
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

1-1-2004

Excel Sheet Based Semantic Email
Rajesekhar R. Dandolu

Follow this and additional works at: http://digitalcommons.wku.edu/theses
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Dandolu, Rajesekhar R., "Excel Sheet Based Semantic Email" (2004). Masters Theses & Specialist Projects. Paper 1101.
http://digitalcommons.wku.edu/theses/1101

CORE Metadata, citation and similar papers at core.ac.uk

Provided by TopSCHOLAR

https://core.ac.uk/display/43621007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wku.edu%2Ftheses%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages

EXCEL SHEET BASED SEMANTIC EMAIL

A Thesis
Presented to

The Faculty of the Department of Computer Science
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Computer Science

By
Rajesekhar R Dandolu

December 2004.

EXCEL SHEET BASED SEMANTIC EMAIL

Date Recommended 12/10/2004

Dr. Guangming Xing, Director of Thesis

Dr. Uta Ziegler

Dr. Andrew Ernest

Elmer Gray, Dean of Graduate Studies and Research. 12/16/2004

ACKNOWLEDGEMENTS

 I would like to thank my director of thesis Dr. Guangming Xing, for the confidence he

showed in me and for his encouragement without which I would not have pursued a master’s

degree in Computer Science. Dr. Xing's help was also invaluable in researching and producing

this document.

 I wish to express my warm gratitude to Dr. Uta Ziegler, head of Computer Science

Department, for her supportive attitude for my research work.

 I would like to thank Dr. Andrew Ernest, Director of Water Resource Center, Western

Kentucky University for supporting and funding this thesis work.

 I would like to thank my parents for their support and encouragement and my friends, who

gave moral support during the completion of the project.

 iii

 TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW ...8

1.1 INTRODUCTION ..8

1.2 BACKGROUND..8

CHAPTER 2

SEMANTIC EMAIL PROCESS ...11

2.1 EXCEL SHEET BASED SEMANTIC EMAIL ARCHITECTURE...15

2.2 SEMANTIC EMAIL COMPOSER ..16

2.3 SEMANTIC EMAIL READER...20

CHAPTER 3

SEMANTIC EMAIL COMPOSER...22

3.1 FILE MENU...23

3.2 SCHEMA MENU ..27

3.3 STEPS IN A COMPOSER ...35

CHAPTER 4

SEMANTIC EMAIL READER ..36

CHAPTER 5

ENVIRONMENT ..39

 iv

CHAPTER 6

CONCLUSIONS..40

APPENDIX A..43

POI-HSSF - JAVA API TO ACCESS MICROSOFT EXCEL FORMAT FILES........................43

NEW WORKBOOK ..43

NEW SHEET..43

CREATING CELLS...44

READING AND REWRITING WORKBOOKS ...44

APPENDIX B ..46

JAVAMAIL API...46

 v

LIST OF FIGURES

Figure 1 Semantic Email Process ... 11

Figure 2 Excel Sheet Based Semantic Email Architecture... 15

Figure 3 Excel Sheet Specifying The Email Format .. 22

Figure 4 File Menu.. 23

Figure 5 "New Schema" Sample Outputs ... 24

Figure 6 Schema Menu ... 27

Figure 7 "Creating Database" Sample Dialog Box... 28

Figure 8 "Adding Actions" Sample Output. ... 29

Figure 9 "Inserting Records into Database" Action Details Sample Outputs............................... 30

Figure 10 "Save Files", Action Details Sample Outputs .. 31

Figure 11 "Send emails to clients" Sample Outputs ... 32

Figure 12 "Allowing Duplicate Mails" Schema Setting Sample Dialog Box. 33

Figure 13 "Adding Constraints" Sample Output. ... 33

Figure 14 “Semantic Email Reader” Sample Frame... 38

 vi

 EXCEL SHEET BASED SEMANTIC EMAIL

Rajesekhar R, Dandolu December 10, 2004. 47 Pages

Directed by: Dr. Guangming Xing

Department of Computer Science Western Kentucky University

 The Semantic Web is an extension of the current web in which information is given well-

defined meaning, better enabling computers and people to work in cooperation. The Semantic

Web envisions a portion of the World-Wide Web in which the underlying data is machine

understandable and can thus be exploited for improved querying, aggregation, and interaction.

 Excel Sheet Based Semantic Email is a type of Semantic Web application, which deals

with the understanding of emails received and performing corresponding actions according to the

schema specified in the email. The user can compose an email structure and specify all the

semantic actions and necessary information related to a particular schema. The emails received

are processed according to the schema format to which they belong and corresponding semantic

actions are taken.

 In this project, Semantic Email is implemented by encoding the information in Excel

Sheets. It could be reengineered to support heterogeneous semantic actions based on the

particular application.

 The project can be enhanced providing a web interface, apart from the email system that is

currently used as the way of communication. The clients can directly use the web page,

corresponding to the schema rather than sending an email.

 vii

Chapter 1

Introduction and Literature Review

1.1 Introduction

The Semantic Web is an extension of the current web in which information is given well-defined

meaning, better enabling computers and people to work in cooperation. The Semantic Web

envisions a portion of the World-Wide Web in which the underlying data is machine

understandable and can thus be exploited for improved querying, aggregation, and interaction.

Semantic Email is a type of semantic web application, in which the information is exchanged

through emails. The semantic information is extracted from the emails, and corresponding

actions are taken based on the specification of the Semantic Email application.

1.2 Background

The Semantic Web provides a common framework that allows data to be shared and reused

across applications, enterprises, and community boundaries. Semantic Web is a key component

to the whole theme of e-life on the web.

