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 Loss of hair cells due to acoustic trauma results in the loss of hearing. In 

humans, unlike other vertebrates, the mechanism of hair cell regeneration is not 

possible. The molecular mechanisms that underlie this regeneration in non-

mammalian vertebrates remain elusive. To understand the gene regulation 

during hair cell regeneration, our previous microarray study on zebrafish inner 

ears found that growth hormone (GH) was significantly upregulated after noise 

exposure. In this current study, we utilized Next Generation Sequencing (NGS) to 

examine the genes and pathways that are significantly regulated in the zebrafish 

inner ear following sound exposure and GH injection. Four groups of 20 zebrafish 

each were exposed to a 150 Hz tone at 179 dB re 1µPa RMS for 40 h. Zebrafish 

were injected with either salmon GH, phosphate buffer or zebrafish GH 

antagonist following acoustic exposure, and one baseline group received no 

acoustic stimulus or injection. RNA was extracted from ear tissues at 1 and 2 

days post-trauma, and cDNA was synthesized for NGS.  The reads from Illumina 

Pipeline version SCS 2.8.0 were aligned using TopHat and annotated using 

Cufflinks.  The statistically significant differentially expressed transcripts were 

identified using Cuffdiff for six different pairwise comparisons and were analyzed 

using Ingenuity Pathway Analysis. I found significant regulation of growth factors 
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such as GH, prolactin and fibroblast growth factor receptor 2,  different families of 

solute carrier molecules, cell adhesion molecules such as CDH17 and CDH23, 

and other transcription factors such as Fos, FosB, Jun that regulate apoptosis. 

Analysis of the cell proliferation network in the GH-injected condition compared to 

buffer-injected day 1 showed significant up-regulation of GH while down-

regulation of apoptotic transcription factors was found. In contrast, the 

antagonist-injected condition compared to the GH-injected condition showed an 

opposite pattern in which up-regulation of apoptotic transcription factors were 

found while GH was down-regulated. A number of other transcripts (e.g., POMC, 

SLC6A12, TMEM27, HNF4A, CDH17 and FGFR2) that showed up-regulation in 

GH-injected condition showed down-regulation in antagonist-injected condition. 

These results strongly suggest that injection of exogenous GH potentially has a 

protective role in the zebrafish inner ear following acoustic trauma.  
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Introduction 

Anatomy of the teleost auditory system: 

Hair cells are mechanosensory cells found in both vertebrates (Avallone et 

al., 2008; Harris et al., 2003; Jones & Corwin, 1996; Song et al., 1995) and 

invertebrates (Budelmann, 1994). They are present in the auditory and vestibular 

systems of all vertebrates, and the lateral line system of aquatic vertebrates such 

as fish and amphibians (Hudspeth & Corey, 1977; 1979; Bracho & Budelli, 1978). 

All together this system is called the acoustic-lateralis system which helps to 

detect sound, body acceleration and water movement (Hudspeth & Corey, 1977; 

Popper, 2005). The hair cells present in this system receive sounds and 

vibrations from the surroundings and convert them into a neural stimulus which is 

sent to the brain. The cell body of the hair cell gives rise to ciliary projections 

called stereocilia and a true kinocilium. While this is true in most vertebrates, hair 

cells of the mammalian cochlea lack kinocilia (Hudspeth & Corey, 1977). In non-

vertebrates, the hair cells lack stereocilia but the kinocilia are present in vast 

numbers ranging between 1 and 700 (Hudspeth & Corey, 1977; Budelmann, 

1994). In vertebrates, the kinocilium is the longest ciliary projection in a hair cell 

and the movement of stereocilia towards the kinocilium excites hair cells while 

movement to the opposite side causes inhibition.  

Unlike mammals, fishes have no external or middle ears but they have a 

pair of inner ears located adjacent to the brain inside the cranial cavity (Hastings 

& Popper, 2005; Popper & Hastings, 2009). The auditory system of fish is 

organized into pairs of three sensory otolithic endorgans called the saccule, 
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lagena and utricle. The sensory epithelia of these organs are called maculae 

which contain a high density of mechanoreceptor hair cells. Each otolithic 

endorgan encases a bony structure called an otolith made of calcium carbonate 

and a protein matrix (Takagi & Takahashi, 1999). Each otolith overlies the 

sensory macula of one of the auditory endorgans. These otolithic compartments 

are filled with endolymphatic fluid and are interconnected by semicircular canals 

between all the three organs. They have two main functional roles in fishes: first, 

to measure the position of the head relative to gravity and the acceleration of the 

body in all possible directions, and second, to detect sounds. Like the otolithic 

organs, hair cells in vestibular canals are also involved in detecting angular 

acceleration (Bang et al., 2001; Hastings & Popper, 2005).  

 

Hair cell damage: 

Hair cells are susceptible to damage and subsequent loss from a variety 

of insults resulting in deficits in hearing and balance. The functions inherent to 

the inner ear such as the head movement, orientation in space, and detection of 

sounds (Bang et al., 2001; Matsui & Ryals, 2005) and to the lateral line system 

such as low frequency vibration and current detection (Hama 1965) are severely 

impaired due to hair cell loss and hence causes hearing and balance disorders 

(Matsui & Ryals, 2005; Suli et al., 2012). 

Hearing loss can be caused by a number of factors, including damage to 

hair cells and auditory nerves (i.e., sensorineural hearing loss; Tarlow et al., 

1991; Ryan, 2000), genetic defects (Matsui & Ryals, 2005), and age-related 
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hearing loss (Huh et al., 2012). Hair cell damage can result from loud acoustic 

exposure (Poche et al., 1969; Matsui & Ryals, 2005; Smith et al., 2004a; 2004b; 

2006) or exposure to ototoxic chemicals (Wright, 1973; Matsui & Ryals, 2005). 

Although other possibilities exist that may cause damage to hair cells, ototoxic 

exposure and acoustic trauma are the two most widely used methods to 

understand the molecular mechanisms of hair cell damage. The ototoxic 

chemicals that have been examined include a wide variety of compounds such 

as heavy metals: copper (Hernandez et al., 2006, 2007; Olivari et al., 2008); 

aminoglycoside antibiotics: gentamycin, streptomycin, kanamycin, tobramycin, 

and neomycin (Hu et al., 1991; Hutchin & Cortopassi, 1994; Lombarte et al., 

1993; Ma et al., 2008; Murakami et al., 2003; Owens et al., 2007; 2008; 2009); 

platinum based drugs: cisplatin (Ton and Parng, 2005; Muldoon et al., 2000) and 

carboplatin (Neuwelt et al., 1996).  

 The effects of hair cell damage using these two methods have been 

studied in many model organisms. The mammalian models include guinea pig 

(Tarlow et al., 1991), rat (Liu et al., 2011), mouse (de Jong et al., 2012), and non-

mammalian models include chick (Stone & Cotanche, 1992), zebrafish (Harris et 

al., 2003; Schuck & Smith, 2009; Sun et al., 2011), goldfish (Smith et al., 2004a; 

2004b; 2006), salamander (Balak & Corwin, 1990; Jones & Corwin, 1996), lizard 

(Avallone et al., 2008), and bullfrog (Baird et al., 2000). The use of cell culture is 

also in practice to study the damage of hair cells (Warchol & Corwin, 1996; 

Alharazneh et al., 2011).  
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Following hair cell loss, regeneration occurs in non-mammalian 

vertebrates but not in the mammalian auditory system (Taylor & Forge, 2005; 

Roberson & Rubel, 1995; Yamashita & Oesterle, 1995; Avallone et al., 2008; 

Smith et al., 2006; Stone & Cotanche, 1992; Montcouquiol & Corwin, 2001). 

Since non-mammalian vertebrates such as birds (Matsui & Ryals, 2005), 

amphibians (Balak et al., 1990), and fish (Sun et al., 2011) have the capability of 

regenerating lost hair cells, they have been used as model systems to help 

scientists understand the hair cell regeneration process (Ryan, 2000). 

Understanding the cellular mechanisms of hair cell regeneration in these 

organisms may lead to the development of potential therapeutics or prophylactics 

for deafness in humans. 

 

Zebrafish as a model organism: 

Although a number of model organisms are available for studying hair cell 

damage, the zebrafish is widely used as a model organism in the field of 

otolaryngology as much is known about their hair cell degeneration and 

regeneration in this species (Guthrie 2008; Harris et al., 2003; Mangiardi & 

Cotanche, 2005; Owens et al., 2007; Olivari et al., 2008; Yan et al., 1991; Smith 

et al., 2004a; 2004b; 2006; 2011). Studies with zebrafish hair cells show that they 

react similarly to those of mammals in response to ototoxins such as copper or 

aminoglycoside antibiotics (Guthrie 2008; Harris et al., 2003; Olivari et al., 2008). 

The molecular mechanisms controlling the development of the zebrafish inner 

ear is similar to that of humans although zebrafish lack the mammalian 
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equivalent of a cochlea (Brignull et al., 2009). The forward genetics and 

antisense technology is well established for examining the development of the 

zebrafish inner ear which also makes it an excellent model (Nicolson, 2005). 

Zebrafish have a high fecundity rate and the young, translucent larvae facilitate 

live imaging of regenerating hair cells on neuromasts along the lateral line. All 

these features make the zebrafish an appropriate model for studying 

regeneration of hair cells. The main purpose of my research was to explore the 

molecular mechanisms of hair cell regeneration in zebrafish by examining 

patterns of gene expression following acoustic trauma. 

 

Characteristics of hair cells undergoing damage in fishes: 

 When hair cells are damaged either with intense noise or with ototoxins, 

they undergo morphological changes. These changes include the formation of 

apoptotic bodies, activation of caspases and formation of reactive oxygen 

species in zebrafish, rodents, frogs and chickens exposed to ototoxins 

(Mangiardi & Cotanche, 2005). In the zebrafish and goldfish saccule, the 

changes in the cell structure following acoustic trauma included formation of thin 

or fused stereocilia, cuticular plates which lost all stereociliary bundles, lesions 

and scars (Schuck & Smith, 2009; Smith et al., 2006). These morphological 

changes were also associated with a drastic reduction in the average hair cell 

density (Schuck & Smith, 2009; Smith et al., 2006). The number of apoptotic cells 

in both saccule and lagena increased significantly after noise exposure and 

decreased over time in zebrafish and goldfish, but in an experiment with goldfish, 
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exposure to sound did not cause any significant damage to the utricles at any 

point of time during observation (Smith et al., 2006) showing a differential 

sensitivity of hearing organs in fish. In addition to the morphological damage, the 

loss of hair cells in goldfish contributed to an increase in Temporary Threshold 

Shift (TTS) immediately after sound treatment (Smith et al., 2004a; 2004b; 2006). 

