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Abstract: - The paper is focused on a design and implementation of a decoupling multivariable 

controller. The controller was designed in both discrete and continuous-time versions. The control 

algorithm is based on polynomial theory and pole – placement. A decoupling compensator is used to 

suppress interactions between control loops. The controller integrates an on – line identification of an 

ARX model of a controlled system and a control synthesis on the basis of the identified parameters. 

The model parameters are recursively estimated using the recursive least squares method.  
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1 Introduction 
Typical technological processes require the 

simultaneous control of several variables related to 

one system. Each input may influence all system 

outputs. The design of a controller for such a system 

must be quite sophisticated if the system is to be 

controlled adequately. There are many different 

methods of controlling MIMO (multi input – multi 

output) systems. Several of these use decentralized 

PID controllers [1], others apply single input-single-

output (SISO) methods extended to cover multiple 

inputs [2]. The classical approach to the control of 

multi-input–multi-output (MIMO) systems is based 

on the design of a matrix controller to control all 

system outputs at one time. The basic advantage of 

this approach is its ability to achieve optimal control 

performance because the controller can use all the 

available information about the controlled system. 

Controllers are based on various approaches and 

various mathematical models of controlled 

processes. A standard technique for MIMO control 

systems uses polynomial methods [3], [4], [5] and is 

also used in this paper. Controller synthesis is 

reduced to the solution of linear Diophantine 

equations [6].  

One controller, which enables decoupling control 

of TITO (two input-two output) systems, is 

presented. The proposed control algorithm applies a 

decoupling compensator [7], [8], [9] to suppress 

undesired interactions between control loops. The 

controller was realized both in discrete and 

continuous-time versions. Both versions of the 

controller were realized both with fixed parameters 

and as self-tuning controllers [10], [11] with 

recursive identification of a model of the controlled 

system. The recursive least squares method is used 

in the identification part. 

The controllers were verified both by simulation 

and real-time control of a TITO laboratory model of 

a coupled drives process.  The objective laboratory 

model of the coupled drives apparatus is a nonlinear 

system with variable parameters. Self-tuning 

controllers  are a possible approach to the control of 

this kind of system.  

 

2 Mathematical Model of the 

Controlled Process  

A general transfer matrix of a two-input–two-output 

system with significant cross-coupling between the 

control loops is expressed as (for continuous-time 

systems q = s as the derivative operator and for 

discrete systems q = z
-1

 as the delay operator)    
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     qqq UGY                                                        (2) 

where  qU  and  qY  are vectors of the manipulated 

variables) and the controlled variables, respectively. 

      Tqyqyq 21 ,Y       Tququq 21 ,U                   (3) 

It may be assumed that the transfer matrix can be 

transcribed to the following form of the matrix 

fraction: 

         qqqqq 1
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1   ABBAG                              (4) 
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where the polynomial matrices 

   qRqR 2222 ,  BA  represent the left coprime 

factorization of matrix  qG  and the matrices 

   qRqR 221221 ,  BA  represent the right coprime 

factorization of  qG . The further described 

algorithms are based on a model with polynomials 

of second order. This model proved to be effective 

for control of several TITO laboratory processes 

[12], where controllers based on a model with 

polynomials of the first order failed. In case of 

decoupling control using a compensator it is useful 

to consider matrix A(q) as diagonal. The reason is 

explained in further section. 

 

2.1 Discrete Model 
Polynomial matrices of the discrete model are given 

by following exressions  
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The matrices can be converted to difference 

equations 
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2.2 Continuous-Time Model 
Polynomial matrices of the continuous-time model 

are defined as follows 
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Differential equations describing dynamical 

behavior of the system are  

2423121112111 ububububyayay /////            (11) 

2827161524232 ububububyayay /////           (12) 

 

3 Design of Decoupling Controllers 
One of possible approaches to control of 

multivariable systems is the serial insertion of a 

compensator ahead of the system [7], [8], [9]. The 

compensator then becomes a part of the controller. 

The objective, in this case, is to suppress 

undesirable interactions between the input and 

output variables so that each input affects only one 

controlled variable. The block diagram for this kind 

of system is shown in Fig. 1 (R is a transfer matrix 

of a controller and C is a decoupling compensator). 

