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In this research we are following the thermo-chemical degradation of wood in the 

absence of oxygen. The objectives are to evaluate the influence of heating rates on 

pyrolysis products obtained from wood pyrolysis and to evaluate the influence of acid 

pre-treatment on pyrolysis products. Depending on the wood heating rates, pyrolysis can 

be categorized as Flash pyrolysis, Fast pyrolysis, and Slow pyrolysis. We have evaluated 

the volatile products obtained at different heating rates and the volatile products obtained 

from sulfuric acid pre-treatment by using gas chromatography- mass spectrometry (GC-

MS). We have also performed thermo-gravimetric analysis (TGA) of raw wood samples 

and sulfuric acid pre-treated wood samples of Yellow Pine  to determine the changes in 

weight in relation to change in temperature.  

Our results indicated that by using the Flash, Fast, and Slow heating rates, the 

overall volatile products obtained from wood pyrolysis (i.e. the overall list of all the 

compounds obtained from different temperature ranges in wood pyrolysis  by using 

different heating rates) were the same, but the volatile products obtained at different 

temperature ranges like Room temperature-300°C, 300°C -  400°C, and 400°C -500°C in 

Flash, Fast, and Slow pyrolysis were different. Most of the volatile products obtained 

from the pyrolysis of untreated wood were phenols. Our results also indicated that the 
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pretreatment of wood with sulfuric acid alters the charcoal properties and releases 

gaseous products including furan derivatives that are useful as fuels or fuel additives. The 

sulfuric acid (10%) pretreatment of wood followed by slow pyrolysis produced maximum 

yield of charcoal, indicated by the lowest mass % decrease of 58.234. The production of 

furan derivatives increased by using sulfuric acid pre-treatment, which is a good 

improvement for the production of Furanics, the furan based biofuels. The furan based 

biofuels are of increasing research interest because of their significant advantages over 

the first generation biofuels. The thermogravimetric analysis (TGA) results indicated that 

the acid pre-treatment altered the decomposition rate of pyrolysis and lowered the onset 

of temperature for decomposition. 

 The use of thermal degradation of plants for creating chemicals and fuels is seeing 

renewed interest across the globe as it is considered carbon-neutral and it uses a 

renewable feedstock. The information obtained from this research work will also be 

valued by industries, such as charcoal and activated carbon producers, which currently 

perform biomass pyrolysis, by allowing them to form approaches that optimize their 

energy use and minimize waste.  
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I. INTRODUCTION  

           When wood is pyrolyzed at higher temperatures in absence of oxygen, the wood 

will retain its shape and will give off a wood gas in an exothermic reaction. The solid 

portion remaining from wood pyrolysis is charcoal (carbonized wood) and the crude 

condensate of the gases produced from wood pyrolysis is called pyroligneous acid, which 

mainly consists of an aqueous phase and an organic phase. The research presented in this 

thesis is mainly focused on investigating the volatile by-products from wood pyrolysis 

and on demonstrating beneficial alterations through the chemical pretreatment of the 

wood. 

Background:                                                                                                                  

 Renewable biomass is an important energy source, with future potentials as fossil 

fuels are depleted. With a few exceptions, the cost of producing energy from fossil fuels 

is more than the same amount of energy supplied through biomass conversion. The major 

scientific interest in developing new technologies for the conversion of renewable 

biomass into sustainable energy and chemical materials is mainly due to environmental, 

political, and economic concerns of our dependence on petroleum. Currently, biomass is 

the only source of carbon with the potential to supply a significant fraction of the energy 

and chemical intermediates needed for the world economy. However, biomass is 

generally poorly suited for direct energy use, so under pyrolysis conditions, pyroligneous 

acid (pyrolysis oil) can be produced. Fortunately, thermo chemical processes can convert 

biomass into stable physical or stable chemical forms that can be used in higher  
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efficiency energy conversion processes developed for liquid petroleum and charcoal.1, 2 