Hence, loss of inner ear hair cells is indicative of hearing loss in fish. 

 

Hair cell regeneration in fishes: 

Regeneration of hair cells is facilitated by the presence of stem cell-like 

supporting cells around the hair cells. The supporting cells are present in the 

lateral line system of fish (Harris et al., 2003). There is yet another population of 

cells called mantle cells found along the rim of neuromasts in the lateral line 

system (Hernandez et al., 2007; Brignull et al., 2009). The regeneration of hair 

cells can arise via two processes: mitotic proliferation or direct trans-

differentiation (Brignull et al., 2009; Hernandez et al., 2006; Harris et al., 2003). 

In mitotic proliferation, the supporting cells undergo cell division and this could be 

either symmetric or asymmetric. When the supporting cells divide equally into 

either two hair cells or two supporting cells, it is termed a symmetric division. In 

asymmetric division, one hair cell and one supporting cell result from a single 

division of a supporting cell. The asymmetric division replenishes the population 

of both progenies while a symmetric division is biased. In contrast, the trans-

differentiation mechanism does not undergo any of these divisions; rather a 
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supporting cell is directly converted (changes its phenotype) into a hair cell 

(Brignull et al., 2009).  

These two different mechanisms operate through different signaling 

pathways and at different points in time. There is evidence that supporting cells 

which normally reside near the basal lamina of the cochlea move toward the 

lumen to undergo mitosis (Brignull et al., 2009). Previous experiments with both 

goldfish and zebrafish showed hearing recovery which corresponded to an 

increase in the hair cell count following exposure to sound (Schuck & Smith, 

2009; Smith et al., 2006). Phalloidin-staining in zebrafish and goldfish inner ear 

following sound exposure confirmed that newly-regenerated hair cells show 

immature morphology with the formation of short hair bundles, and an increase in 

the total number of hair cells (Schuck & Smith, 2009; Smith et al., 2006). 

BromodeoxyUridine (BrdU)-labeling showed an increase in the proliferation of 

hair cells following acoustic damage (Schuck & Smith, 2009). TUNEL-labeling for 

apoptotic cells showed an increase in cell death in both the saccule and lagena 

immediately following damage but a decrease in labeling over time post-trauma 

(Smith et al., 2006). The hair cell recovery that followed sound exposure was 

accompanied by a decrease in temporary threshold shift, supporting the view that 

the regenerated hair cells are functional and improve hearing (Smith et al., 2006). 

These studies show that hair cells undergo death immediately following acoustic-

trauma and an increase in the number of hair cells was observed through mitotic 

proliferation. 
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A transcriptomics study by Schuck et al. (2011) on the zebrafish inner ear 

found that acoustic damage at two days post-trauma stimulates the expression of 

growth hormone (GH) transcripts coupled with a significant regulation of cell 

death and cell growth and proliferation functions. Another study, by Sun et al. 

(2011) found that peritoneal injection of external growth hormone in the zebrafish 

decreases apoptosis and increases hair cell regeneration at one day following 

sound-induced damage. These studies suggest that the expression of growth 

hormone might be important to the recovery of damaged hair cells or it may have 

an otoprotective role in zebrafish inner ears. The goal of the current study was to 

identify the genes, functional networks, canonical pathways and other 

transcription molecules that are specifically regulated by growth hormone 

following acoustic trauma using Next Generation Sequencing. 

 

Next Generation Sequencing: 

Transcriptomics is the study of whole mRNA of a cell to understand gene 

expression levels under different conditions. It is a powerful tool to identify 

specific networks of genes that are regulated under different natural or 

experimental conditions. To study transcriptomics, there are two widely used 

tools: microarray and Next Generation Sequencing (NGS). Each technology has 

its own advantages and disadvantages. Sample preparation is the first step in 

both methods. Purity of sample is a major factor that determines the quality of all 

downstream processing of mRNA. While microarrays have been widely used, 

they often have issues of consistency, reliability, sensitivity and specificity of the 
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data (MAQC consortium 2006). Microarray experiments can now be 

complemented by NGS technology. 

NGS technology is a high-throughput technology which includes multi-step 

procedures. The steps include template preparation, sequencing, imaging, 

genome alignment and assembly. The advantages of using NGS over microarray 

analysis are that it is more cost-efficient (Wall et al., 2009; Stiglic et al., 2010; 

Meng et al., 2012) and provides a drastic reduction in time to sequence large 

amounts of genomic sample (Stiglic et al., 2010; Meng et al., 2012). The novel 

sequences can easily be identified and this offers the advantage of knowing an 

unknown sequence which has not been previously reported and annotated (Wall 

et al., 2009; Meng et al., 2012). Transcripts of low abundance can still be 

efficiently sequenced using NGS (Liu et al., 2011b; Meng et al., 2012). This 

technology has several advantages of reproducibility, sensitivity and selectivity 

(Stiglic et al., 2010). While it offers many advantages, it generates gigabytes of 

data. The bioinformatics tools that are currently available are able to handle this 

huge amount of sequence information (Meng et al., 2012). 

NGS technology can be used in the field of drug development as the 

miRNAs have the potential to regulate many genes (Liu et al., 2011b). It is even 

now possible to assemble a whole genome de novo only with the short reads 

generated by these NGS platforms (Li et al., 2010). Currently, this NGS 

technology can be obtained in three different platforms: Illumina, Roche 454 and 

SOLiD. The Illumina platform uses sequencing-by-synthesis, while Roche 454 

uses pyrosequencing and SOLiD uses sequencing-by-ligation methods. Both 
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Illumina and SOLiD can be used to sequence short reads while Roche 454 can 

be used for long sequences and is best suitable for de novo sequencing. Among 

these three, Illumina is the most widely used platform for most sequencing 

projects as it has consistent data quality and proper read length (Liu et al., 

2011b).  

Analysis of the hair cell transcriptome with no acoustic trauma gave clues 

about what genes are essential for the functioning of hair cells. The genes that 

are expressed in zebrafish hair cells can be categorized into channel proteins 

(involved in frequency tuning and to maintain resting potential), transporters, 

transcription factors, signal transduction molecules, cytoskeletal genes and 

transcripts for proper development of kinocilia (McDermott et al., 2007). Although 

the transcripts necessary for the proper functioning of hair cells are known, it is 

still not clear as to what genes are differentially regulated when the hair cells 

undergo acoustic stress. If the zebrafish is going to be a model for understanding 

the process of hair cell regeneration, then the inner ear transcriptome during the 

process of hair cell regeneration following acoustic stress is needed. This was 

recently completed by Schuck et al. (2011) via microarray analysis. They found 

numerous genes that were significantly both up- and down-regulated in the 

zebrafish ear, but interestingly, growth hormone (GH) was endogenously up-

regulated to more than 60-fold two days post-sound exposure. In a follow-up 

study, injection of growth hormone following sound exposure also significantly 

reduced apoptosis in the zebrafish inner ear and greatly increased hair cell 

regeneration (Sun et al., 2011). Thus growth hormone may be a potent mitogen 
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that holds promise for the induction of hair cell regeneration or the prevention of 

hair cell loss. In this study, I analyzed differential gene expression profiles of the 

zebrafish inner ear under different treatment conditions (buffer, GH and GH-

antagonist injections) following acoustic trauma at one and two days post-sound 

exposure.  

 

Properties of growth hormone: 

Growth hormone (GH) is a 22 KDa, single chain mitogen with two disulfide 

bonds. GH is responsible for growth, sea water adaptation, reproduction, immune 

function, and osmoregulation in fishes (Calduch-Giner et al., 2001; Perez-

Sanchez, 2000; Perez-Sanchez et al., 2002). For example, in salmonids, GH can 

act as a phagocyte activating factor (Calduch-Giner et al., 1997). In both juvenile 

and adult seabream, liver cells have 30-50 fold higher GH binding sites than 

found on cells in muscle, adipose tissue or brain, suggesting that it is an 

important organ for GH action (Perez-Sanchez, 2000). Binding sites for GH are 

also higher in fish such as rainbow trout and seabream, and it promotes growth 

in early stages of development in these juveniles (Perez-Sanchez, 2000). Growth 

hormone binding sites occur in many other tissues like muscle, gill, testis, 

adipose, hematopoietic cells and the central nervous system of many vertebrates 

including fishes (Calduch-Giner et al., 2001). The action of endocrine hormones 

on mammalian immune system is found to be immunosuppressive. The immune 

system exerts a reciprocal response towards molecules such as growth 

hormone, prolactin, insulin, insulin growth factor-1, and thyroid hormones (Perez-
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Sanchez, 2000). There is ample evidence which supports the notion that GH can 

act as erythropoietic, myelopoietic and lymphopoietic growth factors in in vitro 

cultures (Perez-Sanchez, 2000; Calduch-Giner et al., 1997).  

Factors such as the age of fish, daylight period or temperature of water 

have significant effects on the expression levels of growth hormone (Perez-

Sanchez, 2000). For instance, growth hormone expression decreases in pituitary 

tissue with an increase in age of seabream (Marti-Palaca et al.,1996). Increasing 

the daylight period helps stimulate pituitary growth hormone synthesis in 

seabream, goldfish and smoltifying salmon. The growth rate and the plasma GH 

levels drop when the temperature of water is decreased and vice versa (Ricordel 

et al., 1995). In many fish species, handling and confinement stress rapidly 

reduces the plasma GH concentration (Perez-Sanchez, 2000).  

 Although growth hormone has pleiotropic effects as mentioned above, its 

role in hair cell regeneration in fish or any other organism has not been studied 

until recently. The aim of the current project is to examine the expression and 

regulation of growth hormone and other genes responsible for hair cell 

regeneration following acoustic damage. I found the significant regulation of cell 

proliferation and cell death pathways following injection with GH. GH and 

blocking GH with an antagonist, produces differential regulation of molecules 

such as transcription factors that are involved in apoptotic processes, cell 

adhesion molecules that control hair cell regeneration and solute carrier 

molecules. 
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Materials and Methods 

Experimental animals: 

 Adult breeder zebrafish (Danio rerio) were obtained from Segrest Farms 

(Gibsonton, FL) and maintained in 170-L flow-through aquaria under conditions 

of constant temperature (25°C) and a 12-h light/12-h dark schedule. Fish total 

lengths ranged from 36 to 44 mm. All work was done under the supervision of the 

Institutional Animal Care and Use Committee of Western Kentucky University. 

