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INTRODUCTION 
 
A wearable inertial measurement unit (IMU) 
can be used to gather acceleration, rotational 
and magnetic field data on human 
movement and stability. Using these values 
to predict limits of stability (LOS) and 
distinguish them from activities of everyday 
living will lead to systems capable of 
warning a subject as the risk for falling 
increases (Wu. 2000; Luinge. 2005). The 
ability to model activities of everyday living 
is essential for customizing devices to an 
individual’s movement characteristics. 
Neural networks have previously been used 
to classify fall risk based on balance 
(Giansanti et al. 2008). The purpose of this 
study was to determine the efficacy of using 
back-propagation neural networks to 
adequately model gait. 
 
METHODS 
 
Normal gait was performed by 14 healthy 
younger adults, 8 females and 6 males (20.1 
± 1.34 years).  
 
Subjects walked for 10 meters while 
wearing an IMU at the level of their center 
of mass (COM). Data recorded included x-
y-z acceleration in (Gs), x-y-z rotation in 
(degrees/second), and magnetic field in 
(microtesla), and time in (seconds) using a 
MotionNode IMU set to the ±2g range. The 
x axis represented side to side movements, y 
axis represented front to back movements, 
and the z axis represented up and down 
movements.  

A back-propagation neural network with 1 
hidden layer was used analyze the data. It 
was trained using all 9 axes of data. Training 
typically took 400 cycles.  New gait values 
for the same subject were presented for 
feed-forward prediction. The goodness of fit 
was shown using scatter plots or mean 
shifted sum of squares calculations.  
 
RESULTS AND DISCUSSION 
 
When considering individual parameters, the 
resulting y acceleration prediction versus 
actual data is shown (Figure 1).  
 

 

Figure 1 scatter plot shows actual and 
predicted gait data from a 21y.o. participant.  

Similar results are seen in x acceleration. 
The data showed a mean shifted sum of 
squares of 0.011 between actual acceleration 
in x and predicted acceleration in x (Figure 
2). 
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Figure 2 shows actual and predicted gait 
data from the 21y.o. subject from Figure 1. 

Results with y acceleration data showed a 
mean shifted sum of squares of 0.00913 
between actual acceleration in y and 
predicted acceleration in y (Figure 3). 

When considering all participants, the 
average mean shifted sum of squares for 
predicted versus actual x and y acceleration 
values was 0.0094 ±0.0024. 

 

 

 
Figure 3 shows actual and predicted gait 
data from the 21y.o. subject from Figure 1. 
 
CONCLUSIONS 
 
The results have shown that neural networks 
can effectively be used to model normal gait 
data. This leads to the ability to model 
complex non-linear movement data with 
neural networks.  
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