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Abstract: - The paper is focused on a design and implementation of a decoupling multivariable
controller. The controller was designed in both discrete and continuous-time versions. The control
algorithm is based on polynomial theory and pole — placement. A decoupling compensator is used to
suppress interactions between control loops. The controller integrates an on — line identification of an
ARX model of a controlled system and a control synthesis on the basis of the identified parameters.
The model parameters are recursively estimated using the recursive least squares method.
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1 Introduction

Typical technological processes require the
simultaneous control of several variables related to
one system. Each input may influence all system
outputs. The design of a controller for such a system
must be quite sophisticated if the system is to be
controlled adequately. There are many different
methods of controlling MIMO (multi input — multi
output) systems. Several of these use decentralized
PID controllers [1], others apply single input-single-
output (SISO) methods extended to cover multiple
inputs [2]. The classical approach to the control of
multi-input-multi-output (MIMO) systems is based
on the design of a matrix controller to control all
system outputs at one time. The basic advantage of
this approach is its ability to achieve optimal control
performance because the controller can use all the
available information about the controlled system.
Controllers are based on various approaches and

and as self-tuning controllers [10], [11] with
recursive identification of a model of the controlled
system. The recursive least squares method is used
in the identification part.

The controllers were verified both by simulation
and real-time control of a TITO laboratory model of
a coupled drives process. The objective laboratory
model of the coupled drives apparatus is a nonlinear
system with variable parameters. Self-tuning
controllers are a possible approach to the control of
this kind of system.

2 Mathematical Model of the

Controlled Process

A general transfer matrix of a two-input-two-output
system with significant cross-coupling between the
control loops is expressed as (for continuous-time
systems q = s as the derivative operator and for
discrete systems q = z* as the delay operator)

various mathematical models of controlled

processes. A standard technique for MIMO control G(q){Gu(UI) Glz(q):| L)
systems uses polynomial methods [3], [4], [5] and is Gul(q) Gn(q)

also used in this paper. Controller synthesis is

reduced to the solution of linear Diophantine Y (a)=G(aM(a) )

equations [6].

One controller, which enables decoupling control
of TITO (two input-two output) systems, is
presented. The proposed control algorithm applies a
decoupling compensator [7], [8], [9] to suppress
undesired interactions between control loops. The
controller was realized both in discrete and
continuous-time versions. Both versions of the
controller were realized both with fixed parameters
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where U(q) and Y(q) are vectors of the manipulated
variables) and the controlled variables, respectively.

Y (a)=[y.(a). > (@) U(a)=[u,(a) u,(@)] 3

It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix
fraction:

G(a)=A"(q)B(a)=B,(a)A*(a) (4)
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where the polynomial matrices
AeR,,[q] BeRy[q] represent the left coprime

factorization of matrix G(q) and the matrices
A, €R,,[a] B, eR,[q] represent the right coprime
factorization of G(q). The further described

algorithms are based on a model with polynomials
of second order. This model proved to be effective
for control of several TITO laboratory processes
[12], where controllers based on a model with
polynomials of the first order failed. In case of
decoupling control using a compensator it is useful
to consider matrix A(q) as diagonal. The reason is
explained in further section.

2.1 Discrete Model
Polynomial matrices of the discrete model are given
by following exressions

-1 -2
A(z’l)z {1+ o +a,z 7? 2} )
0 1+a,27 +a,2
B(z’l)z bzt +b,z? bz'+bz? ©)
bzt +bz? bzt +bz?

The matrices can be converted to difference
equations

yl(k)= _alyl(k _l)_az yl(k - 2)+
+b,u, (k=1)+b,u, (k—2)+b,u, (k —1)+b,u, (k- 2)

Y> (k): —a3Y, (k _l)_ ay, (k - 2)+
+bgu, (k—1)+bgu, (k —2)+b,u, (k —1)+byu, (k - 2)

(7)

(8)

2.2 Continuous-Time Model
Polynomial matrices of the continuous-time model
are defined as follows

2
A(s):{s +a,5+a, 2 0 } ©)
0 S°+a,S+a,
B(s)= b,s+b, b;s+b, (10)
b,s+b, b,s+b,

Differential equations describing dynamical
behavior of the system are
y! +a,y] +a,y, =bu; +b,u, +byul +b,u, (11)
y) +a,y, +a,y, =b,u, +byu, +b,ul +byu, (12)

3 Design of Decoupling Controllers

One of possible approaches to control of
multivariable systems is the serial insertion of a
compensator ahead of the system [7], [8], [9]. The
compensator then becomes a part of the controller.

