

a1

r
√
a21 + a

2
2

=
b1

s
√
b21 + b

2
2

.
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But
a1

√
a21 + a

2
2

= sin θ1 and
b1

√
b21 + b

2
2

= sin θ2, so this gives

sin θ1
r

=
sin θ2
s

,

and multiplying by v gives

v sin θ1
r

=
v sin θ2
s

n1 sin θ1 = n2 sin θ2,

which is Snell’s Law. �
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CHAPTER 1

CIRCLES

The first adaptation that we will make is to consider a circular pond instead

of a straight shoreline. Suppose we are trying to travel from point A to point B. We

can run at a rate of r units, and swim at a rate of s units. How can we make the

journey in the shortest amount of time?

1.1. On to On

We will first consider the case where both the starting and ending points are

on the edge of the pond. We then have the option of either swimming across the

pond, running around the edge of the pond, or running part of the way around the

pond and swimming the other part.

One of our cases will prove to be trivial. We know that the shortest distance

between two points is a straight line, a simple idea that is actually quite complex to

prove. This can be done using Calculus of Variations. Blochle gives a nice proof of

this in [1]. If our two points are both on the circular boundary, then the shortest

distance between them will be the chord connecting these points; in other words,

the all-swimming path. Then if we have s ≥ r, the all-swim path will not only be the

shortest path, but also the one that can be traversed at the fastest speed. Thus the

optimal path will always be the all-swim path in this case.

Then let us consider the more interesting case where r > s. This scenario was

previously explored by students Isaac Forshee and Stephen King under the guidance

of Dr. Tom Richmond. Although the shortest distance is still described by the
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all-swim path, if our run rate is fast enough, it may actually be optimal to run

around the pond, or possibly run part of the way and swim part of the way. This

leads to our first result.

Theorem 1.1.1. Suppose we are trying to travel from a point, A, on the edge

of a circular pond to another point, B, also on the edge of the pond, with a running

rate of r and a swimming rate of s. The fastest path from A to B is obtained either

by running the entire way or by swimming the entire way.

Proof. Without loss of generality, we can scale our circular pond to be represented

by the unit circle, and position it on the coordinate plane so that our starting point

A is located at the point (1,0), and our ending point is on the half of the circle

lying above the x-axis. We will define this ending point to be B = (cosα, sinα).

Figure 1.1.1. Circle On to On

The sum of the length of two chords subtended by two angles of a circle is

longer than the length of a single chord subtended by the sum of those angles. This

can easily be seen in Figure 1.1.2 where one of the chords is rotated about the center

until the chords share an endpoint, and then follows from the fact that the sum of

the lengths of two sides of a triangle is greater than the length of the third side.

9



Figure 1.1.2. Chords

Since traversing a path along a chord of a circle will always involve

swimming, the speed will be the same so a longer distance implies a longer travel

time. Therefore, we only need to consider paths that include one chord of

swimming. Furthermore, two chords subtended by the equal angles will have the

same length and thus the same travel time, as will two arcs subtended by equal

angles. So without loss of generality, we can assume that all of the swimming will be

done at the end of the path, and all of the running will be done at the beginning of

the path. Thus, we will run along the edge of the circle to a point C = (cos θ, sin θ)

where 0 ≤ θ ≤ α ≤ π, and then swim along the straight-line path from C to B, as

shown by the bold path in Figure 1.1.3.

Figure 1.1.3. Run-Swim Path
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Now as Time =
Distance

Rate
, the time it takes to travel the path can be given as

a function of θ by

T (θ) =
θ

r
+

√
(cosα − cos θ)2 + (sinα − sin θ)2

s

=
θ

r
+

√
cos2α − 2 cosα cos θ + cos2 θ + sin2α − 2 sinα sin θ + sin2 θ

s

=
θ

r
+

√
(cos2α + sin2α) + (cos2 θ + sin2 θ) − 2(cosα cos θ + sinα sin θ)

s

=
θ

r
+

√
2 − 2 cos(α − θ)

s
(Pythagorean and Sum-Difference Trig Identities)

=
θ

r
+

¿
Á
Á
Á
Á
Á
ÁÀ

4

⎛
⎜
⎜
⎜
⎝

1 − cos(2
α − θ

2
)

2

⎞
⎟
⎟
⎟
⎠

s

=
θ

r
+

2

√

sin2 (
α − θ

2
)

s
(Half Angle Formula).

Furthermore, we can note that 0 ≤ θ ≤ α ≤ π implies that 0 ≤ α − θ ≤ π, and hence

0 ≤
α − θ

2
≤
π

2
. Then it must be true that sin(

α − θ

2
) ≥ 0. So we can simplify the

time function to

T (θ) =
θ

r
+

2 sin(
α − θ

2
)

s
. (1.1.1)

We can also arrive at this function by finding a formula for the length of a

chord of a circle. The chord and the radii to the endpoints of the chord form an

isosceles triangle. Let the chord be subtended by an angle γ. If we rotate our circle

so that the x-axis bisects γ, we divide the isosceles triangle into two congruent right

triangles, meaning that the x-axis also perpendicularly bisects the chord. This can
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be seen in the following figure (Figure 1.1.4). Then since the radius of the circle is 1,

we must have that the length of the opposite edge of the top triangle is sin(
γ

2
) and

thus the length of the entire chord is double this amount.

Figure 1.1.4. Chord Length

In our problem, the chord is subtended by the angle α − θ, so the time it

takes to travel our path will be the length of the arc divided by the run speed plus

the length of the chord divided by the swim speed. This is the same as the formula

given in Equation 1.1.1.

To minimize the time it takes to travel from A to B, we begin by finding the

derivative of this time function, T (θ):

T ′(θ) =
1

r
+

2 cos(
α − θ

2
)

s
(
−1

2
) =

1

r
−

cos(
α − θ

2
)

s
.

However, in this case, the second derivative actually gives us more insight into the

existence of a minimum:

T ′′(θ) = −
− sin(

α − θ

2
)

s
(
−1

2
) =

− sin(
α − θ

2
)

2s
.
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We have already established that sin(
α − θ

2
) must be positive, and obviously

2s is positive, so T ′′(θ) must be negative on this interval, meaning that T (θ) is

strictly concave down. Hence there can be no local minimum (as this would require

T (θ) to be concave up), and the absolute minimum for θ ∈ [0, α] must be at one of

the endpoints. That is, the minimum travel time comes from swimming the entire

way from A to B (θ = 0) or from running the entire way (θ = α). �

If we compare the travel times for the all-running path and the all-swimming

path, we can find a formula to determine the run rate to swim rate ratio that will

cause the all-running path to be optimal.

Corollary 1.1.2. The all-running path is optimal whenever
r

s
>

α

2 sin(
α

2
)

,

and the all-swimming path is optimal whenever
r

s
<

α

2 sin(
α

2
)

. They are equally

advantageous when equality holds.

Proof. As found in Equation 1.1.1, the time it takes to travel from A to B is given

by the formula T (θ) =
θ

r
+

2 sin(
α − θ

2
)

s
. Theorem 1.1.1 states that the optimal path

will be provided by either running around the circle without swimming, or by

swimming the straight-line distance between the points. Thus, we only need to

consider times given by the corresponding values of θ. The all-swim time will be

given by T (0), and the all-run time will be given by T (α). Thus the all-swim time is

T (0) =
0

r
+

2 sin(
α − 0

2
)

s
=

2 sin(
α

2
)

s
,
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and the all-run time is

T (α) =
α

r
+

2 sin(
α − α

2
)

s
=
α

r
+

2 sin 0

s
=
α

r
.

Then we can easily see that the all-running path will be optimal whenever

T (α) < T (0). That is, when

α

r
<

2 sin(
α

2
)

s
⇐⇒ sα < 2r sin(

α

2
) ⇐⇒

α

2 sin(
α

2
)

<
r

s
.

The dual argument then follows that the all-swimming path will be optimal

whenever
r

s
<

α

2 sin(
α

2
)

, and similarly, the paths would take equal amounts of time

when
r

s
=

α

2 sin(
α

2
)

. �

Note that we cannot algebraically solve the inequalities found in

Corollary 1.1.2 for the angle α. However, we can use this formula to find an

interesting result when our starting and ending points are diametrically opposite. In

this case, with our strategic positioning of a circle, a diametrically opposite ending

point would be given when α = π. Then if we substitute this into the formula found

in Corollary 1.1.2, we see that the optimal path will be all-running whenever

r

s
>

π

2 sin(
π

2
)

=
π

2
, (1.1.2)

and consequently, all-swimming will be optimal whenever

r

s
<
π

2
.
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So if we are traveling from one point on the edge of a circular pond to

another point on the edge of the pond, we know that we will always run all the way

around or swim straight between the points. In addition, given the angle between

the starting and ending points, we can determine the running and swimming speeds

that would cause us to either run or swim.

1.2. Out to On

Having fully analyzed the On to On case, next we will consider the same

situation of a round pond, but with one difference: our starting point is outside the

circle instead of on the edge. One of the main difficulties with this scenario comes

from the fact that there are so many cases to consider based on ending point

placement and run/swim speeds.

Before we begin, we take a moment to prove a fairly obvious result. If we

change the location on the boundary so that the distance traveled at the slower

speed is increased as well as the total distance, this new path will never be optimal.

Lemma 1.2.1. Suppose we are traveling through two media with speeds x and

y where x < y. Let dx be the distance traveled at speed x and dy be the distance

traveled at speed y. If a new path has distances traveled at speeds x and y that are d′x

and d′y respectively so that d′x > dx and d′x + d
′
y > dx + dy, this new path will never be

optimal.

Proof. The travel times for the distances traveled at speed x will be
dx
x

and
d′x
x

for

the original and new paths respectively. Similarly, the travel times for the portions

of these paths traveled at speed y will be
dy
y

and
d′y
y

respectively. Then the original

15



path will be faster (implying that the new path cannot be optimal) if and only if

d′x
x
+
d′y
y
>
dx
x
+
dy
y

d′y − dy

y
>
dx − d′x
x

. (1.2.1)

If d′y ≥ dy, then
d′y − dy

y
≥ 0 >

dx − d′x
x

, giving the desired result. So assume

d′y < dy. Then,

d′x + d
′
y > dx + dy ⇐⇒ d′x − dx > dy − d

′
y ⇐⇒

d′x − dx
x

>
dy − d′y
x

,

so x < y implies that
dy − d′y
x

>
dy − d′y
y

and hence
d′x − dx
x

>
dy − d′y
y

. Multiplying

through by −1 gives the inequality in Equation 1.2.1. Thus the original path is

faster and the new path cannot be optimal. �

First we will address the case where the ending point, B is “visible” from the

starting point, A; that is, the straight-line path from A to B would not cross the

water. In this scenario, it is trivial to consider r ≥ s. The straight-line path from A

to B would have the shortest distance, and be traveled at the fastest speed, making

this route optimal. So suppose s > r. If B falls on the line connecting the center of

the circle to A, then B is the point on the circle that is closest to A. Thus if we

were to run to any other point on the circle before swimming to B, it would increase

the total distance traveled as well as the distance traveled at the slower speed, so by

Lemma 1.2.1, this would not be optimal. So suppose B does not fall on the line

connecting A and the center of the circle.
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Theorem 1.2.2. Suppose we are traveling from a point A outside a circular

pond to a point B on the edge of the pond with running speed r and swimming speed

s, and where the line connecting A and B can be traversed without any swimming.

Let α be the angle between the line connecting the center of the pond to B and the

line connecting A to B. If
r

s
< sinα, running straight to B is not the optimal

solution.

Proof. If B is on the line connecting A and the center of the circle, then α = 0 and

we can never have
r

s
< sinα. So consider the case where B is not on the line

connecting A and the center of the circle. Position the pond on the coordinate plane

so that the center of the circle is at the origin and B is located at the point (1,0).

Use the symmetry of the circle to position A in the first quadrant at some point

(a1, a2) as shown in Figure 1.2.1. We will compare running straight to B with

Figure 1.2.1. Circle Out to On Visible Ending Point

running to some other point (cos θ, sin θ) on the circle and then swimming to B. Let

a =
√

(a1 − 1)2 + a22, the distance from B to A. Also, let σ be the swim distance, and

ρ be the decrease in run distance caused by running to the new point instead of B.
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Then the new path will be faster if and only if

a − ρ

r
+
σ

s
<
a

r
⇐⇒

a

r
−
ρ

r
+
σ

s
<
a

r
⇐⇒ −

ρ

r
+
σ

s
< 0

⇐⇒
σ

s
<
ρ

r
⇐⇒ σr < ρs ⇐⇒

r

s
<
ρ

σ
.

