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We introduce an energy resolved electrochemical impedance spectroscopy method to map the

electronic density of states (DOS) in organic semiconductor materials. The method consists in

measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a

frequency where the redox reactions determine the real component of the impedance. The charge

transfer resistance value provides direct information about the electronic DOS at the energy

given by the electrochemical potential of the electrolyte, which can be adjusted using an external

voltage. A simple theory for experimental data evaluation is proposed, along with an explanation

of the corresponding experimental conditions. The method allows mapping over unprecedentedly

wide energy and DOS ranges. Also, important DOS parameters can be determined directly from

the raw experimental data without the lengthy analysis required in other techniques. The

potential of the proposed method is illustrated by tracing weak bond defect states induced by

ultraviolet treatment above the highest occupied molecular orbital in a prototypical r-conjugated

polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS

reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however,

limited to a narrow energy range. In addition, good agreement of the DOS values measured on

two common p-conjugated organic polymer semiconductors, polyphenylene vinylene and

poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy

of the proposed method. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898068]

Determination of the electronic structures of organic

semiconductors has major relevance for studies of charge/

energy transport and recombination phenomena in organic

electronics. However, weak molecular coupling and

disordered structures often preclude application of the spec-

troscopic methods used for inorganic semiconductors.1

Electrochemical spectroscopic methods tend to fill this gap.

Electrochemical impedance spectroscopy (EIS) has been

known for decades and has served many purposes, from

studies of electrochemical reaction mechanisms to investi-

gations of passive surfaces.2 EIS development has also been

positively influenced by activities related to clarification of

solid-electrolyte processes over the last 40 to 50 years.3 A

cumulative paper describing progress in the examination of

various nanostructured and organic materials by EIS was

published by Bisquert et al.4 Additionally, several other

electrochemical methods exist for study of electronic struc-

tures in organic semiconductors, based on direct determina-

tion of the density of states (DOS) at the Fermi energy.5,6

Electrochemical cyclic voltammetry (CV) of conducting

polymers and molecular solid films has also been inter-

preted in terms of the electronic DOS.7 The CV of organic

films is generally characterized by a broad non-Nernstian

signal, which is interpreted as an indication of the underly-

ing Gaussian DOS that is common in disordered organic

materials. Recently, CV analysis has been improved by

including the formation of both polarons and bipolarons and

taking their respective DOS values into account.8 Other

techniques use organic thin-film transistor structures to

derive the DOS by Kelvin probe force microscopy.9

In this letter, we present an energy resolved EIS (ER-

EIS) method based on the interaction between an organic

semiconductor and an electrolyte at an interface via a oxida-

tion/reduction (redox) reaction. Measurement of the charge

transfer resistance via the redox reaction gives direct infor-

mation about the DOS in organic semiconductors. The power

of this method is illustrated by tracing the defect states from

weak bonds (WB) above the highest occupied molecular or-

bital (HOMO) induced by ultraviolet (UV) treatment of a

prototypical r-conjugated polymer, poly[methyl(phenyl)sily-

lene] (PMPSi). These results agree well with those of our

previous DOS reconstruction by post-transient space-charge-

limited-current spectroscopy,10,11 although it is limited to a

narrow energy range. Good agreement between the DOS val-

ues measured for two common p-conjugated organic poly-

mer semiconductors, polyphenylene vinylene (PPV) and

poly(3-hexylthiophene) (P3HT), and the rather rare previ-

ously published data5,12 provide further proof of the accuracy

of the proposed method.

The EIS method is based on interaction between a thin

organic film and an electrolyte via redox reactions in an elec-

trochemical cell (Fig. 1). This interaction is similar to extrac-

tion of an electron by an acceptor and capture of an electron

by a donor at a semiconductor surface through common solid

state reactions. The charge-transfer current density j between
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the semiconductor surface with electron concentration ns and

the electrolyte with concentration [A] of the redox (donor/

acceptor) pair is13

j ¼ eketns½A�; (1)

where, e is the elemental charge and ket is the charge-transfer

coefficient in the 10�17–10�16 cm4 s�1 range.3 The semicon-

ductor surface electron concentration ns is a variable that can

be measured and controlled experimentally by varying the

semiconductor surface potential. If the concentration of sur-

face states of the organic film is negligible, then information

about the electron states of the organic film at the energy

position corresponding to the instantaneous electrochemical

electrolyte potential can be obtained directly. A low surface

state concentration can be achieved by preparing the film in

an inert atmosphere. Various elementary processes of the

semiconductor/electrolyte system respond to system pertur-

bations at different rates and the corresponding relaxation

processes become dominant in impedance spectra measured

at various frequencies x. Therefore, the individual compo-

nents of these processes can be identified and discriminated

via impedance measurements over a specific frequency

range.14

Using Eq. (1), we can express the DOS function in the

semiconductor at the Fermi energy g(EF) in terms of the

charge transfer resistance Rct(U) measured under applied

voltage U as

g EF ¼ eUð Þ ¼ dns

d eUð Þ ¼
1

eket A½ �S
d jSð Þ
d Uð Þ ¼

1

eket A½ �SRct
: (2)