E-ISSN: 2224-2856

328

Marek Kubalcik, Vladimir Bobal

The objective, in this case, is to suppress
undesirable interactions between the input and
output variables so that each input affects only one
controlled variable. The block diagram for this kind
of system is shown in Fig. 1 (R is a transfer matrix
of a controller and C is a decoupling compensator).

W e

Y

A

R > - G d

C

¥

Fig. 1 Closed loop with compensator

The resulting transfer function H (the operator q
will be omitted from some operations for the
purpose of simplification) is then determined by

(13)

The decoupling conditions are fulfilled when
matrix H is diagonal. As it was mentioned above the
matrix A is supposed to be diagonal. The reason for
this simplification is apparent from equation (13).
When matrix A is assumed to be non-diagonal it has
to be included into the compensator in order to
obtain a diagonal matrix H. The order of the
controller and consequently complexity of its design
would increase. Moreover, a possible incorporation
of the matrix A into a compensator is restricted only
for compensators where product of the remaining
part of the compensator and the matrix B is in a
result a diagonal matrix with equal elements in the
main diagonal.

H=GC=A"BC

3.1 Design of Discrete Controller
In case of discrete controller, the matrix B can be
written as

B g b, +b,z" by +b,z7
by +bgz™" b, +byz

:Z—1|:Bll Ble|:Z—le
B21

BZZ
The determinant of the matrix By is then defined
as

(14)

det(Bx ) =B;;B, —B;,By (15)

The compensator is defined as the adjoint matrix
B

C =adj(B,) (16)

The multiplication of the matrix By and the
adjoint matrix By results in a diagonal matrix H. The
determinants of the matrix B, represent the diagonal
elements.
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H, :leXadj(BX):z{ (17)

det(B,) 0 }

0  det(B,)

Generally, the vector of input reference signals
W is specified as

W(z?)=F, 2 h(z)

Further, the reference signals are considered as
step functions. In this case h is a vector of constants
and F,, is expressed as

1-z+ 0
ne)- 0

The controller can be described both by left and
right matrix fractions as well as the controlled
system

Go(2)=P e Rl )= QR ()

In order to achieve asymptotic tracking of the
reference signal, an integrator must be incorporated
into the controller. The controller including the
integrator can be defined as

(18)

(19)

(20)

R=F'QP™ (21)

The component F is the integrator. The resulting
matrix of the controller can be then defined as
follows

CR=CFQP* (22)

It is possible to derive an equation for the system
output, which can be modified by matrix operations
to the form

Y = P(AFPR + HQ ) "HQ,PW (23)

The determinant of the matrix in the denominator
(AFP,+HQ,) is the characteristic polynomial of the
MIMO system. The roots of this polynomial matrix
determine the behaviour of the closed loop system.
They must be inside the unit circle (of the Gauss
complex plane) for the system to be stable.
Conditions of BIBO stability can be defined by the
following Diophantine matrix equation:

AFR +HQ =M (24)

where M e Rzz[z*l] is a stable diagonal polynomial

matrix. If the system has the same number of inputs
and outputs, matrix M can be chosen as diagonal,
which allows easier computation of the controller
parameters. Correct pole placement of the matrix M
is very important for good control performance.
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1+mz™t+
+mz 2 emz? + 0
-4 -5
M(z‘l): +m,z "t +mgz (25)
1+maz ™+
6
0 mz?+maz®+
7 8

+mz ™ +myz

The degree of the controller polynomial matrices
depends on the internal properness of the closed
loop. The structures of matrices P; and Q; were
chosen so that the number of unknown controller
parameters equals the number of algebraic equations
resulting from the solution of the Diophantine
equation (24) using the method of uncertain
coefficients:

L\ |1+ pzt+p,27 0
P.(z7)= 1 2 26
l( ) { 0 1+ p,zt+p,z? (26)
1 )
Ql(z—l)_{(h +022 " +052 ?1 _2} (27)
0 G4 +05Z " +0QpZ

The solution of the Diophantine equation results
in a set of algebraic equations with unknown
controller parameters.

