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Abstract: The paper develops an engineering acceptable approach to anisochronic 

controllers. The method is based on algebraic tools in the ring of RQ-meromorphic 

functions and it was developed for a wide class of delayed systems. This contribution 

deals with so-called anisochronic systems which include delays also in dynamics. 

Both stable and unstable systems are assumed. The control synthesis consists in the 

solution of the Bèzout identity and the Youla-Kučera parameterization resulting in 

the Smith-like control structure. A final controller can be tuned by a suitable choice 

of a scalar real parameter. Among many others tuning methods, the equalization 

method is adopted. The approach is suitable also for high order dynamics 

approximation and autotuning procedures. First order stable and unstable simulation 

examples are presented. 

 

Keywords: Algebraic approaches, Delay compensation, Diophantine equation, 

Parameterization, Smith predictor. 

 

 

 

 

1. INTRODUCTION 

 

A family of systems with delays also in internal 

feedback loops constitutes an attractive and 

interesting branch for theory as well as for industrial 

application. Delays are traditionally modeled in the 

sense of input-output relations. This approach is not 

suitable for state delays, i.e. on the left side of a 

differential equation (Zítek and Víteček, 1999; Zítek 

and Kučera, 2003).  However, different use of delay 

relations as one of the primary elements of model 

structure can be considered – anisochronic system 

description comprehending delay terms also in the 

state variables can cover a wide class of time delay 

systems. The models have transcendental structure, 

i.e. with infinite spectrum. There are several ways of 

identifying a plant with an anisochronic model, e.g. 

via relay test (Vyhlídal and Zítek, 2001) or 

successive integrations (Zítek and Vyhlídal, 2003). 

The algebraic description of anisochronic systems 

requires a simultaneous use of both differential and 

delay operators. The Laplace-transform description 

of this class of systems results in the transfer 

functions that are ratios of the so-called 

quasipolynomials. Once a ring of quasipolynomials is 

established, a set of retarded quasipolynomial 

meromorphic functions (RMS) can be introduced. Any 

transfer function is then described as a ratio of two 

elements from RMS and this representation is suitable 

for algebraic controller design. 

 

Algebraic approaches play a significant role in 

modern control theory. Recently, some attempts have 

been made to implement algebraic controller design 
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algorithms over the RMS ring (Zítek and Kučera, 

2003; Zítek et al., 2005; Prokop et al , 2006). Two 

ideas predominate: functional extension of the 

internal model control principle using affine 

parameterization and solution based on Diophantine 

equations and the Youla-Kučera parameterization. 

With the only exception (Zítek et al., 2005), the 

approaches cover only stable controlled systems. 

This contribution develops the second mentioned 

approach which covers also controller design for 

unstable plants. The methodology brings a scalar 

parameter m0 which can be used for controller tuning. 

The question how to choose the “right” value of this 

parameter has not been solved, one attempt is 

suggested in (Zítek and Vyhlídal, 2002) where 

dominant closed loop poles shifting method was 

utilized. This contribution brings another choice 

employing an analogy with the equalization method 

(Klán, 2005). The paper also demonstrates some 

simulation examples to verify the proposed algebraic 

controller design approach for various plant models. 

 

 

2. DESCRIPTION OF DELAYED SYSTEMS 

USING MEROMORPHIC FUNCTIONS 

 

A transfer function is obviously assumed as a ratio of 

two polynomials in the Laplace transform. A time 

delay in a system with the input-output delay where 

the dynamics is expressed by accumulations only is 

then expressed by an exponential 
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The innovative approach can be found e.g. in 