 

Sound exposure: 

 Adult zebrafish were randomly assigned to treatment and control groups 

without bias for weight or length or sex. A total of eighty zebrafish separated into 

four groups, each with 20 zebrafish were exposed to a 150 Hz tone at 179 dB re 

1 μPa RMS. The fifth group of 20 zebrafish which were not exposed to sound or 

any treatment was used as the control (C) group. The sound was generated by a 

B&K Precision function generator (4017A) connected to a 5.3 amp/200 watt 

Audio source monoblock amplifier and a University Sound UW-30 underwater 

speaker placed in a 19-L sound exposure chamber. Fish were exposed for 40 

hours at 24.5-25°C, and then they were separated into four groups of 20 fish 

each. Following the termination of sound exposure, three groups of sound 

exposed fish were injected with either phosphate buffer, salmon growth hormone 

(20 µg salmon GH/gram body mass; Dr. Shunsuke Moriyama for his kind 

donation of salmon GH) or growth hormone antagonist (40 µg GH 

antagonist/gram body mass; Pro-Spec-Tany Technogen Ltd., Israel) and they 
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were marked B1, G1 and A1 respectively (Table 1). They were then moved to 

three separate tanks and allowed to recover for one day. The fourth group of 

sound exposed fish were injected with phosphate buffer, and allowed to recover 

for 2 days, and marked as B2 (Table 1)). They were placed in the sound 

exposure chamber for the same time and temperature as other treatment groups 

with the sound generator turned off. 

 

Isolation of mRNA from zebrafish inner ear: 

 Fish were sacrificed one at a time with an overdose of Tricaine methane 

sulfonate (MS-222), their heads were removed, and the pair of ears (saccule, 

lagena, utricle and semi-circular canals) from each fish were immediately 

dissected out while being completely submerged in RNAlater® (Ambion, 

Austin,TX), as preliminary work indicated that either the small size of the saccule, 

or the length of time needed to separate it from the inner ear, resulted in low 

RNA yield. Ears were then placed in sterile microfuge tubes filled with lysis buffer 

provided in the mirVana miRNA isolation kit (Life Technologies). One to two 

hours were required to dissect all the fish in one group. Although each fish was 

dissected quickly, the ears were not contaminated with surrounding tissue other 

than perhaps residual parts of the auditory nerve. Once all the ears for a sample 

were collected, the tissue was pooled and homogenized with a Kontes Pellet 

Pestle Microgrinder and sterile disposable pestles (Kontes, Vineland, NJ), then 

processed for RNA isolation using the mirVana miRNA isolation kit (Life 

Technologies). RNA quality was checked with the aid of an Agilent 2100 
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Bioanalyzer (Agilent, Wilmington, DE). For this project, sharp ribosomal RNA 

bands were evident with an RNA integrity number greater than 7.0. A total of 100 

ng RNA per sample was sent to Cofactor Genomics, MO. Ovation® RNA-Seq 

System V2 kit (Nugen Inc., San Carlos, CA) was used to amplify the RNA to 

amounts sufficient for sequencing library construction. The cDNA was then used 

to construct sequencing libraries using the Illumina TruSeq Kit. 

 

Enrichment of transcriptome RNA and cDNA synthesis: 

 The whole transcriptome (mRNA) was extracted from total RNA by 

removing small and large rRNA using RiboMinus Bacterial Kit (Invitrogen, 

Carlsbad, CA). In brief, total RNA was hybridized to rRNA specific biotin labeled 

probes at 70 ⁰C for 5 minutes. The rRNA probe complexes were then removed 

by streptavidin-coated magnetic beads and the remaining free transcriptome 

RNA was concentrated by ethanol precipitation. After enrichment, the RNA was 

fragmented by incubation with fragmentation buffer included in the Illumina kit 

(Illumina, San Diego, CA) for 5 minutes at 94 ⁰C. Fragmented RNA was enriched 

by ethanol precipitation. First strand cDNA was synthesized by priming the 

fragmented RNA using random hexamer and then followed by reverse 

transcription by Superscript II (Invitrogen, Carlsbad, CA). The second strand was 

synthesized by incubating in second strand buffer, RNase Out and dNTP 

provided in the Illumina kit on ice for 5 min. The reaction mix was then treated 

with DNA Pol I and RNase H at 16º C for 2.5 h.    
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Library preparation and sequencing: 

 The cDNA synthesized from mRNA was used for preparing the RNA-Seq 

library. The double stranded DNA was treated with a mix of T4 polymerase, 

Klenow large fragment and T4 polynucleotide kinase to create blunt-ended DNA 

which subsequently added a single A-base at the 3’ end using Taq polymerase 

and dATP. These A-tailed DNA were ligated to paired end adaptors using T4 

ligase provided by the Illumina RNA-Seq kit. Size selection of adapter-ligated 

DNA was performed using 4-12% polyacrylamide gel electrophoresis. These size 

selected DNA libraries were amplified using in-gel PCR using the Phusion High-

Fidelity system (New England Biolabs). In this way, the mRNA library for sound-

exposed zebrafish injected with either phosphate buffer at one and two days, 

salmon growth hormone or growth hormone antagonist at one day following 

sound exposure were prepared. 

 

Primary processing and mapping of RNA-Seq reads: 

 RNA-Seq reads were obtained using Illumina Pipeline version SCS 2.8.0 

paired with OLB 1.8.0. The sequence files were generated in FASTQ format and 

were uploaded into the Galaxy tool available at galaxy.psu.edu. The reads were 

pre-processed using FASTQ Groomer using Galaxy available at galaxy.psu.edu 

(Pennsylvania State University). The quality of reads was checked and mapped 

by TopHat program using Galaxy. The latest build of UCSC (University of 

California Santa Cruz) DaniorerioZv9/danRer7 was used as a reference genome 

for the read mapping. The mapping resulted in the generation of splice junctions 
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and accepted hits. Potential exons were identified from the accepted hits file and 

this was used for all subsequent analysis. Default parameters were used for 

TopHat.  

 

Transcript abundance estimation using Cufflink: 

 The mapped reads were processed by Cufflink using Galaxy. Cufflink 

assembles transcripts from the Tophat aligned RNA-Seq reads, estimates their 

abundance, and reports a parsimonious set of transcriptome assembly in RNA-

Seq samples (Trapnell et al., 2012). UCSC Daniorerio Zv9/danRer7 build was 

used as reference annotation to Cufflink. The Cufflink tool makes use of 

normalized RNA-Seq fragment counts to measure the relative abundances of 

transcripts. The unit of measurement is Fragments Per Kilobase of exon per 

Million fragments Mapped (FPKM).  

 

Tracking differential expression using Cuffdiff: 

 Once all the samples were assembled using Cufflink, they were merged 

together using Cuffmerge with the reference annotation. Cuffmerge is a meta-

assembler that takes all Cufflink assembled files and merges them into a 

parsimonious transcriptome dataset. Cuffmerge helps to reconstruct a complete 

gene that might be lacking by Cufflink due to low expression level or low 

sequencing depth. Cuffdiff was used to estimate the relative abundances of 

genes and transcripts, differential usage of splice junctions, promoters along with 

Cuffmerge file as a reference (Trapnell et al., 2012). Differential expression of 
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transcripts was examined using Cuffdiff with default parameters but with a false 

discovery rate of 0.10. Six pairwise comparisons were made as following to 

identify the differentially expressed genes and transcripts: buffer-injected 

day1/control (B1/C), buffer-injected day 2/control (B2/C), buffer-injected day 

2/buffer-injected day 1 (B2/B1), growth hormone/buffer-injected day 1 (G1/B1), 

growth hormone/buffer-injected day 2 (G1/B2) and antagonist vs growth hormone 

(A1/G1). For example, B1/C comparison provided information on differentially 

regulated genes in buffer-injected day 1 (B1) condition compared to control (C) 

condition (Table 1). The files containing information about differential transcripts 

in each condition were filtered based on whether they were significant or not. 

Cuffdiff was used to compare differentially expressed transcripts among the five 

samples. 

 

Functional analysis using Ingenuity Pathway Analysis: 

 The statistically significant transcripts in all conditions were filtered from 

non-significant ones. All the raw expression values were added with a constant of 

0.15 before log transformation to account for any extreme values of transcripts 

that were not expressed under any sample conditions. After scaling and finding 

the log ratios of two samples in a pairwise comparison, the files were uploaded 

into the Ingenuity Pathway Analysis (Redwood City, CA) tool for functional 

analysis. The top ten up-and down-regulated canonical pathways and transcripts, 

were selected for further examination.  
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Results 

Analysis of RNA-Seq data: 

The total number of reads generated by all five samples ranged between 

27,239,458 and 30,855,367 with a median of 28,100,529 (Table 2). The 

sequence files were converted from Fastq format into Sanger Fastq format using 

Galaxy. The average length of the all reads was 59 bases. The quality of each 

base throughout the total read length for all reads in all five samples was 

checked for good quality before further processing. No trimming was done on 

any reads as the average median of mean base quality was found to be high 

(between 37.5 and 38, Fig 1) in all the samples although minor variation existed 

across experimental conditions. After determining the quality of reads, they were 

mapped to UCSC build danRer7 zebrafish genome by the Tophat program using 

default parameters in Galaxy. While some fraction of the reads was discarded in 

the mapping process, because they did not pass the default parameters of 

Tophat, a majority of the reads were mapped to the reference dataset. The 

maximum and minimum percentages of the mapped reads were 80.15% for 

control and 67.79% for B2 sample respectively (Table 2). The mapped reads 

were input to Cuffdiff and six different pairwise comparisons (B1/C, B2/C, B2/B1, 

G1/B1, G1/B2, A1/G1) were made as explained in the Methods section to identify 

the differentially expressed genes and transcripts.  

The Cuffdiff tool measures the relative abundance of genes and 

transcripts based on Fragments Per Kilobase of exon per Million fragments 

Mapped (FPKM). These FPKM values are normalized measures and they were 
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added a constant 0.15 and log-base 10 transformed to account for any zeros 

during heatmap generation (Fig 2).  