 The Semantic Web is based on the idea of having data on the Web defined and linked such

that it can be used for more effective discovery, automation, integration, and reuse across various

applications. For the Web to reach its full potential, the information should be properly tagged

and have well defined meaning. This would create a universally accessible platform that allows

data to be shared and processed by automated tools as well as by people [1].

 The Semantic Web will provide an infrastructure that enables not just web pages, but

databases, services, programs, sensors, personal devices, and even household appliances to both

consume and produce data on the web. Software agents can use this information to search, filter,

 8

 9

and prepare information in new and exciting ways to assist the web user. New languages, making

significantly more of the information on the web machine-readable, power this vision and will

enable the development of a new generation of technologies and toolkits [3].

 A typical scenario of the usage of a semantic web would be a semantic search engine. A

semantic analyzer analyzes the search data and generates an XML file. The XML file generated

specifies the parent-child relationships between various search elements provided. Using the

target XML file that was generated, the web is searched semantically. The target XML file is

converted into an Xquery by a query generator. Then the semantic web engine takes over

searching for path expression [7] matching in its database. Once a match is found the data is

retrieved and sent to the user. Giving the user the power to change the search criteria and to

refine or change the search data could further extend the search. If the path expression

information of the newly refined or changed search data is a sub tree of the former search data

then the same resulted data domain applies to the new search data. For example, based on this

implementation, a semantic search engine which will search for “country singer Tim McGraw”

will result in giving the user all the pages which were the result of a semantic search rather than

the result of a brute force text based search which consists of systematically enumerating every

possible solution of a problem until a solution is found, or all possible solutions have been

exhausted.

 The main power of Semantic Web languages is that anyone can create one, simply by

publishing some Resource Description Framework (RDF) that describes a set of Uniform

Resource Identifiers (URIs), what they do, and how they should be used. RDF Schema and

DAML (The DARPA [The Defense Advanced Research Projects Agency] Agent Markup

Language) are very powerful languages for creating Semantic Web languages.

 10

 Semantic Web applications directly access the logical relationships in the Semantic Web

database. Semantic Web applications can efficiently and accurately search, summarize, analyze,

and retrieve discrete concepts or entire documents from huge databases.

 Semantic Web applications handle both structured and unstructured data. Structured data is

stored in relational databases with static classification systems, and also in discrete documents.

These databases and documents can be processed and converted to Semantic Web databases and

then processed with unstructured data.

 Semantic Web database [8] architecture is dynamic and automated. Each new document,

which is analyzed, extracted, and stored in the Semantic Web, expands the logical relationships

in all earlier documents. These expanding logical relationships increase the understanding of

content and context in each document and in the entire database. The Semantic Web conversion

process is automated. No human action is required for maintaining a taxonomy, Meta data

tagging, or classification. The semantic database is constantly updated and is more accurate.

 Semantic Web applications support both human and machine intelligence systems. Humans

can use Semantic Web applications on a manual basis and improve the efficiency of search,

summary, analysis, and reporting tasks. Machines can also use Semantic Web applications to

perform tasks that humans cannot do because of the cost, speed, accuracy, complexity, and scale

of the tasks. Examples of Semantic Web applications include military examples like military

equipment description ontology and markup.

Chapter 2

Semantic Email Process

The following architecture of a Semantic Email Process is proposed in [3]:

Originator

Participant

Manager

RDF Database

SEP

Ontology Matcher

SEP

Request / Response

Request / Response

Figure 1 Semantic Email Process

The life cycle of a Semantic Email Process starts with the creation of a generic Semantic

Email Process (SEP). The parties that are involved in this process are discussed as follows.

Originator: the originator, who is typically a person, but could be an automated program

or agent, initiates a SEP [3]. Here the originator uses a closed authentication system while

accepting the responses from the participants.

Manager: The originator invokes a new SEP by sending a message to the Semantic Email

manager. The manager sends email messages to the participants, handles responses, and requests

changes as necessary to meet the originator's goals. The manager stores all data related to the

process in an RDF supporting data set, which may be configured to allow queries by external

services (or other managers). To accomplish its tasks, the manager may also utilize external

 11

 12

services such as inference engines, ontology matchers, and other Semantic Web applications, as

described further below. The manager may be a shared server or a program run directly by the

originator [3]. The manager implements a mechanism similar to the certificate authentication

system to identify the responses based on the certificates that are being issued for that SEP by the

originator. Every SEP has a unique SEP descriptor called schema name. This schema name is

the key for identifying the entities of various SEPs. The schema name is a protected field and

cannot be changed by a malicious user. This prohibits the malicious user from responding to an

unauthenticated SEP. If malicious user successfully changes the schema name and responds with

a valid response entity then the manager rejects the response because the user’s name is not

being listed in the closed authentication system being implemented.

 Participants: The participants respond to messages received about the process. A

participant may be a person, a standalone program (e.g., to represent a resource such as a room),

or a software agent that acts on behalf of a person (e.g., to respond automatically to requests

when possible, deferring others to the person) [3]. The assumption is that the email addresses are

used uniquely to determine individuals or sets of potential participants in the process [3].

Interpreting responses: Typically, the originator will provide the participants with a finite

set of expected responses. However, suitable reasoning could enable substantially more

flexibility. For instance, the originator may initiate an assignment request for a final submission.

Then, the manager could use a combination of information extraction or wrapper techniques

and/or ontology matching algorithms to map the participant's response into the assignment

ontology. There are several interesting outcomes to this mapping. The response may not map to

any known element. In this case, the manager may either reject the response or notify the

 13

originator. If the schema name matches but the user is not in the expected list of authorized user,

the manager detects an attempt of intrusion and appropriate steps are taken.

Existing email clients provide some features of Semantic Email. Examples of Semantic

Email processes are the meeting request feature in Outlook, invitation management via Evite,

and contact management via Good Contacts, which make the Semantic Email process popular.