(Kamen, 1978; Zítek and Víteček, 1999) utilizing 

delays also in dynamics, i.e. in a denominator of a 

transfer function, providing a tighter model for a 

wide class of plants. Due to the infinite spectrum of 

the models they can be used for tracing of higher 

order systems dynamics. For the modeling both 

inductive (e.g. Vyhlídal and Zítek, 2001; Zítek and 

Vyhlídal, 2003) and deductive (Zítek and Víteček, 

1999) procedures can be utilized. Using Laplace, 

transfer functions result in a ration of 

quasipolynomials. Quasipolynomials contain also 

exponentials terms, in contrast to polynomials which 

consists of weighted sums of s-powers only. As an 

example, the first order anisochronic system can be 

depicted as 
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Modern algebraic approaches utilize various rings 

and tools connected with their properties. Assume a 

ring of stable and proper retarded quasipolynomial 

(RQ) meromorphic functions (RMS) rather than 

quasipolynomials. This representation allows 

convenient using of parameterization providing that 

the specific control conditions are fulfilled. 

Considering transfer function (2), the plant 

description in RMS is as follows 
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where analogously for higher order plants a common 

denominator is stable polynomial or quasipolynomial of 

appropriate order. Using of quasipolynomial rather than 

the polynomials is necessary in case of unstable delayed 

plants (Pekař, 2005). Quasipolynomial stability can be 

easily tested by applying the Mikhailov criterion, which 

was proved to be applicable for anisochronic systems 

(2) in Zítek (1997). 

 

The issue of properness in RMS ring is as the natural 

requirement as in the rational descriptions ensuring 

feasibility of both the plant and the controller. A term 

in RMS is proper if the highest s-power in the 

denominator (polynomial or quasipolynomial), s
n
, is 

higher or the same as the highest s-power in 

numerator, s
l
, e.g. ln  . 

 

 

3. PARAMETERIZATION OF STABILIZING 

CONTROLLERS 

 

The above-introduced transfer function description of 

delayed systems over RMS ring is suitable in particular 

for algebraic control synthesis. Thus, let a single-

input single-output plant be estimated by an 

anisochronic model in the form  
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where (quasi)polynomials b(s) and a(s) represent 

input-output plant behavior and dynamics and a 

selected stable (quasi)polynomial m(s) makes A(s) 

and B(s) to be in RMS, moreover, A(s) and B(s) are 

coprime - details about divisibility in RMS can be 

found in (Zítek and Kučera, 2003). Thus, consider 

the control loop as a simple feedback system 

depicted in Fig. 1. 

 

Let a transfer function of the controller be GR(s) = 

Q(s)/P(s). The aim of the control synthesis is to 

stabilize a feedback control system, obtain 

asymptotic tracking and attenuate load disturbance 

d(t).  Firstly, the stabilization of the feedback loop is 

guaranteed by solution of the Diophantine equation 
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Fig. 1. Control feedback structure 

 

where P0(s) and Q0(s) is a particular solution. Then, 

all stabilizing controllers can be expressed in a 

parametric form 
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where Z(s) is an arbitrary element of RMS. The special 

choice of this element is capable of ensuring 

additional control conditions. Details and proofs for 

general ring can be found e.g. in (Vidyasagar, 1985; 

Kučera, 1993). 

 

Secondly, conditions for asymptotic tracking and 

disturbance attenuation result from expression for 

E(s) which reads 

 

)(
)()()()(

)()(
)(

)()()()(

)()(
)( sD

sQsBsPsA

sPsB
sW

sQsBsPsA

sPsA
sE





  

               (7) 

 

where Laplace forms of reference and disturbance 

signals are W(s) = HW(s)/FW(s) and D(s) = 

HD(s)/FD(s), and all numerators and denominators in 

both W(s) and D(s) are over RMS. It is required that 

E(s) must belong to RMS, thus it is demanded that all 

unstable factors in both Fw(s) and FD(s) divide P(s). 

In practice, the most frequent case is both w(t) and 

d(t) are step functions, then the following condition 

for the absolute term in numerator of P(s) is 

demanded 

 

          se  1            (8) 

 

which indeed contains at least one zero pole. A free 

real parameter   can be chosen as a multiple 

pole in the form λ = nm0
 where n is the order of the 

plant. Condition (8) is ensured by the suitable choice 

of Z(s) in (6). ). If w(t) or d(t) are another functions, 

divisibility conditions can be more complex. 