 

Differentially expressed genes and transcripts: 

The differentially expressed genes and transcripts were identified using 

Cuffdiff tool and were tested for their statistical significance. Cuffdiff analysis also 

performs multiple testing on genes using Benjamini-Hochberg correction and the 

resulting output files contain information about gene IDs, expression measure in 

FPKM, log fold change, p value, q value and significance. The log fold change 

were converted into fold change and used for further analysis. We found some 

overlap between the genes that were significantly expressed across all pairwise 

conditions. Two three-set Venn diagrams between B1/C, B2/C, B2/B1 and 

G1/B1, G1/B2, A1/G1 were produced (Figs. 3 & 4).  

 

Functional analysis using IPA: 

The differentially expressed transcripts were input into Ingenuity Pathway 

Analysis (IPA) for functional analysis. IPA takes only the annotated transcripts for 

processing, thus the unannotated transcripts were excluded in further analysis.  

The top 15 canonical pathways for all pairwise comparisons are given in Tables 3 

and 4. Some of the important pathways that were significant at B1 and B2 are 

calcium signaling, ILK (Integrin-linked kinase) signaling, tight junction signaling, 

actin cytoskeleton signaling and antigen presentation pathways (Table 3). The 

NRF2-mediated oxidative stress pathway was significantly regulated in B1/C and 
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in B2/B1. In G1/B1 pairwise comparison, FXR/RXR activation, iNOS signaling, 

ERK5 signaling, ILK and acute phase response signaling were significantly 

regulated. When G1 is compared to B2 (G1/B2), four different Rho involved 

pathways were significantly regulated: regulation of actin-based motility by Rho, 

signaling by Rho family GTPases, RhoA signaling and RhoGDI signaling. Other 

significant canonical pathways included mitotic roles of polo-like kinase, actin 

cytoskeleton signaling, and cdc 42 signaling. In A1/G1 comparison, I found 

significant regulation of Rho family GTPases signaling, actin regulation by Rho, 

tight junction signaling, GH and IGF-1 signaling and others.    

The top ten up- and down-regulated transcripts in all six pairwise 

comparisons are given in Tables 5-10. The pairwise comparisons B1/C and B2/C 

showed significant up-regulation of GTF2F2 (general transcription factor IIF), 

HBZ (hemoglobin Z), NDRG1 (N-myc downstream regulated 1) and C10orf32 

(chromosome 10 open reading frame 32) while they both showed down-

regulation of DCLK2 (double cortin-like kinase 2), TNNI2 (troponin I type 2) and 

UPK1A (uroplakin 1A) (Tables 5 and 6). FGFR2 (Fibroblast growth receptor 2) 

was up-regulated in B1/C but it is down regulated in B2/C. A comparison of G1 

with B1 (G1/B1) showed up-regulation of different solute carrier family molecules 

such as SLC6A12, SLC5A1, SLC12A3 and cell adhesion molecule CDH17 

(cadherin 17), and transmembrane protein TMEM27 (Table 8). A pattern of 

strong down-regulation for transcripts GTF2F2, HBZ and BASP1 (brain abundant 

membrane attached signal protein 1) was found in G1/B1 which was strongly up-

regulated in B1/C, suggesting that GH injection regulates these transcripts. G1 
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compared to B2 showed up-regulation of SNX12 (sorting nexin 12), FGFR2, 

POMC (proopiomelanocortin) and RABIF (RAB interacting factor) while GTF2F2, 

HBZ were down-regulated. FGFR2 also showed significant down-regulation in 

the A1/G1 comparison.   

 I compared this current NGS results with a previous microarray study from 

the Smith lab (Schuck et al., 2011) to examine similarities in transcripts that were 

significantly regulated. When comparing the top 10 up-regulated transcripts from 

the microarray experiment to our current NGS data, I found GH1 (growth 

hormone), POMC (proopiomelanocortin), CGA (glycoprotein hormones-alpha 

peptide) to be significantly up-regulated in B1/C but they were down-regulated in 

A1/G1 comparison. In G1/B1 comparison, we found up-regulation of GH1 and 

POMC but not CGA. When comparing the top 10 down-regulated transcripts 

between the microarray and our NGS data, we found zgc: 66286 and ATP2A2 

(Ca++ transporting ATPase) were down-regulated in B1/C but they were up-

regulated in G1/B1 comparison. We did not find any significant differential 

regulation of zgc: 66286 and ATP2A2 in A1/G1 comparison. Interestingly, we did 

not find any significant regulation of GH1, POMC, CGA, zgc: 66286 or ATP2A2 in 

B2/C but we found ATP2A1 to be down-regulated in both B2/C and A1/G1 

comparisons.        

When analyzing the other significantly regulated molecules across the six 

pairwise comparisons, I found that a number of the transcripts fell into a pattern 

of up-regulation in the GH treatment while they were down-regulated in the 

antagonist treatment (Table 11). Transcripts such as GH1, POMC, SLC6A12, 
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CYP7A1, TMEM27, CDH17 and FGFR2 were up-regulated in G1/B1 and G1/B2 

but they were down-regulated in A1/G1 comparison. GTF2F2, Fos, FosB, 

JUN/JUNB/JUND were down-regulated in G1/B1 but up-regulated in B1/C and 

A1/G1.     

A number of myosin-related molecules were differentially regulated across 

the pairwise comparisons, including myosin (MYO), myosin heavy chain (MYH) 

and myosin light chain (MYL) molecules. In A1/G1, I found the following myosin 

molecules significantly regulated: MYH1 (-2.4 fold), MYH11 (+1.5 fold), MYL1 (-

2.7 fold), MYL6 (-1.7 fold), MYL9 (+1.6 fold) and MYL10 (-2.1 fold). In G1/B1, I 

found the differential regulation of MYH1 (+4.7 fold), MYH7 (+2.5 fold), MYL3 (-

2.9 fold), MYL10 (+2.6 fold), MYO1F (+1.6 fold) and MYO1G (+2 fold). When B1 

was compared to control, molecules such as MYH1 (+2.8 fold), MYH7 (-3 fold), 

MYL2 (-3.5 fold), MYL3 (-2.8 fold), MYL10 (-2 fold) and MYL6B (-54 fold) were 

expressed significantly.  

Many family members of solute carrier molecules were significantly 

regulated but only the SLC6A family was regulated in all pairwise comparisons. 

SLC2A, SLC5A, SLC22A were regulated in all pairwise comparisons except in 

B1/C. SLC 37A and SLC 43A members were specifically regulated in A1/G1 but 

not in the other comparisons. Other solute carriers that were regulated in G1/B1 

include SLC3A, SLC12A, SLC13A, SLC16A, SLC20A, SLC26A and SLC47A. A 

majority of the solute carriers such as SLC12A, SLC13A, SLC22A, SLC2A, 

SLC30A, SLC37A, SLC43A, SLC47A, SLC5A, SLC6A and SLC7A were down-

regulated in A1/G1.   
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Figure 1. Boxplot showing the average mean of base quality at each position 

along the total read length in all samples (C=control, B1=buffer-injected day 1, 

B2=buffer-injected day 2, G1=GH-injected day 1, A1=antagonist-injected day 1). 

The whiskers extend 1.5 times the interquartile range from the box.  
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Figure 2. Heatmap generated using the program R showing the transcript 

expression (log-base 10 (FPKM)) across all five experimental conditions 

(C=control, B1=buffer-injected day 1, B2=buffer-injected day 2, G1=GH-injected 

day 1, A1=antagonist-injected day 1). The red color indicates a high transcript 

expression and a yellow color indicates a low expression (color key). The 

transcripts were clustered based on Euclidean distances. 
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Figure 3. Venn diagram showing differentially expressed transcripts that are 

unique to and common between buffer-injected day 1 compared to control 

(B1/C), buffer-injected day 2 compared to control (B2/C) and buffer-injected day 

2 compared to buffer-injected day 1 (B2/B1) conditions. The numbers outside the 

circles show the total number of transcripts that are differentially regulated in that 

comparison along with the total number of up- and down-regulated transcripts.   
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Figure 4. Venn diagram showing differentially expressed transcripts that are 

unique to and common between GH-injected day 1 compared to buffer-injected 

day 1 (G1/B1), GH-injected day 1 compared to buffer-injected day 2 (G1/B2) and 

antagonist-injected day 1 compared to GH-injected day 1 (A1/G1) conditions. 

The numbers outside the circles show the total number of transcripts that are 

differentially regulated in that comparison along with the total number of up- and 

down-regulated transcripts.   
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Figure 5. Cell growth and proliferation network in GH-injected compared to 

buffer-injected day 1 (G1/B1) generated using Ingenuity Pathway Analysis. Red 

indicates up-regulation and green indicates down-regulation. The signed number 

below the molecules indicates the fold change of regulation. The solid lines show 

a direct connection and a dashed line shows an indirect connection between 

molecules. An arrowed connection indicates that a molecule acts on the other 

and a non-arrowed line indicates that they are binding partners.    
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Figure 6. Cell death network in antagonist-injected compared to GH-injected 

(A1/G1) generated using Ingenuity Pathway Analysis. Red indicates up-

regulation and green indicates down-regulation. The signed number below the 

molecules indicates the fold change of regulation. The solid lines show a direct 

connection and a dashed line shows an indirect connection between molecules. 

An arrowed connection indicates that a molecule acts on the other and a non-

arrowed line indicates that they are binding partners.    
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Table 1: Experimental design.  Experimental group abbreviations that will be used throughout the paper are defined in 

terms of sound exposure, injection, and the recovery period following sound exposure. 

 

 

 

 

 

 

Experimental group 
abbreviation 

Experimental groups 

Sound exposure 
(40 hours at 150 Hz 
tone at 179 dB re 1 

μPa RMS) 

Injection 

Recovery period 
following sound 
exposure and 

injection 

C Control None None N.A. 

B1 Buffer-injected day 1  Yes Phosphate buffer 1 day 

B2 Buffer-injected day 2 Yes Phosphate buffer 2 days 

G1 GH-injected day 1 Yes 
Growth hormone 

(GH) 
1 day 

A1 
GH antagonist-
injected day 1 

Yes GH antagonist 1 day 
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Table 2: Percentages of mapped and unmapped RNA-Seq reads to UCSC zebrafish danRer 7 build by Tophat v1.5.0 for 

all five experimental conditions. 