Each of these commercial applications is limited in its scope. Workflow and collaboration

systems such as Lotus Notes/Domino and Zaplets offer scripting capabilities and some graphical

tools that could be used to implement sophisticated email processes. To illustrate the Semantic

Email process, consider several examples:

• Assignment Submission:

Students can submit the assignments to the professor by giving an email to the

professor. The interesting thing is that the Semantic Email will read the email sent by

the student, grade the assignment, email the student with the grade obtained, and insert

the grades into the database.

• Event Planning:

Semantic Email can be used to plan an event like a committee meetings. The Semantic

Email Composer sends emails to the committee members informing them about the

meeting. The Semantic Email Composer can understand the responses from the

committee members and make a decision on the meeting.

• Course Registration:

When the course registration for the students becomes tedious, Semantic Email can be

used to solve the problem. The students will be asked to email the courses they need

 14

and the constraints that apply in the course registration. The Semantic Email will

respond to the emails from the students and register courses to the students.

• Small Water Systems:

The water resource department needs to send a report about the water quality to the

Kentucky Water diversity state agency. The current primary mode of communication

being used is the normal postal mailing system. It takes nearly several months for the

state agency to collect all the reports from different water resource department, analyze

them and make a decision about the water quality. Clearly this is not a good solution.

The Semantic Email project can be used in such a scenario by the state agency to

collect reports and analyze them in real time. Since, the mode of communication in the

Semantic Email is email, it takes considerably less amount of time to collect and

analyze the reports.

 The Excel Sheet Based Semantic Email project is a two-stage process. The first stage is the

Semantic Email Composer, which is used to compose a Semantic Email schema. The schema

represents the format of the email, the actions to be performed, and the necessary settings for the

actions as well as the schema. The second is the Semantic Email Reader, which reads the

contents of the emails received. The Semantic Email Reader finds the hidden schema name

based on the contents of the email. The schema name extracted from the email is used to perform

the corresponding actions related to the schema.

 15

2.1 Excel Sheet Based Semantic Email Architecture

Though a proposed architecture of the Semantic Email exists, the complete implementation of

the architecture is not yet done. The main essence of this project is to implement the proposed

architecture of the Semantic Email, named as Excel Sheet Based Semantic Email. Excel Sheets

are used as information carriers in this project. This project implements a generic version of

Semantic Email. Since, Excel Sheets are widely used by all organizations, using them made the

project generic.

 The architecture of the Excel Sheet Based Semantic Email is shown in the Figure 2.

Mail Server

Schemas

Users

Reader

Composer

Figure 2 Excel Sheet Based Semantic Email Architecture

 Mail server is a normal mailing system that is used to compose and receive emails. Users

can directly interact with the mail server using a mail client to send and receive emails. But the

interaction between the user and Mail server is not related to the Excel Sheet Based Semantic

Email. In order to use the Excel Sheet Based Semantic Email features, users contact either the

Composer or the Reader. Users interact with the Composer to define a schema for a particular

 16

application. Composer creates a schema as specified by the user and includes with the list of

schemas. Users use the Composer to email clients about the specifications of schema. The

Composer must interact with the Mail server to send emails to the clients specified by the user.

Users interact with the Reader to perform the semantic actions based on the emails received.

Upon the user’s request, the Reader reads the emails, processes them, and performs the

corresponding semantic actions. The Reader needs to interact with the Mail server to read the

emails. The Reader interacts with the list of schemas after learning the schema name from the

contents of the received emails.

2.2 Semantic Email Composer

The Email Composer shows an Excel Sheet used for specifying the email format and an

extensive set of menu options for defining the schema. Different schemas are defined for

different applications and each schema is given a unique name. Defining a schema includes the

following:

• Format of the Email

• The actions to be performed

• Database Creation if necessary

• Necessary Schema Settings

For example, consider the schema of inserting student records into the student database. In the

above example, the Excel Sheet attached specifies the format of the email. The Excel Sheet holds

different values corresponding to different fields in the database. The format of the email must

also specify the location of the values in the Excel Sheet. Consider that the student database has

three fields: Name, Roll Number, and City. The format of the email specifies the cells in the

 17

Excel Sheet to store the values of Name, Roll Number, and City. The cells in the Excel Sheet are

initially filled with the field names indicating to clients the locations where values must be

entered. The format of the email is stored in an Excel Sheet format.

 The only action to be performed in the above example is to insert a row into the student

database. The values of the row to be inserted are obtained from the Excel Sheet received with

the email. While specifying the action to be performed, the requirements for that action must also

be specified. The action “inserting into database” is specified by telling the location of the cells

in the Excel Sheet that contain the values of the row to be inserted. Its row and column number

indicates the location of a cell in the Excel Sheet. So, for each field Name, Roll Number, and

City in the student database, a cell location in the Excel Sheet must be specified where the value

of the corresponding field resides. Some fields in the database may have default values that are

not obtained from the Excel Sheet. For each field in the database, there will be a choice to choose

between the default value and the value from the Excel Sheet. If the value of a field is the default

value, then the default value corresponding to the field should simply be specified. If the value of

a field is obtained from the Excel Sheet, then the cell corresponding to the field can be selected

from the Excel Sheet displayed. The row and column numbers of the selected cell are

automatically stored in the schema.

 A database is created only when it is necessary and primarily depends on the action to be

performed. For the action “Inserting into Database”, a database is necessary and it is created.