We can experimentally access the charge transfer resistance

Rct¼ dU/d(jS) using the superimposed perturbation dU at a

suitable frequency x (Ref. 14) under applied voltage U,

where S is the sample area. The desired DOS function g(E)
can be derived directly from the measured charge transfer re-

sistance Rct(U) at the instantaneous position of the Fermi

energy given by the applied potential EF¼ eU in Eq. (2).15

The ER-EIS technique has three unique advantages: (i)

the diffusion character of the charge-transfer current density

(see Eq. (1)) and its consequent independence of the results

for any transport quantity, e.g., the mobility and its depend-

ence on the applied field;16 (ii) the ability to control shifts in

the semiconductor Fermi level position using the external

voltage U, provided that the voltage shift of the electrolyte

chemical potential is neglected (this is justified by the elec-

trolyte’s much larger DOS value); and (iii) the linearity of

the electrochemical systems,1 which enable application of

the perturbation method.

The measurements were performed using a common

three-electrode electrochemical cell with volume of about

200 ll (Fig. 1). The polymer film spin-coated on the indium

tin oxide (ITO) substrate acted as the working electrode,

while the Ag/AgCl and Pt wires were the reference and auxil-

iary electrodes, respectively. The ER-EIS method probes the

organic semiconductor via the interface between semiconduc-

tor and electrolyte. Because both the organic materials under

study and the electrolyte are highly sensitive to the ambient

atmosphere, an inert atmosphere is required to prevent degra-

dation of the components. A glove box with protective N2

atmosphere (oxygen and moisture below 20 ppm and 2 ppm,

respectively) was used in all experimental steps, including

sample preparation, manipulation and/or treatment, and mea-

surement. The film potential with respect to the reference

electrode was controlled by a potentiostat. The electrolyte so-

lution used was a 0.1M solution of tetrabutylammonium hexa-

fluorophosphate (TBAPF6) in acetonitrile, allowing a voltage

(energy) window of 63 V (63 eV) with respect to the Ag/

AgCl reference electrode (vacuum). This range covers most

of the band gaps of common organic semiconductors.

Impedance measurements were performed using an imped-

ance/gain-phase analyzer (Solartron Analytical, model 1260)

in a frequency range of 0.1–10 Hz with AC voltage amplitude

of 100 mV, and a DC voltage ramp sweep rate of 10 mV/s.

One common feature of all electrochemical methods is the

possibility of irreversible electrolyte degradation. In particu-

lar, reaction product accumulation on the electrode, adsorp-

tion of solution impurities, and oxide layer growth may occur.

To avoid these problems, each ER-EIS measurement was split

in two separate sweeps. Both sweeps started at zero bias volt-

age, with one sweep being made to positive potentials and the

other made to negative potentials. The final ER-EIS spectrum

was then formed by joining the positive and negative

branches. The error of this procedure can be neglected

because it follows on from a systematically-performed repro-

ducibility check.

The error of the method can be discussed in terms of the

independent and dependent variables in the measured DOS

plot. The energy position error is controlled by the precision

of the semiconductor surface potential measurement, which

is influenced by the electrolyte resistance and the amplitude

of the perturbation dU. The influence of the electrolyte re-

sistance is eliminated by the three-electrode configuration,

and thus, the voltage (energy) error is determined solely by

dU (deU), and is 650 mV (650 meV) in our case. The DOS

value error is determined by the impedance measurement.

The bridge impedance analyzer used allowed measurement

precision of 5% in all ranges, which produces a uniform

DOS value error.

The ER-EIS method’s performance was tested on three

common polymers. PMPSi polymer films were spin-coated

FIG. 1. Sample arrangement of ER-EIS method: The electrochemical cell is

placed on the conductive glass substrate with the deposited polymer film

that acts as the working electrode. Pt wire serves as the auxiliary electrode,

and Ag/AgCl acts as the reference electrode.

