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Abstract. We will deal with corporate financial proceeding using statistical process con-
trol, specifically time series control charts. The article outlines intersection of two dis-
ciplines, namely econometrics and statistical process control. Theoretical part discusses 
methodology of time series control charts, and in research part, the methodology is dem-
onstrated on two case studies. The first focuses on analysis of Slovak currency from the 
perspective of its usefulness for generating profits through time series control charts. The 
second involves regulation of financial flows for a heteroskedastic financial process by 
EWMA and ARIMA control charts. We use Box-Jenkins methodology to find models 
of time series of annual Argentinian Gross Domestic Product available as a basic index 
from 1951–1998. We demonstrate the versatility of control charts not only in manufac-
turing but also in managing financial stability of cash flows. Specifically, we show their 
sensitivity in detecting even small shifts in mean which may indicate financial instability. 
This analytical approach is widely applicable and therefore of theoretical and practical  
interest.

Keywords: statistical process control, Shewhart’s control charts, autocorrelation, control 
chart EWMA, control chart CUSUM, control chart ARIMA.
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Introduction

Traditional statistical process control (SPC) schemes, such as Shewhart and cumula-
tive sum (CUSUM), control charts assume data collected from processes independent. 
However, the assumption has been challenged as it has been found they are serially 
correlated in many practical situations. Performance of traditional control charts de-
teriorates significantly under autocorrelation which motivated the pioneering work by 
Alwan (1992), who proposed the monitoring of forecasted errors after appropriate time 
series model has been fitted toa process. The method is intuitive as autocorrelation can 
be accounted for by the underlying time series model while the residual component 
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captures process’ independent random errors. Traditional SPC schemes can be applied 
to monitor residuals.

Subsequent work on this problem can be broadly classified into two themes: time se-
ries models based and model-free. For the former, three general approaches have been 
proposed: those which monitor residuals, those based on direct observations, and those 
based on new statistics. Their brief account is presented in this chapter. 

The time series model based approach is easy to understand and effective in some 
situations. However, it requires identifying appropriate time series model from a set of 
initial in-control data. This may not be easy to establish it in practice and may be too 
complicated for practicing engineers. Hence, the model-free approach has recently at-
tracted much attention (Kovarik, Klimek 2013; Kovarik, Sarga 2014).

The most popular model-free approach is to form a multivariate statistic from the au-
tocorrelated univariate process, and subsequently monitor it with corresponding multi-
variate control chart (Gervini 2003). Krieger et al. (1992) used a multivariate CUSUM 
scheme. Apley and Tsung (2002) adapted the T2 control chart for monitoring univariate 
autocorrelated processes. Atienza et al. (1997) proposed Multivariate boxplot-T2 con-
trol chart. Dyer et al. (2003) adapted the use of multivariate EWMA control chart for 
autocorrelated processes. Another model-free approach is to use batch means control 
charts as proposed by Runger and Willemain (1996), referenced by Montgomery and 
Mastrangelo (1991), and discussed in detail by Sun and Xu (2004). The main advantage 
of this approach lies in its simplicity. In an attempt to “break” dependency, it simply 
divides sequential observations into a number of batches and monitors the batches’ 
means on a standard individuals control chart.

Statistical financial flow proceeding denotes corporate cash flow management. We can 
avoid losses caused by undelivered goods, bad financial investment etc. by cash flow 
monitoring. Such financial analysis should be done once a year.

Case study 1 analyses Slovak currency in the 2000–2008 period from the perspective 
of its usefulness for generating profits for company management through time series 
control charts (Kovarik 2012, 2013a, 2013b). On the basis of time series O/N analy-
sis of Slovak crown currency rates and its description via Box-Jenkins methodology 
for random processes modeling and subsequent implementation of this mathematical 
vehicle into regulation diagrams for time series, the authors uncover the potential of 
Slovak crown to provide enough space for generating substantial profits. In the case 
study, EWMA and CUSUM control chart for volatility change point detection will be 
used. The end of the paper will be dedicated to the ARIMA and EWMA control charts 
together with practical examples of autocorrelated data for mean shift detection (see 
Case Study 2). Box-Jenkins methodology for finding models of time series of Argen-
tina’s annual gross domestic product will be used which is available as a basic index 
from 1951 to 1998 (1995 = 100). Based on the selected model, we will calculate the 
predictions of the time series of 4 observations and on the basis of a suitable ARIMA 
model construct control charts for volatility change point detection.
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1. Fundamental data assumptions

This part primarily focuses on crucial problems with statistical analysis data assump-
tions. Fundamental assumptions for statistical process regulation can be described as:

– data normality, symmetry, 
– constant mean of the process,
– constant variance (standard deviation) of data,
– independence, no autocorrelation in data,
– absence of outliers (Meloun, Militký 2006).