Specifying the table name and the table details creates a database. The table details include the

table name and data type for each field in the table. For the above example, table name and table

details are as follows:

Table Name: Student

 18

Table Details: Field Name Field Data Type

 Name String

 Roll Number Integer

 City String

 Some of the schema settings are common to all actions and can be specified for all action

types. For example, consider the schema setting of allowing duplicate mails. This is a general

setting and can be specified with all action types. The schema setting, “allowing duplicate

mails,” permits the client to send duplicate mails corresponding to the same schema. By default,

any client can send only one mail corresponding to one schema. This default condition can be

overridden by setting the “allowing duplicate mails” schema setting to a true value and thus

allowing duplicate mails from a client for the same schema.

 Most of the schema settings however depend on the action type and vary with the type of

action specified. Some of the schema settings that depend on an action type are specified while

specifying the action itself. For example, consider the schema setting “Allowing multiple lines,”

which is related to the semantic action “Inserting into Database.” The setting “allowing multiple

lines” is used to insert multiple rows into the database. The above setting is specified before

specifying the action details. Actually, the action details depend on the condition, whether the

schema will allow multiple rows or not. If the schema doesn’t allow multiple rows, then the

action details must contain the cell details (row and column numbers) for every field in the

database that needs values from the Excel Sheet. If the schema does allow multiple rows, then

the action details must contain only the column number for every field in the database that needs

values from the Excel Sheet.

 19

 The schema settings like “allow multiple rows” must be specified along with the action

itself. There exist some other schema settings that can be specified explicitly even though they

belong to a particular semantic action. Explicitly specified schema settings are also optional.

That means that the settings do not need to always be specified along with the schema definition.

An illustration of such a type of schema setting is constraints, which are explicitly specified and

are optional. For example, consider the case of applying constraints while inserting rows into a

database. These constraints are optional, and if the constraints are not specified then the rows are

inserted into the database without any constraints. If the constraints are defined, then the rows

will be inserted into the database only after satisfying the constraints. The constraints can be of

different types; they can be on a single row or on the complete table. Constraints on a single row

are restrictions on the values of various fields. For example, consider that the student database

and “constraints on a single row” can be as follows:

Name contains “john”

Roll Number in between 630 and 650

Roll Number Less Than 500

City ends with “Green”

Constraints on the complete table will be on aggregate functions like Sum, Average, and Count.

If the semantic actions to be performed do not satisfy the constraints for the database, then these

actions are ignored. These aggregate functions are applied to the numeric fields in the database.

For example, consider an Account database with the Account_No and Balance as fields.

Constraints on the Account database can be as follows:

 Sum (Balance) <= 60000

 Average (Balance) >= 1000

 20

2.3 Semantic Email Reader

The Semantic Email Reader is similar to the email client program used to access the contents of

the emails received. However, the Semantic Email Reader is a sophisticated tool that reads the

contents of the email received, understands the content, and performs necessary actions based on

the content read. The Semantic Email Reader first searches the content for the schema name.

 The Semantic Email Reader first gets all the information related to the schema settings.

Some of the emails received are rejected based on the schema settings. For example, consider the

case of not allowing duplicate mails from a client for the same schema. The duplicate emails

received for a particular schema are rejected.

 The Semantic Email Reader then searches for the different actions associated with that

particular schema. Based on the action, the Semantic Email Reader then searches for the

remaining settings and performs the actions according to it. For example, consider the action of

inserting records or rows into a database.

 For the current example, consider the student database with Name, Roll Number, and City

as fields. The values for various fields are obtained either by accessing the corresponding cells in

the Excel Sheet or obtaining the default values. Once a complete row is built with all the

necessary field values, the Reader connects to the database and inserts the row into the database.

 It is necessary to remember that the row is inserted only after satisfying all the constraints

that apply to the schema. So, before inserting a row into the database, the Semantic Email Reader

must search for the constraints that apply to the schema. Adding the extra row must not violate

that behavior of the table.

 21

 Some schemas require the status of the action to be replied back to the sender. For

example, consider the schema used to save the files attached with the email. The client needs to

know the status of the email sent. The schema only saves the files whose file names match with

the names in the schema. The schema sends a reply to the client specifying the list of files

accepted or saved, list of rejected or unsaved files, and list of files that are not sent and required.

The Semantic Email Reader works differently for different action types depending on the action

type and schema settings associated with the action.

Chapter 3

Semantic Email Composer

The Semantic Email Composer is a Graphical User Interface (GUI), which displays an Excel

Sheet and a set of menu items to define schemas. The Excel Sheet displayed is used to specify

the format of the email. All the emails received must have the Excel Sheet attached representing

the pattern or format accepted by the Semantic Email Reader. The Excel Sheet contains the

schema name that is hidden and locked. The schema name can’t be changed, because the cell

containing the schema name is locked.

Figure 3 Excel Sheet Specifying The Email Format

 The Excel Sheet isn’t used in some schemas for specifying the format they accept. But

even then, the Excel Sheet must be attached with the email, since the Excel Sheet contains the

schema name, which is a required attribute for the Semantic Email Reader. Using the Excel

Sheet for representing the format of the email depends on the schema. For example, consider an

application that collects student information: for inserting student records into the student

database. The locations that are used to store the student information are specified in the Excel

Sheet. Instructions about using the Excel Sheet will be given to the clients. A separate Excel

 22

 23

Sheet is specified for each schema defined. The Excel Sheet is displayed on the screen on one of

the following two situations:

• When a New schema is selected.

• When a schema that already exists is opened.

 The Semantic Email Composer has a set of menus used to define and save schemas. The

set of menus in the Composer is mainly divided into two parts

• File Menu

• Schema Menu

 The File menu is mainly used to open a schema (new or existing), save the schema after

making necessary changes, and quit the Composer. The Schema Menu is used to specify the

actions associated with the schema and different schema settings related to the schema.

