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This thesis consists of six chapters. In the first chapter, we review some

basic definitions and concepts of fractional calculus. Then we introduce fractional

difference equations involving the Riemann-Liouville operator of real number order

between zero and one. In the second chapter, we apply the Brouwer fixed point

and Contraction Mapping Theorems to prove that there exists a solution for up

to the first order nabla fractional difference equation with an initial condition. In

chapter three, we define a lower and an upper solution for up to the first order nabla

fractional difference equation with an initial condition. Under certain assumptions

we prove that a lower solution stays less than an upper solution. Some examples

are given to illustrate our findings in this chapter. Then we give constructive proofs

of existence of a solution by defining monotone sequences. In the fourth chapter,

we derive a continuous form of the Mittag-Leffler function. Then we use successive

approximations method to calculate a discrete form of the Mittag-Leffler function.

In the fifth chapter, we focus on finding the model which fits best for the data of

tumor growth for twenty-eight mice. The models contain either three parameters

(Gompertz, Logistic) or four parameters (Weibull, Richards). For each model, we

vi



consider continuous, discrete, continuous fractional and discrete fractional forms.

Nihan Acar who is a former graduate student in mathematics department has

already worked on Gompertz and Logistic models [1]. Here we continue and work

on Richards curve. The difference between Acar’s work and ours is the number of

parameters in each model. Gompertz and Logistic models contain three parameters

and an alpha parameter. The Richards model has four parameters and an alpha

parameter. In addition, we use statistical computation techniques such as residual

sum of squares and cross-validation to compare fitting and predictive performance

of these models. In conclusion, we put three models together to conclude which

model is fitting best for the data of tumor growth for twenty-eight mice. In the

last chapter, we conclude this thesis and state our future work.
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Chapter 1

INTRODUCTION

Fractional calculus is a branch of calculus that generalizes the derivative of a

function to non-integer order, allowing calculations such as
1

2
order derivative of

a function. Fractional calculus has a long and rich history. The idea of fractional

calculus was from a letter dated September 30th, 1695, L’Hôpital wrote to Leibniz

asking him about a particular notation he had used in his publications for the nth-

derivative of the linear function f(x) = x, dny

dxn
. L’ Hôpital posed the question to

Leibniz, what would the result be if n = 1

2
. Leibniz’s response was, “An apparent

paradox, from which one day useful consequences will be drawn.” In these words,

fractional calculus was born.

Following L’Hôpital’s and Leibniz’s first inquiry, fractional calculus was pri-

marily a study reserved for the best minds in mathematics. Fourier, Euler, Laplace,

Riemann, Liouville and Caputo are among the many who developed the theory of

fractional calculus. Many found, using their own notation and methodology, def-

initions that fit the concept of a non-integer order integral or derivative. There

are three main definitions for fractional calculus: the Riemann-Liouville definition,

the Caputo definition and the Grünwald-Letnitov definition. The most common

one which has been popularized in the world of fractional calculus is the Riemann-

Liouville definition.
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On the other hand, discrete fractional calculus is the discrete version of frac-

tional calculus which deals with any positive real order of sum or difference. The

nabla operator (∇) is known as the backward difference operator. The delta op-

erator (∆) is known as the forward difference operator. Several studies have been

done to obtain the properties of discrete fractional calculus with nabla and delta

operators [2, 11, 30]. In recent years, mathematicians have applied fractional and

discrete fractional calculus to a variety of problems in bioscience, engineering and

economics [3, 4, 5, 6, 7].

1.1. Special Functions

In this section, we discuss some necessary but relatively simple mathematical

definitions that will arise in the study of the basic concepts of fractional calculus.

First, we review the Gamma function and some basic properties of this function.

1.1.1. Gamma Function. The definition of the Gamma function is given by

Γ(x) =
∞

∫
0

e−ttx−1dt, x ∈ R.

The Gamma function satisfies the following equation

Γ(n) = (n − 1)!, n ∈ N.

The simplest interpretation of the Gamma function is the generalization of the

factorial for all real numbers.

The Gamma function has following property:
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Γ(x + 1) = xΓ(x), where x ∈ R+.

1.1.2. Mittag-Leffler Function. The Mittag-Leffler function is named after

Gösta Mittag-Leffler who defined and studied the special function in 1903 [8].

The function is a direct generalization of exponential function ex, and it plays a

major role in fractional calculus. The one and two-parameter representations of

the Mittag-Leffler function can be defined in terms of a power series as

Eα(x) =
∞
∑
k=0

xk

Γ(αk + 1)
,

Eα,β(x) =
∞
∑
k=0

xk

Γ(αk + β)
,

where α and β are postive real numbers. The Mittag-Leffler function with two-

parameters was first defined by Agarwal in 1953 [9].

The discrete Mittag-Leffler function is defined with one and two-parameters

in the following way. Related definitions are given by Nagai in [10]

Fα(at) =
∞
∑
k=0

aktk

Γ(αk + 1)
,

Fα,β(at) =
∞
∑
k=0

aktk

Γ(αk + β)
,

where α,β are positive real numbers and ∣a∣ < 1.

For any real number v, the discrete Mittag-Leffler function is defined as

Fα,β(atv) =
∞
∑
k=0

aktkv

Γ(αk + β)
,

3



where tkv will be defined in the next section.

1.2. Basic Concepts in Nabla Fractional Calculus

The fractional sum operator extends the discrete fractional operator used

in fractional calculus. Looking at the literature of discrete fractional difference

operators, two approaches are found: one using the ∆ operator (sometimes called

the forward difference operator), another using the ∇ operator (sometimes called

the backward difference operator). In this section, we focus on the study with the

∇ operator.

Here we give a short introduction to the basic definitions in discrete fractional

calculus. For more on the subject we refer the reader to the papers [11, 29, 31].

We begin by introducing some notations.

Define

tα = t(t + 1)(t + 2)⋯(t + α − 1), α ∈ N

and t0 = 1. The expression tα is well known and has been called “t to the α rising

.” Many mathematicians employ the Pochhammer symbol t(α) to denote the rising

fractional function.

Let α be any real number. Then “t to the α rising” is defined to be

tα = Γ(t + α)
Γ(t)

where t ∈ R/ {⋯,−2,−1,0} , and 0α = 0.
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Note that ∇(tα) = αtα−1, where ∇y(t) = y(t) − y(t − 1). For k = 2,3, . . ., define ∇k

inductively by ∇k = ∇∇k−1.

Next, we recall the definition of the fractional sum and difference operators.

∇−αa f is denoted to be the fractional sum of a function f with an arbitrary order

α > 0. ∇α
af is denoted to be the fractional difference of a function f with an

arbitrary order α > 0.

Definition 1.2.1. Let a be any real number and α be any positive real num-

ber. The α − th order fractional sum of f is defined as

∇−αa f(t) =
t

∑
s=a

(t − ρ(s))α−1
Γ(α)

f(s),

where t = a, a + 1, . . . and ρ(t) = t − 1 is the backward jump operator on the time

scale calculus.

Note that for α = 1, the equation turns into a discrete sum operator as given in

the following form

∇−1a f(t) =
t

∑
s=a

f(s).

Definition 1.2.2. Let a be any real number and α be any positive real number

such that 0 < n − 1 < α < n where n is an integer. The α − th order fractional

difference (a Riemann-Liouville fractional difference) of f is defined [11] by

∇α
af(t) = ∇n∇−(n−α)a f(t) = ∇n

t

∑
s=a

(t − ρ(s))n−α−1
Γ(n − α)

f(s),

where f is defined on Na = {a, a + 1, a + 2, . . .} .
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Next, we give some properties of nabla discrete fractional operators. Their proofs

can be found in [12].

Lemma 1.2.3. (i) ∇tα = αtα−1.

(ii) tα(t + α)β = tα+β.

(iii) ∇−α0 (t + 1)β =
Γ(β + 1)

Γ(β + α + 1)
(t + 1)α+β.

(iv) ∇−αa (t − a + 1)β =
Γ(β + 1)

Γ(β + α + 1)
(t − a + 1)α+β.

(v) ∇[
t

∑
a
f(t, s)] = f(ρ(t), t) +

t

∑
a
∇f(t, s).

Theorem 1.2.4. For any v > 0, the following equality holds:

∇−va+1∇f(t) = ∇∇−va f(t) − (t − a + 1)
v−1

Γ(v)
f(a).

Next we consider an initial value problem for a fractional difference equation

∇v
ay(t) = f(t, y(t)) for t = a + 1, a + 2, . . . ,

∇−(1−v)a y(t)∣t=a = y(a) = c,

where 0 < v ≤ 1 and a is any real number.

Apply the operator ∇−va+1 to each side of the equation to obtain

∇−va+1∇v
ay(t) = ∇−va+1f(t, y(t)).

which can be written in the form

∇−va+1∇∇
−(1−v)
a y(t) = ∇−va+1f(t, y(t)).

6



Using Theorem 1.2.4 we obtain

∇∇−va ∇
−(1−v)
a y(t) − (t − a + 1)

(v−1)

Γ(v)
∇−(1−v)a y(t)∣t=a = ∇−va+1f(t, y(t)).

Then we have

∇∇−va ∇
−(1−v)
a y(t) = (t − a + 1)

(v−1)

Γ(v)
y(a) +∇−va+1f(t, y(t)).

It follows that

y(t) = (t − a + 1)
(v−1)

Γ(v)
y(a) +∇−va+1f(t, y(t)).

The above calculations show that we can obtain a fractional sum equation from a

fractional difference equation with an initial value condition.

Next we present graphs of tα and tα for α = 0.645, α = 0.895, α = 1 and

α = 1.65. The straight line is the graph of tα and the dashed line is tα. It is clear

to see how close they are when α equals to different numbers.
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Figure 1.2.1. tα, tα for α = 0.645

Figure 1.2.2. tα, tα for α = 0.895
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Figure 1.2.3. tα, tα for α = 1.65

Figure 1.2.4. tα, tα for α = 2
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Chapter 2

APPLICATIONS OF FIXED POINT THEOREMS

Before we search for methods of solving a fractional equation, we want to

know whether there exists a solution. Fixed point theorems are some of the most

important theorems in mathematics. Among other applications, they are used to

show the existence of solutions to differential equations, as well as of equilibria in

game theory [27, 28]. In this chapter, we apply the Brouwer fixed point theorem

and the Contraction Mapping Theorem to prove the existence of a solution for up

to the first order nabla fractional difference equation with an initial condition.