For the purpose of a simplification, the
det(Bx(z)) is defined as follows:

det(B,(z71))= b + db,z* + dbz?

det(B,(21))= (b, —byb, )+ 2 (b, + byb, ~bb, —bb,)+  (28)
+ Ziz(bzbs - b4be)
The algebraic equations have the form
1 0 db, 0 0Tp m, —a, +1
a -1 1 do, db, O | p, m,-a, +a,
a,—a, a-1 db, db, db,|q, [=| m +a, (29)
-a, a,—-a 0 db, db,|aq, m,
| O -a, 0 0 doaq, m,
1 0 db, 0 O Tp, m, —a, +1
a, -1 1 db, db, O | p, m,-a, +a,
a,-a, a,—-1 db, db, db,|qg,|=| m,+a, (30)
-a, a,—a, 0 db, db,|aq, m,
| 0 -a, 0 0 db|aq, m,,

The controller parameters are obtained by
solving these equations. The parameters are then
used for computation of the control law. The control

law is defined as:
FU =adj(B, )Q,P,'E (31)

where E is a vector of control errors.
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3.1 Design of Continuous-Time Controller

In case of the continuous-time controller it is not
possible to perform a simplifying operation like in
case of the discrete controller. The continuous-time
compensator is then defined as the adjoint matrix B

C =adj(B)

(32)
The matrix H then takes following form
. det(B) 0
H =adj(B)=
(@) “07 o) 33)

Further procedure is similar like in case of the
discrete controller.
F., in this case is expressed as

s 0
E (s)= 34
N (34
The polynomial matrix M takes the form
s*+ms’ + 0
3 2
M(S)= +M,S™ + M,S™ +M,S+ M; . \ \ (35)
0 §7+mes” +m,s” +
+Mmgs? + mys +my,
Polynomial matrices of the continuous-time
controller were chosen as follows
s?+p,S+ 0
Pl(s>={ Pl } (36)
0 S°+ pPsS+p,
s?4+Q,5+ 0
Ql(s){ql e } (37)
0 048" +0sS+ Qs
For simplification, it was computed the
determinant det(B):
det(B) = (b, b, )6+ (00, + Db, ~bb, ~b s+ (0.

+(byb, —b,b, ) = db,s? + db,s + db,

The solution of the Diophantine equation results
in a set of 10 algebraic equations with unknown
controller parameters. Using matrix notation, the
algebraic equations are expressed in the following
form.

(1 0 do, O O p, m, —a, |
a, 1 db, db, O |p, m, —a,
a, a db db, db,|q, |=| m, (39)
0 a, 0 db db,|q, m,
10 0 0 0 dbojgs| [ mg |
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1 0 do, O O |ps] [mg—a,]
a, 1 db, db, O |p, m, —a,
a, a, db, db, db,|q, =] m, (40)
0 a, 0 db, db,|q; m,
_0 0 0 0 dbl__qe_ | My |
The control law is defined as:
FU =adj(B)Q,P,'E (41)

where E is a vector of control errors. This matrix
equation can be transcribed to the differential
equations of the controller

U1(5) +U{A)(ps + p1)+u1”(p4 PPyt p2)Jr Uf(p1 Pyt P, pa)*“; P.Ps =
= eil‘s)b7q1 +e£4)(b7q2 +hy0 + p3b7q1)+ef(b7% +500, + by 0, + p3by 0, + p3b8q1)+
+91”(baqa + gy + Payll, + o0, + p4b5q1)+91'(p4b7q3 +Pabe, + p3b8q3)+91 Pubsdl; -
’e(zs)bsqzx ’e(z“(baqis +hyq, + plbqu)’e;"(baqe +0,05 + pibyGs + PG, + pabs(h)’
~€5(0,05 + PiDyGs + P0G + 0305 + Dbl ) €5 (Pibitls + Pyl + P20yl ), Pobgs
(42)
(5)

Uz +U§A)(p3 + p1)+u;”(p4 T Pipst pz)+ uél(p1p4 P2 pa)"'ué PP, =
= _el(s)bsq1 _e{“(bsqz + bﬁql + p3b5q1)_el”(b5q3 + bsqz + pAbSql + p3b5q2 + p3bGQ1)_
*ef(be% + Pabg0; + Pbsds + p,bsd, + psbea, )* e{(paba% + Pybsq; + p4beqz)’el Pabsts +
+ebg, +ef(b.ds +b,0, + p.0ia, )+ e5(b.d, +b,05 + Py, + PiDG + Pbg, )+
+e5(0,5 + PobiGs + ., + Py, + Py, )~ €5 (PLiGs + Pob,s + Pybyds ) +e, Pob,0s
(43)