3.1 File Menu

New Schema

Open Schema

Save Schema

Exit

 File u

Figure 4 File Menu

The file menu consists of menu items related to opening, saving, and closing a schema. The new

schema menu prompts for the schema name, and the schema name must be unique within the

system. The Semantic Email Composer checks for the uniqueness of the schema name, and if the

schema name already exists, an error message is displayed. A directory with the schema name is

 24

created for each schema. The Composer checks for the existence of the directory in order to

check the uniqueness of the schema name. Only three attempts are permitted for giving the

schema name. If the number of attempts is exceeded, then the Composer prints an error message,

saying that the number of attempts is exceeded.

Figure 5 "New Schema" Sample Outputs

Once the valid schema name is given, a directory with the name of the schema is created and an

empty Excel Sheet is displayed. The new schema resets all the schema settings to the default

values. The Excel Sheet displayed is also an empty sheet.

 The open schema menu prompts for a schema name. The schema name given must exist.

Checking the existence of a directory with the schema name checks the existence of the schema.

The Semantic Email Composer opens a directory with the schema name if and only if a schema

exists with that name. If the directory doesn’t exist, then it assumes an error and again prompts

for a schema name. The Semantic Email Composer gives just three attempts to specify the

schema name. Once the number of attempts exceeds the limit, the Composer prints an error

message.

 The schema information like schema settings and the semantic actions are extracted from

the directory. The directory contains an Excel Sheet representing the format of the mail. An xml

schema file “actions.xsd” in the directory represents the actions to be performed. An xml schema

file “database.xsd” in the directory represents the database information related to the schema. A

settings file “settings.inf” in the directory contains all the remaining necessary conditions and

 25

setting related to the schema. The current schema settings are changed to the scheme settings

read from the directory. The current semantic actions are also changed to the actions that are read

from the directory.

 “Save schema” will save all the information including the schema settings, and schema

actions related to the current schema into the directory with current schema name. It stores the

email format into an Excel Sheet and saves into the directory with the current schema name. The

Excel Sheet displayed in GUI is actually a swing component JTable. It is easy to get the

information from the JTable. The POI API of the Jakarta project is used to access Excel sheets.

The information retrieved from the JTable is stored into the Excel Sheet using the POI API. The

Excel Sheet is then saved into the directory with the current schema name.

 If a database is associated with the current schema, then the database details must also be

stored into the directory with the current schema name. The Semantic Email Composer uses

XML schema format to store the database information. The XML schema file with the name

“database.xsd” is created and the database information is stored in the XML schema file. The

database information includes table name and table details. The table details include the name

and data type for each field or column in the database.

 The semantic actions are saved in the XML schema file format. A XML schema file named

“actions.xsd” is created in the directory with the current schema name. The data related to the

semantic actions is stored in the “actions.xsd” XML schema files. The data to be stored in the

XML schema file actually depends on the semantic action type. For example, consider the

semantic action to save files that are attached with the email. The data to be stored in the XML

schema file for the above semantic action is specified below:

 26

• Action name i.e. Save Files

• Number of files

• File names

Similarly, consider another schema action to insert records into a student database. The data to

be stored in the XML schema file for the semantic action “insert rows into database” is specified

below-

• Action name i.e. Insert rows

• Allow multiple rows or not

• Table name

• Table details

� For each field specify the field name and data type.

 The “Save schema” stores the schema settings into a file named “settings.inf”. The settings

file “settings.inf” contains a settings name and the value associated with it for each schema

setting. For example, consider the schema settings for allowing duplicate mails. The setting name

is “Allow Duplicate Mails” and the value associated with the setting is either “yes” or “no.” But

the value associated with the setting is not always as simple as shown above. For example,

consider the constraints using aggregate functions. The setting name is “Aggregate constraints.”

The values associated with the settings will be as follows

• Aggregate function like Sum, Average, etc.

• Field or Column on which the above aggregate function is applied.

• Relational equation with a numeric value like <= 1000, > 2000, etc.

 Another menu item in the file menu is “Quit” that is used to quit or leave the Composer.

Remember to save your schema and mail to the client about the schema before quitting the

 27

Composer. If the Composer quits without mailing the clients, the Composer can open the schema

later, to complete the mailing part. Opening a schema without any problems requires the schema

to be previously saved in a perfect way.

3.2 Schema Menu

Duplicate Mails

Add Constraint

Create Database

Add Actions

Send Email

Settings ►

 Schema u

Figure 6 Schema Menu

 The schema menu is used to specify the semantic actions, schema settings, and any other

schema items like database creation, sending mails to clients, etc.

 The menu item “Create Database” is used to create a database related to the current

schema. Creating a database is not necessary for all the schemas. Only some schemas with their

semantic actions related to database requires database creation. For example, consider the

semantic action that inserts student records into the database. A student schema with a semantic

action as above requires a database creation. The Semantic Email Composer prompts to enter the

database information to create a database. The following represents the database information

prompted by the Composer:

• Table Name

• Table Details

 28

For all fields (Columns) in the Table specify

o Field Name

o Field Type

Figure 7 "Creating Database" Sample Dialog Box.

All the above information is necessary to create a database. The student database information

that is necessary for the student schema is as follows:

• Table Name: Student

• Table Details: Field Name Field Data Type

 Name String

 Roll Number Integer

 City String

Giving all the prompted and required information, as shown above, will create a database.

 The menu item “Add Actions” is used to add different semantic actions to the current

schema and to specify the required information for that semantic action. The Composer prompts

the user to select the semantic action from a list of semantic actions supported. The required

 29

information for an action will depend on the action. To test the base project, two types of actions

are implemented.

• Inserting records into database.

• Saving files.

Figure 8 "Adding Actions" Sample Output.