Now, σ =
√

(cos θ − 1)2 + sin2 θ and

ρ =
√

(a1 − 1)2 + a22 −
√

(a1 − cos θ)2 + (a2 − sin θ)2. Then

lim
θ→0

ρ

σ
= lim
θ→0

√
(a1 − 1)2 + a22 −

√
(a1 − cos θ)2 + (a2 − sin θ)2

√
(cos θ − 1)2 + sin2 θ

,

which is a limit of the form
0

0
so we can apply L’Hopital’s Rule to get

lim
θ→0

ρ

σ
= lim
θ→0

−(2(a1 − cos θ)(sin θ) + 2(a2 − sin θ)(− cos θ))

2
√

(a1 − cos θ)2 + (a2 − sin θ)2

2(cos θ − 1)(− sin θ) + 2 sin θ cos θ

2
√

(cos θ − 1)2 + sin2 θ

= lim
θ→0

(−a1 sin θ + cos θ sin θ + a2 cos θ − sin θ cos θ)
√

(cos θ − 1)2 + sin2 θ
√

(a1 − cos θ)2 + (a2 − sin θ)2(− cos θ sin θ + sin θ + sin θ cos θ)

= lim
θ→0

a2 cos θ − a1 sin θ
√

(a1 − cos θ)2 + (a2 − sin θ)2

√
(cos θ − 1)2 + sin2 θ

sin2 θ

= lim
θ→0

⎛

⎝

a2 cos θ − a1 sin θ
√

(a1 − cos θ)2 + (a2 − sin θ)2

⎞

⎠

√

(lim
θ→0

cos θ − 1

sin θ
)

2

+ 1

= lim
θ→0

⎛

⎝

a2 cos θ − a1 sin θ
√

(a1 − cos θ)2 + (a2 − sin θ)2

⎞

⎠

√

(lim
θ→0

− sin θ

cos θ
)

2

+ 1

=
⎛

⎝

a2(1) − a1(0)
√

(a1 − 1)2 + (a2 − 0)2

⎞

⎠

√
(0)2 + 1

=
a2

√
(a1 − 1)2 + a22

.
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Now we note that
√

(a1 − 1)2 + a22 is the distance between A and B and a2 is

the length of the perpendicular segment from A to the x-axis, which connects B and

the center of the circle. So if we let α be the angle between the x-axis and the line

connecting A to B, lim
θ→0

ρ

σ
= sinα. This can be seen in Figure 1.2.2.

Figure 1.2.2. Angle to A

Suppose
r

s
< sinα = lim

θ→0

ρ

σ
, so sinα −

r

s
> 0. Then there exists ε > 0 such that

sinα −
r

s
> ε. Furthermore, lim

θ→0

ρ

σ
= sinα implies that for the given ε > 0, there exists

δ > 0 such that ∣
ρ

σ
− sinα∣ < ε < sinα −

r

s
whenever 0 < ∣θ∣ = θ < δ. But

∣
ρ

σ
− sinα∣ < sinα −

r

s
means that − sinα +

r

s
<
ρ

σ
− sinα < sinα −

r

s
which implies that

− sinα +
r

s
+ sinα <

ρ

σ
− sinα + sinα so

r

s
<
ρ

σ
whenever θ < δ. Thus there exist angles

θ such that the corresponding
ρ

σ
ratios are greater than

r

s
and hence it is faster to

run to one of these points and then swim to B than it is to run straight to B. �

As an example of this, consider A = (3,2), r = 0.5, s = 1, and θ = 0.1. Then

the all-running path would have a time of
2
√

2

0.5
≈ 5.65685 and the path with

swimming would have a time of
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√
(3 − cos 0.1)2 + (2 − sin 0.1)2

0.5
+
√

(1 − cos 0.1)2 + sin2 0.1 ≈ 5.62468. Hence the

all-running path takes longer and is not optimal.

Next we will address the more interesting case where the ending point, B is

not “visible” from the starting point, A. That is, it is beyond the tangential point

from A to the circle as depicted in Figure 1.2.3.

Figure 1.2.3. Circles Out to On General Case

We start with a very significant result. As already noted, the shortest

distance between two points is a straight line, but is the shortest time also found by

taking this path? When different speeds are involved, it is not always the case. We

will address this in the next two theorems.

Theorem 1.2.3. When traveling from a point A outside a circular pond to a

point B on the edge of the pond, where the line from A to B does not contain a

diameter of the circle, the straight-line path from A to B is optimal if and only if

the swim rate s equals the run rate r.

Proof. (⇐) Suppose r = s. Then this is the equivalent of traveling the entire path

at one speed, and the shortest path will have the shortest time. The shortest

distance between two points is a straight line, so this will be the optimal path.
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(⇒) Suppose the points are not diametrically opposite. Position the circle on

the coordinate grid so that the line connecting A and B lies on the x-axis and the

other point where the circle intersects the line is at the origin. Let point B have

coordinates (−b,0) and point A have coordinates (a,0) as seen in Figure 1.2.4.

Furthermore, let the smaller portion of the circle be above the x-axis. If the line

connecting the points does not contain a diameter, the portion of the curve near the

intersection can be given by a differentiable function (it would never contain a point

with a vertical tangent line). Call this function f(x).

First consider the case with s > r. Moving up from the origin (which would

be done by decreasing the x-coordinate) would increase the run distance as well as

the overall distance, and from Lemma 1.2.1 would not be optimal. So instead,

suppose we move down (by increasing the x-coordinate) to a point (x, f(x)). Then

we have increased the swimming distance by a distance of σ and decreased the

running distance by a distance of ρ.

Figure 1.2.4. Straight-Line Path for Out to On Case (Swimming Faster)

With this setup, the original path can be traveled at a time of
a

r
+
b

s
, and the

new path can be traveled at a time of
a − ρ

r
+
b + σ

s
. Then the new path is faster if
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and only if

a − ρ

r
+
b + σ

s
<
a

r
+
b

s
⇐⇒

a

r
−
ρ

r
+
b

s
+
σ

s
<
a

r
+
b

s
⇐⇒ −

ρ

r
+
σ

s
< 0

⇐⇒
σ

s
<
ρ

r
⇐⇒ σr < ρs ⇐⇒

r

s
<
ρ

σ
. (1.2.2)

Now, we will show that lim
x→0

ρ

σ
= 1.

First note that ρ = a −
√

(f(x))2 + (x − a)2, and σ =
√

(f(x))2 + (x + b)2 − b.

Then we need to find

lim
x→0

ρ

σ
= lim
x→0

a −
√

(f(x))2 + (x − a)2
√

(f(x))2 + (x + b)2 − b
. (1.2.3)

We note that as x→ 0, f(x) → 0 as well, so we have a limit of form
0

0
, and therefore

we can apply L’Hopital’s Rule, to obtain the equivalent problem

lim
x→0

−
2f(x)f ′(x) + 2(x − a)

2
√

(f(x))2 + (x − a)2

2f(x)f ′(x) + 2(x + b)

2
√

(f(x))2 + (x + b)2

.

Since the line connecting the points does not contain a diameter of the circle, the

derivative is defined at x = 0, and thus f ′(0) is a constant (as opposed to being

undefined). Then we can simplify this limit:

lim
x→0

ρ

σ
= lim
x→0
−

√
(f(x))2 + (x + b)2(f(x)f ′(x) + (x − a))

(f(x)f ′(x) + (x + b))
√

(f(x))2 + (x − a)2
(1.2.4)

= −

√
02 + (0 + b)2(0 ⋅ f ′(0) + (0 − a))

(0 ⋅ f ′(0) + (0 + b))
√

02 + (0 − a)2

=
−a

√
b2

−b
√
a2

=
ab

ab
= 1.
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Now since s > r, we know that
r

s
< 1 so 1 −

r

s
> 0, and there exists some ε > 0

such that ε < 1 −
r

s
. Furthermore, from Equation 1.2.2, we know that a path other

than the straight-line path is optimal if its
ρ

σ
ratio is greater than

r

s
. But lim

x→0

ρ

σ
= 1

implies that for the above ε > 0, there exists δ > 0 such that ∣
ρ

σ
− 1∣ < ε whenever

0 < ∣x∣ < δ. If
ρ

σ
≥ 1 then we already have

r

s
<
ρ

σ
, so assume

ρ

σ
< 1. Then there exist

points (x, f(x)) where the corresponding
ρ

σ
ratios satisfy

−(
ρ

σ
− 1) = −

ρ

σ
+ 1 < ε < 1 −

r

s
and hence −

ρ

σ
< −

r

s
so

ρ

σ
>
r

s
. Hence it is faster to

travel from A to one of these points and then swim to B rather than take the

straight-line path.

If we instead consider the case where r > s, we can position the circle and

points the same as before. However, in this case, moving down by increasing x will

increase total distance while increasing the distance traveled at the slower speed as

well, which is not optimal by Lemma 1.2.1. So instead, we move up from the origin

by decreasing x, increasing the run distance by ρ and decreasing the swim distance

by σ as shown in Figure 1.2.5.

Figure 1.2.5. Straight-Line Path for Out to On Case (Running Faster)
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This time, the new path can be traveled at a time of
a + ρ

r
+
b − σ

s
, and will

be faster if and only if

a + ρ

r
+
b − σ

s
<
a

r
+
b

s
⇐⇒

a

r
+
ρ

r
+
b

s
−
σ

s
<
a

r
+
b

s
⇐⇒

ρ

r
−
σ

s
< 0

⇐⇒
ρ

r
<
σ

s
⇐⇒ ρs < σr ⇐⇒

ρ

σ
<
r

s
. (1.2.5)

In this case, ρ =
√

(f(x))2 + (x − a)2 − a and σ = b −
√

(f(x))2 + (x + b)2 and

thus

ρ

σ
=

√
(f(x))2 + (x − a)2 − a

b −
√

(f(x))2 + (x + b)2
=
a −

√
(f(x))2 + (x − a)2

√
(f(x))2 + (x + b)2 − b

.

Then lim
x→0

ρ

σ
is the same as in Equation 1.2.3, and we know this limit to be 1.

Now since r > s, we know that
r

s
> 1, so there exists ε > 0 such that

r

s
− 1 > ε.

But lim
x→0

ρ

σ
= 1, implies that for ε > 0, there exists δ > 0 such that ∣

ρ

σ
− 1∣ < ε <

r

s
− 1

whenever 0 < ∣x∣ < δ. If
ρ

σ
≤ 1, then we already have that

ρ

σ
<
r

s
, so assume

ρ

σ
> 1.

Then there exist points (x, f(x)) where the corresponding
ρ

σ
ratios satisfy

ρ

σ
− 1 <

r

s
− 1 and hence

ρ

σ
<
r

s
. Equation 1.2.5 tells us that a path other than the

straight-line path is optimal if its
ρ

σ
ratio is less than

r

s
. Thus it is faster to travel

from A to one of these points and then swim to B rather than take the straight-line

path.

Therefore, if r ≠ s and the points are not diametrically opposite, the straight

line path is never optimal. �

This theorem provides the meaningful result that minimizing distance does

not necessarily minimize travel time unless the traveling speed is constant over the

entire journey. In fact, if the line connecting the starting and ending points does not
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intersect the border between the media perpendicularly, minimizing distance will

never be optimal.

This proof is supported by the relationship between this problem and

Fermat’s Principle. If we aim a beam of light originating at A through a circular (or

more accurately, cylindrical) piece of glass directly toward B on the other side of the

circle, the light wave will encounter the curved boundary of the glass at an angle

causing it to refract away from the straight-line path, unable to reach B.

Since the previous proof excluded the case where the points were

diametrically opposite, we will now address this case. It is very interesting because

it leads to some specific results about the possibly optimal paths from A to B as

well as when we might take each one.

Theorem 1.2.4. When traveling from a point A outside a circular pond to a

point B on the edge of the pond with a running speed of r and swimming speed of s,

if the line connecting the points contains a diameter of the circle, then the

straight-line path from A to B is optimal if and only if s ≥ r.

Proof. (⇐) Suppose s > r and the points are diametrically opposite. If we run to

any point other than the point on the straight-line path between A and B before

swimming, it will increase the distance at the running speed while increasing the

total distance traveled. Then from Lemma 1.2.1, this will never be optimal. Hence

the straight-line path will be optimal. If s = r then the entire path will be traveled

at one speed, and the path with the shortest distance, the straight-line path, will

have the fastest time.
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(⇒) Suppose r > s and the points are diametrically opposite. Position the

pond on the coordinate plane, and scale it so that the center of the circle is located

at the origin and B is located at (−1,0). Then the diameter of the circle will be

along the x-axis, and A will be also be located on the x-axis at some point (a,0),

where a > 1. Since this setup will be symmetric with respect to the x-axis, we only

need to consider paths involving the northern half of the circle. Suppose we run

from A to some visible point C = (cos θ, sin θ) on the edge of the pond, and then

continue on to point B.

Figure 1.2.6. A and B Diametrically Opposite

If the optimal path from A to B passes through a point C, then it must

contain the optimal path from C to B. Theorem 1.1.1 tells us that we will travel

from C to B by either running the entire way around the edge of the circle, or by

swimming straight from C to B. If the optimal path from C to B involves running

around the circle, then we must pass the tangential point to the circle from A.