Amongst the thermo chemical processes, pyrolysis is mostly preferred because of its 

ability to optimize process conditions and produce high energy density pyrolytic oils in 

addition to derived charcoal, with high fuel-to-feed ratios.3, 4

 Wood Pyrolysis goes through different steps, including exothermic step which  

produces three types of products: gases, heavy oil fractions, and char fractions. The 

condensable gases and the heavy oil fractions from the pyrolytic breakdown of wood 

contain a large number of chemical substances which can be used as substitutes for 

conventional fuels or as intermediates for substitutes for conventional fuels. Depending 

on the heating rates and the residence times at particular temperatures, pyrolysis process 

can be categorized into flash, fast and slow pyrolysis processes. When wood is pretreated 

with sulfuric acid (dehydrating agent) and then subjected to pyrolysis, it produces more 

mass yield of charcoal.

  

5, 6 The general reactions which undergo during the pyrolysis of 

wood can be categorized as primary reactions and secondary reactions. The primary 

reactions mainly involve the fragmentation and dehydration reactions. At temperatures 

lower than 300°C, dehydration is dominant, involving reduction in molecular weight, 

evolution of water, carbon monoxide, and carbon dioxide and the formation of char. At 

temperatures higher than 300°C, fragmentation predominates, involving the 

depolymerization of biomass to characteristic primary tar units.7 In the category of 

secondary reactions, the products obtained from the primary reactions may repolymerize 

or undergo further fragmentation reactions like cracking and reforming or react with free 

radicals to form secondary products.7  
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 Cellulose is the most common form of photosynthetically fixed carbon. Currently, 

biofuel is mainly produced from biological degradation of starch, which is broken down 

into sugars, which are then fermented to give ethanol. But the degradation of cellulose 

into its individual sugar components and its fermentation is a very slow and expensive 

process. To avoid the breakdown and fermentation of cellulose, Mascal and Nikitin have 

developed a simple process for the direct conversion of cellulose into furan-based organic 

liquids called “furanics”, which are suitable as fuels.8, 9

In this research work, the common North American yellow pine wood has been 

selected as a representative sample of coniferous type of woods. The work presented in 

this thesis has investigated the volatile by-products obtained by using different categories 

of pyrolysis processes of yellow pine wood and has also undertaken a study on the  

sulfuric acid pretreatment of wood pyrolysis, aiming at the production of furan 

derivatives.   

 These furan derivatives are the 

key substances that provide new avenues for the development of cost effective routes for 

the production of biofuels and chemical intermediates.   

History:                                                                                                                       

 Carbonization of wood for the manufacture of charcoal and destructive distillation 

has been practiced since the beginning of history. The Egyptians, Greeks, and Romans 

carbonized wood for embalming purposes and the filling of joints in wooden ships. 

During the ancient times wood charcoal was used for removal of odors, medicinal 

purposes, domestic cooking fuel, the making of gun powder, and the refining of ores. The 

industrial revolution brought a heavy demand for charcoal, especially for the reduction of 

iron ores.10, 11 The wood distillation was started in the late 1800’s with collection of 
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byproducts like - crude pyroligneous acid and non condensable gases. The pyroligneous 

acid was refined to make acetate of lime, methanol, and tar. The wood industry was the 

precursor of the petrochemical industry. Before petrochemical production, most of the 

industrially important organic chemicals were obtained from wood distillation. Most of 

the wood distillation plants were closed by 1950, because the petroleum based products 

had taken over the markets dominated by wood distillation products.12 By the late 1900’s, 

our dependence on petroleum was increasing enormously. Currently, the environmental, 

political, and economic concerns of this increased dependence on petroleum brought back 

the importance of wood distillation products and charcoal. It seems like, in the future, 

wood will be the only source of carbon with the potential to supply the energy and 

chemical intermediates needed for the world economy.  

