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Abstract. In this work, high molecular weight polytetrafluoroethylene based antidripping agent 
was blended with Ziegler-Natta based LLDPE in different concentrations. Rheological 
characterization was consequently performed for all the blends and the obtained results were 
compared with the pure LLDPE. It has been found that high molecular weight PTFE based melt 
modifier MM 5935 EF significantly enhancing the shear viscosity/elasticity and especially the 
extensional viscosity of the LLDPE melt. 
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INTRODUCTION 

Flame retardants are additives which deter or extinguish flame propagation which 
improves the safety of plastics used in consumer goods [1]. Due to the fact that flow 
properties of molten thermoplastics during ignition or flaming can play a large part in 
flame retardant modes of action, it is desirable to combine flame retardant additives 
together with polytetrafluoroethylene (PTFE) based drip suppressant additives (melt 
modifier). In more detail, the superfine fluorine-containing polymer particles together 
with halogenated flame retardants have been claimed to control the meltdripping 
behavior for numerous polymers including polyester in the concentration ranges of 
0.01-1 phr (part per hundred) due to fibrillation [1-7]. Unfortunately, there is only a 
little information in the open literature about the effect of antidripping agent on basic 
rheological characteristics of the polymer melts [7]. In order to extend the knowledge 
in this field, the main aim of this work is to investigate the effect of the antidripping 
agent on the shear as well as extensional rheological characteristics for Ziegler-Natta 
based LLDPE.    
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Experimental Analysis 

In this work, DyneonTM high molecular weight PTFE based melt modifier           
MM 5935 EF was used as the antidripping agent whereas Ziegler-Natta based LLDPE 
(ExxonMobile LL1002) as the basic polymer for the experimental research. 0.5%, 1%, 
1%, 1.5% and 2% MM 5935 EF were blended with LLDPE. SEM images for pure 
LLDPE sample and LLDPE+2% MM 5935 EF blend is provided in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For all polymer samples, the linear viscoleastic properties (storage modulus G’, 
loss modulus G”, complex viscosity �*) were measured with use of the Advanced 
Rheometric Expansion System (ARES 2000) Rheometrics rheometer. Considering the 
Cox-Merz rule [8] and the similarity between N1/2 and storage modulus G’ [9],        
the recoverable shear, Sr - the measure of the shear elasticity, has been evaluated in 
this work according to the following equation: 
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Steady state shear and uniaxial extensional viscosities at high deformation rates have 
been determined by RH7-2 control speed capillary rheometer. In order to determine 
uniaxial extensional viscosities at very high extensional strain rates, the Cogswell 
model [10] has been utilized. In order to measure entrance pressure drop correctly, 
recently proposed zero length die has been used [11]. 

Transient uniaxial extensional viscosity was measured using the ARES 2000 
rheometer equipped with the SER Universal Testing Platform (SER-HV-A01 model) 
from Xpansion Instruments [12–13] at two different extensional strain rates (1 s-1 and 
10 s-1). 

All the measured rheological data are provided in Figures 2-7. It is clearly visible 
that with increased amount of antidripping agent, Newtonian viscosity, shear elasticity 

FIGURE 1. SEM images of the LLDPE (left) and the LLDPE with 2% MM 5935 EF (right). 
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and extensional viscosity of the LLDPE melt is increasing. On the other hand, steady 
shear viscosity at very high shear rates (above 10 s-1 for a given temperature) is not 
influenced by the antidripping agent. Interestingly, with increased amount of 
antidripping agent (up to 1%), the strain at break decreases and then increases     
(1.5%-2%). 
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FIGURE 2. The effect of the flow modifier 
on the LLDPE complex viscosity. 

 

FIGURE 3. The effect of the flow modifier 
on the LLDPE shear elasticity. 

 

FIGURE 4. The effect of the flow modifier 
on the LLDPE steady shear viscosity. 

 

FIGURE 5. The effect of the flow modifier 
on the LLDPE steady uniaxial extensional 

viscosity. 
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CONCLUSION 

It has been found that high molecular weight PTFE based melt modifier              
MM 5935 EF significantly enhancing shear viscosity/elasticity and especially 
extensional viscosity of the LLDPE melt. It has been revealed that the effect of the 
flow modifier on the extension strain at break has non-monotonic character. 
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FIGURE 6. The effect of the flow modifier 
on the LLDPE transient uniaxial extensional 

viscosity; extensional strain rate = 1 s-1. 
 

FIGURE 7. The effect of the flow modifier 
on the LLDPE transient uniaxial extensional 

viscosity; extensional strain rate = 10 s-1. 
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