However, it would then be faster to run straight from A to this tangential point

instead of going there by way of point C. So, if we run to a point C on the circle

that is not the tangential point, it will only be optimal if we then swim from C to

B. We will construct a time function, T (θ), to calculate the time it takes to traverse

such a path.
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First we will find the domain for θ. We know that the tangent line to the

circle passing through A will form a right angle with the radius of the circle. We can

find the coordinates of this tangential point by using the similar right triangles

shown in Figure 1.2.7. It is clear from the larger triangle that cosγ =
1

a
, and hence

Figure 1.2.7. Circles Out to On Tangential Point

γ = cos−1
1

a
. Hence θ cannot exceed cos−1

1

a
. We can also find sinγ by using the

Pythagorean Theorem to obtain sinγ =

√

1 −
1

a2
=

√
a2 − 1

a
. We note that any line

tangent to the circle at (cos θ, sin θ) for θ ≥
π

2
would have a slope greater than or

equal to zero, with a y-intercept greater than or equal to one, so it could never pass

through a point on the positive x-axis, specifically A. Therefore, we have that

θ ∈ [0, cos−1
1

a
] ⊂ [0,

π

2
).

Now, returning to Figure 1.2.6, we can construct a time function, T (θ), for a

path that consists of running to point C and then swimming to B:

T (θ) =

√
(cos θ − a)2 + (sin θ)2

r
+

√
(cos θ + 1)2 + (sin θ)2

s

=

√
cos2 θ − 2a cos θ + a2 + sin2 θ

r
+

√
cos2 θ + 2 cos θ + 1 + sin2 θ

s

=

√
a2 − 2a cos θ + 1

r
+

√
2 + 2 cos θ

s
. (1.2.6)

27



Then we can find critical points by setting the derivative equal to zero. The

derivative will be

T ′(θ) =
2a sin θ

2r
√
a2 − 2a cos θ + 1

+
−2 sin θ

2s
√

2 + 2 cos θ

=
a sin θ

r
√
a2 − 2a cos θ + 1

−
sin θ

s
√

2 + 2 cos θ
. (1.2.7)

So T ′(θ) = 0 if and only if

a sin θ

r
√
a2 − 2a cos θ + 1

−
sin θ

s
√

2 + 2 cos θ
= 0.

Since both denominators are nonzero, this will be true if sin θ = 0 and hence θ = 0, or

if sin θ ≠ 0 and

a sin θ

r
√
a2 − 2a cos θ + 1

=
sin θ

s
√

2 + 2 cos θ

a

r
√
a2 − 2a cos θ + 1

=
1

s
√

2 + 2 cos θ

a2

r2(a2 − 2a cos θ + 1)
=

1

s2(2 + 2 cos θ)

2a2s2 + 2a2s2 cos θ = a2r2 − 2ar2 cos θ + r2

2a2s2 cos θ + 2ar2 cos θ = a2r2 + r2 − 2a2s2

cos θ(2a2s2 + 2ar2) = a2r2 + r2 − 2a2s2

cos θ =
a2r2 + r2 − 2a2s2

2a2s2 + 2ar2

θ = cos−1
a2r2 + r2 − 2a2s2

2a2s2 + 2ar2
.
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Next we find the second derivative to determine what type of extrema these

critical points represent.

T ′(θ) =
a

r
sin θ(a2 − 2a cos θ + 1)−

1
2 −

1

s
sin θ(2 + 2 cos θ)−

1
2 ,

so

T ′′(θ) =
a

r
sin θ (−

1

2
) (a2 − 2a cos θ + 1)−

3
2 (2a sin θ) +

a

r
cos θ(a2 − 2a cos θ + 1)−

1
2

−
1

s
sin θ (−

1

2
) (2 + 2 cos θ)−

3
2 (−2 sin θ) −

1

s
cos θ(2 + 2 cos θ)−

1
2

= −
a2 sin2 θ

r(a2 − 2a cos θ + 1)
3
2

+
a cos θ

r
√
a2 − 2a cos θ + 1

−
sin2 θ

s(2 + 2 cos θ)
3
2

−
cos θ

s
√

2 + 2 cos θ
.

Evaluating this for θ = 0 gives

T ′′(0) =
a

r
√
a2 − 2a + 1

−
1

s
√

2 + 2
=

a

r(a − 1)
−

1

2s
.

If T ′′(0) ≤ 0 then we must have

a

r(a − 1)
≤

1

2s
⇐⇒

2a

a − 1
≤
r

s
,

but

2a

a − 1
>

2a

a
= 2 >

π

2
≈ 1.57,

and from Equation 1.1.2, we know that if
r

s
>
π

2
, it will be faster to run the entire

way rather than swimming. So if the optimal path will include any swimming we

must have
r

s
≤
π

2
<

2a

a − 1
which means T ′′(0) > 0 so T ′(θ) is increasing at 0 and

hence T ′(θ) is negative immediately before 0 and positive immediately after 0. Thus
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T (θ) is decreasing immediately before 0 and increasing immediately after 0 so T (θ)

is concave up and thus has a local minimum at θ = 0. Furthermore, since T (θ) is

continuous, and must be increasing to the right of zero, it cannot have a local

minimum at the next critical point, θ = cos−1
a2r2 + r2 − 2a2s2

2a2s2 + 2ar2
. Thus the minimum

value of T (θ) on its domain must be at one of the endpoints. That is, either we

travel the straight-line path by running directly to the pond and then swimming

across the diameter, or we run to the tangential point and continue by either

running around the edge of the pond, or swimming directly from the tangential

point to B.

Finally, we compare the paths that include a swimming portion. The

straight-line path will be faster than the tangential path if and only if

T (0) < T (cos−1
1

a
)

a − 1

r
+

2

s
<

√

a2 − 2a(
1

a
) + 1

r
+

√

2 +
2

a

s

a − 1

r
−

√
a2 − 1

r
<

√

2 +
2

a

s
−

2

s

a − 1 −
√
a2 − 1

r
<

√

2 +
2

a
− 2

s

a − 1 −
√
a2 − 1

√

2 +
2

a
− 2

<
r

s
.

However, graphical evidence indicates that
a − 1 −

√
a2 − 1

√

2 +
2

a
− 2

is decreasing for

a > 1 as shown in Figure 1.2.8. Also,
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Figure 1.2.8. Graph of
a − 1 −

√
a2 − 1

√

2 +
2

a
− 2

for a > 1

lim
a→∞

(a −
√
a2 − 1) = lim

a→∞

a2 − (a2 − 1)

a +
√
a2 − 1

= lim
a→∞

1

a +
√
a2 − 1

= 0 so

lim
a→∞

a − 1 −
√
a2 − 1

√

2 +
2

a
− 2

=
lim
a→∞

(a −
√
a2 − 1) − 1

√

lim
a→∞

(2 +
2

a
) − 2

=
−1

√
2 − 2

=
1

2 −
√

2
.

Thus if
r

s
>
a − 1 −

√
a2 − 1

√

2 +
2

a
− 2

, it must also be true that
r

s
>

1

2 −
√

2
≈ 1.7 >

π

2
≈ 1.57.

But if
r

s
>
π

2
, it is faster to run the entire way rather than swim. Hence, it is never

optimal to take the straight-line path from A to B if r > s. �

Now that we know that when A and B are diametrically opposite, traveling

straight from A to B is only optimal if s ≥ r, it is only a short step further to

determine the conditions that make each of the possible paths optimal.
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Corollary 1.2.5. Suppose we are traveling from a point A outside a

circular pond to a point B on the edge of the pond with running speed r and

swimming speed s, where r > s. If the line from A to B contains a diameter of the

circle, the optimal path will consist of running to the tangential point on the pond

and then either running the rest of the way around the pond, or swimming straight

to B. If
r

s
>

π − cos−1
1

a
√

2 +
2

a

, the optimal choice is to run around the edge of the pond. If

r

s
<

π − cos−1
1

a
√

2 +
2

a

, the optimal choice is to swim to B.

Proof. Theorem 1.2.4 tells us that the straight-line path from A to B will never be

the optimal path. Also, in proving this theorem, we found that if the optimal path

involves swimming, it must be from one of the endpoints of the domain of

θ ∈ [0, cos−1
1

a
] as depicted in Figure 1.2.6. Since the minimum time is not from the

straight-line path (θ = 0), it must be at the other endpoint, which represents the

tangential point on the circle from A. If we were to run the entire distance from A

to B, we would want to minimize the distance, which we would do by running to

the tangential point and then running the rest of the way around the edge. Hence

either path we take must begin by running to this tangential point. Since this part

of the journey is the same in both cases, the only part that we need to compare to

determine the optimal path is the journey from the tangential point to B. But this

is just an On to On case.

Corollary 1.1.2 tells us that when traveling from a point on a circle to another

point on the circle, we will run around the edge if
r

s
>

α

2 sin(
α

2
)

=
α

√
2 − 2 cosα

, and

32



swim straight to B if
r

s
<

α

2 sin(
α

2
)

=
α

√
2 − 2 cosα

, where α is the angle between the

radii to the two points. In the proof of Theorem 1.2.4, we found that the angle to

the tangential point is γ = cos−1
1

a
, so the angle between the tangential point and B

is α = π − γ, and cosα = cos(π − γ) = − cosγ = −
1

a
. Then the optimal path is to run

the entire way if
r

s
>

π − cos−1
1

a
√

2 +
2

a

, and run to the tangential point and then swim

straight to B if
r

s
<

π − cos−1
1

a
√

2 +
2

a

. �

Now that the diametrically opposite case is fully exhausted, we return to the

non-diametrically opposite case. We know that for the right
r

s
ratio when r > s, we

might minimize the swim distance by running the entire way. So the question arises

as to whether we might want to minimize the run time for the right ratio if r < s.

Since A is outside the circle, we must run part of the way in order to get to the

pond, so the minimum run distance would be found by running perpendicularly to

the pond. We know that we will never do this if the points are diametrically

opposite, but what if they are not? This leads us to our next theorem.

Theorem 1.2.6. When traveling from a point A outside a circular pond to a

point B on the edge of the pond, where the line connecting A and B does not

contain a diameter of the pond (which may or may not be between the points), it will

never be optimal to minimize the run distance by running perpendicular to the circle

and then swimming.
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Proof. We want to compare the path that consists of running directly to the pond

and then swimming to B with a path in which we run to another point on the circle

and then swim. Let the run speed be r and the swim speed be s.

First, assume r > s. If we compare this perpendicular path to the straight-line

path, the perpendicular route increases total distance while increasing the slower,

swim distance. Then by Lemma 1.2.1, the perpendicular route will not be optimal.

Also, Theorem 1.2.3 tells us that the straight-line path will be optimal if r = s.

Suppose s > r. Position the pond on the xy-plane so that the point where the

line connecting A to the center of the pond intersects the circle is at the origin, and

A and B are both above the x-axis as shown in Figure 1.2.9. (Since A and B are

not diametrically opposite, the angle between them is less than π, and this is

possible.) Then we want to compare the path in which we run from A to the origin

and then swim to B with a path which involves running to another point (x, f(x))

on the circle and then swimming. This point must be above the x-axis or else we are

increasing total distance while increasing the slower run distance which is not

optimal. Let ρ represent the increase in run distance, and σ represent the decrease

in swim distance that is caused by moving from the origin to this new point. Also,

let a represent the distance from the origin to A, and b represent the distance from

the origin to B.

Now, the new path will be optimal if and only if
a + ρ

r
+
b − σ

s
<
a

r
+
b

s
. Note

that this is the same inequality as in Equation 1.2.5, so the new path will be optimal

if and only if
ρ

σ
<
r

s
. We will find the limit of

ρ

σ
as x approaches zero. Note that

σ =
√
b21 + b

2
2 −

√
(x − b1)2 + (f(x) − b2)2 and ρ =

√
(x − a1)2 + (f(x) − a2)2 −

√
a21 + a

2
2,
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Figure 1.2.9. Circles Out to On Perpendicular Path Comparison

and as x approaches zero, f(x) approaches zero as well. Then

lim
x→0

ρ

σ
= lim
x→0

√
(x − a1)2 + (f(x) − a2)2 −

√
a21 + a

2
2

√
b21 + b

2
2 −

√
(x − b1)2 + (f(x) − b2)2

.