Biomass regaining its central position as feedstock:                                                             

 Renewable Biomass resources have been the primary industrial and consumer 

feed stocks from the beginning of human history. But coal, natural gas and petroleum 

have replaced them in the past 150 years as sources for energy and chemicals. These 

fossil resources are diminishing day by day and petroleum production is unlikely to meet 

the growing human needs in the near future. Moreover, the growing concerns about 

global warming are demanding the renewable and sustainable sources of energy.13 The 

advantage of biomass is that it is a CO2 – neutral feedstock. In 2000, the Biomass 

Technical Advisory Committee in the United States stated that 20% of petroleum 

transportation fuels have been substituted with fuels from biomass.14 Currently, the only 

largest producing renewable liquid fuel is ethanol from corn (staple food), but it suffers 

from several limitations like low energy density, high volatility, and contamination by the 
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absorption of moisture from the atmosphere.15  To alleviate this concern , numerous 

methods are being developed towards the utilization of lignocellulosics for liquid 

biofuels.14

 The lignocellulosic feedstock mainly consists of three groups of polymers: 

cellulose, hemicellulose, and lignin. The cellulose and hemicellulose groups of polymers 

comprise the  carbohydrate fraction of compounds, which is currently being focused by 

the biofuel technologies.

  

14 The lignin group of polymers consists of poly(aromatic) 

moieties from phenylpropanoid building blocks.14

Today the advances in conversion technology using catalytic stages is increasing 

the potential of the biomass resources to produce renewable carbon sources for 

transportation fuels and chemicals.

 They produce some tarry substances, 

which are not advantageous in the field of biofuels. But these lignin group of polymers 

may be used for the production of some chemicals.  

13 For the replacement of petroleum feed stocks with 

biomass, conversion of carbohydrates from biomass into a variety of furan based 

chemicals is required, whose importance is explained in the later part of this section. The 

disubstituted furans  produced from carbohydrates (obtained from biomass) using 

different catalytic strategies can be used as liquid transportation fuels. These disubstituted 

furans have higher energy density, higher boiling point, and are insoluble in water when 

compared to that of ethanol.15 The platform chemical 5-hydroxymethylfurfural which is a 

dehydration product of carbohydrates also plays a key role in the transportation sector.13 

Hence the production of different furan based chemicals which are suitable for the 

transportation sector, diminishes the growing needs and dependence of humanity on 

petroleum. The applications of Bio-oil can be summarized as shown in Figure 1.1.16 



8 
 

 

Figure 1.1. Applications of Bio-oil provided by a study on Fast pyrolysis as given in 
reference 16.

 

16 

 Furanics are the heteroaromatic compounds derived from the chemical 

intermediate hydroxymethylfurfural, 

Furanics – furan based biofuels: 

C6H6O3. Furanics, the furan based biofuels are of  

increasing research interest because of their significant advantages over the first 

generation biofuels.17

 Avantium successfully completed an engine test using the furan based biofuels 

demonstrating the potential of furanics.

  

17 The development of cost effective methods for 

the production of furan based chemicals from biomass is mainly being focused on  

developing second generation biofuels and bio-based chemicals. By using different 

catalytic strategies, Avantium has developed new and improved catalytic routes to 

specific furanics.17 Tom van Aken, Chief Executive Officer of Avantium stated-     
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“The excellent results of the engine test support the proof of principle of 

our next generation biofuel, and is an essential milestone for our biofuels 

development program. The significant reduction of soot in the car exhaust 

is encouraging, as soot emissions are considered a major disadvantage of 

using diesel today, because of its adverse environmental and health 

effects. We are developing a next generation biofuel that has superior fuel 

properties and process economics compared to existing biofuels. The 

production process of Furanics has an excellent fit with existing chemical 

process technology and infrastructure. Ultimately our ambition is to 

develop biofuels that are competitive with fossil based fuels.”     17   

 

Figure 1.2. Avantium derives its Furanics fuels from the intermediate 
hydroxymethylfurfural. Illustration: Pacific Northwest National Laboratory 

 Figure 1.2 clearly shows that the production of furan derivatives is very important 

in the field of biofuels and for the production of bio-based chemicals. The furan 

derivatives having higher energy density than that of ethanol are of major research 

interest for the production of second generation biofuels. Different catalytic processes 

were developed for the efficient production of furan derivatives from untreated biomass. 