2.1. Existence of Solution by the Brouwer Fixed Point Theorem

The Brouwer fixed point theorem is one of the early achievements of alge-

braic topology, named after Luitzen Brouwer. It serves as a basis of many fixed

point theorems which are important in functional analysis. Among hundreds of

fixed point theorems, Brouwer’s is particularly well known. The theorem is also

used for providing deep results about differential equations and is covered in most

introductory courses on differential geometry. In economics, Brouwer’s fixed-point

theorem and its extension, the Kakutani fixed-point theorem, play a central role

in proof of existence of general equilibrium in market economics as developed in

the 1950s [36].

At first, we discuss some definitions of fixed point theory. It would be helpful

to get some ideas and results of the theory before entering the detailed proofs.
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Definition 2.1.1. Let X be any space and f be a map of X, or a subset of

X, into X. A point x ∈ X is called a fixed point for f if x = f(x).

Theorem 2.1.2. (Brouwer fixed point theorem [13]) Let K ⊆ Rn and K =

{(x1, x2, . . . , xn) ∶ ci ≤ xi ≤ di, i = 1,2, . . . , n}. Suppose T ∶ K → K is continuous.

Then T has a fixed point in K.

We consider the initial value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
y(t) = f(t, y(t)),0 < α < 1

∇−(1−α)t0
y(t) ∣t=t0= y(t0) = y0.

(2.1)

Let f(t, y) be a continuous function in y for each t in [t0, b] and be bounded on

[t0, b] × R, where [t0, b] = {t0, t0 + 1, t0 + 2,⋯, b}. The following questions arise

for problem (2.1). Does a solution exist? Is it unique? How can solutions be

approximated? We will try to answer to all these questions in next few sections.

Theorem 2.1.3. Let f(t, y) be a continuous function in y for each t in [t0, b]

and be bounded on [t0, b] × R. Then there exists a solution for the initial value

problem (2.1).

Proof. We see that the above initial value problem (2.1) is equivalent to the

following equation

y(t) = ∇−αt0+1f(t, y(t)) +
(t − t0 + 1)(α−1)

Γ(α)
y0. (2.2)

Let K={y ∣ y(t0) = y0,∥ y ∥≤ k for some k ∈ R, t ∈ [t0, b]}

11



Let f be bounded by M ∈ R. For y ∈K, define Ty by

Ty(t) = ∇−αt0+1f(t, y(t)) +
(t − t0 + 1)(α−1)

Γ(α)
y0. (2.3)

Then we have

∣Ty(t)∣ = ∣∇−αt0+1f(t, y(t)) +
(t − t0 + 1)(α−1)

Γ(α)
y0∣

= ∣
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

f(s, y(s)) + (t − t0 + 1)
(α−1)

Γ(α)
y0∣

Since (t − t0 + 1)α−1 is increasing for t ∈ [t0, b], we have

≤ ∣
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

f(s, y(s)) + (b − t0 + 1)
(α−1)

Γ(α)
y0∣

Let I1 =
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

f(s, y(s)) + (b − t0 + 1)
(α−1)

Γ(α)
y0.

Since ∣f ∣ ≤M and (t − t0)0 = 1, we obtain

∣I1∣ ≤M
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

(t − t0)0 +
(b − t0 + 1)(α−1)

Γ(α)
∣y0∣

=M∇−αt0+1(t − t0)
0 + (b − t0 + 1)

(α−1)

Γ(α)
∣y0∣

Let I2 =M∇−αt0+1(t − t0)
0 + (b − t0 + 1)

(α−1)

Γ(α)
∣y0∣.

By using Lemma 1.2.3(iii) we have

I2 =M
Γ(1)

Γ(α + 1)
(t − t0)α +

(b − t0 + 1)(α−1)
Γ(α)

∣y0∣

≤M (b − t0)
α

Γ(α + 1)
+ (b − t0 + 1)

(α−1)

Γ(α)
∣y0∣.

Now observe that M
(b − t0)α
Γ(α + 1)

and
(b − t0 + 1)(α−1)

Γ(α)
∣y0∣ are defined when α is given.

Then M
(b − t0)α
Γ(α + 1)

+ (b − t0 + 1)
(α−1)

Γ(α)
∣y0∣ is bounded by a real number. So there exists

12



M∗ such that M
(b − t0)α
Γ(α + 1)

+ (b − t0 + 1)
(α−1)

Γ(α)
∣y0∣ ≤M∗. Hence, we have ∥ Ty ∥≤M∗.

Therefore, Ty is bounded by M∗.

Next we need to show that the operator T is continuous. We know that f

is a continuous function, say f is continuous at y = x0. Then lim
y→x0

f(y) = f(x0),

where y, x0 ∈ [t0, b].

Let
(b − t0)α
Γ(α + 1)

= h. Let ε > 0 be given. There exists δ > 0 such that

∣f(s, y(s)) − f(s, x0(s))∣ <
ε

h

whenever ∣y(s) − x0(s)∣ < δ.

Then

∣Ty(t)−Tx0(t)∣ = ∣∇−αt0+1f(t, y(t))+
(t − t0 + 1)(α−1)

Γ(α)
y0−∇−αt0+1f(t, x0(t))−

(t − t0 + 1)(α−1)
Γ(α)

y0∣

= ∣∇−αt0+1f(t, y(t)) −∇
−α
t0+1f(t, x0(t))∣

By Definition 1.2.1 we have

= ∣
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

f(s, y(s)) − f(s, x0(s))∣

≤
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

∣f(s, y(s)) − f(s, x0(s))∣

<
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

(t − t0)0 ⋅
ε

h

= ∇−αt0+1(t − t0)0 ⋅
ε

h
for ∣y(s) − x0(s)∣ < δ.

Let I3 = ∇−αt0+1(t − t0)0 ⋅
ε

h
.

By using Lemma 1.2.3 (iii) we have

13



I3 =
Γ(1)

Γ(α + 1)
(t − t0)α ⋅

ε

h

≤ 1

Γ(α + 1)
(b − t0)α ⋅

ε

h

= h ⋅ ε
h

= ε.

�

We proved that the operator T is continuous and T (K) ⊆ K. Therefore,

there exists a solution for the initial value problem (2.1) by the Brouwer fixed

point theorem.

2.2. Uniqueness of Solution by the Contraction Mapping Theorem

The Contraction Mapping Theorem is one of the simplest and most useful

theorems for the construction of solutions of linear and nonlinear equations. In

this section, we want to apply the Contraction Mapping Theorem and the Lipschitz

condition of the function to prove that there exists a unique solution for the initial

value problem (2.1). The relevant definitions for contraction mapping theorem are

introduced below [14].

Definition 2.2.1. A linear (vector) space X is a normed linear space (NLS)

provided there is a function ∥ ⋅ ∥∶ X→ R, called a norm, satisfying

(i) ∥ x ∥≥ 0 for all x ∈ X and ∥ x ∥= 0 iff x = 0,

(ii) ∥ λx ∥=∣ λ ∣∥ x ∥ for all λ ∈ R and x ∈ X,

14



(iii) ∥ x + y ∥≤∥ x ∥ + ∥ y ∥ for all x, y ∈ X.

Definition 2.2.2. We say that {xn} ⊂ X is a Cauchy sequence provided given

any ε > 0 there is a positive integer N such that ∥ xn − xm ∥< ε for all n,m ≥N.

Theorem 2.2.3. (Contraction Mapping Theorem) Let ∥ ⋅ ∥ be a norm on Rn

and K be a closed subset of Rn. Suppose T ∶K →K is a contraction mapping with

contraction constant α, with 0 < α < 1, such that

∥ Tx − Ty ∥≤ α ∥ x − y ∥,

for all x, y ∈K. Then there exists a unique fixed point of T .

Definition 2.2.4. Suppose that there exists a constant L > 0 such that

∣f(t, y) − f(t, x)∣ ≤ L∣y − x∣

for all integers t in [t0, b] and all x, y in R. Then we say that f satisfies a

“Lipschitz condition” with respect to y on [t0, b] ×R.

Theorem 2.2.5. If f(t, y) is continuous in y for each t in [t0, b]. Let f be

a Lipschitz function satisfying ∣f(t, y) − f(t, x)∣ ≤ L∣y − x∣, where 0 < L < 1 such

that
L

Γ(α + 1)
(b − t0) < 1. Then there exists a unique solution for the initial value

problem (2.1).

Proof. We use the Contraction Mapping Theorem to show that the initial value

problem (2.1) has a unique fixed point.
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Let K={y ∣ y(t0) = y0,∥ y ∥≤ k for some k ∈ R, t ∈ [t0, b]}. Let ∥ ⋅ ∥ be the

maximum norm. T ∶K →K is given by

Ty(t) = ∇−αt0+1f(t, y(t)) +
(t − t0 + 1)(α−1)

Γ(α)
y0.

∣Ty − Tx∣ = ∣Ty(t) − Tx(t)∣

= ∣∇−αt0+1f(t, y(t)) −∇
−α
t0+1f(t, x(t))∣

= ∣
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

(f(s, y(s)) − f(s, x(s)))∣

≤
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

L∣y(s) − x(s)∣

≤ L
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

∥ y − x ∥

Since (t − t0)0 = 1, then we obtain

≤ L
t

∑
s=t0+1

(t − ρ(s))(α−1)
Γ(α)

(t − t0)0 ∥ y − x ∥

= L Γ(1)
Γ(α + 1)

(t − t0)α ∥ y − x ∥

≤ L (b − t0)
α

Γ(α + 1)
∥ y − x ∥

= α ∥ y − x ∥

where 0 < α < 1.

Therefore, max ∣Ty − Tx∣ ≤ α ∥ y − x ∥, and we get the following inequality

∥ Ty − Tx ∥≤ α ∥ y − x ∥ .
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Since 0 < α = L (b − t0)
α

Γ(α + 1)
< 1, T is a contraction mapping. Thus by the Contraction

Mapping Theorem, T has a unique fixed point in K. This means that there is a

unique function in K which is a solution of (2.1). Since any solution of (2.1) is in

K, there is a unique solution of (2.1).