For purposes of simulation, the controller was
realized in the Matlab/Simulink environment as an
S-function. It was then necessary to obtain its state
equations. Further there it is introduced a conversion
of the first differential equation (42) to the state
equations. The second differential equation (43) was
converted similarly. Equation (42) can be itemized
as follows

Uﬁ) +uﬁ\)(pa + p1)+u1”;(p4 + PP+ pz)+qu(p1p4 +P, p3)+u1’Ap2 p, =

= ey, 1" (0,0, + by + iy flong +0,0, + PG, + PG, + PibyGy )+
+ef(bsqa + P3by G + Pibed, + Pbyg, + p4b8q1)+91’(p4b7q3 +Pabyt, + p3b3q3)+e1 P4bsts
(44)
Ug +U{g)(p3 + P US (g + PuPy + Py )+ Ul (PP + P, s )+ Uig PP, =
= _ef)bqu _ey)(baqs + bAqA + plbqu)_ e;(ba% + b4q5 + p1b3QS + p1b4q4 + psbqu)_
=)0, + Py, + PibiGs + Dbl + Db 0, )~ € Py, + Pobatl + Py )€, poby0
(45)

Equation (44) can be transcribed to the transfer
function. It is also possible to establish an auxiliary
variable Z

G(S): byq;s® + (b7q2 +byq, + p3b7q1)54 + (p4b7q3 + Pl + psbsqa)s +
$*+ (pa + pl)s4 + (pA +pips + pz)s3 + (p1p4 + P p3)32 + P2 P,S
+ (b7Q3 + b0, + pg0;0; + iy, + p3b8q1)53 + Pabg; +

)

+ (bs% + P3Py s + Pabed, + PuPG, + pAbel)Sz

Yin

UlA 1
E, Z

z
El

(46)
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By means of the variable Z it is possible to define
following equations

;6,2 + (b, +by0y + P3by 0, )2+ (b0, +byG, + Py, + PibyGl, + Pabsgy )2+
+ (050 + Py + Pyl + Dby, + Pyl )2 + (P + Pbydl, + oyt )2 +
+PDy0sZ = Uy,

(47)
294 (py + p )2+ (py + pupy + )2+ (pipy + Ps)2" + P2 =, (48)

Equation (48) can be converted to a set of
differential equations of the first order (state
equations). Choice of the state variables is as
follows

"

X, =2 X,=2' Xg=2" X, =1 XS:Z(4) (49)

And the state equations are

X =X,

X; =X

X3 =X,

X; =X

X5 =€ *(ps + pl)x5 ’(pA + PP+ pz)XA *(p1p4 + P2 ps)xa = P2PsX;
(50)

On the basis of the state variables, which are
substituted to equation (47), it is possible to derive
the first part of the manipulated variable u;

Uy =,y (& = (P + X + (D + Puy + o e + (PuPy + PoDs K + ;0% )+
+ by, + by, + Pbngy s + (0,0 + by, + Pbya + Py, + Py, +
+ (B0l + Doyl + Py, + Py + DLy s + (PG + PG, + Dby ), +
+ PybydsX,
(51)

Similarly it is possible to transcribe equation (45)
- 3q42(5) *(baqs +h,q, + p1b3QA)Z(4) *(baqe +by0ls + pyby0s + Pyb,0, + psbsqu)Zm*
_(h4qe + p1b3QS + p1b4q5 + pzhs% + pszQA)Z”_(p1b4qa + pzbsqe + thAqS)Z’_
= Pob sz = Uyg

(52)
24 (py + p ) + (py + PPy + D)2+ (PP + BoP )2 + P =e, (53)

State variables were chosen similarly as in the
previous case

Xe =2 X,=7' Xg=2" Xg=2" X,=2" (54)
The state equations are then as follows

X6 =X,

Xy =Xg

Xg = Xg

Xg = Xy

Xio =€, _(p3 + pl)xio _(pA +P.Ps + pz)xe _(p1p4 + P, pa)x8 — P2PsX;

(55)

The second part of the manipulated variable u;s
can be computed similarly like the part u;a by
substitution of the state variables to equation (52)
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Usg :’ban(ez *(pa + pl)XlO +(p4 PPyt pz)xg +(plp4 +P; Pa)xa P, p4x7)7
_(bsqs +b,q, + p1b3q4)xm — (b +1,G5 + Pyby 0 + PibG, + Pabydl, X, -
_(bAqG + Pibyds + Pub,ds + Po0a0s + p2b4q4)xg —(p1b4qe + DDy + P, 0s X, -
= P2b,0gX;

(56)

The manipulated variable u; is then defined by
the following sum

(57)
An expression for computation of the

manipulated variable u, is obtained similarly on the
basis of differential equation (42).