17 
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In the research work presented in this thesis, the focus was mainly on the production of 

furan derivatives from the acid pre-treated wood pyrolysis. 

 The first detailed study of the dilute acid treatment of wood at elevated 

temperatures was done by Saeman in 1945.

Pyrolysis of sulfuric acid pre-treated wood: 

14 Wood containing cellulose is an important 

starting material for the production of carbons, including charcoal and activated carbons. 

The maximum carbon yield of cellulose (C6H10O5)n  is 44.4% when hydrogen and 

oxygen are removed as water from it. But practically when wood is subjected to higher 

temperatures of about 400°C, the carbon yield of cellulose is only 15% because when 

wood is pyrolyzed it releases some volatile products such as methanol, acetic acid, 

carbon dioxide and some tar substances. An improvement has been achieved in 

increasing the carbon yield by decreasing the heating rate to as low as 1°C/min. To 

achieve greater yields, dehydration is the key phenomenon in the course of pyrolysis. In 

the Industrial processes, addition of zinc chloride as a dehydrating agent seems to be 

adopted, but detailed descriptions cannot be found in the existing literatures . Whereas in  

laboratories, since sulfuric acid is an inexpensive and nonvolatile dehydrating agent, it 

was chosen to examine the effect on pyrolysis of cellulose. It has been stated that  

sulfuric acid treatment can be useful in increasing the mass yield of carbon and 

preservation of the original shapes.

  When the wood is treated with acid, the main reactions taking place during the 

process are classified into two types: (1) The cellulose and hemicelluloses group of 

polymers depolymerize resulting in the formation of their oligosaccharide or 

18 
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monosaccharide components, and (2) The degradation of the subsequent monosaccharide 

products.14 The schematic diagram of these reactions as outlined by Marzialetti, Olarte, 

Sievers, Hoskins, Agarwal, and Jones is shown in Figure 1.3.14 The acid catalyzed 

dehydration of glucose forms levulinic acid and formic acid with a detectable 

intermediate, 5-hydroxy-methyl-2-furfuraldehyde (HMF). The schematic diagram of this 

reaction is shown in Figure 1.4.14 Similarly acid catalyzed dehydration of xylose 

(pentoses) results in the formation of furfural as in Figure 1.5.14 

 

Figure 1.3. Carbohydrate Reactions in the presence of acid. 

 

14 
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Figure 1.4. Acid catalyzed dehydration of Glucose.
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Figure 1.5. Acid catalyzed dehydration of Xylose (pentoses).
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 Pyrolysis gas chromatography mass spectrometry is a method which enables a 

reproducible characterization of the intractable macromolecular complexes of the 

materials found in the natural environment.

Pyrolysis Gas Chromatography Mass Spectrometry (Py/GC/MS): 

19-22 It is an excellent technique for various 

qualitative analyses. The volatile compounds obtained from the pyrolysis of wood can be 

extracted by using Solid Phase Micro Extraction (SPME) method and then injected into 

the analytical column of a GC proceeded by MS. SPME was first developed by 

Pawliszyn and coworkers and it has been marketed by Supelco in order to eliminate the 

limitations inherent in Solid phase extraction (SPE) and Liquid liquid extraction (LLE).23 

SPME is well known for rapid sampling and sample preparation. SPME method can 

integrate sampling, extraction, concentration and sample introduction into a single step 

and provides a simple, solvent-free alternative to traditional methods of sample 
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preparation. SPME is known for its simplicity, low cost, rapidity, selectivity and 

sensitivity.23, 24 Headspace-SPME is a modified SPME in which fused silica fibers coated 

with a thin polymer is used to trap and concentrate the analytes from the head space of 

the sample.25 The most important point to consider for an SPME method is the choice of 

an appropriate SPME fiber coating. The sensitivity of a fiber differs depending on the 

polarity and molecular mass of the analytes that are to be extracted.23

 

 Hence, HS-SPME 

method is commonly being used by the researchers in this field to extract the volatile 

compounds obtained from the pyrolysis of wood.  
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II. EXPERIMENTAL  

 All chemicals used were of ACS reagent grade. All solutions were prepared using 

distilled water. Nitrogen gas was purchased from the Modern Supply. The yellow pine 

wood used in the experiment was purchased from the Lowes home improvement store.  