�
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Chapter 3

LOWER SOLUTIONS AND UPPER SOLUTIONS

3.1. Lower Solutions and Upper Solutions in Order

A fixed point theorem combined with upper and lower solutions is used to

investigate the existence of solution for up to the first order nabla fractional

difference equation with an initial condition. We define a lower solution and

an upper solution as follows. Let functions v, w be defined on [t0, tn], where

[t0, tn] = {t0, t0 + 1, t0 + 2,⋯, tn} and 0 < α < 1. The function v is said to be a lower

solution of the initial value problem (2.1) if

∇α
t0v(t) ≤ f(t, v(t)), (3.1)

v(t0) ≤ y0.

The function w is said to be an upper solution of the initial value problem (2.1) if

∇α
t0w(t) ≥ f(t,w(t)), (3.2)

w(t0) ≥ y0.

A lower solution v(t) and an upper solution w(t) are well ordered if

v(t) ≤ w(t), for all t ∈ [t0, tn].
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Lemma 3.1.1. Let f(t) and g(t) be continuous functions on [t0, tn] . If f(t) ≤

g(t), then for each t ∈ [t0, tn]

∇−αt0+1f(t) ≤ ∇
−α
t0+1g(t)

where 0 < α < 1.

Proof. From Definition 1.2.1, we have

∇−αt0+1f(t) =
t

∑
s=t0+1

(t − ρ(s))α−1
Γ(α)

f(s),

where t = t0, t0 + 1, . . . and ρ(t) = t − 1.

Note that the coefficient of each term is positive:

(t − t0)(α−1)
Γ(α)

= Γ(t − t0 + α − 1)
Γ(t − t0)Γ(α)

> 0, when s = t0 + 1.

(t − t0 − 1)(α−1)
Γ(α)

= Γ(t − t0 + α − 2)
Γ(t − t0 − 1)Γ(α)

> 0, when s = t0 + 2.

⋮

(t − t + 1)(α−1)
Γ(α)

= Γ(α)
Γ(1)Γ(α)

= 1 > 0, when s = t.

Then we have the following inequalities:

(t − t0)(α−1)
Γ(α)

f(t0 + 1) ≤
(t − t0)(α−1)

Γ(α)
g(t0 + 1),

(t − t0 − 1)(α−1)
Γ(α)

f(t0 + 2) ≤
(t − t0 − 1)(α−1)

Γ(α)
g(t0 + 2),
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⋮

(t − t + 1)(α−1)
Γ(α)

f(t) ≤ (t − t + 1)
(α−1)

Γ(α)
g(t).

If we sum each side we obtain

t

∑
s=t0+1

(t − ρ(s))α−1
Γ(α)

f(s) ≤
t

∑
s=t0+1

(t − ρ(s))α−1
Γ(α)

g(s).

Therefore,

∇−αt0+1f(t) ≤ ∇
−α
t0+1g(t).

�

Theorem 3.1.2. Suppose f(t, y) is continuous in y for each t on [t0, tn] and

is differentiable with 0 < ∂f

∂y
< 1 in y for each t on (t0, tn). Assume v(t) and w(t)

are a lower and an upper solution, respectively, for the initial value problem (2.1).

Then v(t) ≤ w(t), for t0 ≤ t ≤ tn.

Proof. We use mathematical induction to prove this theorem.

Define m(t) = v(t) −w(t).

Initial Step. If t = t0, we have m(t0) = v(t0) −w(t0) ≤ 0, because of the definitions

of upper and lower solutions.

Inductive Step. Assume there is a t=k, such that m(k) ≤ 0 for all t0 ≤ k ≤ tn. We

prove that the inequality is true for t = k + 1.

m(k + 1) = v(k + 1) −w(k + 1)
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≤ ∇−αt0+1f(k + 1, v(k + 1)) +
(k + 1 − t0 + 1)(α−1)

Γ(α)
∇−(1−α)k0

v(k) ∣k=t0

−∇−αt0+1f(k + 1,w(k + 1)) +
(k + 1 − t0 + 1)(α−1)

Γ(α)
∇−(1−α)t0

w(k) ∣k=t0

=
k+1
∑

s=t0+1

(k + 1 − ρ(s))(α−1)
Γ(α)

(f(s, v(s)) − f(s,w(s)))

+(k + 1 − t0 + 1)
(α−1)

Γ(α)
(v(t0) −w(t0))

Since we have
(k + 1 − t0 + 1)(α−1)

Γ(α)
> 0 and v(t0)−w(t0) ≤ 0, then the above expres-

sion is less than or equal to

I4 =
k+1
∑

s=t0+1

(k + 1 − ρ(s))(α−1)
Γ(α)

(f(s, v(s)) − f(s,w(s))).

Then it follows that

I4 =
k

∑
s=t0+1

(k + 1 − ρ(s))(α−1)
Γ(α)

(f(s, v(s)) − f(s,w(s)))

+(k + 1 − (k + 1 − 1))
(α−1)

Γ(α)
(f(k + 1, v(k + 1)) − f(k + 1,w(k + 1))).

By using Mean Value Theorem, there exists ξ1 and ξ2 such that

f(s, v(s))−f(s,w(s)) = fy(s, ξ1)(v(s)−w(s)) for ξ1 between v(s) and w(s).

f(k + 1, v(k + 1)) − f(k + 1,w(k + 1)) = fy(k + 1, ξ2)(v(k + 1) −w(k + 1))

for ξ2 between v(k + 1) and w(k + 1).

Then we obtain the following equation

I4 =
k

∑
s=t0+1

(k + 1 − ρ(s))(α−1)
Γ(α)

fy(s, c(s))(v(s) −w(s))

+fy(k + 1, d(k + 1))(v(k + 1) −w(k + 1)).
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Since
k

∑
s=t0+1

(k + 1 − ρ(s))(α−1)
Γ(α)

fy(s, c(s))(v(s) −w(s)) < 0, then

I4 ≤ fy(k + 1, d(k + 1))(v(k + 1) −w(k + 1)).

Therefore, we have

m(k + 1) = v(k + 1) −w(k + 1) ≤ fy(k + 1, d(k + 1))(v(k + 1) −w(k + 1)).

Hence, it follows that (1 − fy(k + 1, d(k + 1)))(v(k + 1) −w(k + 1)) ≤ 0.

Since 0 < fy(k + 1, d(k + 1)) < 1, we obtain v(k + 1) ≤ w(k + 1).

�

3.2. Existence of a Solution between a Lower and an Upper Solution

It is well known that the upper and lower solution method is a powerful tool

used in nonlinear analysis to prove the existence, localization and approximation

of a solution for a great variety of problems. In this section, we show that there

exists a solution between the ordered lower and upper solutions.

Theorem 3.2.1. Suppose there exist lower and upper solutions v = {v0, v1, . . . , vn}

and w = {w0,w1, . . . ,wn}, respectively, of the initial value problem (2.1) such that

v ≤ w. Assume also that f(⋅, yi) is a continuous function in [vi,wi] for all i ∈ [0, n].

Then there exists a solution for the initial value problem (2.1).

We use two ways to prove this theorem. The difference between these two

ways is that we define two operators in order to apply the Brouwer fixed point

theorem.
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Proof. Consider the following modified problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
λ(t) = f(t, p(t, λ(t))),0 < α < 1

∇−(1−α)t0
λ(t) ∣t=t0= λ(t0).

(3.3)

where p(ti, r) =max{vi,min{r,wi}}, for all i ∈ {0, . . . , n} and r ∈ R.

We can easily see this initial value problem is equivalent to the following equation

λ(t) = ∇−αt0+1f(t, p(t, λ(t))) +
(t − t0 + 1)(α−1)

Γ(α)
λ(t0). (3.4)

Let K={λ ∣∥ λ ∥≤ k for some k ∈ R, t ∈ [t0, tn]}.

For λ ∈K, define Tλ by

Tλ(t) = ∇−αt0+1f(t, p(t, λ(t))) +
(t − t0 + 1)(α−1)

Γ(α)
λ(t0).

By the Definition of p, we have f(t, p(t, λ(t))) for t0 ≤ t ≤ tn

f(t, p(t, λ(t))) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(t,wi), r ≥ wi

f(t, r), vi ≤ r ≤ wi

f(t, vi), r ≤ vi .

Since f is continuous as a function of p for each t on [t0, tn], f is bounded.

Similarly, we can show Tλ is bounded and continuous when f is a continuous func-

tion. Therefore, the operator T is continuous. By the Brouwer fixed point theorem,

there exists a solution for the modified problem (3.3). Thus, every solution λ of

(3.3) is a solution of (2.1).

Next, we define another operator T for the initial value problem (2.1).
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Consider the same modified problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
λ(t) = f(t, p(t, λ(t))),0 < α < 1

∇−(1−α)t0
λ(t) ∣t=t0= λ(t0) = p(t0).

(3.5)

where p(ti, r) =max{vi,min{r,wi}}, for all i ∈ {0, . . . , n} and r ∈ R.

Now x is a solution of the above problem if and only if x= col(x0, x1, . . . , xn)

is a solution of the matrix equation

Ax = F (x) (3.6)

where A = (aij) is defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 1 0 0 ⋯ 0

3−α − 2−α
Γ(1 − α)

−α 1 0 ⋯ 0

4−α − 3−α
Γ(1 − α)

3−α − 2−α
Γ(1 − α)

−α 1 ⋯ 0

⋮ ⋮
(n + 2)−α − (n + 1)−α

Γ(1 − α)
⋯ −α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F (x) is the transpose of the vector

(f(t0, p(t0, x(t0))),⋯, f(tn, p(tn, x(tn))),−
n

∑
i=1

f(ti, p(ti, x(ti))) − λ(t0)).

Now we want to show the existence of inverse of the matrix A. In order to show

the existence of A−1, we need to prove that det(A) ≠ 0. That is, we need to show

the matrix A is nonsingular. We prove it by mathematical induction.

Initial Step: When n=2, we apply the elementary row operation to get
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A2×2 =

⎡⎢⎢⎢⎢⎢⎢⎣

α 1

3−α − 2−α
Γ(1 − α)

−α

⎤⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎣

−α − 1
2

0

α − 2
2

−1

⎤⎥⎥⎥⎥⎥⎥⎦
Obviously, A2×2 is nonsingular.

Inductive Step: Our inductive assumption is: Assume when n = k, Ak×k is nonsin-

gular.