 

 

 

 

 

 

 Control (C) 
Buffer-injected 

day 1 (B1) 

Buffer-injected 

day 2 (B2) 

GH-injected 

day 1 (G1) 

GH antagonist-

injected day 1 

(A1) 

Total reads 28046918 30855367 29943980 28100529 27239458 

% of reads mapped 80.15 79.58 67.79 69.91 75.26 

% unmapped reads 19.85 20.42 32.21 30.09 24.74 
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Table 3. Top 20 significant canonical pathways in B1/C, B2/C and B2/B1 obtained from Ingenuity Pathway Analysis based 

on differentially regulated transcripts.  Pathways are sorted by statistical significance (top=most significant). 

Buffer-injected day 1 compared to control 
(B1/C)  

Buffer-injected day 2 compared to control 
(B2/C) 

Buffer-injected day 2 compared to 
buffer-injected day 1 (B2/B1) 

Calcium signaling  Calcium signaling Calcium signaling 

ILK signaling Tight Junction signaling Tight Junction signaling 

G alpha 12/13 signaling ILK signaling ILK signaling 

14-3-3-mediated signaling Signaling by Rho Family GTPases RhoA signaling 

PAK signaling Antigen Presentation Pathway Actin Cytoskeleton signaling 

Axonal Guidance Cellular Effects of Sildenafil Antigen Presentation Pathway 

Sertoli Cell-Sertoli Cell Junction signaling VEGF signaling NRF2-mediated Oxidative Stress Response 

Tight Junction signaling MODY signaling EIF2 signaling 

CXCR4 signaling RhoGDI signaling Regulation of Actin-based Motility by Rho 

Cdc42 signaling Pentose Phosphate Pathway PI3K Signaling in B Lymphocytes 

Extrinsic Prothrombin Activation RhoA signaling Hepatic Fibrosis/Hepatic Stellate Cell 
Activation 

Coagulation System Regulation of Actin-based Motility by Rho Protein Kinase A signaling 

Hepatic Fibrosis/Hepatic Stellate Cell Activation Cdc42 signaling VEGF signaling 

Cardiomyocyte Differentiation via BMP Receptors Agrin Interactions at Neuromuscular Junction 
 

Cellular Effects of Sildenafil 
 

NRF2-mediated Oxidative Stress Response 
 
 

Hepatic Fibrosis/Hepatic Stellate Cell 
Activation 
 

Fc gamma Receptor-mediated 
Phagocytosis in Macrophages and 
Monocytes 

Cellular Effects of Sildenafil Actin Cytoskeleton signaling Acute Phase Response signaling 

Actin Cytoskeleton signaling Glycolysis/Gluconeogenesis Mechanisms of Viral Exit from Host Cell 

Germ Cell-Sertoli Cell Junction signaling Protein Kinase A signaling Airway Pathology in Chronic Obstructive 
Pulmonary Disease 

Thrombin signaling Fructose and Mannose Metabolism G alpha 12/13 signaling 

Signaling by Rho Family GTPases G alpha 12/13 signaling TR/RXR Activation 

 



33 
 

Table 4. Top 20 significant canonical pathways in G1/B1, G1/B2 and A1/G1 obtained from Ingenuity Pathway Analysis 

based on differentially regulated transcripts. Pathways are sorted by statistical significance (top=most significant). 

GH-injected day 1 compared to buffer-
injected day 1 (G1/B1) 

GH-injected day 1 compared to buffer-
injected day 2 (G1/B2) 

Antagonist-injected day 1 compared to 
GH-injected day 1 (A1/G1) 

Tight Junction signaling Intrinsic Prothrombin Activation Pathway Calcium signaling 

Calcium signaling Mitotic Roles of Polo-Like Kinase Signaling by Rho Family GTPases 

Antigen Presentation Pathway Regulation of Actin-based Motility by Rho Acute Phase Response signaling 

MODY signaling Signaling by Rho Family GTPases Regulation of Actin-based Motility by Rho 

Pyrimidine Metabolism Actin Cytoskeleton signaling RhoGDI signaling 

ILK signaling RhoA signaling Tight Junction signaling 

Signaling by Rho Family GTPases Extrinsic Prothrombin Activation Pathway Glycolysis/Gluconeogenesis 

FXR/RXR Activation ILK signaling Cellular Effects of Sildenafil 

Acute Phase Response signaling Coagulation System G alpha 12/13 signaling 

Nicotinate and Nicotinamide Metabolism RhoGDI signaling Growth Hormone signaling 

ERK5 signaling Calcium signaling ILK signaling 

Intrinsic Prothrombin Activation Pathway Cdc42 signaling Coagulation System 

One carbon pool by Folate Circadian Rhythm RhoA signaling 

iNOS signaling Acute Phase Response signaling G Beta Gamma signaling 

Production of NO and ROS in macrophages Atherosclerosis  IGF-1 signaling 

Extrinsic prothrombin activation pathway 
 

Fc gamma Receptor-mediated Phagocytosis in 
Macrophages and Monocytes 

MODY signaling 
 

PXR/RXR activation Integrin signaling Actin Cytoskeleton signaling 

Histidine metabolism Cellular Effects of Sildenafil Cdc42 signaling 

Coagulation System LXR/RXR Activation Sertoli Cell-Sertoli Cell Junction signaling 

Pentose Phosphate Pathway Glioma Invasiveness  PAK signaling 
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 Table 5: Top 10 up- and down-regulated molecules in B1/C (buffer-injected day 1 compared to control).  

Gene  Gene ID Entrez Gene Name GO Function   Fold Change P-value 

GTF2F2 NM_001103133 general transcription factor IIF, polypeptide 2 transcription regulator 108.918 2.23E-12 

HBZ NM_001033093 hemoglobin, zeta transporter 66.568 4.07E-06 

NDRG1 NM_213348 N-myc downstream regulated 1 kinase 62.074 1.71E-11 

BASP1 NM_001202454 brain abundant membrane attached signal protein 1 transcription regulator 41.379 2.94E-10 

C10orf32 NM_001039988 chromosome 10 open reading frame 32 other 20.923 0.0004556 

FGFR2 NM_001243004 fibroblast growth factor receptor 2 kinase 18.255 2.31E-09 

PGD NM_213453 phosphogluconate dehydrogenase enzyme 14.931 3.49E-05 

SCAMP2 NM_201194 secretory carrier membrane protein 2 transporter 13.247 0.0003283 

H2AFV NM_001201563 H2A histone family, member V other 11.47 0.0039926 

RTP3 NM_001128720 receptor (chemosensory) transporter protein 3 other 11.13 1.07E-05 

PITX2 NM_130975 paired-like homeodomain 2 transcription regulator -14.764 4.77E-06 

PRSS21 NM_001083582 protease, serine, 21 (testisin) peptidase -15.17 0 

CNBP NM_199749 CCHC-type zinc finger, nucleic acid binding protein transcription regulator -16.41 0.0005084 

DCLK2 NM_001145789 Double cortin-like kinase 2 kinase -19.871 2.22E-08 

RABIF NM_001168213 RAB interacting factor transporter -21.334 0.0014708 

MBNL2 NM_001099998 muscleblind-like splicing regulator 2 other -24.686 4.48E-09 

TNNI2 NM_001136492 troponin I type 2 (skeletal, fast) enzyme -25.081 7.55E-05 

BVES NM_001257164 blood vessel epicardial substance other -48.612 3.70E-08 

UPK1A NM_001040242 uroplakin 1A other -48.976 6.05E-11 

MYL6B NM_001089511 myosin, light chain 6B, alkali other -54.693 1.56E-06 
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  Table 6: Top 10 up- and down-regulated molecules in B2/C (buffer-injected day 2 compared to control). 

Symbol Gene ID Entrez Gene Name GO Function Fold Change P Value 

NDRG1 NM_213348 N-myc downstream regulated 1 kinase 180.883 2.54E-11 

CDH17 NM_194422 cadherin 17, LI cadherin (liver-intestine) transporter 168.384 0 

HBZ NM_001033093 hemoglobin, zeta transporter 154.963 3.10E-06 

UFC1 NM_001003650 ubiquitin-fold modifier conjugating enzyme 1 enzyme 70.929 1.88E-05 

GTF2F2 NM_001103133 general transcription factor IIF, polypeptide 2 transcription regulator 55.288 6.28E-06 

UROC1 NM_001135129 urocanase domain containing 1 enzyme 37.927 0 

C10orf32 NM_001039988 chromosome 10 open reading frame 32 other 27.906 0.0017546 

SLC12A3 NM_001045080 solute carrier family 12  transporter 25.739 6.75E-14 

FBP1 NM_213132 fructose-1,6-bisphosphatase 1 phosphatase 17.099 6.69E-06 

HNF1B NM_131880 HNF1 homeobox B transcription regulator 14.651 3.00E-09 

ABP1 NM_001077598 amiloride binding protein 1  enzyme -14.82 1.09E-06 

DCLK2 NM_001145789 doublecortin-like kinase 2 kinase -19.755 3.78E-06 

TNNI2 NM_001007365 troponin I type 2 (skeletal, fast) enzyme -20.337 0 

8-Mar NM_001161435 membrane-associated ring finger (C3HC4) 8 enzyme -22.048 0.0023873 

MAL NM_001077463 mal, T-cell differentiation protein transporter -23.075 0.0029527 

UPK1A NM_001040242 uroplakin 1A other -24.96 9.36E-08 

CRYZ NM_001099976 crystallin, zeta (quinone reductase) enzyme -34.265 6.55E-06 

MGMT NM_001256246 O-6-methylguanine-DNA methyltransferase enzyme -44.178 1.04E-05 

FGFR2 NM_001243004 fibroblast growth factor receptor 2 kinase -83.48 6.00E-15 

SNX12 NM_001145894 sorting nexin 12 transporter -262.807 0 
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Table 7: Top 10 up- and down-regulated molecules in B2/B1 (buffer-injected day 2 compared to buffer-injected day 1)  

Symbol Gene ID Entrez Gene Name GO Function Fold Change P Value 

CDH17 NM_194422 cadherin 17, LI cadherin (liver-intestine) transporter 176.485 0 

BVES NM_001257164 blood vessel epicardial substance other 60.515 3.24E-11 

SLC12A3 NM_001045080 solute carrier family 12  transporter 35.254 2.60E-11 

HNF4A NM_194368 hepatocyte nuclear factor 4, alpha transcription regulator 32.881 4.82E-08 