 The first action is to insert rows into a database. The required information for inserting a

row into a database is as follows:

• Name of the Table to which row must be inserted.

• Schema settings to allow multiple rows.

• Values of the fields (Columns) in the Table.

 The first required information “Name of the table” is the name of the table to which the

rows are inserted. The schema setting to allow multiple rows is a Boolean value specifying “yes”

or “no.” The Boolean value tells whether to insert multiple rows into the database. The value for

all the columns in the table is of two types as follows:

• Default value.

• Value extracted from the Excel Sheet.

For each field or column in the table, values are specified based on the type of value. The default

values are easily specified by just giving the actual default value for the field. For the values

 30

extracted from the Excel Sheet, the Composer needs the cell location in the Excel Sheet from

where the value is extracted. For each field in the table that requires a cell location in the Excel

Sheet, specify the row and column in the Excel Sheet to get its value. When multiple rows are to

be inserted into the database, specify only the column in the Excel Sheet. When the schema

requires multiple rows, all the rows that are not empty on all the fields are selected. The

emptiness of a row on a particular field is determined by checking the emptiness of the cell

within the row and column related to the field.

 Instead of counting the rows and columns for specifying the row and column numbers, the

Composer provides a good GUI interface to specify the row and column numbers in the Excel

Sheets. The Composer displays a clone for the Excel Sheet. The row and column numbers of a

cell can be specified by clicking on that cell in the cloned Excel Sheet displayed. The Composer

counts the row and column numbers related to the cell and stores the information.

Figure 9 "Inserting Records into Database" Action Details Sample Outputs.

 The second action is “Save files,” which is used to save the files received from the client

attached with the email. The action “Save files” prompts the user to specify the number of files

and the file names required. File names are required to save only the files required rather than

saving all the unnecessary files sent by the client. The Reader will accept only the files specified

 31

in the schema. All the files received will be saved into a directory named “client-name,” where

client-name is the name of the client. Clients can send several emails with some of the files to be

saved if the “allow duplicate mails” is true.

Figure 10 "Save Files", Action Details Sample Outputs

 The menu item “Send Email” is used to send emails to the client specifying the format in

which the emails must be received. “Send Email” automatically attaches the Excel Sheet to the

mail. The Composer just prompts for the email addresses of the clients and the message to be

sent along with the email. “Send Email” keeps track of client email addresses into a file

“MailList.txt”. This information is used to confirm that the received emails are only from the

authorized client. All the remaining mails will be rejected. The mailing list is also used to avoid

duplicate mails from a client for a schema.

 32

Figure 11 "Send emails to clients" Sample Outputs

 The menu item “Settings” is used to specify some of the schema settings related to

different actions. On further addition of semantic actions, the options in the “Settings” menu can

be extended. Generally, the schema settings related to a particular action are specified while

specifying the action itself. The schema settings specified in the “settings” menu are either the

common settings to all the different types of actions or optional settings that are not compulsory.

The schema settings supporting the actions implemented along with the base project are

specified below:

• Allow duplicate emails

• Add constraints.

 The first option “Allow duplicate emails” is used to specify whether to allow a client to

send multiple mails for the particular schema. By default the Composer sets the schema setting to

accept only one email from a client for a particular schema. If the schema explicitly requires

multiple mails to be received from a client, this option allows changing the default schema

 33

setting. By making necessary changes to the default schema settings the Composer can allow a

client to send multiple emails for a particular schema.

Figure 12 "Allowing Duplicate Mails" Schema Setting Sample Dialog Box.

 The next option “Add constraints” is used to specify different constraints on the actions.

Adding constraints also depends on the action. The schema setting “Adding constraints” is

optional and is related to the semantic action “Inserting into the database.” Constraints on the

semantic action “Inserting into a database” can be any of the following:

• Constraints on each row.

• Constraints on Aggregate Functions.

Figure 13 "Adding Constraints" Sample Output.

 The first constraint specified above one is a constraint on a single row. The constraint on a

single row generally depends on the data type of the field in the table on which the constraint is

applied. If the data type of the field is a string, then the constraint will be on how the string value

looks. The constraint can use any of the string manipulations described below

 34

• Like operator

It is similar to the like operator in SQL, which tests for a sub string in the given string

value.

Ex: - Name like “Janes”

• “Starts with” operator

It checks whether the string value starts with the given sub string.

Ex: - Name starts with “Mary”

• “Ends with” operator

It checks whether the string value ends with the given sub string

Ex: - City ends with “Green”.

If the data type of a field is an integer, then the constraint will be on the value of the field.

Constraints on values can be any one of three types described below

• Value less than n

• Value greater than n

• Value in between n1 and n2

Based on the given constraint, check the values obtained from the email, and if they don’t satisfy

the conditions, reject the row and the email.

 The second type of constraint is on aggregate functions. The following are the aggregate

functions checked while inserting rows into the database:

• Sum

• Average

• Count

• Max

 35

• Min

 Constraints on aggregate functions are related to the complete table, rather than to the row

to be inserted. The constraints will be on how the aggregate function gets affected when the

current row to be inserted is inserted into the database. The aggregate functions are chosen from

the list above. If the row to be inserted affects the constraint on the aggregate function, then the

row is rejected. If the insertion of multiple rows is allowed in the schema, each row is considered

individually. A reply email will be sent to the client specifying why the row is rejected.

3.3 Steps in the Composer

The first step is to create a new schema if the required schema doesn’t exist. If the schema exists,

then select “open schema” menu item by giving the schema name. The format of the email can

be changed by using the Excel Sheet displayed. Change the settings for the schema, add

necessary actions, and create a database if necessary. After making all the necessary changes,

save the schema. The complete schema is now ready. Mail the clients the details of the schema

and the required format of the mail.