This limit is of the form
0

0
, so we can apply L’Hopital’s Rule. Then

lim
x→0

ρ

σ
= lim
x→0

2(x − a1) + 2(f(x) − a2)f ′(x)

2
√

(x − a1)2 + (f(x) − a2)2

−
2(x − b1) + 2(f(x) − b2)f ′(x)

2
√

(x − b1)2 + (f(x) − b2)2

= lim
x→0
−
(x − a1 + f(x)f ′(x) − a2f ′(x))

√
(x − b1)2 + (f(x) − b2)2

√
(x − a1)2 + (f(x) − a2)2(x − b1 + f(x)f ′(x) − b2f ′(x))

. (1.2.8)

Now, since A lies on a line through the origin, we can write a2 = k(a1), where k is

the slope of this line. That is, k =
a2
a1

≠ 0. Furthermore, since this line will be

perpendicular to the tangent line at the origin, we know that f ′(0) = −
1

k
. Hence

lim
x→0

ρ

σ
= lim
x→0
−

(x − a1 + f(x) (−
1

k
) − ka1 (−

1

k
))

√
(x − b1)2 + (f(x) − b2)2

√
(x − a1)2 + (f(x) − ka1)2 (x − b1 + f(x) (−

1

k
) − b2 (−

1

k
))

=
(0 − a1 + 0 + a1)

√
(0 − b1)2 + (0 − b2)2

√
(0 − a1)2 + (0 − ka1)2 (0 − b1 + 0 +

b2
k
)

35



=
0

√
a21 + (ka1)2 (

b2
k
− b1)

= 0.

So as long as
b2
k
− b1 ≠ 0, we will have limx→0

ρ

σ
= 0. But if

b2
k
− b1 = 0, this means

that b2 = kb1 and B is on the same line through the origin as A. But our hypothesis

was that the line connecting A and B does not contain a diameter of the circle, so B

cannot be on this line and therefore this limit is zero.

Both of our speeds are positive, so
r

s
> 0, which means that there exists ε > 0

such that
r

s
> ε. Also, lim

x→0

ρ

σ
= 0 means that for ε > 0, there exists δ > 0 such that

∣
ρ

σ
− 0∣ =

ρ

σ
< ε <

r

s
whenever 0 < ∣x∣ < δ. Thus there exist points (x, f(x)) such that

the corresponding
ρ

σ
ratios are less than

r

s
and therefore the paths through these

points are faster than the path to the perpendicular point on the circle. Thus the

perpendicular path is never optimal. �

This result is interesting, because in general, it shows that minimizing the

distance traveled at the slower speed would not necessarily increase our overall

speed, as instinct might suggest. In fact, in the given scenario, this will never

happen.

Once again, this result relates to the correspondence between this scenario

and the Least Time Principle. If we were to aim a beam of light at a circular, or

rather cylindrical, piece of glass (or other material) along the normal line, it would

not bend or refract since the angle of incidence would be 0, leading to the equation

0 = n2 sin θ2 so either n2 = 0 or sin θ2 = 0. A piece of glass would not have refractive

index of zero, and in fact, materials with such a property have only recently been

created, the first of which was developed at Columbia Engineering School in 2011
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according to [3]. Hence we would not have n2 = 0 (and can generalize this for most

materials other than glass as well), so we must have sin θ2 = 0 and thus θ2 is either 0

or π. So the light would continue along the normal, and thus could not bend to

reach B.

While we have not obtained an exact equation to identify the point on the

pond to which running from A and then swimming to B will provide the optimal

path, we have managed to narrow it down through the last few theorems. We begin

by positioning the pond on the xy-plane so that the center is at the origin, and the

radius is one. Let A be on the x-axis at (a,0), and B be on the top half of the circle

at (b1, b2). In the proof of Theorem 1.2.4, we found that the tangential point to the

circle from A will be located at the point (
1

a
,

√
a2 − 1

a
). This is shown in

Figure 1.2.10.

Figure 1.2.10. General Circle Out to On Case

We can also find the exact point where the straight-line path from A to B

intersects the circle. We begin by finding the equation of this line, which we can do

by using the two points on the line, (a,0) and (b1, b2). Since B is on the northern

half of the circle, b2 =
√

1 − b21, and the slope of the line will be
b2

b1 − a
=

√
1 − b21
b1 − a

.
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Then the equation of the line will be given by

y =

√
1 − b21
b1 − a

(x − a).

We want to find where this line intersects the top half of the unit circle, so

we are trying to find where
√

1 − x2 =

√
1 − b21
b1 − a

(x − a). Both sides will be positive, so

we can find the intersection points by squaring both sides and moving all terms to

one side of the equation.

1 − x2 =
(1 − b21)(x − a)

2

(b1 − a)2

(1 − x2)(b21 − 2ab1 + a
2) = (1 − b21)(x

2 − 2ax + a2)

b21 − 2ab1 + a
2 − x2b21 + 2x2ab1 − x

2a2 = x2 − 2xa + a2 − x2b21 + 2xab21 − a
2b21

0 = x2 − x2b21 + x
2b21 − 2x2ab1 + x

2a2 − 2xa + 2xab21 + a
2 − a2b21 − b

2
1 + 2ab1 − a

2

0 = x2 − 2x2ab1 + x
2a2 − 2xa + 2xab21 − a

2b21 − b
2
1 + 2ab1

0 = x2(1 − 2ab1 + a
2) + x(−2a + 2ab21) + (2ab1 − a

2b21 − b
2
1) (1.2.9)

This equation can be very difficult to solve further. However, we already

know that the line and circle intersect at point B; we just need to find the other

point. But this means that b1 must be an x-intercept of the function in

Equation 1.2.9, and hence (x − b1) must be a factor. Then we can find the other
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factor using long division.

x (1 − 2ab1 + a2) + (b1 + a2b1 − 2a)

x − b1 ) x2(1 − 2ab1 + a2) + x(−2a + 2ab21) + (2ab1 − a2b21 − b
2
1)

−x2(1 − 2ab1 + a2) + x(b1 − 2ab21 + a
2b1)

x(b1 + a2b1 − 2a) + (2ab1 − a2b21 − b
2
1)

− x(b1 + a2b1 − 2a) + (b21 + a
2b21 − 2ab1)

0.

By setting this quotient equal to zero and solving, we can get that

x0 =
2a − b1 − a2b1
1 − 2ab1 + a2

, and y0 can easily be found by substituting this value into the

equation for the line:

y0 =

√
1 − b21
b1 − a

(
2a − b1 − a2b1
1 − 2ab1 + a2

− a)

=

√
1 − b21
b1 − a

(
2a − b1 − a2b1 − a + 2a2b1 − a3

1 − 2ab1 + a2
)

=

√
1 − b21
b1 − a

(
a − b1 + a2b1 − a3

1 − 2ab1 + a2
)

=

√
1 − b21
b1 − a

(
−(b1 − a) + a2(b1 − a)

1 − 2ab1 + a2
)

=

√
1 − b21
b1 − a

(
(b1 − a)(a2 − 1)

1 − 2ab1 + a2
)

=
(a2 − 1)

√
1 − b2

1 − 2ab1 + a2
.

Hence the line connecting A and B intersects the circle at the point

(x0, y0) = (
2a − b1 − a2b1
1 − 2ab1 + a2

,
(a2 − 1)

√
1 − b2

1 − 2ab1 + a2
).
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If s > r, running to a point above the straight-line path would increase total

distance while increasing the distance traveled at the slower speed. This would not

be optimal via Lemma 1.2.1, so we must instead run to a point below the

straight-line path. Thus we would run to some point (x,
√

1 − x2) where

x ∈ (
2a − b1 − a2b1
1 − 2ab1 + a2

,1). Theorems 1.2.3 and 1.2.6 tell us that the endpoints are not

included.

If r > s, we know that we will run to a point above the straight-line path for

the optimal time since running to a point below this path would increase the total

distance while increasing the distance traveled at the slower speed, a course that

would not be optimal according to Lemma 1.2.1. If we run to a point other than the

tangential point, then we will continue to B by swimming; but if we run to the

tangential, we may either continue running along the edge of the circle, or swim to

B. Thus, if r > s, we would run to some point (x,
√

1 − x2) where

x ∈ [
1

a
,
2a − b1 − a2b1
1 − 2ab1 + a2

).

Proposition 1.2.7. If
r

s
>

π − cos−1
1

a
√

2 +
2

a

, the optimal path will be the

all-running path, in which we run to the tangential point on the circle, and then

continue running around the edge to the ending point, B.

Proof. Suppose
r

s
>

π − cos−1
1

a
√

2 +
2

a

. Corollary 1.2.5 tells us that if we are running

from A to the point diametrically opposite from A, the optimal path will be the

all-running path. This case is the one in which the ending point is the farthest from

A that is possible in the Out to On case. Then for any other ending point B on the
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circle that is beyond the tangential point, the all running path from A to the

diametrically opposite point must pass through B. But if a path is optimal, it must

be optimal for all portions of the journey along that path. Since part of this journey

to the diametrically opposite point involves traveling from A to B, that portion of

the path must be optimal as well. Hence if
r

s
>

π − cos−1
1

a
√

2 +
2

a

, the optimal path from A

to B is the all-running path. �

We should note that this claim is only true in one direction. There may be

values for
r

s
that are less than

π − cos−1
1

a
√

2 +
2

a

which would also make it optimal to take

the all-running path since the angle subtending the arc from the tangential point to

B will be smaller than the one subtending the arc to the diametrically opposite

point.

We now have several interesting results about what may or may not

constitute the optimal route from a point outside a circular pond to a point on the

edge of the pond.
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CHAPTER 2

RECTANGLES

We now transition to a similar problem that, in a way, combines the ideas of

a straight shoreline and a circular pond by considering an enclosed body of water

with straight edges. Specifically, we will consider a rectangular pool. As with the

case of a circular pond, we begin with the case where the starting and ending points

are both on the edge of the pool. We discover that the optimal path is easier to

determine in the On to On case when considering the pond due to the uniformity of

the circle. The corners in this scenario create more cases to consider.

We can begin by ruling out one of our standard cases. Once again, the

shortest distance between two points is a straight line, so if our swim speed is greater

than or equal to our run speed, this minimum distance will also be traveled at the

fastest speed, taking the shortest amount of time. So we will always swim straight

from A to B when considering a faster (or equal) swim speed. Then we can focus on

the more interesting case where the run speed is greater than the swim speed.

First we will look at the case where the points are on adjacent sides of the

rectangle, which we will refer to as the 2-sided case, and then move on to the

3-sided case where the points are on opposite sides of the rectangle.

2.1. The 2-Sided Case

Suppose we are traveling from a point A on the edge of a rectangular pool to

another point B on an adjacent edge of the pool. What is important in determining

the optimal route is the ratio of the run speed to the swim speed, so for simplicity,
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let the swim speed be 1 unit. This way we will only have to be concerned with one

speed variable instead of two.

We begin by determining if we would run the entire way, swim the entire

way, or use some combination of running and swimming.

Theorem 2.1.1. Suppose we are traveling from a point A on one side of a

rectangular pool to a point B on an adjacent side of the pool with swim speed s = 1

and run speed r > 1. Furthermore, suppose the distance from the corner between the

sides to A is less than (or equal to) the distance to B. The optimal path will either

be to swim directly from A to B, run around the edge from A to B, or to swim from

A to some point on the adjacent side and then run to B. We do not need to

consider cases which would have a running portion followed by a swimming portion

and then another running portion.

Proof. Position the pool on the xy-plane so that the corner between the sides

containing the starting and ending points is at the origin, A is at the point (a,0),

and B is at the point (0, b) with b ≥ a as shown in Figure 2.1.1. Any path from A to

B will involve running along the x-axis to a point (x,0) where 0 ≤ x ≤ a, swimming

to a point (0, y) where 0 ≤ y ≤ b, and then running the rest of the way to B.

The run time will be
a − x

r
+
b − y

r
and the swim time will be

√
x2 + y2. We

can then create a function T (x, y) to give the time to travel from A to B,

T (x, y) =
a − x + b − y

r
+
√
x2 + y2. (2.1.1)
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Figure 2.1.1. 2-Sided Rectangle Path Possibilities

We want to minimize T (x, y) for (x, y) ∈ [0, a] × [0, b]. This minimum could occur at

an interior critical point or on the boundary of this rectangular domain. First we

explore the possibility of an interior critical point.

For any x and y that provide a local minimum travel time, the partial

derivatives with respect to each variable must both be equal to zero. Now,

∂T

∂x
(x, y) = −

1

r
+

2x

2
√
x2 + y2

so
∂T

∂x
(x, y) = 0 if and only if

x
√
x2 + y2

=
1

r
. Similarly,

∂T

∂y
(x, y) = −

1

r
+

2y

2
√
x2 + y2
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so
∂T

∂y
(x, y) = 0 if and only if

y
√
x2 + y2

=
1

r
. There can only be a local minimum

point if both of these derivatives are equal to zero and hence

y
√
x2 + y2

=
1

r
=

x
√
x2 + y2

,

which only happens if x = y. So if we cut off a corner of the rectangle, it must form

an isosceles triangle which means we would swim away from the edge at a 45○ angle.

Since x = y, we can adjust our time function from Equation 2.1.1 so that it is

a function of only one variable instead of two:

T (x) =
a + b − 2x

r
+ x

√
2.

Then the only critical point(s) will be where

T ′(x) =
−2

r
+
√

2 = 0 ⇐⇒
√

2 =
2

r
⇐⇒ r =

2
√

2
=
√

2.