UROC1 NM_001135129 urocanase domain containing 1 enzyme 32.716 0 

MBNL2 NM_001099998 Muscle blind-like splicing regulator 2 other 29.376 3.53E-10 

TRAM2 NM_213071 translocation associated membrane protein 2 other 25.109 0.0038039 

HOXB8 NM_131120 homeobox B8 transcription regulator 19.22 4.90E-05 

CNBP NM_199749 CCHC-type zinc finger, nucleic acid binding protein transcription regulator 17.533 0.0003372 

PDZK1 NM_001128670 PDZ domain containing 1 transporter 16.621 2.01E-05 

MX1 NM_001128672 myxovirus (influenza virus) resistance 1 enzyme -13.196 8.10E-08 

RTP3 NM_001128720 receptor (chemosensory) transporter protein 3 other -13.962 4.19E-05 

TNNI2 NM_001007365 troponin I type 2 (skeletal, fast) enzyme -14.047 0 

CRYZ NM_001099976 crystallin, zeta (quinone reductase) enzyme -14.203 0.0001604 

PGD NM_213453 phosphogluconate dehydrogenase enzyme -14.673 2.73E-05 

FGFR2 NM_001243004 fibroblast growth factor receptor 2 kinase -17.91 8.45E-10 

FKBP3 NM_001004519 FK506 binding protein 3, 25kDa enzyme -23.387 9.54E-05 

MGMT NM_001256246 O-6-methylguanine-DNA methyltransferase enzyme -30.029 1.49E-06 

BASP1 NM_001202454 brain abundant membrane attached signal protein 1 transcription regulator -40.195 1.07E-10 

SNX12 NM_001145894 sorting nexin 12 transporter -80.473 3.26E-12 
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Table 8: Top 10 up- and down-regulated molecules in G1/B1 (GH-injected day 1 compared to buffer-injected day 1)  

Symbol Gene ID Entrez Gene Name GO Function Fold Change P Value 

CDH17 NM_194422 cadherin 17, LI cadherin (liver-intestine) transporter 327.578 0 

TMEM27 NM_001139458 transmembrane protein 27 other 85.036 0 

SLC6A12 NM_001080077 solute carrier family 6, member 12 transporter 80.151 0 

STAR NM_131663 steroidogenic acute regulatory protein transporter 75.496 6.21E-11 

DDC NM_213342 dopa decarboxylase  enzyme 61.797 0 

RABIF NM_001168213 RAB interacting factor transporter 59.106 4.55E-06 

SLC5A1 NM_200681 solute carrier family 5, member 1 transporter 48.379 9.98E-12 

BVES NM_001257164 blood vessel epicardial substance other 43.495 1.66E-07 

HNF4A NM_194368 hepatocyte nuclear factor 4, alpha transcription regulator 43.056 1.88E-08 

SLC12A3 NM_001045080 solute carrier family 12, member 3 transporter 41.087 6.35E-12 

KLHL9 NM_001099229 kelch-like 9 (Drosophila) other -14.475 1.88E-07 

FOSB NM_001007312 FBJ murine osteosarcoma viral oncogene homolog B transcription regulator -19.33 8.04E-09 

RTP3 NM_001128720 receptor (chemosensory) transporter protein 3 other -21.567 0.0002772 

MBNL2 NM_001161669 muscleblind-like splicing regulator 2 other -21.627 3.57E-08 

MGMT NM_001256246 O-6-methylguanine-DNA methyltransferase enzyme -30.051 3.84E-06 

IRX1 NM_207185 iroquois homeobox 1 transcription regulator -30.417 1.26E-09 

CLDND1 NM_001161597 claudin domain containing 1 other -35.854 1.08E-07 

BASP1 NM_001202454 brain abundant membrane attached signal protein 1 transcription regulator -41.336 3.53E-10 

HBZ NM_001033093 hemoglobin, zeta transporter -66.311 6.25E-06 

GTF2F2 NM_001103133 general transcription factor IIF, polypeptide 2, 30kDa transcription regulator -107.565 2.89E-12 
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  Table 9: Top 10 up- and down-regulated molecules in G1/B2 (GH-injected day 1 compared to buffer-injected day 2)   

Symbol Gene ID Entrez Gene Name GO Function Fold Change P value 

SLC6A12 NM_001080077 solute carrier family 6, member 12 transporter 725.92 3.76E-24 

SNX12 NM_001145894 sorting nexin 12 transporter 226.45 0 

FGFR2 NM_001243004 fibroblast growth factor receptor 2 kinase 83.322 1.33E-15 

DDC NM_213342 dopa decarboxylase enzyme 80.746 0 

RABIF NM_001168213 RAB interacting factor transporter 58.728 1.55E-06 

PGD NM_213453 phosphogluconate dehydrogenase enzyme 35.474 4.84E-08 

POMC NM_181438 proopiomelanocortin other 31.732 5.11E-14 

H2AFV NM_001201563 H2A histone family, member V other 21.029 0.0005781 

MYEF2 NM_001037423 myelin expression factor 2 transcription regulator 19.809 0 

CYP7A1 NM_201173 cytochrome P450, family 7, subfamily A, polypeptide 1 enzyme 19.662 9.52E-05 

IRX1 NM_207185 iroquois homeobox 1 transcription regulator -13.862 5.57E-05 

CNBP NM_199749 CCHC-type zinc finger, nucleic acid binding protein transcription regulator -17.657 0.0002539 

RHCG NM_001089577 Rh family, C glycoprotein transporter -21.655 1.88E-07 

TULP4 NM_001044838 tubby like protein 4 transcription regulator -21.84 0.0070638 

RNF8 NM_205553 ring finger protein 8, E3 ubiquitin protein ligase enzyme -22.286 6.04E-08 

CAV1 NM_001024162 caveolin 1, caveolae protein, 22kDa other -23.296 4.41E-05 

MBNL2 NM_001161669 muscleblind-like splicing regulator 2 other -39.388 6.29E-11 

GTF2F2 NM_001103133 general transcription factor IIF, polypeptide 2, 30kDa transcription regulator -55.076 3.18E-08 

UFC1 NM_001003650 ubiquitin-fold modifier conjugating enzyme 1 enzyme -70.633 1.25E-07 

HBZ NM_001033093 hemoglobin, zeta transporter -154.373 1.12E-08 
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 Table 10: Top 10 up- and down-regulated molecules in A1/G1 (GH antagonist-injected day 1 compared to GH-injected 

day 1)   

Symbol Gene ID Entrez Gene Name GO Function Fold Change P Value 

NAPB NM_001024651 
N-ethylmaleimide-sensitive factor attachment protein, 
beta transporter 62.817 8.51E-10 

MBNL2 NM_001161669 muscleblind-like splicing regulator 2 other 54.925 7.85E-13 

HRSP12 NM_001002576 heat-responsive protein 12 other 31.629 0.0005054 

CELA2A NM_199886 chymotrypsin-like elastase family, member 2A peptidase 30.823 9.47E-08 

CLDND1 NM_001161597 claudin domain containing 1 other 26.631 7.27E-06 

MGMT NM_001256246 O-6-methylguanine-DNA methyltransferase enzyme 26.554 2.44E-06 

CAV1 NM_001024162 caveolin 1, caveolae protein, 22kDa other 26.237 3.55E-05 

CELA1 NM_001003737 chymotrypsin-like elastase family, member 1 peptidase 22.18 1.11E-10 

CHIA NM_213213 chitinase, acidic enzyme 21.7 4.97E-05 

SERPINA1 NM_001013259 serpin peptidase inhibitor, clade A, member 1 other 20.715 5.64E-07 
RFNG 
 

NM_001001830 
 

RFNG O-fucosylpeptide 3-beta-N-
acetylglucosaminyltransferase 

Enzyme 
 

-8.785 
 

2.13E-10 
 

CYP7A1 NM_201173 cytochrome P450, family 7, subfamily A, polypeptide 1 enzyme -9.056 2.27E-06 

JMJD5 NM_001002663 jumonji domain containing 5 other -10.9 2.42E-05 

MYEF2 NM_001037423 myelin expression factor 2 transcription regulator -13.67 0 

CGA NM_205687 glycoprotein hormones, alpha polypeptide other -14.093 0.0004521 

H2AFV NM_001201563 H2A histone family, member V other -21.35 0.000576 

SLC6A12 NM_001080077 solute carrier family 6, member 12 transporter -28.287 0 

POMC NM_181438 proopiomelanocortin other -48.099 1.24E-10 

GH1 NM_001020492 growth hormone 1 cytokine -86.524 2.87E-11 

HMGN3 NM_001243176 high mobility group nucleosomal binding domain 3 other -594.464 3.00E-19 
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Table 11: Differential regulation of transcripts across six pairwise comparisons showing opposite patterns. Red designates 

molecules that were up-regulation and green shows those that were down-regulated.  

B1/C B2/C B2/B1 G1/B1 G1/B2 A1/G1 

GTF2F2 GTF2F2 
 

GTF2F2 GTF2F2 - 

GH1 - GH1 GH1 GH1 GH1 

- - - POMC POMC POMC 

SLC6A12 SLC6A12 SLC6A12 SLC6A12 SLC6A12 SLC6A12 

- - - CYP7A1 CYP7A1 CYP7A1 

- TMEM27 TMEM27 TMEM27 TMEM27 TMEM27 

- HNF4A HNF4A HNF4A - HNF4A 

FOS 
 

FOS 
FOS 

 
FOSB 

 
FOS 

FOS 
 

JUN/JUNB/ 
JUND 

JNK 
JUN/JUNB/ 

JUND 
JUN/JUNB/ 

JUND 
- 

JUN/JUNB/ 
JUND 

BASP1 - BASP1 BASP1 - - 

- CDH17 CDH17 CDH17 CDH17 CDH17 

FGFR2 FGFR2 FGFR2 FGFR2 FGFR2 FGFR2 

DCLK2 DCLK2 DCLK2 - DCLK2 DCLK2 
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Discussion 

 The current study is the first to examine the effects of growth hormone 

(GH) on gene expression in the zebrafish inner ear and the second to analyze 

the hair cell transcriptome of the zebrafish inner ear following sound exposure 

(Schuck et al., 2011). Hundreds of differentially expressed transcripts were 

identified in all six pairwise comparisons. I will focus my discussion here on a few 

highly expressed categories of genes: solute carriers, growth factors, cell 

adhesion molecules and transcription factors. Cell proliferation network and cell 

death networks are also discussed.  