 

 

4. CONTROLLER TUNING 

 

The whole system behavior is influenced by the 

choice of (quasi)polynomial m(s). In order to 

simplify m(s), it is usually chosen as the polynomial 

with multiple real stable pole m0, i.e. m(s) = (s + m0)
n
. 

However, it follows from the above-mentioned facts 

that for unstable plants it is necessary to use a 

quasipolynomial instead of polynomials. Just and 

comprehensive solution to this problem has not been 

arrived at yet. In (Zítek et al., 2005), “a pole 

placement principle” is interpreted as a shifting of 

dominant poles. In this paper, “an equalization 

method” is adopted (e.g. in Klán, 2005). This method 

was originally derived for input-output delayed 

systems, nevertheless, in some limit approximation it 

seems to be useful also for anisochronic systems. 

According to this tuning approach, for the PI 

controller together with a first order plan it is 

postulated 
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where KP and TI are a gain and an integral time 

constant, respectively, K and T are a gain and a time 

constant of the plant,  is time delay and  τ/(T + τ). 

It is impossible to fulfil simultaneously both the 

conditions in (9), however satisfaction of KP gives 

better simulation results. 

 

  

5. ILLUSTRATIVE EXAMPLES 

 

5.1. First order stable plants 

 

Let the plant be expressed by the anisochronic 

delayed first order model 
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Parameters K, T, τ and θ can be acquired by relay 

experiment or via successive integration (Zítek and 

Vyhlídal, 2004). Using (5) the following, particular 

solution is obtained 
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and if Z(s) is chosen as in (12), then a controller 

satisfying both a reference tracking and a disturbance 

rejection has the transfer function (13). 
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The controller structure (13) can be easily compared 

with the well-known Smith predictor (Pekař and 

Prokop, 2006). For low frequencies, s → 0, controller 

(13) works as a PI (proportionally-integrative) one. 



     

Assuming this steady-state behavior of the controller 

the equalization principle (9) may be taking into 

account. This idea results in a choice for m0 as 
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Hence, for example let a plant be modeled as K = 4.5, 

T = 7, τ = 3, θ = 0.5 and the ideal agreement of model 

and plant is presumed. The presented approach (5) – 

(8) with respect to (14), m0 = 0.14, results in the 

controller  
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To compare the influence of m0 and the efficiency of 

the “equalization method”, simulation results for 

various m0 values are depicted in Fig. 2. 

The following conditions were set for all simulations 

in this section: step reference value w(t) = 1 for 

)3/;0 SIMTt , w(t) = 2 for );3/ SIMSIM TTt , step 

load disturbance d(t) = -0.1 for 3/2 SIMTt  , where 

TSIM is simulation time. 

 

 

 
 

Fig. 2. Control of the first order stable plant (10) - 

output and input for m0 according to (14) and 

some other options 

 

Obviously, as can be seen from the figures, the 

higher m0 value implies faster and more “aggressive” 

behavior which can spoil an actuator and make the 

controller less robust.  

 

 

5.2. First order unstable plants 

 

Although many researches have implemented the RMS 

ring for the controller design, only stable plants were 

accentuated. Hereinafter, the controller design 

approach above presented is utilized also for an 

unstable first order plant. Hence, let the plant be 

modeled as 
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where a scalar real parameter r0 stabilize a common 

quasipolynomial denominator in (16), see details in 

(Pekař and Prokop, 2007). The stability can be 

checked by the Mikhailov criterion (Zítek, 1997). 