Most data analysis processes and their conclusions are dependent on fulfilling several 
conditions. If violated, all other calculations of means, confidence intervals, quantiles, 
statistical tests, Shewhart´s charts, and capability indices are questionable and not really 
correct as they usually offer incorrect and inaccurate results and conclusions. There-
fore we should be very careful about the abovementioned conditions (data normality, 
symmetry, etc.). Their violations in application of regulation by Shewhart´s charts in 
different technologies are displayed in Table 1.

Table 1. Typical violations of assumptions for the application of regulation  
by Shewhart´s charts in different technologies 

Branch, technology (value) Normality Independence Constant 
mean Homogenity

Machinery (size) YES YES YES YES 

Mechanical testing (strength, flexibility) NO YES YES NO 

Chemistry, metalurgy, metals 
(concentration levels)

YES NO NO NO 

Environment (concentration), energetics NO NO NO NO 

Electrical quantities, components YES YES YES NO 

Biochemistry, pharmacy, food NO NO YES YES 

Internal economic and financial indicators NO NO NO YES 

Sociology, human resources NO NO NO NO 

Source: Meloun, Militký (2006).

The conditions should be verified by means of statistical tests. For example, data asym-
metry should be expected in physical quantities such as strength or viscosity, strong 
autocorrelation (dependence) in continuous processes in chemistry, pharmacy, food and 
metals. Quality of input process material can result in mean shifting while not normally 
distributed data can be often seen in ecologic processes. There, data are very asymmet-
ric, usually following lognormal distribution. As mentioned previously, a list of typical 
data assumptions corruptions for Shewhart´s chart in different applications are discussed 
in Table 1 (Meloun, Militký 2006).
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2. Literature review

2.1. Control charts CUSUM 
CUSUM control charts were introduced by Page in 1954 based on cumulative sums. 
Their main advantage is very quick detection of relatively small shifts in the process’ 
mean significantly faster than by the Shewhart’s control charts. 
The sequential sums of deviations from m0 are used for the CUSUM control charts’ 
construction. If m0 is a target value for population mean and Xj a sample mean then 
the CUSUM control chart is constructed by plotting variables of the 0

1
( )

i

i j
j

S X
=

= − µ∑  
type. The process is called a random walk (Harris, Ross 1991).

2.2. CUSUM – chart for individual values and for samples  
means from normally distributed data 
Values of xi are independent with the same normal distribution N(m,s2) with known 
population mean and known population standard deviation s. We assume logical sub-
groups with the same volume n. Cumulative sum – CUSUM Cn is defined for individual 
values (n = 1) as: 
A) on a base of original scale:
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The CUSUM Cn is almost the same as CUSUM Sn measured in the units of standard 
deviation s. Equation for Cn can be written recurrently (Chandra 2001): C0 = 0, Cn = 
Cn–1 + (xn – m); and using the same principle for Sn: S0 = 0, Sn = Sn–1 + Un.
Suppose the original distribution of observed variable N(m, s2) changes into N(m + d, 
s2) distribution for integer t (at an arbitrary moment). Therefore, the population mean 
m will face an arbitrary shift of d. 
It also means the shift starts at point (m, Cm), growing linearly with the slope d. How-
ever, population means shift can be more complicated. The CUSUM control chart can 
reflect all these changes (Harris, Ross 1991).

2.3. CUSUM for sample means jx
Until now, we have considered mainly individual values. Now, suppose we have sub-
groups with m observations and calculating sample means from this subgroups. We 
have to work with the sample mean standard deviation x m

σ
σ = . In this case, a shift 

of mean D will not be measured in units of s but instead in units of xσ . In the above-
mentioned formulas, individual values of xi will be substituted with sample means jx  
and process standard deviation s with sample mean standard deviation xσ  (Lu, Reyn-
olds 1999a).
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New process mean estimate 
If there is a shift, a new process mean may be estimated from the formula: 

  

+
I +

0 I+
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−
−

−


µ +µ = 
µ − −

,   (3)

where N+ and N– are numbers of selected points in a moment (Chambers, Wheeler 
1992), when nC+  = 0, or when nC−  = 0, respectively.