Ak×k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 1 0 0 ⋯ 0

3−α − 2−α
Γ(1 − α)

−α 1 0 ⋯ 0

4−α − 3−α
Γ(1 − α)

3−α − 2−α
Γ(1 − α)

−α 1 ⋯ 0

⋮ ⋮
(k + 2)−α − (k + 1)−α

Γ(1 − α)
⋯ −α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k + α − 1)(α + 1)k−2
k!

0 ⋯ 0

(k − 1)(α − 1)(α + 1)k−2
k!

−(α + 1)k−2
(k − 1)!

⋯ 0

⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We must prove that n = k + 1, A(k+1)×(k+1) is nonsingular.

A(k+1)×(k+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 1 0 0 ⋯ 0

3−α − 2−α
Γ(1 − α)

−α 1 0 ⋯ 0

4−α − 3−α
Γ(1 − α)

3−α − 2−α
Γ(1 − α)

−α 1 ⋯ 0

⋮ ⋮
(k + 3)−α − (k + 2)−α

Γ(1 − α)
⋯ −α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k + α)(α + 1)k−1
(k + 1)!

0 0 ⋯ 0

k(α − 1)(α + 1)k−1
(k + 1)!

−(α + 1)k−1
k!

0 ⋯ 0

(k − 1)(α + 1)(k − α − 3)k−2
(k + 1)!

(k − 1)(α − 1)(α + 1)k−2
k!

−(α + 1)k−1
(k − 1)!

⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We know that

−(α + 1)k−1
k!

= −(k + α − 1)(α + 1)
k−2

k!
.

Then we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(α + 1)k
k!

0 ⋯ 0

(k − 1)(α − 1)(α + 1)k−2
k!

−(α + 1)k−1
(k − 1)!

⋯ 0

⋮ ⋮ ⋯ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k + α − 1)(α + 1)k−2
k!

0 ⋯ 0

(k − 1)(α − 1)(α + 1)k−2
k!

−(α + 1)k−1
(k − 1)!

⋯ 0

⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since Ak×k=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k + α − 1)(α + 1)k−2
k!

0 ⋯ 0

(k − 1)(α − 1)(α + 1)k−2
k!

−(α + 1)k−1
(k − 1)!

⋯ 0

⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is nonsingular.

Then A(k+1)×(k+1) is nonsingular.

That completes the proof of showing the existence of A−1.

Then we rewrite (3.6) as the fixed-point equation x = A−1F (x) ≡ Tx. Obvi-

ously, T is a continuous map from RN+1 to RN+1. By definition of p there exist

L > 0 such that ∥ Tx ∥≤ L, where ∥ x ∥= max{∣ x(ti) ∣, i = 0, . . . , n}. Thus, the

Brouwer fixed point theorem implies the existence of a fixed point of the operator
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T , and in consequence, there exists a solution of the modified problem. Thus,

every solution λ of (3.5) is a solution of (2.1).

�

Theorem 3.2.2. Suppose there exist lower and upper solutions v = {v0, v1, . . . , vn}

and w = {w0,w1, . . . ,wn}, respectively, of the initial value problem (2.1) such that

v ≤ w. Assume also that f(⋅, yi) is a continuous function in [vi,wi] for all i ∈ [0, n].

Then problem (2.1) has at least one solution λ ∈ [v,w].

Proof. Consider the following modified problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
λ(t) = f(t, λ(t)),0 < α < 1

∇−(1−α)t0
λ(t) ∣t=t0= λ(t0) = p(t0).

(3.7)

where p(ti, r) =max{v(ti),min{r,w(ti)}}, for all i ∈ {0, . . . , n} and r ∈ R.

The Brouwer fixed point theorem implies the existence of a fixed point of the

operator T which we proved it for theorem 3.2.1. In consequence, there exists a

solution of the modified problem (3.7). Thus, there exists solution of the initial

value problem (2.1).

Next, we show that v(t) ≤ λ(t) ≤ w(t).

Let λ(t) be one solution of (2.1). Suppose λ(t) ≧̸ v(t). For the initial value

problem, we obtain v(t0) ≤ λ(t) ≤ w(t0). Let j0= min{j ∈ [t0, tn]: v(j0) > λ(j0)}.

Then obviously, v(j0 − 1) ≤ λ(j0 − 1), in consequence, we have

∇αλ(j0) = f(j0, p(j0, λ(j0))) = f(j0, v(j0)) ≥ ∇αv(j0),

27



where p(j0, λ(j0)) =max{v(j0),min{λ(j0),w(j0)}} = v(j0).

From the modified problem, we have

∇αλ(j0) ≥ ∇αv(j0),

∇αλ(t) ∣t=j0≥ ∇αv(t) ∣t=j0 .

First, by Definition of the nabla operator, we have

∇∇−(1−α)λ(t) ∣t=j0≥ ∇∇−(1−α)v(t) ∣t=j0 .

Then by Definition 1.2.1, we obtain

∇
t

∑
s=0

(t − ρ(s))−α
Γ(1 − α)

λ(s) ∣t=j0≥ ∇
t

∑
s=0

(t − ρ(s))−α
Γ(1 − α)

v(s) ∣t=j0 .

By using Lemma 1.2.3 (iv), we get

t

∑
s=0
∇(t − ρ(s))

−α

Γ(1 − α)
λ(s) ∣t=j0≥

t

∑
s=0
∇(t − ρ(s))

−α

Γ(1 − α)
v(s) ∣t=j0 .

Doing some algebra, we have the following inequality

t

∑
s=0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

λ(s) ∣t=j0≥
t

∑
s=0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

v(s) ∣t=j0

t

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) ∣t=j0≥
t

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

v(s) ∣t=j0

j0

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) ≥
j0

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

v(s).

The we have

j0−1

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) + (j0 − (j0 − 1))
−α−1

Γ(−α)
λ(j0) ≥

j0−1

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

v(s) + (j0 − (j0 − 1))
−α−1

Γ(−α)
v(j0),

which can be written in the form
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(j0 − (j0 − 1))−α−1
Γ(−α)

λ(j0) −
(j0 − (j0 − 1))−α−1

Γ(−α)
v(j0) ≥

j0−1

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

(v(s) − λ(s)),

0 > λ(j0) − v(j0) ≥
j0−1

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

(v(s) − λ(s)) ≥ 0.

Finally, we attain the contradiction that 0 > λ(j0) − v(j0) ≥ 0.

Similarly, we can prove λ(t) ≤ w(t).

Suppose λ(t) ≰ w(t). For the initial value problem, we obtain v(t0) ≤ λ(t) ≤ w(t0).

Let i0= min{i ∈ [t0, tn]: λ(i0) > w(i0)}. Then we have λ(i0 − 1) ≤ w(i0 − 1), and

consequencelly, we obtain

∇αλ(i0) = f(i0, p(i0, λ(i0))) = f(i0,w(i0)) ≥ ∇αw(i0),

where p(i0, λ(i0)) =max{v(i0),min{λ(i0),w(i0)}} = w(i0).

From the modified problem, we have

∇αλ(i0) ≤ ∇αw(i0)

∇αλ(t) ∣t=i0≤ ∇αw(t) ∣t=i0 .

First, by Definition of the nabla operator, we have

∇∇−(1−α)λ(t) ∣t=i0≤ ∇∇−(1−α)w(t) ∣t=i0 .

Then by Definition 1.2.1, we obtain

∇
t

∑
s=0

(t − ρ(s))−α
Γ(1 − α)

λ(s) ∣t=i0≤ ∇
t

∑
s=0

(t − ρ(s))−α
Γ(1 − α)

v(s) ∣t=i0 .

By using the Lemma 1.2.3 (iv) we have
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t

∑
s=0
∇(t − ρ(s))

−α

Γ(1 − α)
λ(s) ∣t=i0≤

t

∑
s=0
∇(t − ρ(s))

−α

Γ(1 − α)
w(s) ∣t=i0 .

Doing some algebra, we get the following inequality

t

∑
s=0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

λ(s) ∣t=i0≤
t

∑
s=0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

w(s) ∣t=i0

t

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) ∣t=i0≤
t

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

w(s) ∣t=i0

j0

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) ≤
j0

∑
s=0

(t − ρ(s))−α−1
Γ(−α)

w(s).

The we have

i0−1
∑
s=0

(t − ρ(s))−α−1
Γ(−α)

λ(s) + (i0 − (i0 − 1))
−α−1

Γ(−α)
λ(i0) ≤

i0−1
∑
s=0

(t − ρ(s))−α−1
Γ(−α)

w(s) + (i0 − (i0 − 1))
−α−1

Γ(−α)
w(i0),

which can be written in the form

(i0 − (i0 − 1))−α−1
Γ(−α)

λ(i0) −
(i0 − (i0 − 1))−α−1

Γ(−α)
w(i0) ≤

i0−1
∑
s=0

(t − ρ(s))−α−1
Γ(−α)

(w(s) − λ(s)),

0 < λ(i0) −w(i0) ≤
i0−1
∑
s=0

(t − ρ(s))−α−1
Γ(−α)

(w(s) − λ(s)) ≤ 0.

We obtain the contradiction that 0 < λ(i0)−w(i0) ≤ 0. Thus, we have λ(t) ≤ w(t).

Therefore, we conclude that λ ∈ [v,w].

�

In consequence, this method allows us to ensure the existence of a solution of

the considered problem lying between the lower and upper solution, which are well

ordered. The first example below is given to show the existence of solution of the
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initial value problem between the lower and upper solution, which are well ordered.

For the second example, we show that if lower solutions and upper solutions are

not ordered we cannot assert there exists a solution lying between them.

EXAMPLE: The sequences v ={1, -1, -1}, and w ={1, 1, 2} are, respectively, a

lower and an upper solution of the initial value problem

∇α
0x(t) =

2

x2(t) + 1
− α, t = {1,2}, x(0) = 1.

x(t) = ∇−α1 f(t, x(t)) + (t − t0 + 1)
(α−1)

Γ(α)
x0

x(t) = ∇−α1 (
2

x2(t) + 1
− α) + (t − t0 + 1)

(α−1)

Γ(α)
x0

=
t

∑
s=1

(t − ρ(s))(α−1)
Γ(α)

( 2

x2(s) + 1
−α)+ (t − t0 + 1)

(α−1)

Γ(α)
.

When t = 1, x(1) = {1}.

When t = 2, x3(2) − (α
2
− α2

2
)x2(2) + x(2) + α2

2
− α

2
− 2 = 0.

It is difficult to find x(2), so we pick up α = 1

2
. Then the above function can be

written

x3 − 1

8
x2 + x − 17

8
= 0.