The solution of the Diophantine equation (6) is 

clearly Q0 = r0, P0 = 1. Selecting the parameterization 

factor 
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leads to the primary controller GR2(s) of the structure 
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Assuming steady-state approximation of (18) again, 

the PI structure is obtained and “equalization 

method” can be used. However, any attempt to fulfill 

the condition for KP according to (9) leads to 

negative 0m , which is not allowed due to the stability 

requirements. Thus, the condition for TI instead of KP 

must be taken in account, which results in 
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Consider the following plant parameters: K = 3, T = 

5, τ = 4, θ = 0.8. Parameter r0 can be taken as r0 = 

0.434, i.e. stability gain margin is KG = 1.3. Formula 

(18) with respect to (19), m0 = 0.095, leads to 
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Again, the suitability of the “equalization method” 

and the influence of m0 are illustrated in Fig. 3. 



     

 

 
 

Fig. 3. Control of the first order unstable plant (16) - 

output and input for m0 according to (19) and 

some other options 

 

 

Responses in these simulations are relatively slow in 

contrast to “unstable” time constant T of the plant. 

The approach suffers from high overshoots after step 

reference signal changes. This overshoots can be 

attenuated by increasing 0m , which is sacrificed by 

faster changes of controlled signal. 

 

The example opens up possibility of using the 

presented algebraic approach for unstable 

(anisochronic) delayed systems; nevertheless, it also 

demonstrates infelicity of the “equalization method” 

which is herein utilized after some frequency 

adjustment of a derived controller.  

 

 

5.3. Higher order approximation 

 

The transcendental character of anisochronic functions 

is able to estimate and approximate models of high 

order dynamics. The following example demonstrates 

this ability. Assume a plant exactly governed by the 

transfer function 
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Fig. 4. Fifth order plant modeled by the first order 

anisochronic model (10) and controlled by (23) - 

output and input for various m0 values 

 

After some autotuning experiments with asymmetric 

relay technique (see Prokop et al, 2006), this process 

can be approximated by the transfer function of form 

(10) as follows 
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The mentioned design approach according to (11) – 

(13) results in the controller 
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where the “tuning knob” m0 is calculated according to 

(14) as m0 = 0.045.  

 

Figure 4 demonstrates efficiency of the controller in 

control plant (21). Simulation control responses of 

output and input system signals are displayed in the 

pictures, respectively. Various values of m0 are chosen 

to verify the “equalization principle”.  

 



     

The responses in Figure 4 clearly indicate that higher 

values of m0 contribute to the faster but more 

oscillating control responses. Overall, the simulation 

responses are too slow in contrast to the step 

response of (21), where the settling time is 

approximately equal to 40 s. The value m0 = 0.045 

calculated from (14) based on considerably modified 

“equalization method” gives quite satisfactory 

control response in comparison with other options of 

m0. However, it is reasonable suspicious that 

frequency simplification of the controller can notably 

contribute to uselessness of the mentioned tuning 

method.  

 

Model (10) is capable of describing in particular non-

oscillatory plants. This feature is due to absence of 

more descriptive parameters in the model, especially 

in the nominator. Thus, for systems of more complex 

dynamics it is better to choose a different 

anisochronic model which has more parameters. 

However, this choice involves an investigation of 

suitable identification techniques.  

 

 

CONCLUSIONS 

 

The contribution is focused on algebraic control 

approach in the special ring of proper and stable RQ 

meromorphic functions (RMS). A delayed plant is 

described as a ratio of two terms in RMS. Both the 

input-output delayed systems and anisochronic 

(dynamic-delayed) systems are assumed. For the 

plant model, the control synthesis is then performed 

through a solution of a Diophantine equation in this 

ring. The methodology generates a class of Smith-

like delay compensating controllers. The design 

method brings a scalar tuning parameter m0 > 0 that 

can be adjusted by various strategies; the 

“equalization method” can be one of them. The 

methodology is illustrated by the simulation 

examples for stable and unstable first order systems. 

Higher order dynamics approximation using 

anisochronic model is also presented in the example. 

The simulations show simplicity and usability of the 

proposed methodology for delayed systems. For 

further study, the problem of anisochronic model 

estimation and validation and searching of suitable 

controller tuning method is opened.   
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