Comparison of CUSUM and Shewhart´s control charts 
The example practically shows sensitivity of the CUSUM control chart in comparison with 
Shewhart’s control chart for sample means. CUSUM control chart detects process mean 
deviation towards the lower values (around subgroup 20 – see Figure 1) while Shewhart´s 
control chart does not detect this deviation (Harris, Ross 1991). It does not even detect 
a shift towards the upper values (around subgroup 56). It only detects a big shift around 
subgroup 70 (see Figs 1 and 2) (Lu, Reynolds 1999b).

Fig. 1. Shewhart´s control chart  
Source: QC Expert 2.5Cz.

Fig. 2. CUSUM control chart  
Source: QC Expert 2.5Cz.
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2.4. Dynamic control chart EWMA
EWMA (Exponentially Weighted Moving Average) dynamic control charts are used 
when the following conditions are met: 

– no dependency with positive autocorrelation,
– mean is not constant, slow changes (Montgomery, Friedman 1989).

A sudden change in mean will only cause a control limits crossing. These dynamic 
charts not only provide information about the “in control” process but also about the 
process’ dynamic development. As mentioned previously, we consider solely data which 
are independent with positive autocorrelation. If the measured observations are influ-
enced by previous ones we can say that they are dependent. A special case of such 
dependence is called autocorrelation of first degree when this dependence is linear. If 
there is a positive autocorrelation in data, then smaller value follows a smaller value and 
higher value follows a higher value. Data thus have tendency to preserve their original 
values. Process is not stable in case of negative autocorrelation. If there is a negative 
autocorrelation in data, higher value follows a smaller value and smaller value follows 
a higher value. 
Suppose that we measure values x1, x2, x3, ... for the variable X in the process. We use 
so called one-step predictions ˆkx to construct the CL, UCL, and UCL for the control 
chart. The predictions are determined from the following equation 1ˆ ˆk k kx x e−= + λ  for 
k = 1, 2, 3, ..., where the starting prediction value 0x̂  is equal to the target value of 
m0. Parameter l (level of “forgetting”) is calculated by trying where the function 2

1

n

k
k

e
=
∑  

is minimal. Number n is equal to number of measured values of regulated variable. It 
is recommended that n is greater than 50. If the error values of one-step prediction of 
ek for the optimal value of parameterλ  are not correlated and if they have a normal 
distribution then the center line CLk, control limits UCLk and LCLk for the dynamic 
control chart EWMA are calculated from the following formulas (Lu, Reynolds 1999a): 

 1ˆ ,k kCL x −=  1 1
2
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−
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where 2ˆ pσ  is a standard deviation of ek estimate, and ek values are determined for the 
optimal value of parameter l (Yourstone, Montgomery 1991).

2.5. ARIMA control chart
Classical Shewhart SPC concept assumes the measured data are not autocorrelated. Even 
very low degree of autocorrelation causes failure of Classical Shewhart control charts 
exhibited by large number of points outside the regulatory limits in control diagram. 
This phenomenon is not unique in case of continuous processes where the autocorrela-
tion data given by the inertia processes in time (chemical processes, climate processes 
etc.). Autocorrelation of data becomes increasingly frequent phenomenon in discrete 
processes, particularly manufacturing with short production cycles, high-speed produc-
tion with high degree of production automation and also in test and control operations. 
In these conditions, it is possible to obtain data about each product with the consequence 
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that the interval between measurements (recording) of two consecutive values of the 
monitored variables is very short. One of the ways to tackle autocorrelated data is the 
concept of stochastic modelling of time series using Autoregressive Integrated Mov-
ing Average (ARIMA) models. The concept of linear stochastic autoregressive models 
(models AR), moving average (model MA), mixed models (the ARMA models), and 
ARIMA models based on Box-Jenkins methodology is seen as a time series realization 
of stochastic process. Box-Jenkins methodology represents a modern concept analysis 
of stationary and nonstationary time series based on probability theory.
Linear models AR, ARMA and MA are modelling tools for stationary processes. They 
have characteristic shape of the Autocorrelation Function (ACF) and Partial Autocorre-
lation Function (PACF), both of which are essential for providing information about the 
stochastic process. ACF and PACF estimates are used to identify the time series model. 
Very often, there are nonstationary processes to be found in practice. Nonstationarity 
can be present due to mean value changing over time or process variance changing 
over time. If, after the transformation of nonstationary process variance of “random 
walk” (so-called integrated process) using differential of d-th order is the final process 
model to describe the stationary ARMA (p, q), the original integrated process is called 
an autoregressive integrated moving average process of order p, d, and q, i.e., ARIMA 
(p, d, q) (Noskievičová 2008).
ARIMA control chart is based on the principle of finding a suitable time series model 
and use of control chart for residuals (deviations from the values actually measured from 
calculated values using the model).
A general shape of the model ARIMA (p, d, q) is:

 ( ) ( ) ,d
p t q tB x BΦ ⋅∇ ⋅ = Θ ε

 
(4)

where:
 ( ) ( )2

1 21 ... p
p pB B B BΦ = − φ − φ − φ  is autoregressive polynomial of p-th order,

 
( ) ( )2

1 21 ... q
q qB B B BΘ = − θ − θ − θ  is moving averages polynomial of q-th order, where

∇ represents backward difference (introduced when the model exhibits nonstationarity 
of the process), d difference order, t time, B back shift operator ( )1t tB x x −⋅ = ,

1 2, ,..., pφ φ φ – parameters of autoregressive model,

1 2, ,..., qθ θ θ – parameters of moving averages model,

tε  is called white noise (unpredictable. normally-distributed fluctuations in the data with 
zero mean and constant variance, its values are uncorrelated).
If ˆtx  is an estimate of empirical value of xt calculated using the selected ARIMA model, 
residuals of this model ˆt t te x x= −  will be uncorrelated, normally-distributed random 
variables.
ARIMA models are the most commonly used in practical applications. Let us consider 
the model:

 1t t tx x −= ξ + φ + ε , (5)

where ξ a ( )1 1ϕ − < φ <  are unknown constants and εt is normally distributed and 
uncorrelated variable with zero mean and constant standard deviation s. It is called 
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autoregressive model of the first order and denoted as AR (1). The values of the refer-
ence mark of quality, mutually shifted of k time periods (xt and xt–k) have the correla-
tion coefficient φk. The autocorrelation function should thus fall exponentially. If we 
expand the previous equation to the form:

 1 1 2 2t t t tx x x− −= ξ + φ + φ + ε ,  (6)

we obtain a second-order autoregressive model AR (2). Generally, variable xt is directly 
dependent on the preceding values xt–1, xt–2, etc. in the autoregressive model AR (p). If we 
model data dependence using the random component εt, we get moving average model 
MA (q). First-order moving average model takes a form:

 1t t tx −= µ + ε − θε . (7)

There is some correlation between xt and xt–1, described as follows: ( )2
1 / 1ρ = −θ + θ . 

This corresponds to the shape of the ACF (Noskievičová 2008). When modelling practi-
cal problems, it is often suitable to model a compound containing both autoregressive 
and moving averages component, generally known as ARMA (p, q) (Hušek 2007). First-
order ARMA model, i.e., ARMA (1, 1) is described by the equation:

 1 1t t t tx x − −= ξ + φ + ε − θε .  (8)

It is suitable for chemical and other continuous processes where many quality character-
istics can be easily modelled by AR (1). Measurement errors are described by random 
component which we assume to be random and uncorrelated. The ARMA model also 
assumes stationary process, i.e., the character quality reference values are around stable 
mean. Unfortunately, in practice there are processes (e.g., chemical industry), where the 
values of monitored variable are “running away”. In such cases it is convenient to model 
processes using appropriate model with the backward difference operator ∇ , such as 
ARIMA model (0, 1, 1) with the formula:

 1 1t t t tx x − −= + ε − θε .  (9)

ARIMA models are different from Shewhart model ( t tx = µ + ε  for t = 1, 2, …). 
However, if we put φ = 0 in the equation 1t t tx x −= ξ + φ + ε  or 0θ =  in the equation 

1t t tx −= µ + ε − θε , we obtain Shewhart model process. Another important step in the 
use of ARIMA models is the choice of the appropriate SPC control chart. When residu-
als testing determines they are not autocorrelated and come from a normal distribution, 
it is possible to verify whether or not the process is statistically stable. Because the 
number of observations is equal to one (original empirical values xt were detected by 
each unit), control charts have priority for individual values and moving range. Location 
of the mean value CL   and upper and lower control limits (UCL, LCL) for the ARIMA 
chart for individual values can be determined from the formula:

 ( )0CL e= ≅ , (10)

 

3
1,128 klUCL e R= + ,

 
(11)

 

3
1,128 klLCL e R= − ,

 
(12)
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where: e  is average value of residuals; klR  is average moving range.
Values CL, UCL and LCL are calculated as follows:

 klCL R= , (13)

 3,267 klUCL R= ⋅ ,  (14)

 0LCL = . (15)

To increase sensitivity of ARIMA control charts it is recommended to use two-sided 
CUSUM control chart with the decision interval H± or standard EWMA chart, both ap-
plied to the model’s residuals. If we pursue more quality characteristics simultaneously 
on a single or multiple products, we can apply Hotelling chart, CUSUM or EWMA 
charts for more variables to ARIMA models residuals (Noskievičová 2008).

3. Results of the case studies

3.1. Research method conducted

As the paper’s title explains, primary method used for achieving its goals is case stud-
ies research. The purpose of the studies is to illustrate time series charts’ sensitivity in 
detecting small shifts. We will exploit the fact that these control charts can be used in 
certain situations where the data are autocorrelated. The methodology combines quan-
titative data analysis with financial process simulation which benefits the reliability of 
conclusions.

3.2. Case study No 1: Use of CUSUM and EWMA control charts
Let us analyze a time series of O/N rate of the Slovak crown for the 2000–2008 
period (Kovarik, Kral 2011). For this purpose the ARIMA model will be used, ap-
plied when the resulting process is exhibiting autocorrelation and partial autocor-
relation after the transformation of the integrated process using d-th order dif-
ferentiation to express it in the form of a stationary and invertible ARMA mod-
el (p, q). The time series is illustrated in the following figure (Fig. 3). The graph 
shows the time series to be nonstationary, but it is not clear whether it contains  
a seasonal component.

Fig. 3. Time sequence plot for time series of Overnight 2000–2008
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Time series’ nonstationarity is also confirmed by the shape of the ACF and PACF. ACF 
values fall very slowly and the first value, as well as the PACF, is close to one. The 
periodogram has a significant peak in the zero (non-seasonal) frequency. Seasonality is 
thus not indicated by ACF, PACF, nor the periodogram.
The time series will be again stationarized by the non-seasonal difference. We will skip 
this step and proceed directly to the analysis of two ideal models to describe the time 
series. The first one is obtained after the power linearization ARIMA (1,1,2)c, the sec-
ond one after the logarithmic linearization of the original time series SARIMA (1,1,2)
(1,1,1)c20.

Fig. 6. Residual periodogram for adjusted time series of Overnight 2000–2008

Fig. 4. Residual autocorrelations for time series of Overnight 2000–2008

Fig. 5. Residual periodogram for time series of Overnight 2000–2008
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Residual periodogram for ARIMA model (1,1,2)c shows residuals to be stationary. Now 
we focus on the extended SARIMA model (1,1,2) (1,1,1)c20, followed by tables of es-
timates and interpolation criteria as well as estimates of the model’s parameters.
Interpolation criteria suggest SARIMA model (1,1,2)(1,1,1)c20 is much more suitable 
than ARIMA model (1,1,2)c for the description of the time series.

Table 2. Interpolation criteria estimates of SARIMA model (1,1,2)(1,1,1)c20 

Estimation Validation

Statistic Period Period
RMSE 0.536932 0.145012
MAE 0.327448 0.140548
MAPE 7.23435 10.2761
ME 0.0380698 –0.140548
MPE –0.398906 –10.2761

Table 3. Parameters estimates of SARIMA model (1,1,2)(1,1,1)c20

Parameter Estimate Stand. error T P-value

AR(1) 0.752851 0.021549 34.9367 0.000000

MA(1) 0.850656 0.0291219 29.2102 0.000000

MA(2) 0.112643 0.0264917 4.25202 0.000021

SAR(1) 0.046946 0.021776 2.15587 0.031094

SMA(1) 0.974709 0.001605 607.074 0.000000

Mean –0.00000 0.0000172 –0.420 0.674417

Constant –0.00000

Box-Pierce test
Test based on first 24 autocorrelations:
Large sample test statistic = 23.3012;
P-value = 0.224336, AIC = –1.25429.
Figure 7 shows graphs with the time series forecast, autocorrelation and partial auto-
correlation functions of the unsystematic component for estimated model and residual 
periodogram.
According to Akaike information criteria, the Box-Pierce test of autocorrelation of 
unsystematic component and interpolation criteria, SARIMA model (1,1,2)(1,1,1)c20 
appears to be better for the description of the time series compared to ARIMA model 
(1,1,2)c. The following figures (Figs 8, 9) illustrate the residual ACF and PACF of the 
estimated model. P-value of the Box-Pierce test and both graphs indicate non-autocor-
relation of unsystematic component, thus the estimated model appears to be correct.