Finally, we find x(2) ≈ 1.0635.

Therefore, the solution {1, 1, 1.0635}between v and w.

EXAMPLE: The sequences v ={1, 1, 0}, and w ={1, 0, 0} are a lower and an

upper solution respectively, of the initial value problem

∇α
0x(t) = x2(t) − α, t = {1,2}, x(0) = 1.
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x(t) = ∇−α1 f(t, x(t)) + (t − t0 + 1)
(α−1)

Γ(α)
x0

x(t) = ∇−α1 (
x2(t)
2
− α) + (t − t0 + 1)

(α−1)

Γ(α)
x0

=
t

∑
s=1

(t − ρ(s))(α−1)
Γ(α)

(x
2(t)
2
− α) + (t − t0 + 1)

(α−1)

Γ(α)

When t = 1, we obtain x(1) = {0,1}.

When t = 2, we obtain x(2) = {1 ±
√
2α2 + 2α + 1

2
,
1 ±
√
2α2 − 2α + 1

2
}.

Clearly, x(2) doesn’t lie between v and w.

3.3. Monotone Iterative Method : A Quasilinearization Method

In this section, a monotone iterative method is employed for studying the ex-

istence of solutions of up to the first order nabla fractional difference equation with

an initial condition. The initial approximations are the upper solution w(t) and

lower solution v(t) which are ordered. The method of upper and lower solutions is

a well-known tool that has been used to prove results for the existence of solutions

for many classes of equations with initial condition. Recently there have been a lot

of activity as far as upper and lower solution method is considered [15, 16, 17]. In

addition, under certain conditions, we can apply this theory to give constructive

proofs of existence of solution by defining monotone sequences for the considered

problem in a sector defined by a lower and an upper solution. We refer readers to

the paper [18].
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Theorem 3.3.1. Assume that there exists a constant m > 0 such that

f(t, y) +my ≤ f(t, x) +mx, for v(t) ≤ y ≤ x ≤ w(t), t ∈ [t0, tn].

Then there exist two monotone and convergent sequences in RN+1, vn and wn such

that v = v0 ≤ vn ≤ wn ≤ w0 = w, where v0(t) is a lower solution and w0(t) is an

upper solution for the initial value problem (2.1).

Proof. Consider the following modified problem

∇α
t0λ(t) = f(t, v0(t)) +m(v0(t) − λ(t)). (3.8)

Since v0 is a lower solution of ∇α
t0
y(t) = f(t, y(t)), then we have

∇α
t0v0(t) ≤ f(t, v0(t)),

∇α
t0v0(t) ≤ f(t, v0(t)) +m(v0(t) − v0(t)).

In consequence, v0(t) is a lower solution of ∇α
t0
λ(t) = f(t, v0(t)) +m(v0(t) − λ(t)).

We also have v0(t) ≤ w0(t), then

f(t, v0(t)) +m(v0(t)) ≤ f(t,w0(t)) +m(w0(t)),

f(t, v0(t)) +m(v0(t)) −m(w0(t)) ≤ f(t,w0(t)).

Since f(t,w0(t)) ≤ ∇α
t0
w0(t), then

f(t, v0(t)) +m(v0(t)) −m(w0(t)) ≤ ∇α
t0w0(t).
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Therefore, w0(t) is an upper solution of ∇α
t0
λ(t) = f(t, v0(t)) +m(v0(t) − λ(t)).

By using Theorem 3.2.1, there exists a solution v1 for the modified problem

∇α
t0
λ(t) = f(t, v0(t)) +m(v0(t) − λ(t)) such that v0 < v1 < w0.

Next, we want to show v0 and w0 are a lower solution and an upper solution

for another modified problem

∇α
t0γ(t) = f(t,w0(t)) +m(w0(t) − γ(t)). (3.9)

Since w0 is an upper solution of ∇α
t0
y(t) = f(t, y(t)). Then

∇α
t0w0(t) ≥ f(t,w0(t)),

∇α
t0w0(t) ≥ f(t,w0(t)) +m(w0(t) −w0(t)).

In consequence, w0(t) is an upper solution of f(t,w0(t)) +m(w0(t) −w0(t)).

We also have v0(t) ≤ w0(t), then

f(t, v0(t)) +m(v0(t)) ≤ f(t,w0(t)) +m(w0(t)),

f(t, v0(t)) ≤ f(t,w0(t)) +m(w0(t)) −m(v0(t)).

Since v0(t) is a lower solution of ∇α
t0
y(t) = f(t, y(t)), we obtain

∇α
t0v0(t) ≤ f(t, v0(t)),

∇α
t0v0(t) ≤ f(t, v0(t)) +m(w0(t)) −m(v0(t)).
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Therefore, v0(t) is a lower solution of ∇α
t0
γ(t) = f(t,w0(t)) +m(w0(t) − γ(t)).

Similarly, by using Theorem 3.2.1, there exists a solution w1 for the modified

problem ∇α
t0
γ(t) = f(t,w0(t)) +m(w0(t) − γ(t)) such that v0 < w1 < w0.

Now we need to show that v1(t) ≤ w1(t). Assume there exists a smallest k

such that v1(k) > w1(k). Obviously, v1(k − 1) ≤ w1(k − 1).

Define

β(k) = w1(k) − v1(k) < 0,

∇α
t0β(k) = ∇

α
t0w1(k) −∇α

t0v1(k),

∇α
t0β(k) = f(k,w0(k)) +m(w0(k) −w1(k)) − f(k, v0(k)) −m(v0(k) − v1(k)),

∇α
t0β(k) = f(k,w0(k)) +mw0(k) − f(k, v0(k)) −mv0(k) +m(v1(k) −w1(k)) > 0.

Therefore,

∇α
t0β(k) > 0,

∇α
t0β(k) = ∇

α
t0w1(k) −∇α

t0v1(k) > 0.

Then we obtain the inequality as follow.

∇α
t0w1(k) > ∇α

t0v1(k)

∇α
t0
w1(t) ∣t=k> ∇α

t0
v1(t) ∣t=k

∇∇−(1−α)t0
w(t) ∣t=k> ∇∇−(1−α)t0

v1(t) ∣t=k

∇
t

∑
s=t0

(t − ρ(s))−α
Γ(1 − α)

w1(t) ∣t=k> ∇
t

∑
s=t0

(t − ρ(s))−α
Γ(1 − α)

v1(t) ∣t=k
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t

∑
s=t0
∇(t − ρ(s))

−α

Γ(1 − α)
w1(t) ∣t=k>

t

∑
s=t0
∇(t − ρ(s))

−α

Γ(1 − α)
v1(t) ∣t=k

t

∑
s=t0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

w1(t) ∣t=k>
t

∑
s=0

(−α)(t − ρ(s))−α−1
Γ(1 − α)

v1(t) ∣t=k

t

∑
s=t0

(t − ρ(s))−α−1
Γ(−α)

w1(t) ∣t=k>
t

∑
s=t0

(t − ρ(s))−α−1
Γ(−α)

v1(t) ∣t=k

0 > w1(k) − v1(k) >
k−1
∑
s=t0

(t − ρ(s))−α−1
Γ(−α)

(v1(s) −w1(s)) ≥ 0.

We obtain a contradiction. Therefore, v1(k) ≤ w1(k). By doing the same process,

we obtain

v0 ≤ v1 ≤ ⋯ ≤ vn ≤ wn ≤ ⋯ ≤ w1 ≤ w0.

Now we need to show that vn and wn are convergent to the solution of the initial

value problem.

Then consider λ(t) is a solution of the initial value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
λ(t) = f(t, λ(t)),

∇−(1−α)t0
λ(t) ∣t=t0= λ(t0) = v(t0).

(3.10)

Consider the modified problem (3.8)

∇α
t0λ(t) = f(t, vn(t)) +m(vn(t) − λ(t)),

λ(t) = ∇−αt0+1(f(t, vn(t) +m(vn(t) − λ(t))) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

λ(t) ∣t=t0 .

Substitute vn+1(t) into λ(t)

vn+1(t) = ∇−αt0+1(f(t, vn(t) +m(vn(t) − vn+1(t))) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

λ(t) ∣t=t0 ,
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lim
n→∞

vn+1(t) = ∇−αt0+1(f(t, lim
n→∞

vn(t) +m( lim
n→∞

vn(t) − lim
n→∞

vn+1(t)))

+(t − t0 + 1)
α−1

Γ(α)
∇−(1−α)t0

λ(t) ∣t=t0 .

Since vn(t) is a monotone and convergent sequence, then

lim
n→∞

vn(t) = lim
n→∞

vn+1(t),

lim
n→∞

vn(t) = ∇−αt0+1,(f(t, lim
n→∞

vn(t) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

λ(t) ∣t=t0 .

So lim
n→∞

vn(t) is also a solution of the initial value problem (3.10).

Therefore, lim
n→∞

vn(t) = λ(t).

Similarly, we consider γ(t) is a solution of the initial value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
t0
γ(t) = f(t, γ(t)),

∇−(1−α)t0
γ(t) ∣t=t0= γ(t0) = w(t0).

(3.11)

Consider the modified problem (3.9)

∇α
t0γ(t) = f(t,wn(t)) +m(wn(t) − γ(t)),

γ(t) = ∇−αt0+1,(f(t,wn(t) +m(wn(t) − γ(t))) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

γ(t) ∣t=t0 .

Substitute wn+1(t) into γ(t)

wn+1(t) = ∇−αt0+1,(f(t,wn(t) +m(wn(t) −wn+1(t))) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

γ(t) ∣t=t0 ,

lim
n→∞

wn+1(t) = ∇−αt0+1,(f(t, lim
n→∞

wn(t) +m( lim
n→∞

wn(t) − lim
n→∞

wn+1(t)))

+(t − t0 + 1)
α−1

Γ(α)
∇−(1−α)t0

γ(t) ∣t=t0 .

37



Since wn(t) is a monotone and convergent sequence, then

lim
n→∞

wn(t) = lim
n→∞

wn+1(t),

lim
n→∞

wn(t) = ∇−αt0+1,(f(t, lim
n→∞

wn(t)) +
(t − t0 + 1)α−1

Γ(α)
∇−(1−α)t0

γ(t) ∣t=t0 .

So lim
n→∞

wn(t) is also a solution of the initial value problem (3.11).