 

Role of GH in the zebrafish inner ear: 

  GH is a neuroendocrine hormone that is involved in numerous functions 

inside a cell. It is involved in nutritional regulation (Perez-Sanchez et al., 1995), 

growth regulation, energy homeostasis and immune functions (Perez-Sanchez 

2000; Calduch-Giner et al., 1997). Apart from these normal functions, the effect 

of GH in hair cell regeneration has recently been recognized in the zebrafish 

inner ear (Schuck et al., 2011). Our previous microarray experiment found 

significant up-regulation of GH in the inner ear organ two days following sound 

exposure (Schuck et al., 2011). Another study by Sun et al., (2011) found that 

GH treatment protected zebrafish inner ear hair cells from sound-induced cell 

death and it also significantly promoted hair cell regeneration. In support of these 

previous observations, a significant up-regulation of GH in our current next 

generation sequencing study was found in both B1/C and G1/B1 comparisons, 
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but the expression of GH was not observed when B2 was compared to control. 

Growth hormone receptor was also upregulated (1.9 fold) in GH treatment 

compared to B1.  

 

Role of GH in cell growth and proliferation network:  

 Cell growth and proliferation is one of the important cellular functions 

regulated by GH in the G1 treatment compared to the B1 treatment (Fig 5). It is 

interesting to note that the transcription factors Atf3 (Frisina et al., 2009) and Jun-

B (Yogev & Shaulian, 2010), which are involved in apoptosis, are down-regulated 

following GH injection. This indicates that GH may induce a protective effect 

upon the zebrafish inner ear. In the A1/G1 comparison, transcription factors Atf3 

and Jun-B were up-regulated to 2.3 and 2.9 fold, respectively. Jun-B was down-

regulated in the microarray study two days post-sound exposure and was 

correlated with increased cell death (Schuck et al., 2011). The immediate early 

gene and transcription factor, early growth response 1 (EGR1) was down-

regulated in the cell proliferation network (Fig 5). Several immediate early genes 

were found to have increased expression following noise exposure in rat cochlea 

and they initiate genetic cascades as part of pathological signals (Lomax et al., 

2001). Atf3 is also found to be one of the downstream target molecules of EGR1. 

This suggests that the down-regulation of EGR1 also down-regulates Atf3 and 

may protect hair cells from undergoing apoptosis in GH-injected conditions.  
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Cytoprotective effects of GH in the zebrafish inner ear:  

 Brain abundant signal protein 1 (BASP1) is one of the top 10 molecules 

expressed in our B1/C comparison and is expressed in mammary glands, testis, 

kidney and lymphoid tissues. BASP1 promotes apoptosis when it is over-

expressed in cultured renal tubular cells (Sanchez-Nino et al., 2010). BASP1 was 

significantly up-regulated in B1/C while it was found to be down-regulated in 

B2/C and G1/B1. Its over-expression one day following acoustic trauma indicates 

that it might promote apoptosis while injection of GH potentially protects hair cells 

from undergoing cell death by decreasing the expression levels of BASP1. The 

comparison B2/B1 showed down-regulation of BASP1 and this decreased 

expression in B2 treatment could be due to the normal recovery process. This 

also supports the observation of decreased apoptosis in the zebrafish inner ear 

two days following sound exposure (Sun et al., 2011).   

 A previous study found that cytochrome P450, family 2 (CYP2S1) is 

differentially regulated in all three mouse inner ear organelles (i.e., saccule, 

utricle and cochlea). It is specifically expressed in the ear tissues and not in non-

ear tissues (Yoon et al., 2011). Another cytochrome P450, family 26 (CYP26A1) 

molecule is differentially regulated in the mouse cochlea (Sajan et al., 2007). 

Over-expression of CYP26A1 in HeLa (human cervical cancer cell line) cells 

showed antiapoptotic effects against apoptotic agents such as tumor necrosis 

factor (TNF)-related apoptosis-inducing ligand (TRAIL), oxidative stress, heat 

shock, genotoxic agents and γ-irradiation by metabolizing retinoic acid. 

Microarray analysis showed that overexpression of CYP26A1 in HeLa cells 
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increased apoptosis-inhibitory genes and decreased apoptosis-inducing genes 

CYP26A1 also had a slight cell proliferation effect (Osanai & Petkovich, 2005). 

Interestingly, I found the differential regulation of CYP2J28 (+2 fold) in the A1/G1 

comparison, and CYP24A1 (+3.2 fold), CYP19A1 (-3.5 fold), CYP7A1 (+30.9 

fold), and CYP46A1 (+3.3 fold) in the G1/B1 comparison. In the B1/C 

comparison, I found the differential regulation of CYP24A1 (-1.9 fold), CYP2J2 (-

2.5 fold) and CYP46A1 (-2 fold). In comparing the cytoprotective effects of 

CYP26A1 with other cytochrome molecules expressed in G1/B1, I propose that 

these molecules might also offer protection against apoptosis in zebrafish hair 

cells but their exact roles during hair cell regeneration still need to be 

established.   

 

Regulation of cell death network in GH antagonist treatment:   

 Growth hormone injection decreased apoptosis in the zebrafish ear 

following acoustic trauma (Sun et al., 2011). This current study discovered some 

of the genes that are involved in this process. Analysis of the cell death network 

in the A1/G1 pairwise comparison showed that GH is strongly down-regulated in 

the presence of antagonist and is involved in cell death pathways (Fig 6). A 

decrease in levels of GH in the antagonist treatment is observed along with 

increased expression levels of the Ap-1 transcription factor that forms homo- or 

hetero-dimers between the Fos and Jun families. Ap-1 is found to be induced in 

rat organ of Corti explants following gentamycin application (Albinger-Hegyi et 

al., 2006) and in organ of Corti in guinea pigs following noise-induced damage 
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(Nagashima et al., 2005). In the A1/G1 comparison, the Fos and Jun families 

were found to be up-regulated FosB (+7.3 fold), Fos (+2.5 fold), FosL1 (+6.3 fold) 

and JunB (+2.9 fold). This pattern of increased expression of FosB (+7.5 fold), 

Fos (+4.4 fold), FosL1 (+5.8 fold) and JunB (+2.9 fold) was also evident in B1/C 

suggesting that the intense sound exposure activated these transcription factors. 

While these transcription factors were increased in B1/C and A1/G1, they were 

strongly down-regulated in G1/B1 with FosB (-19.3 fold), Fos (-9.9 fold), FosL1 (-

6.2 fold) and JunB (-3.7 fold). This suggests that growth hormone protects the 

cells from undergoing cell death that would have been caused by the 

accumulation of stress and reactive oxygen species due to acoustic 

overstimulation. In contrast, the GH antagonist induces cell death in the zebrafish 

inner ear by increasing the expression of Ap-1 transcription factor components. 

JNK1/2 was also found to be up-regulated in the cell death network in the GH 

antagonist treatment (Fig 6). Activation of JNK signaling cascades have been 

shown to induce apoptosis in response to stressful stimuli in cochlear hair cell 

cultures and these JNKs in turn regulate c-JUN, a component of AP-1 (Pirvola et 

al., 2000).  

 Caspases play an important role in mammalian apoptosis and in inducing 

inflammation (Tadros et al., 2008). In our A1/G1 comparison, I found a significant 

up-regulation of CASP1 (+2.9 fold) and significant down-regulation of CASP1 (-2 

fold) in G1/B1. This indicates that the GH treatment has the potential to decrease 

apoptotic pathways in the zebrafish inner ear. 
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Role of growth factors in the zebrafish inner ear:   

 Growth factors and cytokines have a potent mitogenic role in cell 

proliferation. Here I found a significant up-regulation of prolactin (PRL; 38 fold) in 

G1/B1 and a down-regulation of PRL (-38.3 fold) in A1/G1. This shows that GH 

has a positive effect on PRL expression. Administration of GH and PRL 

increased proliferation of leukocytes in rainbow trout (Yada et al., 2004) and in 

Chum salmon (Sakai et al., 1996). Over-expression of GH and PRL might help in 

the proliferation of leukocytes at the injured site of the zebrafish inner ear. It is 

evident that leukocytes and macrophages reside in the sensory epithelia of the 

undamaged inner ear. These immunocytes help to engulf the damaged cells and 

secrete cytokines and growth factors that are necessary for the hair cells to 

regenerate (Matsui et al., 2005).  

Fibroblast growth factor (FGF) is implicated in many cellular functions 

such as cell differentiation, proliferation, survival and motility. FGF family 

members such as FGF 2, FGF 3, FGF 8, FGF 10 and FGF 19 are involved in otic 

neurogenesis. FGF2 is expressed in the otic placode and otic vesicle of mouse 

and chicken (Sanchez-Calderon et al., 2007). FGF2 is also found to promote the 

activity of brain derived neurotrophic factor (BDNF) by up-regulating its high 

affinity TrkB receptor in cultured mouse auditory neurons (Sanchez-Calderon et 

al., 2007). Although I did not find the expression of FGF2, a significant up-

regulation of its receptor FGFR2 18 fold in B1/C, 15 fold in G1/B1 and down-

regulated 4.8 fold in A1/G1 was found. Fibroblast growth factor receptor-like 1 

(FGFRL1) is also up-regulated in G1/B1 but is down-regulated in A/G1.   
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  I found an up-regulation of insulin-like growth factor binding protein 1 

(IGFBP1) to 3 fold and IGFBP7 to 2.1 fold in G1/B1 comparison. GH up-

regulates the expression of IGF-1 and IGFBP3 in the small intestine of albino rats 

(Ersoy et al., 2009). IGFBP3 mRNA is also found to be highly expressed in the 

otic vesicles and pharyngeal arches of zebrafish. Although the temporal 

expression pattern of IGFBP3 differs between these two tissues, otic vesicles 

showed persistent expression of IGFBP3. Knockdown of IGFBP3 showed 

defects in hair cell and semicircular canal differentiation (Li et al., 2005).  The 

high affinity IGF binding proteins modulate biological responses in cells by 

binding IGF molecules and they are capable of regulating IGF-independent 

actions (Oesterle et al., 1997, Li et al., 2005). Up-regulation of IGFBP1 and 

IGFBP7 in our data suggests that GH regulates the action of IGF through these 

IGFBPs.  