–
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Fig. 7. Time sequence plot for time series of Overnight 2000–2008

Fig. 8a. Residual autocorrelations for adjusted time series of Overnight 2000–2008

Fig. 8b. Residual partial autocorrelations for adjusted time series of Overnight 2000–2008

Fig. 9. Residual periodogram for adjusted time series of Overnight 2000–2008
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Now that we have information about the process from the statistical model, it can be 
used to construct control charts for detecting mean changes. The detection will be dem-
onstrated on the time series of Overnight values of the Slovak crown during the period 
of 20 January 2000 – 17 February 2003.

As evident from the previous images, the EWMA control chart and CUSUM were able 
to detect changes in the mean almost immediately. Both being control charts with mem-
ory, therefore information on variability in the time series of SARIMA model (1,1,2)
(1,1,1)c20 was used for parameter estimation to construct the diagrams very effectively. 
These control charts detected a shift of mean and therefore high heteroscedasticity in 
12. 11. 2002, which corresponds to fluctuations of Slovak crown.

3.3. Case study No 2: Use of EWMA and ARIMA control charts
Using Box-Jenkins methodology, we will attempt to find a time-series model of annual 
Argentinian Gross Domestic Product, available as a basic index from 1951 to 1998 
(1995 = 100). Based on the model, predictions of the time series of 4 observations will 
be calculated and from on the ARIMA model selected, a control chart constructed.
The time series is shown in the previous figure (Fig. 12). It is obvious the time series 
is non-stationary, a fact also confirmed by the shape of ACF and PACF (Fig. 13) and 
periodogram (Fig. 14).

Fig. 10. EWMA chart for time series of the Overnight Slovak crown during the period of  
20 January 2000 – 17 February 2003

Fig. 11. CUSUM chart for time series of the Overnight Slovak crown during the period of  
20 January 2000 – 17 February 2003
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Fig. 13b. Residual partial autocorrelations for time series of annual Argentinian GDP

Fig. 14. Residual periodogram for time series of annual Argentinian GDP
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Fig. 13a. Residual autocorrelations for time series of annual Argentinian GDP

Journal of Business Economics and Management, 2015, 16(1): 138–158



152

The values of ACF decreases slowly and the first value of the ACF and PACF is close to 
one. Periodogram exhibits significant peak at zero frequency, suggesting the time series 
is of Type I (1). We will therefore stationarize it using first differences.

Table 4. ARIMA (0,1,0)c model input table 

Nonseasonal differencing of order: 1
Forecast model selected: ARIMA (0, 1, 0) with constant
Number of forecasts generated: 4 Number of periods withheld fo validation: 0

Statistics Estimation period Validation period
MSE 16.1702
MAE 3.32096

MAPE 5.08991
ME –1.51E-15

MPE –0.482326
ARIMA Model Summary

Parameter Estimate Stnd. error t P-value
Mean 1.70213 0.586555 2.90191 0.00568

Constant 1.70213    
Estimated white noise variance = 16.1702 with 46 degrees of freedom
Estimated white noise standard deviation = 4.02122
Test of Randomness of residuals
Box-Pierce Test
 Test based of first 15 autocorrelations
 Large sample test statistics = 7.07587
 P-value = 0.95551   

Table 4 contains characteristics of the estimated model ARIMA (0,1,0)c of the form:

  (1 – B)yt = 1.70213 + at.

It can be expressed as: 
 yt = 1.70213 + yt–1 + at.