Therefore, we obtain lim
n→∞

wn(t) = γ(t).

Note that λ(t) is always less than γ(t). In fact, lim
n→∞

vn(t) = λ(t), lim
n→∞

wn(t) = γ(t),

and vn ≤ wn, so λ(t) ≤ γ(t).

Let ε > 0 be given. Since lim
n→∞

vn(t) = λ(t), there exists n1 ∈ N, such that

∣vn(t) − λ(t)∣ <
ε

2
, whenever n ≥ n1.

Then we have

λ(t) − ε

2
< vn(t) < λ(t) +

ε

2
.

Since lim
n→∞

wn(t) = γ(t), there exists n2 ∈ N, such that

∣wn(t) − γ(t)∣ <
ε

2
, whenever n ≥ n2.

Then we have

γ(t) − ε

2
< wn(t) < γ(t) +

ε

2
.

Therefore, we obtain λ(t) − ε

2
< vn(t) ≤ wn(t) < γ(t) +

ε

2
, whenever n ≥ n1, n2.

In addition, vn ≤ wn, so wn − vn ≥ 0.

0 ≤ wn(t) − vn(t) ≤ γ(t) +
ε

2
− λ(t) + ε

2
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Thus, γ(t) − λ(t) + ε ≥ 0, and we obtain γ(t) ≥ λ(t).

�

39



Chapter 4

INTRODUCTION OF SIGMOIDAL CURVES IN

FRACTIONAL CALCULUS

We introduced nabla difference equation of fractional order along with suitable

initial conditions and proved the existence and uniqueness of the solution in the

previous chapters. The structure of the solutions with ordered lower and upper

solution was discussed. Very recently there has been progress in developing the

theory of the discrete fractional calculus. In several recent papers by Atici and

Eloe some basic results for discrete fractional equation have been obtained. In this

chapter, we find solutions for up to the first order homogeneous nabla continuous

and discrete fractional difference equations. Obtaining the solutions of the initial

value problem will help us to define sigmoidal curves in fractional calculus.

4.1. First Order Differential Equation and Nabla Difference Equation

In this section, we consider the first order differential equation that approxi-

mates to the first order difference equation. First recall the definition of derivative

of a function in calculus

Definition 4.1.1. The derivative of y at t is given by

y′(t) = lim
h→0

y(t + h) − y(t)
h

provided the limit exists. For all t for which this limit exists, y′ is a function of t.
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Let us omit the limit in this definition. We obtain

y′(t) ≈ y(t + h) − y(t)
h

.

Letting h = 1, we have

y′(t) ≈ y(t + 1) − y(t) =∆y(t).

Then we obtain

y′(t) ≈ y(t + 1) − y(t) = ∇y(t + 1).

Next, we solve for the first order differential equation and the first order

difference equation.

Consider the first order homogenous initial value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dy(t)
dt
= −ay(t), t ≥ 0

y(0) = 1
(4.1)

First, (4.1) can be formed as

dy(t)
y(t)

= −adt.

Then integrating on both sides, we have

∫
dy(t)
y(t)

= ∫ −adt.

After some algebra steps, we get

ln y(t) = −at + c.

41



Thus,

y(t) = e−at+c.

Our initial condition is y(0) = 1. Therefore, c = 0.

Therefore, the solution of (4.1) is

y(t) = e−at.

Next, we consider a first order nabla difference equation

∇y(t + 1) = −ay(t), t = 1,2,⋯

Then we shift t by one unit of time, we obtain

∇y(t) = −ay(t − 1), t = 1,2,⋯

Then we solve for the first order nabla difference equation with initial condition.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇y(t) = −ay(t − 1), t = 1,2,⋯

y(t) ∣t=0= y(0) = 1.
(4.2)

By the Definition of the ∇ operator, we have

y(t) − y(t − 1) = −ay(t − 1).

Then we get

y(t) = (1 − a)y(t − 1).
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After iterating steps we obtain

y(t) = (1 − a)t.

In the following chapter, we will use the approximation

e−at ≈ (1 − a)t.

For example, we know the continuous type of Richards curve with four parameters

is

Y (t) = a

(1 + eb(e−c)t) 1d
.

Then we define the discrete type of Richards curve with four parameters to be

Y (t) = a

(1 + eb(1 − c)t) 1d
.

4.2. Exponential Functions of Continuous and Discrete Fractional

Calculus

The Mittag-Leffler function naturally occurs as a part of the solution of frac-

tional order differential equations or fractional order integral equations. In this

section, we find continuous and discrete fractional forms for the exponential func-

tion.

As we stated in Chapter 1, we have

Eα,β(x) =
∞
∑
k=0

xk

Γ(αk + β)
,
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Eα,α(x) =
∞
∑
k=0

xk

Γ(αk + α)
,

Eα,α(atα) =
∞
∑
k=0

(atα)k
Γ(αk + α)

.

Based on the Mittlag-Leffler function, the generalized form of the exponential

function can be written as

eα,α(a, t) = tα−1Eα,α(atα).

Therefore, the continuous nabla fractional exponential function is

eα,α(a, t) = tα−1
∞
∑
k=0

(atα)k
Γ(αk + α)

=
∞
∑
k=0

ak
tαk+α−1

Γ(αk + α)
.

Note that when α = 1, we have e1,1 = eat.

For any real number v, the discrete Mittag-Leffler function has been defined by

Atici and Eloe [32] as

Fα,β(atv) =
∞
∑
k=0

aktkv

Γ(αk + β)
,

where α and β are positive real numbers and ∣a∣ < 1.

When α = β, we have

Fα,α(atv) =
∞
∑
k=0

aktkv

Γ(αk + α)
.

Therefore, the discrete nabla fractional exponential function is

∧
eα,α(a, tα) =

∞
∑
k=0

ak
(t − k + 1)(k+1)α−1

Γ(αk + α)
.

Note that when α = 1, we have
∧
e1,1(a, t1) = (1 + a)t.
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4.3. Successive Approximations Method

Successive approximations method appears throughout numerical optimiza-

tion, where a solution to an optimization problem is sought as the limit of solutions

to a succession of simpler approximation problems. For more examples, we refer

reader to the paper [29]. In this section, we use the method of successive approx-

imations to solve for up to the first order nabla difference equation with initial

value condition.

Consider the α − th order homogenous initial value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇α
0y(t) = −ay(t − 1), t = 1,2,⋯

∇−(1−α)0 y(t) ∣t=0= y(0) = c,

where 0 < α < 1 and ∣ a ∣< 1.

Apply the operator ∇−α1 to each side of the equation to obtain

∇−α1 ∇α
0y(t) = ∇−α1 (−ay(t − 1)),

which can be written in the form

∇−α1 ∇∇
−(1−α)
0 y(t) = ∇−α1 (−ay(t − 1)).

Then we have

∇∇−α0 ∇
−(1−α)
0 y(t) = ∇−α1 (−ay(t − 1)).

Hence

y(t) = (t + 1)
α−1

Γ(α)
c +∇−α1 (−ay(t − 1)).
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We employ the method of successive approximations. Set

y0(t) =
(t + 1)α−1
Γ(α)

c,

yn(t) = y0(t) +∇−α1 (−ayn−1(t − 1)), n = 1,2, . . . .

Apply the power rule to show that

y1(t) = y0(t) +∇−α1 (−ay0(t − 1)) =
(t + 1)α−1
Γ(α)

c − ac t2α−1

Γ(2α − 1)
.

With repeated applications of the power rule it follows inductively that

yn(t) = c
n

∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
, n = 0,1,2, . . . .

Formally, take the limit n→∞ to obtain

y(t) = c
∞
∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
.

Next, we use mathematical induction to prove

yn(t) = c
n

∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
, n = 0,1,2, . . . .

Proof. Initial Step. When n = 0, y0 =
(t + 1)α−1
Γ(α)

c, which is true.

Inductive Step. Assume when n = k,

yk(t) = c
k

∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
, k = 0,1,2, . . . .
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We must prove n = k + 1,

yk+1(t) = c
k+1
∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
, k = 0,1,2, . . . .

When n = k + 1, yk+1(t) = y0(t) +∇−α1 (−ayk(t − 1))

= (t + 1)
α−1

Γ(α)
c +∇−α1 (−a)c

k

∑
i=0
(−a)i (t − i)

(i+1)α−1

Γ((i + 1)α)

= (t + 1)
α−1

Γ(α)
c + c

k

∑
i=0
(−a)i+1∇−α1

(t − i)(i+1)α−1
Γ((i + 1)α)

.

By using Lemma 1.2.3(iv), we have

∇−α1
(t − i)(i+1)α−1
Γ((i + 1)α)

= (t − i)
(i+1)α+α−1

Γ((i + 1)α + α)
= (t − i)

iα+2α−1

Γ(iα + 2α)
.

Then

yk+1(t) =
(t + 1)α−1
Γ(α)

c + c
k

∑
i=0
(−a)i+1 (t − i)

iα+2α−1

Γ(iα + 2α)

= c
k+1
∑
i=0
(−a)i (t − i + 1)

(i+1)α−1

Γ((i + 1)α)
, k = 0,1,2, . . . .

�
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Chapter 5

PARAMETER ESTIMATIONS OF SIGMOIDAL MODELS

OF CANCER

Today, we are faced with a host of health problems that cannot be completely

cured. Cancer is one of leading cause of death worldwide. It can be overwhelmingly

complicated to treat more than almost any other disease. Although there are many

recent encouraging successes in cancer research, there is still a lot to be known

about its causes and treatments. Cancer treatment can involve one or several

different treatments. Surgery, radiotherapy, chemotherapy, biologic therapy and

clinical trials are standard methods of treatment in many types of cancer. But in

many cases they do not result a complete cure, because it takes a long period of time

to observe the outcomes of the above mentioned treatments. For a treatment with

better outcome, mathematical models which simulate rate of given tumor growth

data, needs to be developed. Based on these mathematical models, researchers

can predict the behavior of growth more accurately. A better understanding of

the growth of tumors is of paramount importance for the development of more

successful treatment strategies.

Growth curve analysis plays an important role in cancer research. An early

contribution to the theory of growth curves was made by Gompertz in 1825 [19].