  
Fig. 1  Closed loop with compensator 

 

The resulting transfer function H (the operator q 

will be omitted from some operations for the 

purpose of simplification) is then determined by 

BCAGCH
1                                               (13) 

The decoupling conditions are fulfilled when 

matrix H is diagonal. As it was mentioned above the 

matrix A is supposed to be diagonal. The reason for 

this simplification is apparent from equation (13). 

When matrix A is assumed to be non-diagonal it has 

to be included into the compensator in order to 

obtain a diagonal matrix H. The order of the 

controller and consequently complexity of its design 

would increase. Moreover, a possible incorporation 

of the matrix A into a compensator is restricted only 

for compensators where product of the remaining 

part of the compensator and the matrix B is in a 

result a diagonal matrix with equal elements in the 

main diagonal. 

 

3.1 Design of Discrete Controller 

In case of discrete controller, the matrix B can be 

written as   
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The determinant of the matrix Bx is then defined 

as 

  21122211xdet BBBB B                                    (15) 

The compensator is defined as the adjoint matrix 

B 

 xadj BC                                                            (16) 

The multiplication of the matrix Bx and the 

adjoint matrix Bx results in a diagonal matrix H. The 

determinants of the matrix Bx represent the diagonal 

elements. 
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Generally, the vector of input reference signals 

W is specified as  

     1111   zzz w hFW                                       (18) 

Further, the reference signals are considered as 

step functions. In this case h is a vector of constants 

and Fw is expressed as  
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The controller can be described both by left and 

right matrix fractions as well as the controlled 

system 

         11

1

1

1

111   zzzzzR PQQPG                     (20) 

In order to achieve asymptotic tracking of the 

reference signal, an integrator must be incorporated 

into the controller. The controller including the 

integrator can be defined as 

1

11

1  PQFR                                                     (21) 

The component F is the integrator. The resulting 

matrix of the controller can be then defined as 

follows 

1

11

1  PQCFCR                                                 (22) 

It is possible to derive an equation for the system 

output, which can be modified by matrix operations 

to the form 

  WPHQHQAFPPY 11

1
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
                              (23) 

The determinant of the matrix in the denominator 

(AFP1+HQ1) is the characteristic polynomial of the 

MIMO system. The roots of this polynomial matrix 

determine the behaviour of the closed loop system. 

They must be inside the unit circle (of the Gauss 

complex plane) for the system to be stable. 

Conditions of BIBO stability can be defined by the 

following Diophantine matrix equation: 

MHQAFP  11                                                   (24) 

where  1

22

 zRΜ  is a stable diagonal polynomial 

matrix. If the system has the same number of inputs 

and outputs, matrix M can be chosen as diagonal, 

which allows easier computation of the controller 

parameters. Correct pole placement of the matrix M 

is very important for good control performance. 
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The degree of the controller polynomial matrices 

depends on the internal properness of the closed 

loop. The structures of matrices P1 and Q1 were 

chosen so that the number of unknown controller 

parameters equals the number of algebraic equations 

resulting from the solution of the Diophantine 

equation (24) using the method of uncertain 

coefficients: 
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The solution of the Diophantine equation results 

in a set of algebraic equations with unknown 

controller parameters. 

For the purpose of a simplification, the 

det(Bx(z
-1

)) is defined as follows: 
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 The algebraic equations have the form 
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The controller parameters are obtained by 

solving these equations. The parameters are then 

used for computation of the control law. The control 

law is defined as: 

  EPQBFU
1

11


 xadj                                        (31) 

where E is a vector of control errors. 
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3.1 Design of Continuous-Time Controller 
In case of the continuous-time controller it is not 

possible to perform a simplifying operation like in 

case of the discrete controller. The continuous-time 

compensator is then defined as the adjoint matrix B 

 BC adj                                                             (32) 

The matrix H then takes following form  
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Further procedure is similar like in case of the 

discrete controller. 