Thus we will only be able to cut off a corner if the run rate is
√

2, and even then,

the value of x doesn’t matter! In fact, if r =
√

2, T (x) simplifies to

T (x) =
a + b − 2x

√
2

+ x
√

2 =
a + b − 2x

√
2

+
2x
√

2
=
a + b
√

2
,

which is just a constant function. So if r =
√

2, cutting off any corner with equal

sides will give the same time, and we can just consider this the same as the

all-running path corresponding to x = y = 0. If r ≠
√

2, there will not be an interior

45



critical point, and the minimum must happen on the boundary. Thus we do not

need to consider any run-swim-run paths.

Now we will consider the behavior of T on the boundary. Since we have two

variables, these boundary points are like the edges of a rectangle themselves. That

is, the boundary would be the outside edges of the domain, [0, a] × [0, b] ⊂ R2. So we

would have x ∈ {0, a} and y ∈ [0, b], or y ∈ {0, b} and x ∈ [0, a]. We will need to

consider the cases where x = y = 0 and where x = a and y = b as they are the

all-running path around the edge of the pool from A to B and the all-swimming

path directly between the two points respectively. The cases where x = 0 and

y ∈ (0, b] and where y = 0 and x ∈ (0, a] are trivial because they would be the same

distance as the all-running path but with one leg of the journey done by swimming

along the edge of the pool. Since swimming is slower, these could never be

minimum paths. This leaves the cases where x = a and y ∈ [0, b] or where y = b and

x ∈ [0, a]. Henceforth, we will refer to these paths as the swim-run path and

run-swim path respectively.

Next, we will find the point to which we want to swim on the y-axis in the

case of the swim-run option, and verify that it is a minimum. (The run-swim option

will follow similarly.) An updated picture will help us revise our time function again.

See Figure 2.1.2. In the above paragraph, we discerned that this swim-run path will

occur when x = a and y ∈ [0, b], so we only need to consider one variable, y, giving

T (y) =
√
a2 + y2 +

b − y

r
. (2.1.2)
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Figure 2.1.2. Swim-Run 2-Sided Case

Then for a minimum to occur, we must have T ′(y) = 0, so

T ′(y) =
2y

2
√
a2 + y2

−
1

r
= 0

y
√
a2 + y2

=
1

r

y2

a2 + y2
=

1

r2

r2y2 = a2 + y2

y2(r2 − 1) = a2

y2 =
a2

r2 − 1

y =
a

√
r2 − 1

. (2.1.3)

We can take the second derivative to see that this is in fact a local minimum.

T ′(y) = y(a2 + y2)−
1
2 −

1

r
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so

T ′′(y) = y (−
1

2
) (a2 + y2)−

3
2 (2y) + (a2 + y2)−

1
2

=
−y2

(a2 + y2)
3
2

+
1

(a2 + y2)
1
2

=
−y2

(a2 + y2)
3
2

+
a2 + y2

(a2 + y2)
3
2

=
a2

(a2 + y2)
3
2

. (2.1.4)

Since this must always be positive, the derivative is always increasing and must be

negative to the left of the critical point and positive to the right of the critical point.

Thus our time function is decreasing to the left of the critical point and increasing

to the right of the critical point, making it concave up over its domain. Therefore

our critical point from Equation 2.1.3 must be a local minimum. Furthermore, it

will be an absolute minimum if it falls within our domain (if 0 ≤
a

√
r2 − 1

≤ b), but

not if it falls outside the domain. However, we should note that this function, T (y),

does not represent the all-run path for any y ∈ [0, b], so we will still need to compare

the times for these two paths at a later stage.

Now, we just found that the critical point of the time function given in

Equation 2.1.2 occurs when y =
a

√
r2 − 1

. If we substitute this value back into the

time function, we find that the travel time corresponding to this swim-run path will

be given by

T (
a

√
r2 − 1

) =

¿
Á
ÁÀa2 + (

a
√
r2 − 1

)

2

+

b − (
a

√
r2 − 1

)

r
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=

√
a2r2 − a2

r2 − 1
+

a2

r2 − 1
+
b

r
−

a

r
√
r2 − 1

=
ar

√
r2 − 1

+
b

r
−

a

r
√
r2 − 1

=
ar2 − a

r
√
r2 − 1

+
b

r

=
a(r2 − 1)

r
√
r2 − 1

+
b

r

=
a
√
r2 − 1 + b

r
. (2.1.5)

Similarly, if we let a = b, b = a, and y = x, we can use the same equations to

determine the time function and local minimum for the case where y = b and

x ∈ [0, a]. The time function will be

T (x) =
√
b2 + y2 +

a − x

r
. (2.1.6)

Then a local minimum will occur only if T ′(x) = 0, which only happens where

x =
b

√
r2 − 1

. Also, the second derivative will be
b2

(b2 + y2)
3
2

which is always positive,

verifying that the function is concave up and this critical point does provide a local

minimum. Furthermore, the time it takes to travel this run-swim path will be

T (
b

√
r2 − 1

) =
b
√
r2 − 1 + a

r
.

Now, the run-swim path will be faster than the swim-run path if and only if

b
√
r2 − 1 + a

r
<
a
√
r2 − 1 + b

r

b(
√
r2 − 1 − 1) < a(

√
r2 − 1 − 1).
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However, since b ≥ a, this can be true if and only if

√
r2 − 1 − 1 < 0 ⇐⇒

√
r2 − 1 < 1.

But if
√
r2 − 1 < 1, then

b
√
r2 − 1

> b ≥ a,

and the critical point is not in the domain of T (x). Thus for b ≥ a, we only need to

consider swim-run paths in which we swim from A to (0,
a

√
r2 − 1

) and then run the

rest of the way to B. �

Now that we know which paths could be optimal, we can begin to compare

the times for each path to find out when each one is optimal.

Theorem 2.1.2. When traveling between two points A and B on adjacent

sides of a rectangular pool, where the distance from the corner between the sides to

A and B are one unit and b ≥ 1 units respectively with a swim speed of s = 1 and run

speed of r > s = 1, the following are true:

(1) The all-running path will be optimal to the all-swim path if r >
√

2 or if

r ≤
√

2 and b <
1 − r

√
2 − r2

r2 − 1
or b >

1 + r
√

2 − r2

r2 − 1
. If equality holds for b, they

are equally optimal. Otherwise, the all-swim path is preferable.

(2) The all-running path will be optimal to the swim-run path if and only if

r >
√

2 or b <
1

√
r2 − 1

. Note that if r =
√

2, they will take equal amounts of

time.

50



(3) The all-swimming path will be optimal to the swim-run path if and only if

r <
√

2 and b <
1

√
r2 − 1

. Note that if equality holds for b, they will take

equal amounts of time.

Proof. Position the pool on the xy-plane as in the proof of Theorem 2.1.1,

depicted in Figure 2.1.1. Furthermore, scale the figure so that A is located at (1,0).

(1) The all-run path will be optimal to the all-swim path if and only if the

all-run time is less than the all-swim time so

a + b

r
<
√
a2 + b2

1 + b

r
<
√

1 + b2

1 + 2b + b2

r2
< 1 + b2

1 + 2b + b2 < r2 + r2b2

0 < r2b2 − b2 − 2b + r2 − 1

0 < (r2 − 1)b2 − 2b + (r2 − 1).

We notice that the right-hand side of this inequality is just a parabola with

b as the variable, so we can use the quadratic formula to find where

equality holds:

b =
2 ±

√
4 − 4(r2 − 1)2

2(r2 − 1)

=
1 ±

√
1 − r4 + 2r2 − 1

r2 − 1

=
1 ± r

√
2 − r2

r2 − 1
.

51



Since this problem only applies to r > s = 1, r2 > 1 and r2 − 1 > 0. Thus the

leading coefficient is positive and the parabola opens upward so it will be

greater than zero when b <
1 − r

√
2 − r2

r2 − 1
or b >

1 + r
√

2 − r2

r2 − 1
. However, this

will only be true if the discriminant is zero or more. If the discriminant is

negative, then the parabola is completely above the x-axis and the all-run

path is always optimal to the all-swim path. This will happen when

2 − r2 < 0 ⇐⇒ 2 < r2 ⇐⇒ r >
√

2.

Thus the all-run path will be optimal if and only if r >
√

2 or r ≤
√

2

with b <
1 − r

√
2 − r2

r2 − 1
or b >

1 + r
√

2 − r2

r2 − 1
. Note that if r =

√
2, then this

parabola will never be below the x-axis, and will intersect the x-axis when

b = 1. This implies that the paths will have equal time when equality holds,

which will happen if and only if r ≤
√

2 and b =
1 ± r

√
2 − r2

r2 − 1
.

(2) First we note that the swim-run path is only minimal if the critical point,

1
√
r2 − 1

falls within the domain of the function. So if the critical point is

not in the domain, i.e. b <
1

√
r2 − 1

, the all-run path must be optimal to the

swim-run path. If b ≥
1

√
r2 − 1

, the critical point will fall within the domain,

and the all-run path will be optimal to the swim-run path if and only if

1 + b

r
<
a
√
r2 − 1 + b

r

1 + b <
√
r2 − 1 + b

1 <
√
r2 − 1
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1 < r2 − 1

r >
√

2.

(3) In the proof of Theorem 2.1.1, Equation 2.1.2 applies for y ∈ [0, b]. If the

critical point, y =
a

√
r2 − 1

=
1

√
r2 − 1

falls inside the domain, this path will

be the minimum. If not, the minimum will fall on an endpoint. Now, the

critical point is a positive number since r > 1 implies
√
r2 − 1 > 0. So if the

critical point falls outside the domain, it must be above the upper limit. In

the proof of Theorem 2.1.1, we determined that T (y) is decreasing for

y ≤
1

√
r2 − 1

, so it is decreasing over the entire domain. Then the minimum

would be at the upper endpoint of the domain where y = b, which is the

all-swim path.

Suppose r >
√

2. Then

r2 > 2 ⇐⇒
√
r2 − 1 > 1 ⇐⇒

1
√
r2 − 1

< 1,

and since we are labeling the rectangle so that b ≥ a = 1, the critical point

will always be in the domain and the swim-run path will be optimal to the

all-swim path.

If r =
√

2 then
1

√
r2 − 1

= 1 ≤ b, and the critical point will always be in

the domain. If b = 1, this would make the critical point equal to b so the

swim-run path is the same as the all-swim path, and thus would take the

same time to travel.
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Suppose r <
√

2. Then we will have
1

√
r2 − 1

> 1 so this critical point

may or may not be in the domain of T . If b ≥
1

√
r2 − 1

, the critical point is

in the domain and the swim-run path is faster. However, if b =
1

√
r2 − 1

, the

critical point is the upper endpoint of the domain and thus the swim-run

path is the same as the all-swim path. If b <
1

√
r2 − 1

, then the critical point

is outside the domain and the optimal path is the all-swim path. �

Now that we know how to determine the faster of any two paths, we can put

all three parts of the previous theorem together to find out when each path is

optimal overall. One more piece of information will allow us to pinpoint these

conditions exactly.

Lemma 2.1.3. Suppose 1 < r <
√

2. Then

1 − r
√

2 − r2

r2 − 1
< 1 <

1
√
r2 − 1

<
1 + r

√
2 − r2

r2 − 1
. (2.1.7)

Proof. First we will prove the middle inequality, which follows directly from the

fact that r <
√

2. This implies that r2 < 2 and then
√
r2 − 1 < 1 so

1
√
r2 − 1

> 1.

Next we will prove the right inequality.
1

√
r2 − 1

=

√
r2 − 1

r2 − 1
, so to prove that

1
√
r2 − 1

<
1 + r

√
2 − r2

r2 − 1
, it is sufficient to prove that

√
r2 − 1

r2 − 1
<

1 + r
√

2 − r2

r2 − 1
,
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and r > 1 implies that r2 − 1 > 0 so we can simplify this even further to

√
r2 − 1 < 1 + r

√
2 − r2.

Now, r <
√

2 tells us that −r2 > −2, so 2 − r2 > 0 and r
√

2 − r2 > 0 (and we

already mentioned that
√
r2 − 1 < 1). Thus

√
r2 − 1 < 1 < 1 + r

√
2 − r2, (2.1.8)

which proves the right inequality.

Now we will prove the left inequality. We start by rationalizing the

numerator of the left side to get

1 − r
√

2 − r2

r2 − 1
=

1 − r
√

2 − r2

r2 − 1
(

1 + r
√

2 − r2

1 + r
√

2 − r2
)

=
1 − r2(2 − r2)

(r2 − 1)(1 + r
√

2 − r2)

=
1 − 2r2 + r4

(r2 − 1)(1 + r
√

2 − r2)

=
(r2 − 1)2

(r2 − 1)(1 + r
√

2 − r2)

=
r2 − 1

1 + r
√

2 − r2
. (2.1.9)

Equation 2.1.8 tells us that 1 < 1 + r
√

2 − r2, so
r2 − 1

1 + r
√

2 − r2
<
r2 − 1

1
. But r <

√
2

implies that r2 − 1 < 1 so
1 − r

√
2 − r2

r2 − 1
< 1, and the left side of the inequality is also

proven. Thus the inequality in Equation 2.1.7 is true. �
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Now we can put all of this information together to know exactly when each

path is optimal.