A. Chemicals and Materials:   

A.1. Sulfuric acid was purchased from Sigma-Aldrich chemicals.  

A.2. Solid Phase Micro-Extraction Holder (manual) 57330-U was purchased from 

Supelco, Bellefonte, PA, USA. 

A.3. Solid Phase Micro-Extraction Fiber Assemblies were purchased from Supelco, 

Bellefonte, PA, USA. 

B.1. Weighing balance: Denver Instrument M-220D 

B. Instrumentation:  

B.2. Vacuum Tube Furnace: GSL 1100X MTI Corporation 

B.3. Gas Chromatograph: Hewlett Packard 5890 series II 

B.4. Gas Chromatograph-Mass Spectrometer: Agilent 5973 

B.4. Oven : Vulcan 3-1750 

B.5. Thermo gravimetric analyzer (TGA): TA instruments Q-5000-I 
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 The design of this experimental work mainly consists of – (i) Tube Furnace (ii) 

Collection of the condensed vapors of the by-products in the ‘U’ shaped tube (iii) Solid 

Phase Micro Extraction (SPME) and  (iv) Gas Chromatography-Mass Spectrometry. 

C.  Design of the Experiment: 

 The wood species selected for this work was Yellow Pine. It was cut into small 

pieces, depending on the nature of the experiment, and thermally treated in a furnace. 

Depending on the heating rates, pyrolysis of wood was categorized into three different 

types- (i) Fast (ii) Slow and (iii) Flash. The heating rate for fast pyrolysis was 5°C/min 

and slow pyrolysis was 0.83°C/min. In fast and slow pyrolysis, pieces of wood were 

placed in the tube furnace and heated with a specific heating rate, whereas in flash 

pyrolysis, the tube furnace was first pre-heated to a specific temperature and then pieces 

of wood were placed in the center of the tube for five minutes.  The preliminary goals of 

this work were to collect the condensed vapors of pyrolyzed wood for analysis and to 

produce pieces of carbonized wood to characterize the charcoal. Analysis of the resulting 

condensate was done by sampling it through solid phase micro extraction (SPME) 

technique and injecting it into Gas Chromatography - Mass Spectrometry instrument. 

Characterization of the resulting carbonized wood was done by measuring the changes in 

its - dimensions and mass. Thermal analysis by TGA was also performed. 
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D. Pyrolysis of yellow pine wood: 

 The furnace used in this experimental work was a vacuum tube furnace, model 

number GSL 1100X, manufactured by MTI Corporation. It was equipped with heating 

elements embedded in ceramic fiber insulation providing rapid chamber heat-up and 

cool-down. This chamber includes two interchangeable end pieces to accommodate 

process tubes with 2’’ O.D. Two vacuum flanges were installed at the two ends of the 

tube.  The operating temperature range of the furnace was 100 ∼ 1100°C but it was only 

used up to 600°C. It was also equipped with a programmable temperature controller, 

allowing temperature ramp. A nitrogen cylinder equipped with a pressure regulator 

served as the gas supply and was metered by a calibrated rotameter. Figure 2.1 shows a 

photograph of the set up. 

D.1. Tube Furnace:  

 

Figure 2.1. Experimental set-up of a vacuum tube furnace  
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 As shown in  Figure 2.1, a ‘U’ shaped tube was connected to the tube of the 

furnace by using a teflon connector between the vacuum flange and the ‘U’ shaped tube. 

This ‘U’ shaped tube was immersed in an ice bath, which condensed the vapors coming 

out of the tube furnace. The other end of the ‘U’ shaped tube was left open, so that the off 

gases coming out of the furnace were vented through a lab exhaust. 