Fw in this case is expressed as  
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The polynomial matrix M takes the form  
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Polynomial matrices of the continuous-time 

controller were chosen as follows   
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For simplification, it was computed the 

determinant det(B): 

     

  12

2

36482

63547281

2

5371det

dbsdbsdbbbbb

sbbbbbbbbsbbbb



B
     (38) 

The solution of the Diophantine equation results 

in a set of 10 algebraic equations with unknown 

controller parameters. Using matrix notation, the 

algebraic equations are expressed in the following 

form. 
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The control law is defined as: 
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where E is a vector of control errors. This matrix 

equation can be transcribed to the differential 

equations of the controller 
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qbpeqbpqbpqbpeqbpqbpqbpqbpqbe

qbpqbpqbpqbqbeqbpqbqbeqbe

ppuppppuppppuppuu











                                                                             (43) 

For purposes of simulation, the controller was 

realized in the Matlab/Simulink environment as an 

S-function. It was then necessary to obtain its state 

equations. Further there it is introduced a conversion 

of the first differential equation (42) to the state 

equations. The second differential equation (43) was 

converted similarly. Equation (42) can be itemized 

as follows 

        
      

    38413832843741184274283373381

183273174283711731827

4

117

5

1

421324112314113

4

1

5

1

qbpeqbpqbpqbpeqbpqbpqbpqbpqbe

qbpqbpqbpqbqbeqbpqbqbeqbe

ppuppppuppppuppuu AAAAA







 

                                                                        (44) 
        

      
    64225426326412442532541631642

433441531546324314453

4

243

5

2

421324112314113

4

1

5

1

qbpeqbpqbpqbpeqbpqbpqbpqbpqbe

qbpqbpqbpqbqbeqbpqbqbeqbe

ppuppppuppppuppuu BBBBB






 

                                                                          (45) 

Equation (44) can be transcribed to the transfer 

function. It is also possible to establish an auxiliary 

variable Z  

 
   

     

 

 

1

1

1

1

2

18427428337338

384

3

1832731742837

42

2

3241

3

2314

4

13

5

383284374

4

1731827

5

17

E

Z

Z

U

E

U

sqbpqbpqbpqbpqb

qbpsqbpqbpqbpqbqb

sppsppppsppppspps

sqbpqbpqbpsqbpqbqbsqb
sG

AA 










 

                                                                             (46) 
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By means of the variable Z it is possible to define 

following equations 

       
   

Auzqbp

zqbpqbpqbpzqbpqbpqbpqbpqb

zqbpqbpqbpqbqbzqbpqbqbzqb

1384

38328437418427428337338

1832731742837

4

1731827

5

17






 

                                                                             (47) 

          14232412314

4

13

5 ezppzppppzppppzppz   (48) 

Equation (48) can be converted to a set of 

differential equations of the first order (state 

equations). Choice of the state variables is as 

follows 

 4

54321 zxzxzxzxzx           (49) 

And the state equations are  

      242332414231451315

54

43

32

21

xppxppppxppppxppex

xx

xx

xx

xx











  

                                                                           (50) 

On the basis of the state variables, which are 

substituted to equation (47), it is possible to derive 

the first part of the manipulated variable u1A 

      
   

   

1384

2383284374318427428337338

4183273174283751731827

24233241423145131171

xqbp

xqbpqbpqbpxqbpqbpqbpqbpqb

xqbpqbpqbpqbqbxqbpqbqb

xppxppppxppppxppeqbu A









 

                                                                           (51)  

Similarly it is possible to transcribe equation (45) 
       

   

Buzqbp

zqbpqbpqbpzqbpqbpqbpqbpqb

zqbpqbpqbpqbqbzqbpqbqbzqb

1642

54263264144253254163164

4334415315463

4

4314453

5

43






 

                                                                           (52) 

          24232412314

4

13

5 ezppzppppzppppzppz   (53) 

State variables were chosen similarly as in the 

previous case 

 4

109876 zxzxzxzxzx          (54) 

The state equations are then as follows 

      74283241923141013210

109

98

87

76

xppxppppxppppxppex

xx

xx

xx

xx











 

                                                                          (55) 

The second part of the manipulated variable u1B 

can be computed similarly like the part u1A by 

substitution of the state variables to equation (52) 

      
   

   

6642

7542632641844253254163164

94334415315463104314453

742832419231410132431

xqbp

xqbpqbpqbpxqbpqbpqbpqbpqb

xqbpqbpqbpqbqbxqbpqbqb

xppxppppxppppxppeqbu B









                                                                             (56) 

The manipulated variable u1 is then defined by 

the following sum 

BA uuu 111                                                         (57) 

An expression for computation of the 

manipulated variable u2 is obtained similarly on the 

basis of differential equation (42). 