Theorem 2.1.4. Suppose we are traveling between two points A and B on

adjacent sides of a rectangular pool where the distance from the corner between the

sides to A and B are one unit and b ≥ 1 units respectively with a swim speed of s = 1

and run speed of r > s = 1. Excluding cases where travel times and/or paths are

equal, the following are true:

(1) The all-running path where we run around the edge of the pool will be

optimal if and only if r >
√

2.

(2) The all-swimming path where we swim directly from A to B will be optimal

if and only if r <
√

2 and b <
1

√
r2 − 1

.

(3) The swim-run path where we swim from A to the point on the adjacent edge

that is
1

√
r2 − 1

units from the corner between the sides and then run the

rest of the way to B will be optimal if and only if r <
√

2 and b >
1

√
r2 − 1

.

Proof. (1) (⇐) Part (1) of Theorem 2.1.2 tells us that if r >
√

2, the

all-running path is optimal to the all-swimming path, and part (2) of that

theorem tells us that under the same condition, the all-running path is

optimal to the swim-run path. Hence the all-run path is optimal overall if

r >
√

2.

(⇒) If r <
√

2, part (1) of Theorem 2.1.2 tells us that the all-swim path

is optimal to the all-run path if
1 − r

√
2 − r2

r2 − 1
< b <

1 + r
√

2 − r2

r2 − 1
. But
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Lemma 2.1.3 tells us that

1 − r
√

2 − r2

r2 − 1
< 1 <

1
√
r2 − 1

<
1 + r

√
2 − r2

r2 − 1
,

so b ≥ a = 1 implies that we cannot have b <
1 − r

√
2 − r2

r2 − 1
. Also, if

b >
1 + r

√
2 − r2

r2 − 1
, then b >

1
√
r2 − 1

and the swim-run path is optimal to the

all-run path via part (2) of Theorem 2.1.2. Thus either the all-swim path or

the swim-run path is optimal to the all-run path if r <
√

2.

(2) Suppose r <
√

2 and b <
1

√
r2 − 1

. As already established in the proof of

part (1), Lemma 2.1.3 tells us that we cannot have b <
1 − r

√
2 − r2

r2 − 1
. Also,

this lemma indicates that if b <
1

√
r2 − 1

, then b <
1 + r

√
2 − r2

r2 − 1
so part (1) of

Theorem 2.1.2 indicates that the all-swim path is optimal to the all-run

path. Furthermore, part (3) indicates that this route is optimal to the

swim-run path as well, making it optimal overall. Similarly, if r >
√

2, part

(1) indicates that all-running is optimal to the all-swim path, and if

b >
1

√
r2 − 1

, part (3) implies the swim-run path is optimal to the all-swim

path.

(3) Suppose r <
√

2 and b >
1

√
r2 − 1

. Then part (2) of Theorem 2.1.2 implies

that the swim-run path is preferable to the all-run path, and part (3) tells

us that the swim-run path is faster than the all-swim path. Similarly, if

r >
√

2 or b <
1

√
r2 − 1

, part (2) of the theorem indicates that the all-run

path is optimal to the swim-run path so it is not optimal.
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Thus if r >
√

2, the all-run path is optimal. If r <
√

2, we consider the value

of b. If b >
1

√
r2 − 1

, the swim-run path is optimal, and if b <
1

√
r2 − 1

, the all-swim

path is optimal. �

2.2. The 3-Sided Case

As in the previous case we will consider traveling between points on the edge

of a rectangular pool. However, this time, suppose the points are on opposite edges

of the pool instead of adjacent edges. As already mentioned, if s > r, this is trivial

because the fastest time will come from traveling the shortest possible distance at

the fastest possible time, which can be done by swimming directly between the

points. So we will focus on the case where r > s. Also, as in the previous case, the

optimal path will depend on the run speed to swim speed ratio rather than the

actual speeds, so we can simplify this ratio by letting s = 1.

We will need to consider paths that travel directly across the pool as well as

paths that touch a third side. Suppose we are traveling from a point A that is a

units from the third side to a point C that is c units from the third side. Traveling

from A to C will be the same as traveling from C to A, so without loss of generality,

suppose c > a. (If not, we can simply relabel the points.) Also suppose that the

length of the third side is b. In general, we can position the pool on the xy-plane so

that the bottom corner of the pool below A is at the origin. Then A will be located

at (0, a) and C will be located at (b, c) as shown in Figure 2.2.1.

First we consider paths that do not touch a third side.

Theorem 2.2.1. Suppose we are traveling from a point A on the edge of a

rectangular pool to a point C on the opposite edge of the pool with running speed r
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Figure 2.2.1. General 3-Sided Rectangular Pool

and swimming speed s = 1 with r > 1. If we do not consider paths that involve

touching a third side of the pool, then the optimal path will be to swim to a point on

the opposite side that has a vertical distance of
b

√
r2 − 1

units from A and then run

to C, assuming this point falls below C. Otherwise, the fastest path will be to swim

directly from A to C.

Proof. First we note that if we were to run from A to some point on the same side

before swimming to a point on the other side and running the rest of the way to C,

it would have the same time as a route with a parallel swim path beginning at A.

So we only need to consider swim-run paths. To make things simpler, we will shift

the problem down so that A is at the origin as shown in Figure 2.2.2.

Figure 2.2.2. Rectangular Pool Between Opposite Sides
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Now, if the path does not touch the third side of the pool, we must swim

from A to some point on the opposite side of the pool. We would never swim to a

point below (b,0) since that would increase the swim distance and the total distance

so it would not be optimal via Lemma 1.2.1. Similarly, we would never swim to a

point above C as this would result in the same problem. So we must swim to a

point between (b,0) and C. Call this point (b, y). Then the time that it takes to

travel from A to C by way of (b, y) will be given by the function

T (y) =
c − a − y

r
+
√
b2 + y2

for y ∈ [0, c − a].

From both the figure and the time function, it is clear that this is just like

the 2-sided case and Equation 2.1.2, except with a = b and b = c − a. Also, we do not

know that c − a ≥ b. Then if we likewise replace a with b and b with c − a in

Equation 2.1.3, we get that the critical point will occur at y =
b

√
r2 − 1

.

Furthermore, Equation 2.1.4 tells us that T ′′(x) =
b2

(b2 + y2)
3
2

, which is always

positive so this point must be a local minimum. Thus if the point falls in the

domain of y, it will provide the minimum time.

Also,
b

√
r2 − 1

is positive so the point will never fall below the domain (below

0), and thus if it is not in the domain, it must fall above c − a. Since y =
b

√
r2 − 1

always gives a local minimum, T must be decreasing to the left of
b

√
r2 − 1

meaning

that the absolute minimum on the domain would be at the upper endpoint where

y = c − a, which would correspond to the all-swim path directly from A to C.
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Finally, the equivalent of Equation 2.1.5 tells us that the time it would take

to travel this optimal swim-run path is

T (
b

√
r2 − 1

) =
b
√
r2 − 1 + (c − a)

r
. (2.2.1)

This gives the optimal path if it does not involve touching the bottom edge. If we

shift this back up to its original location where the bottom left corner is at the

origin instead of A, then the critical point would be located at y =
b

√
r2 − 1

+ a, and

the time function would be given by

T (y) =
c − y

r
+
√
b2 + (y − a)2.

The time that it takes to travel this shifted path would be the same as traveling the

path before it was shifted. �

Now we will consider routes that do include travel to a third side. Without

loss of generality, suppose it is the bottom. If the top provides the optimal path, we

can simply reflect the rectangle across the line of symmetry so that it is on the

bottom. We still need to determine the appropriate side of the rectangle to use, but

we will address this at a later time. We know that the optimal path will involve

some combination of running and/or swimming. First we will identify these possible

paths.

Theorem 2.2.2. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool with the bottom left corner at the origin to a point C = (b, c) on

the opposite edge of the pool, with swimming speed s = 1 and running speed r > 1. If
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we only consider paths that involve touching a third side of the pool, then the optimal

path will either be to run the entire way around the edge of the pool from A to C, or

to swim to a point on the bottom edge that is
a

√
r2 − 1

from the edge containing A,

run to a point that is
c

√
r2 − 1

from the edge containing C, and then swim to C.

Proof. We begin by noting that any path that arrives at a point B on the bottom

edge by swimming and leaves B by swimming as well would not be optimal. If we

swam to B from some point A′ on the edge containing A to B and then from B to

some point C ′ on the side containing C, it would be faster to just swim directly

from A′ to C ′ rather than going by way of B since the path would be traveled at

only one speed and thus faster if traveled by way of the shortest distance.

We also note that if the optimal path involves touching some point B on the

bottom edge of the pool, the all running path will be optimal if and only if r >
√

2.

The optimal path from A to C can only be optimal if for any two points along the

path, the overall route contains the optimal path between the points. So if B is on

the optimal path from A to C, it must include the optimal way to get from A to B.

Since these points are on adjacent sides of the rectangle, we can use the results of

Theorem 2.1.4 to evaluate whether or not this portion of the path is optimal, and

Theorem 2.1.4 says that the all-running path is optimal if and only if r >
√

2.

Similarly, the all-running path from B to C would only be optimal under the same

conditions. Thus the all-running path from A to C would be optimal if and only if

r >
√

2.

Now, suppose r <
√

2, and the optimal path touches a point B on the

bottom. We would never run to some point A′ then swim to a point on the adjacent
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edge. If the point was before B, Theorem 2.1.1 tells us that we would never take a

run-swim-run path that cuts off a corner unless it is the all-swim path or swim-run

path. So the path from A to B through A′ could only be optimal if the point that

we swim to on the adjacent edge is B. But then we must be able to continue

optimally from B to C, which must be done by either swimming or running and

swimming. If we leave B by swimming that would not be optimal because we

arrived at B by swimming, so we must run to some point B′ and then swim to C.

But then the path from A to B′ must be optimal, which it cannot be since it

involves a run-swim-run path between points on adjacent sides. A similar analysis

would indicate that we will never swim to a point C ′ on the side containing C and

then run the rest of the way.

Thus if we are traveling through any point B on the bottom edge, we must

leave A by swimming and arrive at C by swimming. The proof of Theorem 2.1.1

indicates that a path involving swimming consists of either swimming directly

between the points or swimming to the point at
a

√
r2 − 1

units from the corner

between the sides and then running. Suppose we swim to some point other than

(
a

√
r2 − 1

,0). If we leave this point by swimming, it will not be optimal, so suppose

we run to some other point B and then swim to C. But since we did not swim to

a
√
r2 − 1

(or directly to B), this cannot be the optimal path from A to B, and thus

the total path is not optimal.

Suppose we swim from A to the point (
a

√
r2 − 1

,0). We cannot leave this

point by swimming or it will not be optimal, so we must run to some other point B

and then swim to C. But then the path from (
a

√
r2 − 1

,0) to C must be optimal,
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and since this must be a run-swim path, the only way it can be optimal is if B is

c
√
r2 − 1

units from the edge containing C.

Thus we know that if r <
√

2 and the optimal path touches a point on the

bottom edge of the rectangle, then the optimal route will be a swim-run-swim

path. �

This result leads directly to some conditions indicating when the all-running

path and swim-run-swim paths are optimal.

Corollary 2.2.3. The optimal path from A to C can only be the all-running

path if r ≥
√

2, and can only be the swim-run-swim path if r <
√

2 and b >
a + c

√
r2 − 1

.

Then if r <
√

2 and b ≤
a + c

√
r2 − 1

, the optimal path will not touch the bottom edge.

Proof. In the proof Theorem 2.2.2, we determined that if a path touches any point

B on the bottom edge of the pool, it must be optimal from A to B and from B to

C. The only way for the all-running path to be optimal is if r >
√

2. Otherwise a

swim-run path or all-swimming path from A to B would be optimal (and if r =
√

2,

the all-running path will have the same time as the swim-run path). Note that

r ≥
√

2 does not necessarily imply that the all-running path is optimal, just that it

could be.

Theorem 2.2.2 also states that if the optimal path touches the bottom edge

and is not the all-running route, we will swim to a point that is
a

√
r2 − 1

units from

the side containing A, then run to a point that is
c

√
r2 − 1

units from the edge

containing C. Therefore, this path can only be taken if the points (
a

√
r2 − 1

,0) and

(b −
c

√
r2 − 1

,0) exist on the third side, (b −
c

√
r2 − 1

,0) is to the right of
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(
a

√
r2 − 1

,0), and
a

√
r2 − 1

≠ b −
c

√
r2 − 1

. Thus we must have that

b >
a

√
r2 − 1

+
c

√
r2 − 1

=
a + c

√
r2 − 1

.