 Pyrolysis of wood using fast and slow rates was done by placing the wood 

samples in the center of the tube and setting the temperature program accordingly, using 

the temperature controller. During the pyrolysis, the vapors coming out of the tube 

furnace condense and gets collected in the ‘U’ shaped tube placed in an ice bath. Once 

the pyrolysis was done, the ‘U’ shaped tube was sealed on both the sides and then the 

liquid collected in this tube was used for further analysis. But for flash pyrolysis, the set 

up of the tube furnace was slightly different. In flash pyrolysis, the inlet of the tube 

furnace, which was sealed with a vacuum flange in fast and slow pyrolysis, was replaced 

with a sealed rubber stopper with through holes for copper tubing allowing the gas flow 

and for a push rod to push the sample inside the tube furnace. The stopper was held in 

place with springs. A ceramic felt was placed just inside the tube to prevent the rubber 

from overheating. This insulation was porous so that gas flow could be maintained. Here 

in flash pyrolysis, the tube furnace was first pre-heated to required temperature and then 

the sample was pushed into the center (hottest zone) of the tube using the push rod and 

left in that zone for about five minutes and again pulled back to its original position. The 

vapors collected in the ‘U’ shaped tube during this five minutes of pyrolysis were used 

for further analysis.  
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 After  collection of vapors in the ‘U’ shaped tube, the tube furnace was allowed to 

cool down and then the carbonized wood  was removed from the tube furnace. This 

carbonized wood was further analyzed to calculate its charcoal yield. 

  The Solid-Phase Micro Extraction (SPME) fiber itself is a thin fused-silica 

optical fiber. This fiber is coated with a thin polymer film which serves as a coating 

material in chromatography. 

E. Solid-Phase Micro Extraction (SPME): 

 The most important feature in determining the analytical performance of SPME 

fiber is the type and thickness of the coating material on the fiber. Supelco has provided 

users with different fiber coatings. The list of most common commercially available 

polymer coatings is given in Figure 2.2. 

E.1. Choosing a Fiber: 

 
Fiber Coating 

 
Film 

Thickness 

 
Polarity 

 
Coating     
Method 

 
Technique 

 
Compounds to 

be analyzed 
PDMS 100 µm Non-

polar 
Non-bonded GC/HPLC Volatiles 

PDMS  30 µm Non-
polar 

Non-bonded GC/HPLC Non-polar     
semi volatiles 

PDMS   7 µm Non-
polar 

Bonded GC/HPLC Medium to 
nonpolar semi 
volatiles 

PDMS-DVB  65 µm Bipolar Cross-linked GC Polar volatiles 
PDMS-DVB  60 µm Bipolar Cross-linked HPLC General purpose 
PDMS- DVB  65 µm Bipolar Cross-linked GC Polar volatiles 
PA  85 µm Polar Cross-linked GC/HPLC Polar-semi-

volatiles 
Carboxen-PDMS  75 µm Bipolar Cross-linked GC Gases and 

volatiles 
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Carboxen-PDMS  85 µm Bipolar Cross-linked GC Gases and 
volatiles 

Carbowax-DVB  65 µm Polar Cross-linked GC Polar analytes 
Carbowax-DVB  70 µm Polar Cross-linked GC Polar analytes 

  

Figure 2.2. List of commercially available SPME fibers                                                                

PDMS- Poly dimethyl siloxane, DVB- Divinyl benzene, PA- Poly acrylate 

 The fibers used in this experimental work were 1cm long and were coated with 

PDMS or  Carboxen-PDMS. These two types of coatings were suitable for extracting 

gases and volatiles through head-space sampling. 

 Solid-Phase Micro Extraction technique can be used in two principle modes : (i) 

Head Space Extraction and (ii) Direct Extraction. In head space mode, the vapor present 

above the sample matrix is sampled, where as in the direct mode, the fiber is completely 

immersed in the sample matrix to extract the analytes onto the extraction phase of the 

fiber. 