At the same time we will test whether the constant c = m is statistically significant, 
i.e., different from zero. The t-test result for the mean m is also given on Figure 10 and 
compared to “P-value” (0.005675) with significance level α (0.05) proves the mean and 
constants are different from zero. Autocorrelation test of unsystematic component is 
performed using the Box-Pierce test in the bottom of Figure 10. High “P-value” of this 
test (0.95551) indicates the unsystematic component is a type of white noise.
The conclusion is confirmed by the graph of residuals and residual periodogram 
(Fig. 15), as well as by residual ACF and PACF (Fig. 16) whose values lie within the 
tolerance limits.
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Fig. 15a. Residual plot for adjusted time series of annual Argentinian GDP

Fig. 15b. Residual periodogram for adjusted time series of annual Argentinian GDP

Fig. 16a. Residual autocorrelations for adjusted time series of annual Argentinian GDP

Fig. 16b. Residual partial autocorrelations for adjusted time series of annual Argentinian GDP
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We identified the time series model in the shape of random walk. If we also use it for 
calculation of predictions, point and interval forecasts for measurements from 49 to 53 
can be obtained (Table 5).

Table 5. ARIMA (0,1,0)c model forecasts 

Model: ARIMA (0, 1, 0) with constant
Period Forecast Lower 95,0% limit Upper 95,0% limit

49.0 120.702 112.608 128.796
50.0 122.404 110.957 133.851
51.0 124.106 110.087 138.126
52.0 125.809 109.62 141.997
53.0 127.511 109.411 145.61

Graph of predictions and the original time series chart with smoothed values and predic-
tions are depicted on Figures 17 and 18.
Examples of control charts for individual values and classical EWMA chart applied 
to ARIMA model’s residuals are in Figure 19. Based on the results of selected tests it 
can be assumed the residuals have normal distribution, constant variance, and are not 
autocorrelated. Because it can be further assumed the model’s residuals have properties 
the controlled, variable must meet for the classic Shewhart’s control chart of individual 
values to be applied, it is now possible to calculate residuals of regulatory limits, central 
line and construct an ARIMA control chart.
We can determine the process can be regarded statistically stable (no point is outside the 
control limits) and thus the limits can be used to verify process’ statistical stability in 
the next period. The control charts detected a mean shift and therefore high heterosce-
dasticity in 1990. During the 1990s, Argentina’s financial system was consolidated and 
strengthened. Deposits grew from less than US$15 billion in 1991 to over US$80 bil-
lion in 2000 while outstanding credit (70% of it to the private sector) tripled to nearly 
US$100 billion.

Discussions

Most traditional control charting procedures are based on the assumption the process 
observations being monitored are independent and identically distributed (IID). With 
the advent of high-speed data collection schemes, the assumption of independence is 
usually violated, i.e., autocorrelation among measurements becomes an inherent char-
acteristic of a stable process. Such autocorrelation causes significant deterioration in 
control charting performance. In order to address this, several approaches for handling 
autocorrelated processes have been proposed, the most popular one utilizing either Sh-
ewhart, CUSUM or EWMA chart of the residuals of the appropriately fitted ARMA 
model. However, procedures of this type demonstrate poor sensitivity especially when 
dealing with positively autocorrelated processes. As an alternative, we have explored 
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Fig. 19a. ARIMA residual chart for time series of annual Argentinian GDP

Fig. 19b. EWMA chart for Residuals for time series of annual Argentinian GDP
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Fig. 18. Time sequence plot for time series of annual Argentinian GDP
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the application of the statistics used in a time series procedure for detecting outliers and 
level shifts in process monitoring (Grubbs 1969). The study focused on the detection of 
level shifts of autocorrelated processes with particular emphasis on the AR (1) model. 
The results presented showed time series charts to be sensitive when detecting small 
shifts and we utilized the fact they can be used in certain situations where the data are 
autocorrelated.

Conclusions

The paper dealt with the regulation charts applications in financial data. This kind 
of data is very sensitive to mean shifting and strong autocorrelation appears very of-
ten. Therefore we put a focus on dynamic regulation charts CUSUM, EWMA and 
ARIMA models. We highlighted the versatility of control charts not only in manu-
facturing, but also in managing the financial stability of financial flows in this pa-
per. A refined identification of the type of intervention affecting the process will 
allow users to effectively track the source of an out-of-control situation which 
is an important step in eliminating the special causes of variation. It is also im-
portant to note that the proposed procedure can also be applied when dealing with  
a more general autoregressive integrated moving average model.
Autocorrelated process observations mainly arise under automated data collection 
schemes, typically controlled by software which can be upgraded to handle SPC func-
tions. Under such integrated scheme, the usefulness of the proposed procedure will be op-
timized. Based on information from chapter 3, we would recommend a properly designed 
time series control charts as control charts for individual measurements in a wide range 
of applications. These are almost perfectly nonparametric (distribution-free) procedures. 
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