Once again, these conditions are necessary to make a swim-run-swim path optimal,

but not sufficient.

Now, suppose r <
√

2 and b ≤
a + c

√
r2 − 1

. Conditions are not met for the all-run

path or the swim-run-swim path to be optimal. But these are the only paths that

can touch the bottom edge. Thus the optimal path must be one that does not go

through any point on the bottom edge. �

Now that we have identified all of the possible paths, we can take a moment

to identify the times for each path. We have already found the time for the paths

that do not touch the bottom edge, and the time for the all-run path is obviously

a + b + c

r
, so let us focus on the swim-run-swim path. Figure 2.2.3 depicts this route.

Figure 2.2.3. 3-Sided Rectangle Swim-Run-Swim Path
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We will be able to simplify some parts of this formula using calculations from

previous theorems and formulas. The time it will take to travel this path is

T =

¿
Á
ÁÀa2 + (

a
√
r2 − 1

)

2

+

¿
Á
ÁÀc2 + (

c
√
r2 − 1

)

2

+

b −
c

√
r2 − 1

−
a

√
r2 − 1

r

=
ar

√
r2 − 1

+
cr

√
r2 − 1

+ (
b

r
−

a + c

r
√
r2 − 1

)

=
r2(a + c) + b

√
r2 − 1 − (c + a)

r
√
r2 − 1

=
(r2 − 1)(a + c) + b

√
r2 − 1

r
√
r2 − 1

=
(r2 − 1)(a + c)

√
r2 − 1 + b(r2 − 1)

r(r2 − 1)

=
b + (a + c)

√
r2 − 1

r
. (2.2.2)

Before getting into the details needed to determine conditions for a minimum

path for the general 3-sided case, we take a moment to address the simple case

where a = c.

Theorem 2.2.4. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool (with the bottom left corner at the origin) to a point C = (b, a)

on the opposite edge of the pool with swimming speed s = 1 and running speed r > 1

as depicted in Figure 2.2.4. The following are true:

(1) The all-running path is optimal if and only if r >
√

2 and b >
2a

r − 1
.

(2) The swim-run-swim path is optimal if and only if r <
√

2 and

b >
2a

√
r2 − 1

r − 1
= 2a

√

1 +
2

r − 1
.
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Figure 2.2.4. 3-Sided Rectangle with Equal Sides

(3) The all-swimming path is optimal if and only if r >
√

2 and b <
2a

r − 1
, or

r <
√

2 and b <
2a

√
r2 − 1

r − 1
= 2a

√

1 +
2

r − 1
.

Proof. First we will note that the fastest path that does not touch the bottom

edge will be the direct path from A to C as the domain of y in the time function for

the swim-run path would be [0, c − a] = [0,0]. Thus the travel time for this path will

simply be b. Also, since c = a, the travel time for the all-run path will be
2a + b

r
, and

using Equation 2.2.2, we get that the swim-run-swim time will be
b + 2a

√
r2 − 1

r
.

(1) Corollary 2.2.3 tells us that a necessary condition for the all-run path to be

optimal is that r >
√

2 because otherwise the swim-run-swim path will be

faster. Then the all-running path will be preferable to the all-swimming

path if and only if the running time is less than the swimming time, or

2a + b

r
< b

2a + b < br

2a < b(r − 1)

b >
2a

r − 1
. (2.2.3)
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Thus the all-run time is optimal overall if and only if both of these

conditions hold.

(2) Corollary 2.2.3 states that for the swim-run-swim path to be optimal, we

must have r <
√

2 or else the all-running path will be faster. Then we just

need to compare this path with the all-swimming path. The

swim-run-swim path will be optimal if and only if

b + 2a
√
r2 − 1

r
< b

2a
√
r2 − 1 < b(r − 1)

b >
2a

√
r2 − 1

r − 1
. (2.2.4)

We will note that this result backs up what we already found in

Corollary 2.2.3 since r > 1 implies that r2 > r so
2a

√
r2 − 1

r − 1
>

2a
√
r2 − 1

r2 − 1
.

Then if r <
√

2 and b >
2a

√
r2 − 1

r − 1
>

2a
√
r2 − 1

r2 − 1
, the necessary condition from

the corollary is met.

(3) Corollary 2.2.3 tells us that if r >
√

2, the swim-run path cannot be optimal

and thus we only need to compare the all-swimming time to the all-running

time. Furthermore, if we reverse the inequality in Equation 2.2.3, we find

that the all-swimming time will be faster if and only if b <
2a

r − 1
. Similarly,

if r <
√

2, we only need to compare this path to the swim-run-swim path, so

reversing the inequality in Equation 2.2.4 implies that the all swimming

path will be optimal if and only if b <
2a

√
r2 − 1

r − 1
. Thus we must have either

r >
√

2 and b <
2a

r − 1
, or r <

√
2 and b <

2a
√
r2 − 1

r − 1
= 2a

√

1 +
2

r − 1
. �
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It is interesting to note that in the comparison between the all-running path

and the all-swimming path, we found that the all-running path will be optimal if

b >
2a

r − 1
. However, this was only the case for r >

√
2, so

2a

r − 1
<

2a
√

2 − 1
. Thus if

b >
2a

√
2 − 1

= 2a(
√

2 + 1), then the all-running path will be faster than the

all-swimming path regardless of the running rate. Furthermore, in the comparison

between the all-swimming path and the swim-run-swim path, the all-swimming

path will be optimal if b <
2a

√
r2 − 1

r − 1
. But this was only true for 1 < r <

√
2, so

2a
√
r2 − 1

r − 1
=

2a(r2 − 1)

(r − 1)
√
r2 − 1

=
2a(r + 1)(r − 1)

(r − 1)
√
r2 − 1

=
2a(r + 1)
√
r2 − 1

> 2a(r + 1) > 4a.

Thus if b < 4a, the all-swimming path will be optimal to the swim-run-swim path

regardless of the running rate.

Since we have addressed the case where a = c, we will be assuming that c > a

in all future scenarios. To simplify the problem by removing one of the variables

from our calculations, we will scale the pool so that when it is placed on the

xy-plane, the vertical distance from A to C (specifically c − a) is equal to one, or so

that c = a + 1.

In the proof of Theorem 2.2.2, we determined that if the optimal path

involves travel through a point B on the bottom edge of the pool, it will be the

all-running path if r >
√

2, and the swim-run-swim path if r <
√

2. So in determining

the optimal overall path, we can consider these two separate cases, and then only

must compare the appropriate path with the ones that do not involve touching a

point on the bottom edge as found in Theorem 2.2.1.
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Case 1: r > √2

First we consider the case where r >
√

2 so that if the optimal path involves

touching a point on the bottom edge, it must be the all-running path.

Theorem 2.2.5. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool (with the bottom left corner at the origin) to a point

C = (b, a+ 1) on the opposite edge of the pool with swimming speed s = 1 and running

speed r >
√

2. The all-running path in which we run around the edge of the pool from

A to C will be optimal to the all-swim path in which we swim directly from A to C if

and only if r >
√

1 + (2a + 1)2 or b <
2a + 1 − r

√
1 + (2a + 1)2 − r2

r2 − 1
or

b >
2a + 1 + r

√
1 + (2a + 1)2 − r2

r2 − 1
.

Proof. The all-run path will have a travel time equal to
2a + 1 + b

r
, and the

all-swim path will have a travel time equal to
√

1 + b2. Then the all-run path will be

optimal to the all-swim path if and only if

2a + 1 + b

r
<
√

1 + b2

(2a + 1)2 + 2b(2a + 1) + b2

r2
< 1 + b2

(2a + 1)2 + 2b(2a + 1) + b2 < r2 + b2r2

0 < (r2 − 1)b2 − 2b(2a + 1) + (r2 − (2a + 1)2). (2.2.5)
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The right side of this inequality is a parabola in terms of b which opens upward

since r > 1 implies r2 − 1 > 0. Then it will cross the x-axis whenever

b =
2(2a + 1) ±

√
4(2a + 1)2 − 4(r2 − 1)(r2 − (2a + 1)2)

2(r2 − 1)

=
2(2a + 1) ± 2

√
(2a + 1)2 − r4 + r2(2a + 1)2 + r2 − (2a + 1)2

2(r2 − 1)

=
(2a + 1) ± r

√
1 + (2a + 1)2 − r2

r2 − 1
.

Now, if the discriminant is negative, there will not be any x-intercepts and the

parabola is above the x-axis over all real numbers, making the inequality in

Equation 2.2.5 always true and the all-run path consequently faster. This will

happen if and only if

0 > 1 + (2a + 1)2 − r2

r2 > 1 + (2a + 1)2

r >
√

1 + (2a + 1)2.

Otherwise we will still have the all-run path optimal if and only if

b <
(2a + 1) − r

√
1 + (2a + 1)2 − r2

r2 − 1
or b >

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
. �

Theorem 2.2.6. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool (with the bottom left corner at the origin) to a point

C = (b, a+ 1) on the opposite edge of the pool with swimming speed s = 1 and running

speed r >
√

2. The all-running path, in which we run around the edge of the pool from
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A to C will be optimal to the swim-run path in which we swim from A to the point

(b,
b

√
r2 − 1

+ a) and then run the rest of the way to C if and only if b >
2a

√
r2 − 1 − 1

.

Proof. The all-run path will have a travel time equal to
2a + 1 + b

r
, and

Equation 2.2.1 indicates that with c = a + 1, the travel time for the swim-run path

will be
b
√
r2 − 1 + 1

r
. Then the all-run path will be faster than the swim-run path if

and only if

2a + 1 + b

r
<
b
√
r2 − 1 + 1

r

2a + 1 + b < b
√
r2 − 1 + 1

2a < b(
√
r2 − 1 − 1)

b >
2a

√
r2 − 1 − 1

. �

Now that we have the pair-wise comparisons between the possible paths, we

can combine Theorem 2.2.5 and Theorem 2.2.6 with Theorem 2.2.1 to get the

overall results for this case.

Theorem 2.2.7. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool (with the bottom left corner at the origin) to a point

C = (b, a+ 1) on the opposite edge of the pool with swimming speed s = 1 and running

speed r >
√

2. The path in which we run around the edge of the pool from A to C

will be referred to as the all-run path, the option in which we swim directly from A

to C will be called the all-swim path, and the route in which we swim from A to the

point (b,
b

√
r2 − 1

+ a) and then run the rest of the way to C will be referred to as the

swim-run path. The following are true:
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(1) The all-run path is optimal if and only if b >
2a

√
r2 − 1 − 1

and either

r >
√

1 + (2a + 1)2 or b >
2a + 1 + r

√
1 + (2a + 1)2 − r2

r2 − 1
.

(2) The swim-run path is optimal if and only if b <
2a

√
r2 − 1 − 1

and b <
√
r2 − 1.

(3) The all-swim path is optimal if and only if r <
√

1 + (2a + 1)2 and

√
r2 − 1 < b <

2a + 1 + r
√

1 + (2a + 1)2 − r2

r2 − 1
.

Proof. The three possible paths are depicted in Figure 2.2.5.

Figure 2.2.5. 3-Sided Rectangle Possible Paths for r >
√

2

(1) For the all-run path to be optimal, it must simultaneously be faster than

both the swim-run path and the all-swim path. The first condition that we

must have b >
2a

√
r2 − 1 − 1

comes directly from Theorem 2.2.6, and will

determine whether or not the route in question is faster than the swim-run

path.

For the all-run path to be faster than the all-swim path, we have several

options provided by Theorem 2.2.5. We can either have r >
√

1 + (2a + 1)2

or b <
(2a + 1) − r

√
1 + (2a + 1)2 − r2

r2 − 1
or b >

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
.

However, having b <
(2a + 1) − r

√
1 + (2a + 1)2 − r2

r2 − 1
is only necessary if
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r <
√

1 + (2a + 1)2. We will show that if the first condition is satisfied to

make the all-run path optimal to the swim-run path, then we will never

have b <
(2a + 1) − r

√
1 + (2a + 1)2 − r2

r2 − 1
.

Suppose r <
√

1 + (2a + 1)2. This implies that r2 − (2a + 1)2 < 1, which

leads to the following:

(2a + 1) − r
√

1 + (2a + 1)2 − r2

r2 − 1
=

(2a + 1)2 − r2(1 + (2a + 1)2 − r2)

(r2 − 1)(2a + 1 + r
√

1 + (2a + 1)2 − r2)

=
(2a + 1)2 − r2 − r2(2a + 1)2 + r4

(r2 − 1)(2a + 1 + r
√

1 + (2a + 1)2 − r2)

=
−(2a + 1)2(r2 − 1) + r2(r2 − 1)

(r2 − 1)(2a + 1 + r
√

1 + (2a + 1)2 − r2)

=
r2 − (2a + 1)2

2a + 1 + r
√

1 + (2a + 1)2 − r2

<
1

(2a + 1 + r
√

1 + (2a + 1)2 − r2)

< 1. (2.2.6)

The last line is due to the fact that a ≥ 0 and r
√

1 + (2a + 1)2 − r2 > 0 so

2a + 1 + r
√

1 + (2a + 1)2 − r2 > 1.