 

Role of transmembrane proteins in the zebrafish inner ear: 

 To maintain ion homeostasis and for conduction of signals in hair cells, 

many ion transporters are present that transport sodium, calcium, potassium and 

chloride ions in and out of the cell (MacArthur et al., 2011). A major class of 

transcript molecules that were regulated in our current study is the solute carrier 

(SLC) molecules. SLC26 is in the family of solute carriers whose function is 

either to transport chloride-iodide ions, chloride-bicarbonate exchangers, sulfate 

transporters or in case of SLC26A5, they function as motors (Weber et al., 2003). 

Prestin (SLC26A5), another solute carrier molecule, is involved in mechanical 
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amplification in mammalian cochlea while pendrin (SLC26A4) is found in the 

developing cochlea (Weber et al., 2003). Other members of the SLC26 family, 

SLC26A1 and SLC26A6, were found to be up-regulated in G1/B1 and these 

members might serve an important function in the development of hair cells. 

SLC6A12, a Betaine/γ-aminobutyric acid (GABA) transporter, is the top up-

regulated solute transporter in G1/B1 but it is down-regulated in A1/G1.  

Interestingly, a recent study has found that SLC6A12 is regulated by 

Janus-activated kinase 2 (JAK2) (Hosseinzadeh et al., 2012), Binding of GH to 

its receptor activates JAK2, a receptor associated with intracellular tyrosine 

protein kinase activity. This initiates a series of protein phosphorylation cascades 

and activation of transcription factors such as STAT1, STAT3, STAT5a and 5b 

among others (Woelfle et al., 2003). Significant up-regulation of SLC6A12 in 

G1/B1 suggests that injection of GH might play an important role in up-regulating 

SLC6A12 through activation of JAK2. SLC12A3, a member of SLC12 solute 

carrier family that transports sodium/chloride, was up-regulated 41 fold in G1/B1, 

but down-regulated 5 fold in A1/G1. Another member of the SLC12 family, 

SLC12A2, is expressed in epithelial and non-epithelial cells of mammals. 

Disruption of this molecule causes an inner ear dysfunction (Hebert et al., 2004; 

Friauf et al., 2011). Although some SLC molecules have established roles in ear 

and other tissues, the role of remaining solute carriers in relation to hair cell 

regeneration is still lacking.   

 Transmembrane protein 27 (TMEM27) is an amino acid transporter and is 

also called collectrin. TMEM27 is one of the top 10 up-regulated molecules in 
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G1/B1 (85 fold) and down-regulated 2 fold in A1/G1. It is found to be a 

downstream target of hepatocyte nuclear factor 1α (Malakauskas et al., 2009) 

and reported to have a role in cell growth (Zhang et al., 2004).  

 Uroplakin 1A, one of the most highly negatively regulated molecules in 

B1/C, is present in the ureter of mice. The absence of Uroplakin is correlated to 

the decreased expression of lysosomal integral membrane protein-2 (LIMP-2) in 

ureter that causes a deafness phenotype in mice (Gamp et al., 2003; Hughes et 

al., 2006). Examination of the cochlea of LIMP-2 deficient mice showed 

histological observations such as atrophy of stria vascularis, gradual reduction 

and finally loss of both outer and inner ear hair cells and severe reduction in the 

neurons of spiral ganglion (Gamp et al., 2003). The down-regulation of Uroplakin 

in the inner ear tissue of zebrafish in B1/C may have resulted in the deficiency of 

LIMP-2 and its associated deafness phenotype. The expression levels of 

Uroplakin increases in B2/C, and this suggests that this gene may be important 

for the process of recovering from acoustic trauma.    

 

Role of cell adhesion molecules in the zebrafish inner ear:  

 Tip links which are made of Cadherin 23 (CDH23) and Protocadherin 15, 

are essential features of hair cells which connect stereocilia together and aid in 

opening or closing the ion channels depending upon whether hair cells are 

excited or inhibited (Sakaguchi et al., 2009). Mutations in CDH23 also cause 

deaf-blindness in humans (Sengupta et al., 2009) and are involved in causing 

Usher 1D syndrome (Reiners et al., 2006). In our study both CDH17 (cadherin 



 

50 
 

17) and CDH23 are up-regulated in G1/B1, and CDH17 was the most highly 

upregulated molecule. In correlation to this observation, tight junction signaling 

was the most significant canonical pathway in G1/B1 comparison as cadherins 

are present in tight junctions. CDH23 is down-regulated in B1/C, suggesting that 

the tip link function is also regulated as part of hair cell damage. Fibronectin1, a 

component of extracellular matrix, is found to enhance the proliferation of inner 

ear sensory epithelial cells in cell culture systems (Warchol, 2002). In our data, I 

found an increase in the expression of fibronectin 1 in B1/C which may be 

necessary for hair cell proliferation after acoustic trauma.   

 Claudins are transmembrane proteins that are involved in maintaining tight 

junctions. It also establishes a barrier that controls the flow of molecules between 

epithelial cells (MacArthur et al., 2011). There are at least 10 claudin proteins 

expressed in the cochlear inner ear of mammals and claudin 11 and 14 are 

associated with hearing loss (Elkouby-Naor et al., 2008). Defects in claudin 

proteins would impact the integrity of epithelial cells which causes leakage of 

molecules from the cell (MacArthur et al., 2011). In murine models, claudin 3 and 

4 are found to be up-regulated during inflammation (MacArthur et al., 2011). Here 

I report an up-regulation of claudin 3 (+2.6 fold) in G1/B1 and a down-regulation 

of claudin 3 (-3.2 fold) in B1/C. In addition to claudin 3, I also found claudin 8 (-

8.9 fold) in B1/C and claudin 15 (+12.9 fold) in G1/B1. Claudin 8 is found to be 

expressed in the normal utricle of mouse inner ear (Sajan et al., 2007) and I 

found it to be reduced in the zebrafish inner ear following sound exposure 
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(current study). This might result in loss of epithelial integrity in the zebrafish 

inner ear following acoustic trauma. 

   

Differential regulation of transcription factors in the zebrafish inner ear:   

 The most highly regulated transcription factor in G1/B1 was hepatocyte 

nuclear factor alpha (HNF4A). HNF4A is found to be one of the important 

transcription factors that regulate axolotl limb regeneration, and is found to be 

interconnected with four other transcription factors: c-Myc, SP-1, ESR-1 

(estrogen receptor-1) and p-53 (cellular tumor antigen) and the many targets of 

HNF4A, ESR-1 and p-53 overlap during limb regeneration (Jhamb et al., 2011). 

The strong expression of HNF4A in our current study suggests that it might have 

a similar effect of regeneration in zebrafish hair cells through activation of its 

target genes. HNF4A also has a role in inflammation and it produces pro-

inflammatory cytokines such as interleukins and tumor necrosis factors under 

stress (Wang et al., 2011). These cytokines in turn activate acute phase 

response signaling and these acute phase proteins help to achieve homeostasis 

(Wang et al., 2011). In our current data it is evident that this signaling event is 

one of the top 15 canonical signaling pathways in the GH (G1) treatment (Fig 6). 

In the GH antagonist (A1) treatment, HNF4A is down-regulated and this signaling 

event is also down-regulated under antagonist conditions.  

 GTF2F2, a general transcription factor II F, was the most highly up-

regulated molecule in B1/C while it was the most highly down-regulated molecule 

in G1/B1. This strong up- and down-regulation of GTF2F2 was found to occur 
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with a significant up- and down-regulation of Fos and Jun family transcription 

factors. Interestingly, general transcription factor 2F (TFIIF) and TFIIE-34 were 

found to bind the dimerized form of Fos-Jun transcription factors (Martin et al., 

1996). In light of this finding, our data suggest that an up-regulation of GTF2F2 

might bind to the up-regulated Fos and Jun homo- or hetero-dimers and promote 

apoptosis in the inner ear following one day post-acoustic trauma while the 

reverse is true in G1/B1 comparison.    

 Early growth response 1 (EGR-1) is a nuclear receptor and a transcription 

factor that responds to pathological conditions. It showed an increased 

expression following noise exposure in rat cochlea (Lomax et al., 2001), but 

EGR-1 showed a decreased expression (-2.5 fold) in G1/B1 suggesting that GH 

suppresses the negative effects of EGR1, potentially protecting hair cells.  

In humans, mutations in Sox10 causes sensorineural deafness that 

causes Waardenburg syndrome type IV. Sox 2 promotes survival of cochlear 

progenitors during otocyst formation in mice (Breuskin et al., 2009). I found an 

increase in Sox10 (+1.5 fold) in G1/B1 suggesting that it might have a role in 

survival of supporting progenitor cells in zebrafish.  

 Growth factor independent -1 (GFI-1) is a transcription factor which is 

shown to cause decreased apoptosis, increased levels of cell proliferation and 

decreased levels of cell cycle inhibitors (Wallis et al., 2002). This transcription 

factor is also required in hair cells for proper differentiation and maintenance 

(Wallis et al., 2002). Consistent with this, I found decreased expression of GFI-1 

(-1.6 fold) in the A1/G1 comparison. This shows that the GH antagonist 
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negatively regulates GFI-1 and inhibits the maintenance and differentiation of 

hair cells in zebrafish.  
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Conclusions and Future Directions 

 There was increased expression of GH in the inner ears of zebrafish one 

day following sound exposure in buffer-injected controls and in GH-treated 

zebrafish. I also found the regulation of genes that are required for proper 

functioning of hair cells such as cadherin 23, solute carrier molecules, growth 

promoting factors such as GH, prolactin and the receptors required for binding of 

growth factors, transcription factors and cytoskeleton molecules to be 

significantly differentially regulated in the GH-injected condition. Cell proliferation 

network in G1/B1 showed significant up-regulation of GH and down-regulation of 

apoptotic transcription factors while an opposite pattern is evident in the cell 

death network in A1/G1 comparison suggesting potential involvement of GH in 

the zebrafish inner ear.  

This current study focused on the genes that were regulated one day 

following sound exposure. Future studies at further time points will be needed to 

identify the change in gene expression patterns specifically related to cell death 

and cell growth pathways. It is known that growth factors play a major role in hair 

cell proliferation, so it will be interesting to study the how various cocktails of 

growth promoting factors such as growth hormone, insulin growth factor-1, 

prolactin, brain derived neurotrophic factor, neurotrophin-3, will effect hair cell 

regeneration using cell culture techniques using zebrafish as a model system.  
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