142109-2 N�ada�zdy, Schauer, and Gmucov�a Appl. Phys. Lett. 105, 142109 (2014)



on ITO coated glass from a 0.5 wt. % solution of PMPSi in

tetrahydrofuran (THF) at 900 rpm for 60 s, followed by dry-

ing at 60 �C for 3 h. UV treatment was performed using a

345 nm wavelength and 1 mWcm�2 power UV laser diode.

Poly[2-methoxy-5–(30,70-dimethyloctyloxy)–1,4-phenylenevi-

nylene] (MDMO-PPV) and P3HT films were spin-coated

from 0.5 wt. % solutions in CHCl3 at 1800 rpm for 40 s, fol-

lowed by annealing at 110 �C for 5 min. Before spin coating,

all solutions were filtered using a 200 nm polytetrafluoroeth-

ylene (PTFE) filter. The films were approximately 100 nm

thick.

The electronic structure in terms of DOS function, g(E),

was measured in all three polymers, including the deep

states, which are important for recombination, and the shal-

low HOMO and LUMO (lowest unoccupied molecular or-

bital) states, which are important for charge transport.1 The

energy scale was recalculated from the applied bias voltage

to eV using the energy–4.66 eV of the Ag/AgCl reference

electrode. The energy scale is thus directly related to the

zero vacuum energy level.

The extreme sensitivity of the ER-EIS method is dem-

onstrated by DOS measurements of PMPSi films prepared

from THF solutions under various conditions (Fig. 2). Here,

line 1 depicts the DOS of a PMPSi film spin-coated from a

filtered PTFE solution and subsequently bubbled for 20 min

with Ar, while line 2 indicates a PMPSi film spin-coated

from the solution without initial filtering or bubbling. Line

3 indicates a film spin-coated from the filtered but not

bubbled solution, while line 4 shows the DOS for a film pre-

pared from the filtered and bubbled PMPSi solution that

was spin-coated and dried in air. Line 1 shows the HOMO

at 5.89 eV and the LUMO at 1.80 eV with Gaussian distri-

butions (rHOMO¼ 0.48 eV, rLUMO¼ 0.29 eV). The polaron

band gap has a value of 4.09 eV in accordance with the lit-

erature.17 This DOS spectrum implies hopping charge trans-

port via the Gaussian distributed localized states to be the

predominant transport path.16,18 There is also an absence of

deep traps in the band gap between the HOMO and LUMO,

where the DOS is 4–5 orders of magnitude lower than the

DOS of the transport paths. Figure 2 also shows that the ab-

sence of filtering and bubbling of the PMPSi solution and

spin-coating and drying in the air all introduce extra defect

states into the band gap.

Insufficiently dissolved PMPSi aggregates cause defect

states between the HOMO and LUMO (line 2). Removing

these aggregates by filtration reduces these extra states, but

some states spanning up to about 2 eV below LUMO are still

present (line 3). These are probably caused by oxygen com-

plexes19 and can be removed by careful inert gas bubbling

before deposition (line 1). This conclusion is supported by

the film that was exposed to atmospheric oxygen and mois-

ture during preparation (line 4), where a similar spectrum

was obtained. The oxygen-induced defects on the Si back-

bone of PMPSi are due to the high oxygen affinity, which

causes conjugation breaking with high electronegativity

inserted between the Si-Si r bonded pairs, as indicated by a

much smaller bandwidth than the reported value.19 Also, the

branching point defects that increase dimensionality strongly

reduce the main chain exciton r*!r photoluminescence at

approximately 365 nm, and lead to WB.20 In contrast, a

broad visible luminescence band situated around 500 nm

increases with branching, and can be explained by formation

of organosilane units and prolonged (strained) Si-Si WB.21

UV treatment of PMPSi films strongly affects the DOS

distribution near the HOMO level without any visible shift

in its position, while the LUMO position remains unaffected

(Fig. 3). This result is in accordance with the results of our

previous studies of this material by post-transient space-

charge-limited-current spectroscopy10 (inset in Fig. 3).

Specifically, successive increases in the DOS situated above

the HOMO transport path were observed following the for-

mation of electronic WB states after UV degradation, which

were reconstructed from post-transient spectroscopy11 (also

inset in Fig. 3). These results demonstrate the capability of

the ER-EIS method to map the DOS distribution directly

across the whole band gap. The method’s sensitivity enables

detection of subtle changes in the DOS caused by differen-

ces in film preparation or exposure to degradation agents

such as ambient air or UV treatments.

FIG. 2. DOS functions of PMPSi films prepared under various conditions as

measured by the ER-EIS method. Line 1, film spin-coated from filtered and

20-min-bubbled solution; line 2, film spin-coated from unfiltered and non-

bubbled solution; line 3, film spin-coated from filtered but non-bubbled solu-

tion; line 4, film spin-coated and air-dried from filtered and bubbled solution.