Chapter 4

Semantic Email Reader

 The Semantic Email Reader is similar to the email client program used to access the

contents of the emails received. But the Semantic Email Reader is a sophisticated tool that reads

the contents of the email received, understands the content, and performs necessary actions based

on the content read. The Semantic Email Reader first searches the content for the schema name.

The schema name is stored as a hidden value in the Excel Sheet to be sent with the email. So, the

semantic mail Reader rejects all the email without an Excel Sheet attachment assuming them to

be personal emails or any unauthorized emails. After finding the schema name, the Semantic

Email Reader opens the directory associated with the schema.

 The Semantic Email Reader first gets all the information related to the schema settings.

Some of the emails received are rejected based on the schema settings. For example, consider the

case of not allowing duplicate mails from a client for the same schema. Every schema maintains

an email list of the clients. The email list is a list of client email addresses that are valid for the

current schema. After processing a valid email from a client, the Semantic Email Reader will

delete the email address of the client from the email list associated with the schema. Deletion of

the email address after processing the email will not allow duplicate mails from a client for the

same schema. Even after processing the email, the email address will not be deleted if the

schema allows duplicate mails from a client for the same schema.

 The Semantic Email Reader then searches for the different actions associated with the

schema. Based on the action, the Semantic Email Reader then searches for the remaining settings

and performs the actions according to it. For example, consider the action of inserting records or

 36

 37

rows into the database. Before inserting the row, the Reader requires the database details. The

database details include the table name and column names associated with their data types.

 For the current example, consider the student database with Name, Roll Number and City

as fields. Before considering the values for the field, the Semantic Email Reader must verify

another schema setting, whether the schema allows multiple row insertion. The Semantic Email

Reader then must find whether each field has a default value or the value obtained from Excel

Sheet. For each field in the database, if the value is a default value, then find the default value

corresponding to the field. If the value of the field is obtained from the Excel Sheet, find a cell in

the Excel Sheet where the value is stored. The value of the field is obtained by accessing the cell

in the Excel Sheet. Once a complete a row is built with all the necessary field values, the Reader

connects to the database and inserts the row into the database.

 Remember, the row is inserted only after satisfying all the constraints if the constraints

apply to the schema. So, before inserting a row into the database, the Semantic Email Reader

must search for the constraints that apply to the schema. Now the Reader checks whether the row

to be inserted satisfies all the constraints or not. The constraints can be on a single row or on the

complete table. Constraints on the row create a restriction on the values of the row to be inserted.

So, the values must satisfy the restrictions to satisfy the constraints. Constraints on the complete

table are linked with a behavior of the table. Adding the extra row must not violate that behavior

of the table. For example, consider the aggregate functions like Sum, Average, Count, Min, Max,

etc, which are constraints on the complete table. Consider the aggregate function Average with a

constraint as Average (Balance) > 1000. The aggregate function Average is evaluated on the

column “Balance” which means that the Average of the balances in the table must always be

greater than 1000. If the values of the row to be inserted changes the average and makes it to go

 38

below 1000, then the row is rejected. Some schemas require the status of the action to be replied

back to the client.

 For example, consider the schema used to save the files attached with the email. The client

needs to know the status of the email sent. The schema compares the file names in the email with

the files names associated with the schema. The schema only saves the files whose file names

matched with the names in the schema. The schema sends a reply to the client specifying the list

of files accepted or saved, list of rejected or unsaved files, and list of files that are not sent and

required. The Semantic Email Reader works differently for different action types depending on

the action type and schema settings associated with the action.

Figure 14 “Semantic Email Reader” Sample Frame.

Chapter 5

Development Environment

 The primary environment used to develop the project is JAVA. Since JAVA is machine

independent, there is no restriction on the operating system used. The version of the JAVA used

is J2SE1.5.0. The basic Application Program Interface (API) of Java Development Kit (JDK)

1.5.0 doesn’t provide all the classes required for the project. So, another version of JAVA J2EE

1.4.2 SDK is downloaded and the required classes are imported. The following are the jar files

imported from the J2EE 1.4.2 SDK

• mail.jar

• activation.jar

• j2ee.jar

• j2ee-svc.jar

 Apart from all these classes, some other classes were downloaded from the Apache Jakarta

project. Apache Jakarta has a module called POI, which consists of complete API to access

Microsoft format files. Only the jar files from the HSSF part of the POI project are downloaded

for dealing with the Excel Sheets in JAVA.

 39

Chapter 6

Conclusions

 The Excel Sheet Based Semantic Email is a type of Semantic Web application, used to

receive, understand, and perform semantic actions based on the information in the email and

the schema that the email is conforming to. The existing Semantic Email systems had many

restrictions and are not generic. It is difficult to use in practice as either special software is

required or in-depth knowledge of XML is needed. In this project, Excel sheets are used as

information carriers since they are widely used. This makes the software more accessible to

users without in-depth computer skills. The Excel Sheet Based Semantic Email is implemented

supporting two types of semantic actions: file extraction and database operations. The Excel

Sheet Based Semantic Email is a base project and numerous applications can be developed

from it.

 As future work, this project can be further enhanced by implementing the following

features:

• A web interface of the Excel Sheet Based Semantic Email can be developed to enhance

the project features.

• The project can be extended by adding more semantic action types: applying more

constraints, etc.

• The current Excel Sheet Based Semantic Email can be a good starting step for

applications where data exchange is extensive.

• In this thesis work, a very primitive way of implementing the schema repository is

used. It is interesting to investigate on how to improve the implementation of schema

and data repository, so that large-scale applications can be accommodated.