U =Ujp tUp

4 Recursive Identification

The controllers were also realized as self-tuning
controllers with recursive identification of a model
of the controlled system. The recursive least squares
method [11] proved to be effective for self-tuning
controllers and was used as the basis for our
algorithm. For our two-variable example we
considered the disintegration of the identification
into two independent parts.

It is not possible to measure directly input and
output derivatives of a system in case of continuous
— time control loop. One of the possible approaches
to this problem is establishing of filters and filtered
variables to substitute the primary variables. This
approach is described in detail in [13]. The filtered
variables are then used in the recursive
identification procedure.

4 Verification of the Controllers
The proposed controllers were verified both by
simulation and real-time control of the coupled
drives apparatus laboratory model.

4.1 Simulation Verification

Verification by simulation was carried out on a
range of plants with various dynamics. As a
simulation example for the discrete controller it is
shown control of a system which represents a linear
model of the coupled drives apparatus obtained by
the recursive identification for a particular steady
state.

_ -1 -2
A(Zl){l 0.5827z7* +0.1745z

~0.022077* +0.17972 2 }
0.01672 —0.08867 2

1-0.45642° —0.08302
(58)

0.14847 71 +0.2197272
—0.0371z71 - 0.3489z 2

(59)

B(z’l): —0.0035z7 +0.0955z2 2
0.2783z 7% +0.3107272
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Step Response

From: In(1)

From: In(2)

Ta: Ot

Amplitude

Ta: Ou(2)

a 2 4 B 8 100 2 4 B g 10

Time (3ec)

Fig. 2 Step response of the discrete system

A continuous-time model in the form of the
matrix fraction obtained by a possible conversion of
the discrete model does not need to have the
structure on which it is based the computation of the
control law. The model obtained by this way would
by then unusable.

It is shown control of the following continuous-
time system

a2

A(s): s +2s+0,7 20,25+0,4 (60)
| -05s-01 s°+2s+0,7
[055+0,2 01s+0,3

B(s)=| " " (61)
105s+01 0,3s+0,4

Fig. 3 shows the plant‘s step response

Step Response

From: In1) From: In(2)

Amplituds

0 2 4 6 ] 10

12 0 2 4 B 8 10 12
Time: (s&c)

Fig. 3 Step response of the continuous-time system

The controller’s synthesis in both discrete and
continuous-time cases is based on the model with
diagonal matrix A, which is obtained by recursive
identification and which describes the dynamics of
the system with full matrix A.

The tuning parameter is the matrix M. A suitable
pole-placement  (matrix M) was  chosen
experimentally. At first, a multiple pole was chosen
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on the real axis. A suitable position of the multiple
pole was chosen by experiments and comparison of
control results. Then it was searched a suitable
combination of various poles in the neighbourhood
of the multiple pole.

s® +5s* +10s° +

0
+10s2 +5s5+1
M(s)= 62
) 0 s® +5s* +10s° + (62)
+10s2 +55+1
(1-0.72+0.01272 - ]
-0.1z°-0.0527* + 0
-5
My )| +000012 B} . (63)
1-0.7z27+0.01z° -
0 —0.1z7%-0.0527% +
+0.0001z°°

The time responses of the control are shown in
Fig. 4-7.

lor—

1 1 1 1 1
100 120 140 160 180 200

¥2 w2

-DQ\ | | . |
0

20 40 &0 a0

1 1 1 1 1
100 120 140 160 180
k

Fig. 4 Adaptive control with discrete controller

200

0e6f A

04F -

Dz_m
B A

1 1 1 1 1
100 120 140 160 180
k

ul

u2

1 1 1 1 1
100 120 140 160 180
k

Fig. 5 Adaptive control with discrete controller-
manipulated variables

200
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03f
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1} 20 40 60 a0
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o0 1200 140 180 180

i)

0.2F E
ok 4

nz I I I I
1]

200

y2 w2

1 1 L 1 1
1m0 1200 1400 160 180

1)

200

Fig. 6 Adaptive control with continuous-time
controller

100
t(s)

ul
oo L o = oow
—

1 Il 1 1
1200 140 160 180 200

u2
o s o = oow
T —

1] 20 40 60 ao

1 1 L 1 1
1m0 1200 1400 160 180

t(s)

200

Fig. 7 Adaptive control with continuous-time
controller-manipulated variables

From the courses of the variables in Fig.4-7 it is
obvious that the basic requirements on control were
satisfied. The system was stabilized and the
asymptotic tracking of the reference signals was
achieved. With regards to decoupling, interactions
between the control loops are negligible.