FIG. 3. DOS functions of PMPSi films that were UV-treated for various

times, as measured by ER-EIS. For comparison, results obtained by post-

transient space-charge-limited-current spectroscopy10 and post-transient

spectroscopy11 are shown in the insets.
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The potential of the ER-EIS method for elucidation of

microphysical properties related to the electronic DOS is

also demonstrated on PMPSi and two other polymers typi-

cally used for molecular electronics, MDMO-PPV, and

P3HT, in Fig. 4. The DOS distributions in the linear DOS

scale (Fig. 4(a)) were used to evaluate the transport (polaron,

bipolaron) band gaps via the methodology used in Ref. 12.

These values are shown at the bottom of the figure. A typical

saturation and apparent reduction at the extremes of both the

HOMO and LUMO are observed, presumably caused by the

filling of the molecular transport states, which reduces both

mobility and conductivity. This is in fact observed in the

electrochemistry of conducting polymers because of the fill-

ing of the finite (Gaussian) DOS.22 The same DOS distribu-

tions plotted on a log scale (Fig. 4(b)) show all the details of

both shallow and deep electronic states with unprecedented

sensitivity. Note that this complex picture of the electronic

DOS of all three polymers has not previously been

published.

The ER-EIS method’s sensitivity is also illustrated in

Figure 5. The positioning of the HOMO shoulder of

MDMO-PPV at 5.2 eV agrees well with published data for

OC1C10-PPV5 (Fig. 5(a)), which were obtained using an

electrochemically-gated transistor. This technique also pro-

vided information about DOS over five orders of magni-

tude, but the defect states in the band gap were not detected

because of the limited operating voltage range of the tran-

sistor. The ER-EIS spectrum of P3HT is directly compared

with its photoemission spectrum, published in Ref. 12, in

Figure 5(b). The HOMO onset slope for P3HT was found to

be similar to that obtained by photoemission, as shown by

overlaying the dependences obtained by both methods

(Fig. 5(b)); the photoemission signal proportional to the

DOS was aligned with the electrochemical signal according

to the HOMO maximum. Photoemission spectroscopy can

reconstruct the electronic structure over an energy range of

several eV. However, unlike the ER-EIS results, the

spectrum lacks information about the fine structure of the

DOS in the band gap. The log g(E) vs (E�Eo)2 plots show

that the DOS extremities can be fitted with a Gaussian dis-

tribution for both MDMO-PPV (rHOMO¼ 0.173 eV) and

P3HT (rHOMO¼ 0.067 eV). The value of 67 meV for P3HT

agrees well with the value of 69 meV given in a recent pa-

per23 that describes evaluation of time-of-flight transients

by an advanced computational procedure.

However, the LUMOs below the extremities of both

MDMO-PPV and P3HT show the apparent exponential de-

pendence of the DOS (g(E)� exp (E0/E)) with an effective

slope of 25 meV, corresponding to a measurement tempera-

ture of approximately 300 K. This means that the real slope

E0 for the DOS distributions of the LUMO is lower than

25 meV for both materials.

We can conclude that ER-EIS is a simple and powerful

method for mapping of the electronic structures of organic

semiconductors. We demonstrated using typical polymers

for molecular electronics (PMPSi, MDMO-PPV, P3HT)

that it allows DOS mapping over unprecedentedly wide

energy and DOS value ranges with energy resolution of

�100 meV. In contrast to the competing methods, informa-

tion about the important DOS parameters is acquired

directly from the measured spectra. Also, the method is

highly sensitive, and can detect subtle DOS changes caused

by modifications to the organic film preparation process or

the effects of degradation agents such as ambient air or UV

irradiation. These are highly topical issues, e.g., for organic

photovoltaic materials. Evaluation of the important DOS

parameters, such as the transport band gap, polaron state

distributions at the HOMO and LUMO, and the defect state

distribution over the entire band gap, was demonstrated

using the chosen polymers. The agreement of the measured

DOS parameters with the rare previously published data

obtained by established methods proves the accuracy of the

proposed method.

FIG. 4. DOS functions of PMPSi, MDMO-PPV, and P3HT films as meas-

ured by ER-EIS: (a) linear DOS scale, and (b) log DOS scale. The band gaps

shown at the bottom are evaluated according to Ref. 12.

FIG. 5. DOS functions of PPV and P3HT films as measured by ER-EIS and

compared with those published in Refs. 5 and 12, respectively.
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