There are other mathematical models used to study tumor growth as well [20, 21,

22, 23]. The Gompertz, Logistic and Richards models are just only three of many

models that we study in this chapter. We show that fractional equations can be
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used to define models for tumor growth by way of fractional, discrete Gompetz and

Logistic equations. Nihan Acar [1] has already worked on Gompertz and Logistic

models with three parameters. For the range of tumor, there are minor difference

between Gompertz and Logistic growth given probable parameters. We present

the Richards model, which has four parameters. Modeling can provide valuable

information to plan effective biological experiments for testing cancer study. We

have the data of growth rates of tumors from twenty eight mice. Dr. William

Hruskesky gave us permission to use his published data obtained at the Medical

Chronobiology Laboratory, University of South Caroline [24]. In addition, we

use statistical computation techniques such as residual sum of squares and cross-

validation to compare fitting and predictive performance of these models. The

objective of this chapter is to develop discrete fractional models in order to find

the best data fitting for a given tumor growth data.

5.1. Parameter Estimations with the Fractional Richards Curve

In this section, we consider Richards models which contain four parameters.

For each model, we consider continuous, discrete, continuous fractional and discrete

fractional forms. In these forms, a, b, c and d are parameters and α ∈ (0,1) is the

order of the fractional difference equation.

We consider the continuous, discrete, continuous fractional and discrete frac-

tional types of Richards curve as in the following:

Y (t) = a

(1 + eb(e−c)t) 1d
(continuous)
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Y (t) = a

(1 + eb(1 − c)t) 1d
(discrete)

Y (t) = a

(1 + eb
∞
∑
n=0
(−c)n t(n+1)α−1

Γ((n + 1)α)
) 1d

(continuous fractional)

Y (t) = a

(1 + eb
∞
∑
n=0
(−c)n (t − n + 1)

(n+1)α−1

Γ((n + 1)α)
) 1d

(discrete fractional)

where 0 < α < 1.

We use Mathematica to estimate parameters for the continuous and discrete

forms of the Richards curves. We fix parameter c and compare graphs of the

continuous and discrete forms of Richards curves in order to get better parameters

a, b, d and α. Then we substitute the same parameters into continuous fractional

and discrete fractional curves to find estimated data value Y (t) for each iteration.

We also use statistical computation techniques such as square residual sum and

cross validation to compare fitting and predictive performance of these models.

Residual sum of squares is the sum of squares of residual. It is a measure of the

variance between the data and an estimation model. In our study, residual sum

of squares is considering yi as original value and estimated data Y (t) as predicted

value, therefore,

17

∑
i=1
(yi − Y (t))2, for 1 ≤ i ≤ 17.

We do this process 17 times for each mouse. A small residual sum squares indicates

a better fit of the model to the data.
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5.2. Cross Validation Method

Cross validation is a technique of model evaluation for an independent data

set. The goal of cross validation is to estimate the expected level of fit of a model

to a data set that is independent of the data which we used to train the model.

The idea for cross validation originated in the 1930 [33]. In the paper [33], one

fold is used for validation and a second for prediction. Mosteller and Turkey

[34], and various other people further developed the idea. A clear statement of

cross validation, which is similar to current version of k-fold cross validation, first

appeared in [35].

A common type of cross validation is k-fold cross validation. In k-fold cross

validation the data is first partitioned into k folds. One is retained as the validation

data for testing the model which is called testing set. The remaining k − 1 sets

are used as training set. The advantage of this method over repeated random

sets is that all observations are used for both training and validation, and each

observation is used for validation exactly once. Cross validation is widely used to

compare the performances of different predictive modeling procedures and variable

selection. For more, we refer reader to the papers [25, 26].

In our study, we work on tumor growth data of 28 control mice for 17 days.

For experimental values, we divide growth value by 10000, because it is more

convenient to obtain our parameters. We have k = 17 independent observation as

a training set. We call this statistical method 17-fold cross validation, then we
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repeat this program 17 times. We leave out one experimental value each time, so

our training set Gi = 16 where 1 ≤ i ≤ 17 and we call testing set T . The Table 5.2.1

shows the training set G and testing set T where 1 ≤ i, j ≤ 17.

For example, we calculate cross validation for id number 21. The data from

day 1 are used as testing data, and the rest of 16 days’ data are used as training

data. We use Findfit in Mathematica to search for parameters of 16 days’ data

except day 1, and substitute parameters into the continuous, discrete, continuous

fractional and discrete fractional forms. We get a new predictive value Y ′(t) for

id number 21 of day 1. We repeat this process 17 times and calculate the residual

sum of squares.

Training Set Selected Observations Test Set Selected Observations

Gi (Yj)17j≠i Ti Yi

Table 5.2.1. 17-fold cross-validation

5.3. Comparisons and Conclusions

In this section, as we mentioned before, we use Findfit in Mathematica to

estimate parameters for continuous and discrete forms of Richards curves. We

sometime fix parameter c in order to get better parameters a, b, d and α. Then we

substitute the same parameters into continuous fractional and discrete fractional

curves to find estimated data values Y (t) for each iteration. Then we calculate
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the square residual sum and cross validation to compare fitting and predictive

performance of these models. We demonstrate this with some tables and graphs.

Table 5.3.1 is the data analysis for the Richards curves. We compare residual

sum of squares in continuous, discrete, continuous fractional and discrete fractional

forms. The bold one in each row indicates the minimum residual sum of squares.

It is clearly seen that only one mouse has minimum residual sum of squares in

continuous form, twenty of the mice have minimum residual sum of squares in

discrete form, seven have minimum residual sum of squares in continuous frac-

tional form and none are in discrete fractional form. In addition, the total number

of minimum residual sum of squares is twenty in discrete and discrete fractional,

compare to the continuous and continuous fractional forms, where the total num-

ber of minimum residual sum of squares is eight. Therefore, we can conclude that

discrete case has better data fitting of tumor growth for twenty-eight mice than

the continuous case for Richards curve. In addition, we have the range of α for

continuous fractional and discrete fractional forms, respectively. In continuous

fractional case, we have 0.99993 ≤ α ≤ 0.999998. In the discrete fractional case, we

have 0.99995 ≤ α ≤ 0.999999. We calculate the difference between the residual sum

of squares from continuous form and the minimum residual sum of squares from

discrete, continuous fractional or discrete fractional forms, then use the difference

divide the residual sum of squares from continuous form in order to get the per-

centage of improvement. We observe that the discrete form has 12.164% better

data fitting than the continuous form of Richards curve in some cases. Compare
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to continuous form, the range of percentage of improvement is from 0.001% to

12.164% in discrete, continuous fractional and discrete fractional forms.

Table 5.3.2 is the data analysis of cross validation for the Richards model.

We use the cross validation method to calculate residual sum of squares for each

mouse in continuous, discrete, continuous fractional and discrete fractional forms.

We compare the performances of predictive modeling procedures It is shown that

fifteen minimum residual sum of squares are in discrete forms and thirteen of them

are in continuous forms.

In Table 5.3.3, we list minimum residual sum of squares from the Gompertz,

Logistic and Richards curves for each mouse. We get the data of Gompertz and

Logistic curves from the paper [1]. The minimum residual sum of squares could be

from continuous (C), discrete (D), continuous fractional (C F), discrete fractional

(D F) or some of them at the same time. Then we calculate how many percent-

age of improvement between the largest residual sum of squares and the smallest

residual sum of squares. Note that Richards model is 40.593% working better than

Gompertz model in some cases, and 21.633% working better than Logistic model

in some cases. Therefore, we conclude that the Richards model has better data

fitting of tumor growth for these twenty-eight mice.

The last comparison is the mean value of residual sum of squares for the

Gompertz, Logistic and Richards curves as shown in Table 5.3.4. We calculate

the mean value of data for each day and use Findfit in Mathematica to estimate
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parameters a, b, c and d. By following the same steps, we obtain the residual sum

of squares in continuous, discrete, continuous fractional and discrete fractional

forms. The minimum residual sum of squares is in continuous form. In FIGURE

5.3.1, the line indicates the mean value of the data.

Figure 5.3.1. Mean Value of the Data
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id# Continuous Discrete Continuous Discrete
(α = 1) (α = 1) Fractional Fractional

21 .07055390406 .06293114988
.07056336766

α = 0.99998
.06301147442

α = 0.99998

22 .3202907564 .3150651669
.3203234818
α = 0.99998

.3161597197
α = 0.99998

23 .09469001895 .09468867515
.09471757867
α = 0.99998

.09554155663
α = 0.99998

26 .01209893079 .01155143364
.01210037247

α = 0.99998
.01156999186

α = 0.99998

27 .05359395890 .05411107944
.05359189805
α = 0.99997

.05419484160
α = 0.99998

28 .09265912772 .0926578624
.09267296839

α = 0.99998
.09405281205

α = 0.99998

29 .006019372197 .006019138354
.006026833337
α = 0.99998

.006202556461
α = 0.99998

30 .07972749954 .07976148148
.07972769672
α = 0.99998

.07976041358
α = 0.99992

31 .07623475353 .0735450628
.07623929625

α = 0.99998
.07358019622

α = 0.99998

32 .008837186353 .008837102086
.008846053178
α = 0.99998

.009064834404
α = 0.99998

33 .04919938086 .04900239451
.04920355913
α = 0.99998

.04942261774
α = 0.99998

34 .3032336354 .2951961514
.3032506720
α = 0.99998

.2955719851
α = 0.99998

35 .02810434607 .02468561651
.02810983488
α = 0.99998

.02474659675
α = 0.99998

136 .02136638617 .02162574067
.02136563279

α = 0.99998
.02167654152

α = 0.99998

137 .2542107669 .2517539004
.2542131842
α = 0.99998

.2517774575
α = 0.99998

138 .1510070102 .1510039993
.1511861288
α = 0.99998

.1557005256
α = 0.99998

139 .1334861748 .1293800537
.1334960618

α = 0.99998
.1296131875

α = 0.99998

140 .05152899720 .05152836781
.05154251740
α = 0.99998

.05206399482
α = 0.99998

141 .02963481694 .02998502565
.02963366498
α = 0.99997

.02998351286
α = 0.99997

142 .003023750895 .003023604093
.0030277895360
α = 0.99998

.003027245575
α = 0.999999

143 .1333747739 .1354905621
.1333610592
α = 0.9999

.135474485
α = 0.999984

144 .1850708062 .1788737819
.1850832654

α = 0.99998
.1788799357

α = 0.999999

145 .2920427998 .2957495615
.2920227196
α = 0.99993

.2957366131
α = 0.99995

146 .2319182403 .2300531995
.2319506111
α = 0.99998

.2300800150
α = 0.999999

147 .04239796707 .04524070618
.04236747212

α = 0.9999
.04519901286

α = 0.999983

148 .1049185309 .1041125459
.1049223579
α = 0.99998

.1041132890
α = 0.99999

149 .1223959432 .1140944052
.1224008080
α = 0.99998

.1140957980
α = 0.999999

150 .3031961400 .3089462610
.3031836220
α = 0.99994

.3089011267
α = 0.999989

Table 5.3.1. Data Analysis for Richards Curves
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id# Continuous Discrete Continuous Discrete
(α = 1) (α = 1) Fractional Fractional