Now suppose b < 1. Then 2ab < 2a and 2ab + b < 2a + b. But

r <
√

1 + (2a + 1)2 implies that r2 < 1 + (2a + 1)2 so
√
r2 − 1 < 2a + 1 so

b
√
r2 − 1 < b(2a + 1) = 2ab + b < 2a + b.
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It follows that

b
√
r2 − 1 − b < 2a

b(
√
r2 − 1 − 1) < 2a

b <
2a

√
r2 − 1 − 1

.

So if r <
√

1 + (2a + 1)2 and b <
(2a + 1) − r

√
1 + (2a + 1)2 − r2

r2 − 1
, then b < 1 by

Equation 2.2.6. But if b < 1, then b <
2a

√
r2 − 1 − 1

so swim-run is optimal to

all-run by Theorem 2.2.6 and we do not need to consider this option.

Thus the all-run path is optimal if and only if b >
2a

√
r2 − 1 − 1

and either

r >
√

1 + (2a + 1)2 or b >
2a + 1 + r

√
1 + (2a + 1)2 − r2

r2 − 1
.

(2) The swim-run path will be optimal if and only if it is faster than the all-run

path and the all-swim path simultaneously. Theorem 2.2.1 tells us that the

swim-run path will be optimal to the all-swim path if and only if

b
√
r2 − 1

+ a < c. With c = a + 1, this translates to
b

√
r2 − 1

< 1. Thus the

swim-run path will be faster than the all-swim path if and only if

b <
√
r2 − 1. Also, Theorem 2.2.6 states that this path will be faster than

the all-run path if and only if b <
2a

√
r2 − 1 − 1

. So it will be optimal overall

if and only if both of these conditions hold.

(3) The all-swim path will be optimal if and only if it is faster than both the

all-run path and the swim-run path. From Theorem 2.2.5, this path will be

faster than the all-run path if and only if r <
√

1 + (2a + 1)2 and

(2a + 1) − r
√

1 + (2a + 1)2 − r2

r2 − 1
< b <

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
.
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Furthermore, from Theorem 2.2.1, it will be faster than the swim-run path

if and only if
b

√
r2 − 1

+ a > c = a + 1, or b >
√
r2 − 1. However, r >

√
2 implies

that
√
r2 − 1 > 1 so if b >

√
r2 − 1, then b >

(2a + 1) − r
√

1 + (2a + 1)2 − r2

r2 − 1

based on Equation 2.2.6. So we only need the requirement that

√
r2 − 1 < b <

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
along with

r <
√

1 + (2a + 1)2. �

We should note that in the condition for the all-swim path to be optimal, it

is not necessarily true that
√
r2 − 1 <

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
. However, if

this is the case, it simply means that the necessary inequality is impossible to

satisfy and the all-swim path will never be optimal. For example, consider r = 3 and

a = 2. Then
√
r2 − 1 ≈ 2.82843 and

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
≈ 2.17116. Since it

is impossible to have 2.82843 < b < 2.17116, the all-swimming path can never be

optimal.

Using these results, we can get a generalization about the optimal paths as b

gets smaller or larger.

Corollary 2.2.8. Under the hypotheses of Theorem 2.2.7, for a fixed run

rate r >
√

2 and distance a > 0, the all-run path will always be optimal for b

sufficiently large.

Proof. Suppose r and a are fixed. Then
2a

√
r2 − 1 − 1

and

(2a + 1) + r
√

1 + (2a + 1)2 − r2

r2 − 1
will be constants, so we can find some number

M ≥ max

⎧⎪⎪
⎨
⎪⎪⎩

2a
√
r2 − 1 − 1

,
(2a + 1) + r

√
1 + (2a + 1)2 − r2

r2 − 1

⎫⎪⎪
⎬
⎪⎪⎭

such that the all-run path

will be optimal whenever b >M according to Theorem 2.2.7. �

76



Unfortunately, it is not possible to simplify these results any further as we

cannot find a definite order to the other boundary numbers for b:

√
r2 − 1,

2a
√
r2 − 1 − 1

, and
(2a + 1) + r

√
1 + (2a + 1)2 − r2

r2 − 1
. For each pair, there are

cases which will provide different orders.

Case 2: r < √2

In this case, if the optimal path passes through a point on the bottom edge

of the rectangle, it will be by way of the swim-run-swim path as opposed to the

all-run path by Corollary 2.2.3.

Theorem 2.2.9. Suppose we are traveling from a point A = (0, a) on the edge

of a rectangular pool (with the bottom left corner at the origin) to a point

C = (b, a+ 1) on the opposite edge of the pool with swimming speed s = 1 and running

speed 1 < r <
√

2. The all-swim path in which we swim directly from A to C will be

optimal to the swim-run-swim path in which we swim to the point (
a

√
r2 − 1

,0), run

to the point (b −
c

√
r2 − 1

,0), and then swim to C if and only if

2a + 1 − 2r
√
a2 + a

√
r2 − 1

< b <
2a + 1 + 2r

√
a2 + a

√
r2 − 1

.

Proof. The all-swim path will be faster than the swim-run-swim path if and only

if the travel time for the path is less. Equation 2.2.2 tells us that the swim-run-swim

path can be traversed at a time of
b + (a + c)

√
r2 − 1

r
, so this will be the case if and

only if

√
1 + b2 <

b + (a + c)
√
r2 − 1

r

r2 + r2b2 < b2 + 2b(2a + 1)
√
r2 − 1 + (2a + 1)2(r2 − 1)
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b2(r2 − 1) − 2b(2a + 1)
√
r2 − 1 − (2a + 1)2(r2 − 1) + r2 < 0.

We notice that this is a parabola with a variable of b, so the inequality will be true

if b is between the x-intercepts of the parabola since the leading coefficient is

positive and the parabola opens up. First we simplify the discriminant for the

quadratic formula:

4(2a + 1)2(r2 − 1) + 4(r2 − 1)((2a + 1)2(r2 − 1) − r2)

= 4(r2 − 1)[(2a + 1)2 + (2a + 1)2(r2 − 1) − r2]

= 4(r2 − 1)[(2a + 1)2 + (2a + 1)2r2 − (2a + 1)2 − r2]

= 4(r2 − 1)[(2a + 1)2r2 − r2]

= 4r2(r2 − 1)[4a2 + 4a + 1 − 1]

= 16r2(r2 − 1)(a2 + a).

Now we apply the full quadratic formula to get that

b =
2(2a + 1)

√
r2 − 1 ±

√
16r2(r2 − 1)(a2 + a)

2(r2 − 1)

=
2(2a + 1)

√
r2 − 1 ± 4r

√
r2 − 1

√
a2 + a

2(r2 − 1)

=
2a + 1 ± 2r

√
a2 + a

√
r2 − 1

.

Thus the all-swim path will be preferable if and only if

2a + 1 − 2r
√
a2 + a

√
r2 − 1

< b <
2a + 1 + 2r

√
a2 + a

√
r2 − 1

. �
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It is interesting to note that for c = a + 1, these boundary points are equal to

a + c ± 2r
√
ac

√
r2 − 1

. Furthermore, the lower endpoint will be negative if and only if

a + c < 2r
√
ac or r >

a + c

2
√
ac

. However, you might notice that this is the ratio of the

arithmetic mean of the two numbers to their geometric mean. And the arithmetic

mean of two positive numbers is greater than their geometric mean, proofs of which

were collected by Muirhead in [5]. Hence the ratio is always greater than one, so for

any given a and c, we can find some r such that r <
a + c

2
√
ac

, and the lower boundary

point will be positive. Therefore, it is possible to have b <
2a + 1 − 2r

√
a2 + a

√
r2 − 1

,

making the swim-run-swim case optimal.

Now we will compare the swim-run case with the swim-run-swim case.

Theorem 2.2.10. Suppose we are traveling from a point A = (0, a) on the

edge of a rectangular pool (with the bottom left corner at the origin) to a point

C = (b, a+ 1) on the opposite edge of the pool with swimming speed s = 1 and running

speed 1 < r <
√

2. The swim-run path in which we swim from A the point

(b,
b

√
r2 − 1

+ a) and then run the rest of the way to C will be optimal to the

swim-run-swim path in which we swim to the point (
a

√
r2 − 1

,0) run to the point

(b −
c

√
r2 − 1

,0), and then swim to C if and only if b <
(2a + 1)

√
r2 − 1 − 1

√
r2 − 1 − 1

.

Proof. The swim-run path will be faster than the swim-run-swim path if and only

if the time for the swim-run path given in Equation 2.2.1 is less than the time for

the swim-run-swim path given in Equation 2.2.2, or

1 + b
√
r2 − 1

r
<
b + (2a + 1)

√
r2 − 1

r
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b(
√
r2 − 1 − 1) < (2a + 1)

√
r2 − 1 − 1

b <
(2a + 1)

√
r2 − 1 − 1

√
r2 − 1 − 1

b <
1 − (2a + 1)

√
r2 − 1

1 −
√
r2 − 1

. �

From this result, we can see that we have to have b < 1 if the the swim-run

path is to be preferable to the swim-run-swim path. This is due to the fact that

a > 0 (if a = 0, this would fall into the 2-sided case) and thus 2a + 1 > 1 and

(2a + 1)
√
r2 − 1 >

√
r2 − 1. If the numerator is negative then the swim-run case

would never be optimal as this would require b to be negative, providing a

contradiction, so the numerator must be positive and

b <
1 − (2a + 1)

√
r2 − 1

1 −
√
r2 − 1

<
1 −

√
r2 − 1

1 −
√
r2 − 1

= 1.

These results easily fit together to summarize the optimal paths for this case,

and follow directly from the given theorems.

All that is left for the 3-sided case is to determine which 3 sides we will use.

In all of the calculations thus far, we assumed that paths touching a third side

would use the bottom. However, this may not be the case. It may be that a path

traveling to the top would be optimal. However, this problem would be exactly the

same as the scenario already analyzed only with a 180○ rotation. However, we do

need to determine whether to perform this rotation or not. This will actually be a

very simple matter.

80



As before, we allow the distance from A to the bottom to be a and the

distance from C to the bottom to be c. Now, call the distance from A to the top a′

and the distance from C to the top c′. Then we will perform the rotation if and only

if a′ + c′ < a + c. Since the all-swim and swim-run times are based solely on the

length of b and the difference between a and c, they would not be affected by a

rotation. The only times that would change would be times for paths that touch a

point on a third side, the all-run path or the swim-run-swim path. Then

a′ + c′ < a + c if and only if the run time around the top,
a′ + b + c′

r
is less than the

run time around the bottom,
a + b + c

r
. Also, the swim-run-swim time using the top,

1

r
(b + (a′ + c′)

√
r2 − 1), is less than the swim-run-swim time using the bottom,

1

r
(b + (a + c)

√
r2 − 1) if and only if a′ + c′ < a + c.
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CONCLUSION AND FUTURE PROJECTS

Many results were found, but there is also a lot of room for further

investigation. We obtained nice results for the On to On case in each scenario, but

these are only two of the many boundary shapes that could be considered.

Furthermore, there were several combinations of point locations that were not yet

explored.

The next project that we would like to accomplish is to expand the

investigation of the circular Out to On case to a general Out to In case. In many

parts, the fact that the ending point was on a circular boundary did not greatly

affect the result, which instead depended on whether the function for this border

was differentiable. We believe that this will extend to a case with a general

boundary shape that is strictly increasing or strictly decreasing. Preliminary

investigation suggests that we can find a point on the boundary that provides a

locally minimum time by finding where
r

s
=

sin θ1
sin θ2

where θ1 and θ2 are the angles of

incidence and refraction respectively. This would obviously be an extension of

Snell’s Law from a straight boundary line to a curved one, where we would apply

Snell’s Law to the family of tangent lines.

We also began some study of the Out to In case with circles that pointed to

some interesting conclusions in the future. We ran into some trouble when the

derivative could not be solved to obtain an exact determination of the path that

would involve running and swimming. However, using Monte Carlo graphs, we did

find some interesting visualizations about the areas that would require us to swim

the entire way.
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Furthermore, we would like to extend these specific problems to related ones

in other fields of study. One interesting option would be to take one of the speeds to

be zero, giving obstacles instead of passable areas. In this case, visibility graphs are

used to determine the optimal path, some of which was addressed in [4]. Once a

weighted graph is created, there are algorithms to find the minimum path, such as

Dijkstra’s algorithm as addressed in [10].

We were able to obtain many fascinating conclusions, but much room for

further exploration remains.
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