 

4 Recursive Identification  
The controllers were also realized as self-tuning 

controllers with recursive identification of a model 

of the controlled system. The recursive least squares 

method [11] proved to be effective for self-tuning 

controllers and was used as the basis for our 

algorithm. For our two-variable example we 

considered the disintegration of the identification 

into two independent parts.  

It is not possible to measure directly input and 

output derivatives of a system in case of continuous 

– time control loop. One of the possible approaches 

to this problem is establishing of filters and filtered 

variables to substitute the primary variables. This 

approach is described in detail in [13]. The filtered 

variables are then used in the recursive 

identification procedure.  

 

  4 Verification of the Controllers 
The proposed controllers were verified both by 

simulation and real-time control of the coupled 

drives apparatus laboratory model.  

 

4.1 Simulation Verification  

Verification by simulation was carried out on a 

range of plants with various dynamics. As a 

simulation example for the discrete controller it is 

shown control of a system which represents a linear 

model of the coupled drives apparatus obtained by 

the recursive identification for a particular steady 

state. 

  


















2121

2121
1

0830.04564.010886.00167.0

1797.00220.01745.05827.01

zzzz

zzzz
zA  

                                                                         (58) 

 






















2121

2121
1

3489.00371.03107.02783.0

2197.01484.00955.00035.0

zzzz

zzzz
zB

 

                                                                         (59) 
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Fig. 2 Step response of the discrete system 

 

 A continuous-time model in the form of the 

matrix fraction obtained by a possible conversion of 

the discrete model does not need to have the 

structure on which it is based the computation of the 

control law. The model obtained by this way would 

by then unusable.  

 It is shown control of the following continuous-

time system  

  













7,021,05,0

4,02,07,02
2

2

sss

sss
sA                        (60) 

  













4,03,01,05,0

3,01,02,05,0

ss

ss
sB                                 (61) 

Fig. 3 shows the plant‘s step response 

 

Fig. 3 Step response of the continuous-time system 

The controller’s synthesis in both discrete and 

continuous-time cases is based on the model with 

diagonal matrix A, which is obtained by recursive 

identification and which describes the dynamics of 

the system with full matrix A. 

The tuning parameter is the matrix M.  A suitable 

pole-placement (matrix M) was chosen 

experimentally. At first, a multiple pole was chosen 

on the real axis. A suitable position of the multiple 

pole was chosen by experiments and comparison of 

control results. Then it was searched a suitable 

combination of various poles in the neighbourhood 

of the multiple pole. 

 































1510

105
0

0
1510

105

2

345

2

345

ss

sss

ss

sss

sM         (62) 

 























































5

43

21

5

43

21

1

0001.0

05.01.0

01.07.01

0

0

0001.0

05.01.0

01.07.01

z

zz

zz

z

zz

zz

zM
 (63) 

The time responses of the control are shown in 

Fig. 4-7.  

 
Fig. 4 Adaptive control with discrete controller 

 
Fig. 5 Adaptive control with discrete controller-

manipulated variables 
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Fig. 6 Adaptive control with continuous-time 

controller 

 

Fig. 7 Adaptive control with continuous-time 

controller-manipulated variables 

 

From the courses of the variables in Fig.4-7 it is 

obvious that the basic requirements on control were 

satisfied. The system was stabilized and the 

asymptotic tracking of the reference signals was 

achieved. With regards to decoupling, interactions 

between the control loops are negligible. 

 

4.2 Experimental Verification 
The coupled-drives experimental laboratory model 

was designed to demonstrate simultaneous control 

of the tension and speed of material in a continuous 

process. The material passes workstations, where its 

speed and tension are measured. The material speed 

and tension must be controlled within the defined 

limits. The coupled-drives laboratory model 

represents the standard coupled-drives system, 

shown in Fig. 8.  