21 .1405917696 .1218063122
.1293271074

α = 0.99369
.1125818035

α = 0.99922

22 .5832983454 .5737454049
.5344919987
α = 0.99958

.5140349471
α = 0.99987

23 .1553465299 .1584424949
.1539153181
α = 0.99958

.1569667765
α = 0.99997

26 .01907594064 .01903043297
.01907306413

α = 0.9999
.01903584769

α = 0.99998

27 .08227777737 .08351258726
.08230450460
α = 0.99998

.08397187477
α = 0.99998

28 .1255406226 .1267120107
.1254689200

α = 0.99994
.1274534278

α = 0.99998

29 .01435046770 .0143517433
.01436817016
α = 0.99998

.01467021702
α = 0.99998

30 .1318085013 .1353622957
.1265760520
α = 0.97708

.1294509256
α = 0.99418

31 .1275216366 0.1310244537
.127522443

α = 0.99998
.1310292422

α = 0.99998

32 .01204896226 .01204793761
.01207279151
α = 0.99998

.01247371960
α = 0.99998

33 .07565989157 .07902384173
.07572089670
α = 0.99998

.08049313863
α = 0.99998

34 .9964810358 .9881602600
.6185429849
α = 0.99279

.5834927878
α = 0.99929

35 .06158704618 .05097936849
.05835387197
α = 0.99805

.04851260724
α = 0.99979

136 .03226623637 .03447290807
.03228766069

α = 0.99998
.03475807249

α = 0.99998

137 .3872726009 .3979061012
.3817079627
α = 0.98463

.3926527359
α = 0.99709

138 .2530693257 .2530387709
.2535977126
α = 0.99998

.2624174712
α = 0.99998

139 .3360922189 .3370544192
.2571769786

α = 0.99647
.2466325799

α = 0.99966

140 .06257182852 .06254893216
.06259634046
α = 0.99998

.06323933624
α = 0.99998

141 .04351283812 .04383337665
.04351995634
α = 0.99975

.04397370742
α = 0.99998

142 .004056322000 .004055986860
.004241599240
α = 0.9999

.004241599240
α = 0.99998

143 .2161237449 .2302311946
.2110330971
α = 0.99925

.2090766940
α = 0.99975

144 .2858417083 .2886065636
.2882367079

α = 0.99949
.2857918010

α = 0.99998

145 .5786459411 .6023383487
.5409487262
α = 0.99925

.5222692563
α = 0.99975

146 .4345501758 .4384384658
.4103854055
α = 0.999

.4083285884
α = 0.99991

147 .1016978584 .1118139375
.1011928925

α = 0.99975
.1089126292

α = 0.9998

148 .1582913765 .1623966760
2.368012031
α = 0.99998

.1627646250
α = 0.99998

149 .6757906497 .6687533260
0.4536768853
α = 0.99335

.2591408123
α = 0.99412

150 .4074120406 .4216746870
.5184745904
α = 0.99395

.5232677097
α = 0.999928

Table 5.3.2. Cross Validation for Richards Curves
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id# Gompertz Logistic Richards Percentage of
Curve Curve Curve Improvement

21
.09320807348

C and D

.07720652925

D

.06293114988

D
32.48315566%

22
.3334575178

C F
.3258675032

D
.3150651669

D
5.515650396%

23
.099979266879

D F
.09474826414

D
.09468867515

D
5.291688861%

26
.01504232032

D

.01325261841

C and D

.01155143364

D
23.2071024%

27
.05129960785

C F
.05247699452

C F
.05359189805

D
4.277307361%

28
.09877841550

D F

.09269992014

D

.09265786241

D
6.196245464%

29
.006858511228

D F
.006022041787

D
.006019138354

D
12.23841219%

30
.08160721610

D
.07976180993

C
.0797249954

D
2.30643905%

31
.08094056469

D

.07471837868

D

.07354750628

D
9.133934806%

32
.00979888886

D F
.008848677223

D
.008837102086

D
9.815261233%

33
.04977301896

D F
.04950751166

C
.04900239451

D
1.548277493%

34
.3197937942

C
.3125897049

D
.2951961514

D
7.691719866%

35
.04155372344

C
.03150005505

C
.02468561651

D
40.59349087%

136
.02069668479

c

.02091409925

C F

.02136563279

C F
3.130953371%

137
.2605491124

C
.2552786642
C and D

.2517539004
D

3.375644583%

138
.1689272298

D F
.1511871712

D
.1510039993

D
10.61003044%

139
.1444468940

C

.1389586529

C

.1293800537

D
10.43071255%

140
.05338370310

D F
.05156530341

D F
.0512836781

D
3.933831634%

141
.02861367403

C F
.02903453028

C F
.02963366498

C F
3.44200068%

142
.003657090481

D
.003026069415

D
.003023604093

D
17.3221415%

143
.1279762340

D F
.1301131682

D F
.1333610592

C F
4.037779268%

144
.2024468349

C and D

.1942945348

C

.1788737819

D
2.3573053%

145
.2808836341

C F
.2850144884

C F
.2920227196

C F
3.814458617%

146
.2419516991

D F
.2325981230

D
.2300531995

D
4.917716901%

147
.03264789880

D F

.03702966456

D F

.04236747212

C F
22.94112165%

148
.1113379834

D
.1077952924

C
.1041125459

D
6.489642869%

149
.1394980990

D
.1242478059
C and D

.1140944052
D

18.21078135%

150
.3029542604

C F
.3004077982
C F and D F

.3031836220
C F

0.9155586247%

Table 5.3.3. Data Analysis For Gompertz, Logistic and Richards Curves
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Gompertz Curve Logistic Curve Richards Curve

Continuous
(α=1) 0.01467378953 0.01511114565 0.01540620032

Discrete
(α=1) 0.01467353864 0.01511114569 0.01540642082

Continuous
Fractional

0.01467346239

α = 0.99996

0.01511043545

α = 0.99989

0.0154063081

α = 0.99998

Discrete
Fractional

0.01467360877

α = 0.99997

0.01511068031

α = 0.99993

0.01552613559

α = 0.99998

Table 5.3.4. Gompertz, Logistic and Richards Curves Mean Table
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Chapter 6

CONCLUSION AND FUTURE WORK

We have studied fractional calculus which considered the derivative of a func-

tion to non-integer order, and discrete fractional calculus which dealt with any

positive real order of sum or difference. In the first chapter, we introduced some

special functions, basic concepts and notations in nabla fractional calculus. Then

we presented fractional difference equations involving Riemann-Liouville operator

of real number order between zero and one. In chapter two, we focused on proving

that there exits a solution for up to the first order nabla fractional difference equa-

tion with an initial condition. In order to show the existence of solution for up

to the first order nabla fractional difference equation with an initial condition, we

applied the Brouwer fixed point theorem and the Contraction Mapping Theorem.

Then we defined a lower and an upper solution for up to the first order nabla frac-

tional difference equation with an initial condition in chapter three. The method of

defining a lower and upper solution is a useful tool to prove results for the existence

of a solution. Under certain assumptions, we showed that there exists a solution

between lower and upper solution which are well ordered. Then we gave construc-

tive proofs of existence of a solution by defining monotone sequences. In chapter

four, we introduced the sigmoidal curves in fractional calculus. We considered

the first order differential equation that approximates to the first order difference

equation. In addition, we showed the fractional continuous Mittag-Leffler function.
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Then we used the successive approximations method to calculate the discrete form

of Mittag-Leffler function.

Nabla fractional calculus is widely used in the modeling process of real world

problems. We developed nabla fractional calculus and applied it in analyzing tumor

growth of cancer in chapter five. We considered the Richards sigmoidal curves

with four parameters and an alpha parameter. We used Findfit in Mathematica

to estimate the parameters of continuous and discrete forms of Richards curves.

Then we used the same parameters for continuous fractional and discrete fractional

forms. In addition, we used statistical methods such as residual sum of squares and

k-fold cross validation to predict the performance of tumor growth. Considering

tables of this data, we compared continuous, discrete, continuous fractional and

discrete fractional forms of residual sum of squares, we concluded that discrete

version of Richards model fit the data best for the twenty-eight mice studied. We

also compared the minimum residual sum of squares in the Gompertz, Logistic

and Richards curves. Since Richards curves had the largest number of minimum

residual sum of squares among these three, we concluded that Richards curve

was working better than the Gompertz and Logistic curves for the data fitting of

twenty-eight mice.

There are still many open questions to be considered in future work in frac-

tional calculus. We have applied a quasilinearization method to give constructive

proofs of existence of a solution by defining monotone sequences for the initial

value problem (2.1) in a sector defined by a lower and an upper solution. Now
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we can study that how fast the monotone sequences approach and converge to the

solution. The Weibull model should also be considered, it has four parameters

a, b, c, d and α ∈ (0,1) which is the order of the fractional difference equation. We

can use Findfit in Mathematica to estimate parameters a, b, c and d in continuous

and discrete form similar to the work done on Richards model. These parameters

can be substituted into continuous fractional and discrete fractional curves to find

Y (t) for each iteration. Then residual sum of squares and cross validation can be

used to compare fitting and predictive performance of Weibull models:

Y (t) = a − b(e−c)td (continuous)

Y (t) = a − b(1 − c)td (discrete)

Y (t) = a − b(
∞
∑
n=0
(−c)n t(n+1)α−1

Γ((n + 1)α)
)td−1 (continuous fractional)

Y (t) = a − b(
∞
∑
n=0
(−c)n (t − n + 1)

(n+1)α−1

Γ((n + 1)α)
)td−1 (discrete fractional)

A comparison can then be made between Gompertz, Logistic, Richards andWeibull

curves to conclude which model will have the best data fitting of tumor growth for

twenty-eight mice.
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