4.2 Experimental Verification

The coupled-drives experimental laboratory model
was designed to demonstrate simultaneous control
of the tension and speed of material in a continuous
process. The material passes workstations, where its
speed and tension are measured. The material speed
and tension must be controlled within the defined
limits. The coupled-drives laboratory model
represents the standard coupled-drives system,
shown in Fig. 8.
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The apparatus consists of three pulleys mounted
in a vertical panel to form a triangle. The two base
pulleys are directly mounted on the shafts of two
nominally identical drive motors (motor 1 and
motor 2) and the apparatus is controlled by
manipulating the drive torques of these motors. The
third pulley, the jockey, rotates freely and is
mounted on a pivoted arm. The drive motors are
coupled by a continuous flexible belt, which also
passes over the pivoted arm. The jockey pulley
assembly, which simulates a material workstation, is
instrumented to allow measurement of the belt
speed and tension. The jockey pulley’s angular
velocity and the belt tension are the system outputs.
The continuous flexible belt couples the actions of
motor 1 and motor 2. If a drive voltage to motor 1’s
drive input is applied, then the speed and the tension
in the belt will be changed and motor 2 will be
rotated by the drag from motor 1. A similar result is
achieved if a drive voltage is applied to motor 2’s
drive input. Both motors change both outputs. This
is the coupling. The manipulated variables are the
inputs to the servomotors and the controlled
variables are the belt tension and the angular
velocity of the jockey pulley. The apparatus can be
considered as a two-input-two-output (TITO)
system.

Strmulated
Worl station

Jockey amm for
tension measurment

Jockey pulley
Contimuous

flezble belt

Drive
mater 1

Drve
motor 2

Fig. 8 Principle scheme of coupled drives
apparatus

The coupled drives apparatus is a nonlinear
system with variable parameters. The nonlinear
behaviour is caused by slipping and oscillation of
the belt. Asthe difference in motor speeds increases,
the slipping and the oscillations become more
apparent. A possible approach to control of
nonlinear systems is using of self-tuning controllers.
Dynamic behaviour of the system is described in the
neighbourhood of a steady state by a linear model
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(in our case by a model in the form of matrix
fraction ). It is an input — output model (“black box
model”) which does not take into consideration an
internal structure of the system. It is a model of the
system behaviour and its parameters do not have
any particular physical denotation.

The model was connected with a PC equipped with
a control and measurement PC card. Matlab and
Real Time Toolbox were used to control the system.
The best sampling period was found as To = 0.25 s.
The matrix M was identical as for the simulation
example.

Figures 9 and 10 show time responses of the
control when the initial parameter estimates were
chosen without any a priori information. The
reference trajectories contain frequent step changes
in the beginning of experiments to activate input and
output signals and improve the identification. The
manipulated variables u; and u, are the inputs to the
drive motors 1 and 2. The output y, is the angular
velocity and the output y, is the tension of the belt.

Subsequent experiment was carried out in such a
way that initial parameter estimates were set as the
last parameter estimates obtained at the end of the
previous experiment. The reference trajectories were
chosen to have the same values at the beginning as
they had at the end of the previous experiment. This
is because the system is nonlinear and the identified
parameters were valid only for particular steady
states. Time response of this experiment is shown in
Fig. 11-12.
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Fig. 9 Discrete control of coupled drives apparatus
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7 Conclusions

Decoupling TITO controller was designed and
implemented both in discrete and continuous-time
versions. The decoupling compensator was used to
suppress interactions between control loops. The
adaptive control strategy was also applied.

General principles were elaborated on a specific
system with two inputs and two outputs that is often
applicable in practice. Control laws based on the
specific model was derived in the form of self-
contained expressions that is especially useful for
practical applications. An advantage of the proposed
strategy lies in its simplicity and applicability.

The simulation control tests as well as control
tests executed on the laboratory model provide very
satisfactory results, despite of the fact, that the non—
linear dynamics was described by a linear model.
With regards to decoupling, it is clear that the
compensator reduces interactions between the
control loops.
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