 40

 41

Bibliography

[1] Hendler, James, Berners-Lee, Tim and Miller, Eric "Integrating Applications on the

Semantic Web," Journal of the Institute of Electrical Engineers of Japan, Vol 122(10), October,

2002, p. 676-680

[2] John Domingue, Martin Dzbor: Magpie: supporting browsing and navigation on the

semantic web, In Proc of the 9th international conference on Intelligent user interface, p. 191-

197, 2004.

[3] Luke McDowell, Oren Etzioni, Alon Halevy, and Henry Levy: Semantic Email, In Proc of

the 13th international conference on World Wide Web, p. 244-254, 2004.

[4] Bernardo Cuenca Grau: A possible simplification of the semantic web architecture, In Proc

of the 13th international conference on World Wide Web, p. 704-713, 2004.

[5] Panos Constantpoulos, Vassilis Christophides, Dimitris Plexousakis:Conference review:

Semantic Web Workshop:: models, architectures and management, intelligence, Vol 12, Issue 2,

p. 39-44, 2001.

[6] T.Berners-Lee, J. Hendler, and O.Lassila: The Semantic Web, Scientific American, May

2001.

[7] Zografoula Vagena, Vassilis J. Tsotras: Path-expression Queries over Multi version XML

Documents, June 2003.

[8] Claudio Gutierrezuc, Carlos Hurtadouc, Alberto O. Mendelzonut: Foundations of Semantic

Web Databases, September 2003.

[9] R.Guha, R.McCool, R.Fikes: Contexts for the Semantic Web, 2003.

 42

[10] Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, Dimitris Plexousakis: Viewing

the Semantic Web Through RVL Lenses, 2002.

[11] Nenad Stojanovic, Rudi Studer, Ljiljana Stojanovic: An Approach for the Ranking of Query

Results in the Semantic Web, 2002.

[12] Peter F. Patel-Schneider and Jerome Simeon: Building the SemanticWeb on XML, 2002.

 43

Appendix A

POI-HSSF - Java API To Access Microsoft Excel Format Files

New Workbook

Microsoft Excel uses the term workbook to represent an Excel file. Creating an Excel file means

implies creating a new Workbook using POI. A new workbook can be created using POI as

shown below

HSSFWorkbook wb = new HSSFWorkbook();

FileOutputStream fileOut = new FileOutputStream("workbook.xls");

wb.write(fileOut);

fileOut.close();

New Sheet

A workbook can consist of many Excel Sheets in it. After creating a new workbook, new sheets

must be created within the workbook. Excel Sheets are the actual containers of data. New Excel

Sheets can be added to the workbook as shown below.

HSSFWorkbook wb = new HSSFWorkbook();

HSSFSheet sheet1 = wb.createSheet("new sheet");

HSSFSheet sheet2 = wb.createSheet("second sheet");

 44

Creating Cells

Cells within an Excel Sheet must be created explicitly and can be filled with different types of

values:

// Create a row and put some cells in it. Rows are 0 based.

HSSFRow row = sheet1.createRow((short)0);

// Create a cell and put a value in it.

HSSFCell cell = row.createCell((short)0);

cell.setCellValue(1);

// Or do it on one line.

row.createCell((short)1).setCellValue(1.2);

row.createCell((short)2).setCellValue("This is a string");

row.createCell((short)3).setCellValue(true);

Reading and Rewriting Workbooks

Reading the workbook and its contents is similar to writing and creating the workbook.

 POIFSFileSystem fs = new POIFSFileSystem(new

 FileInputStream("workbook.xls"));

 HSSFWorkbook wb = new HSSFWorkbook(fs);

 HSSFSheet sheet = wb.getSheetAt(0);

 HSSFRow row = sheet.getRow(2);

 HSSFCell cell = row.getCell((short)3);

 45

 if (cell == null)

 cell = row.createCell((short)3);

 cell.setCellType(HSSFCell.CELL_TYPE_STRING);

 cell.setCellValue("a test");

 // Write the output to a file

 FileOutputStream fileOut = new FileOutputStream("workbook.xls");

 wb.write(fileOut);

 fileOut.close();

 46

Appendix B

JavaMail API

The JavaMail API is a package for reading, composing, and sending electronic messages. The

JavaMail API is designed to provide protocol-independent access for sending and receiving

messages.

Reviewing the Core Classes

The following Core Classes those are required for sending and receiving messages.

• Session

The Session class defines a basic mail session. The Session object takes advantage of a

java.util.Properties object to get information like mail server, username, password, and other

information that can be shared across your entire application.

• Message

The Message class is used to define the message to send, after having the Session object. Since,

Message is an abstract class, its subclass, MimeMessage is used. A MimeMessage is an email

message that understands MIME types and headers, as defined in the different RFCs. Message

headers are restricted to US-ASCII characters only, though non-ASCII characters can be

encoded in certain header fields. Once having the message, its parts can be set since Message

implements the Part interface.

 47

• Address

The message needs to be addressed, after creating it using Message class. Similar to Message

class, Address class is also an abstract class. Since Address is an abstract class, its subclass

InternetAddress is used. InternetAddress class is used to specify the email address in the To, Cc

and Bcc fields of the message.

• Authenticator

The Authenticator class accesses protected resources via a username and password. Since

Authenticator is an abstract class, subclass the Authenticator class and return a

PasswordAuthentication instance using getPasswordAuthentication() method.

• Transport

Using the Transport class is the final part and it is used to transport or send the message via the

network.

• Store & Folder

Using the Session object, a Store object can be created. Store class is used to connect the

mailbox and access the mail folders using Folder class.

	Western Kentucky University
	TopSCHOLAR®
	1-1-2004

	Excel Sheet Based Semantic Email
	Rajesekhar R. Dandolu
	Recommended Citation