The apparatus consists of three pulleys mounted 

in a vertical panel to form a triangle. The two base 

pulleys are directly mounted on the shafts of two 

nominally identical drive motors (motor 1 and 

motor 2) and the apparatus is controlled by 

manipulating the drive torques of these motors. The 

third pulley, the jockey, rotates freely and is 

mounted on a pivoted arm. The drive motors are 

coupled by a continuous flexible belt, which also 

passes over the pivoted arm. The jockey pulley 

assembly, which simulates a material workstation, is 

instrumented to allow measurement of the belt 

speed and tension. The jockey pulley’s angular 

velocity and the belt tension are the system outputs.  

The continuous flexible belt couples the actions of 

motor 1 and motor 2. If a drive voltage to motor 1’s 

drive input is applied, then the speed and the tension 

in the belt will be changed and motor 2 will be 

rotated by the drag from motor 1. A similar result is 

achieved if a drive voltage is applied to motor 2’s 

drive input. Both motors change both outputs. This 

is the coupling. The manipulated variables are the 

inputs to the servomotors and the controlled 

variables are the belt tension and the angular 

velocity of the jockey pulley. The apparatus can be 

considered as a two-input–two-output (TITO) 

system. 

  

Fig. 8 Principle scheme of coupled drives 

apparatus 

 

The coupled drives apparatus is a nonlinear 

system with variable parameters. The nonlinear 

behaviour is caused by slipping and oscillation of 

the belt. As the difference in motor speeds increases, 

the slipping and the oscillations become more 

apparent.  A possible approach to control of 

nonlinear systems is using of self-tuning controllers. 

Dynamic behaviour of the system is described in the 

neighbourhood of a steady state by a linear model 
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(in our case by a model in the form of matrix 

fraction ). It is an input – output model (“black box 

model”) which does not take into consideration an 

internal structure of the system. It is a model of the 

system behaviour and its parameters do not have 

any particular physical denotation.   

The model was connected with a PC equipped with 

a control and measurement PC card. Matlab and 

Real Time Toolbox were used to control the system. 

The best sampling period was found as T0 = 0.25 s.  

The matrix M was identical as for the simulation 

example.   

Figures 9 and 10 show time responses of the 

control when the initial parameter estimates were 

chosen without any a priori information. The 

reference trajectories contain frequent step changes 

in the beginning of experiments to activate input and 

output signals and improve the identification. The 

manipulated variables u1 and u2 are the inputs to the 

drive motors 1 and 2. The output y1 is the angular 

velocity and the output y2 is the tension of the belt.  

Subsequent experiment was carried out in such a 

way that initial parameter estimates were set as the 

last parameter estimates obtained at the end of the 

previous experiment. The reference trajectories were 

chosen to have the same values at the beginning as 

they had at the end of the previous experiment. This 

is because the system is nonlinear and the identified 

parameters were valid only for particular steady 

states. Time response of this experiment is shown in 

Fig. 11-12. 
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Fig.  9  Discrete control of coupled drives apparatus  
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Fig. 10 Discrete control of coupled drives 

apparatus– manipulated variables 

   
Fig. 11  Discrete control of coupled drives 

apparatus- experiment with steady parameters  

   
Fig. 12 Discrete control of coupled drives apparatus 

–manipulated variables-experiment with steady 

parameters 
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7 Conclusions  
Decoupling TITO controller was designed and 

implemented both in discrete and continuous-time 

versions. The decoupling compensator was used to 

suppress interactions between control loops. The 

adaptive control strategy was also applied.  

General principles were elaborated on a specific 

system with two inputs and two outputs that is often 

applicable in practice. Control laws based on the 

specific model was derived in the form of self-

contained expressions that is especially useful for 

practical applications. An advantage of the proposed 

strategy lies in its simplicity and applicability.  

The simulation control tests as well as control 

tests executed on the laboratory model provide very 

satisfactory results, despite of the fact, that the non–

linear dynamics was described by a linear model. 

With regards to decoupling, it is clear that the 

compensator reduces interactions between the 

control loops. 
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