E.2. Extraction Procedure: 

 In this experimental work, head space sampling was used because direct sampling 

may damage the fiber or change the properties through adsorption as the samples 

obtained from pyrolysis of the wood were dirty. In head space sampling, the volatile 

analytes are transported from the sample matrix to the head space and then when the fiber 

is inserted into the head space of the sample matrix, the volatiles get adsorbed onto the 

fiber coating. This fiber adsorbed with different volatiles is used for further analysis using 

gas chromatography- mass spectrometry. The SPME needles used for the extraction of 
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different volatile substances from the samples obtained from pyrolysis of the wood are 

shown in Figure 2.3.   

             

 Figure 2.3. Supelco Solid Phase Micro Extraction needles 

F. SPME Determination

 A typical SPME determination was carried out, mainly involving three steps as 

follows : 

: 

• Fiber cleaning  

• Adsorption 

• Desorption and Chromatography   

 The SPME fibers used for sampling the analytes were cleaned before each 

analysis in order to remove any contaminants present on the fiber. A gas chromatograph 

was used for cleaning the SPME fibers. The injection port temperature of the gas 

chromatograph was set to 250°C and then the SPME fiber was injected into the gas 

chromatograph, followed by heating up to one hour at 250°C as shown in Figure 2.4. In 

this process, any contaminants on the fiber get desorbed onto the capillary column of the 

F.1. Fiber Cleaning: 
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gas chromatograph. After one hour, the cleaned fiber was retracted into the needle and 

the needle was removed slowly from the hot injection port. 

 The cleaned SPME fiber was then immersed into the head space of the ‘U’ shaped 

tubes which contained the condensate of the vapors of pyrolysis of wood. The fiber was 

left in the head space of the ‘U’ shaped tube for about 30 minutes as shown in Figure 2.5. 

After 30 minutes, the fiber was retracted into the needle and the needle was slowly 

removed from the tube. 

F.2. Adsorption: 

 In this process, the volatile substances in the head space of the ‘U’ shaped tube 

get adsorbed onto the SPME fiber. This SPME fiber adsorbed with the volatile substances 

was then used for the further analysis by using gas chromatography- mass spectrometry. 

 

Figure 2.4. SPME Fiber cleaning by using gas chromatograph  
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Figure 2.5. Adsorption of the volatile substances by SPME fiber 

 Once the fiber was adsorbed with the volatile substances, it was injected into the 

hot injection port of the gas chromatograph- mass spectrometer, GC-MS Agilent 5973, 

equipped with a mass selective detector as shown in Figure 2.6. The fiber was left in the 

injection port for about one minute in order to ensure that most of the volatile substances 

get desorbed thermally into the separation column for analysis. After one minute, the 

fiber was retracted into the needle and the needle was removed from the injection port. 

The sample injection was done in split less mode in order to ensure that a larger portion 

of the analytes transferred directly into the analytical column without any exhaustion of 

the analytes through the split vent. 

F.3. Desorption and Chromatography: 
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Figure 2.6. Gas chromatograph- Mass spectrometer GC-MS Agilent 5973 

G. Sulfuric acid pre-treatment of wood:

 Sulfuric acid, an inexpensive and nonvolatile dehydrating agent was chosen to 

examine the influence of its addition on the pyrolysis of wood. The sample pieces of 

yellow pine wood were weighed and immersed in sulfuric acid (7%, 10% and 20%) for 

about five minutes by placing it under a vacuum. After five minutes, the wood pieces 

were removed from the sulfuric acid solution and placed in an oven at 90°C for about 18 

hours for drying. Once the wood pieces were dried, its weight and dimensions were 

measured and then the as usual pyrolysis of wood was performed with these pre-treated 
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samples of wood. In order to perform thermo gravimetric analysis of the pre-treated wood 

samples, the dried wood pieces were made into a fine powder. 

 Thermal analysis was performed on the original yellow pine wood samples (fine 

powder) and the sulfuric acid pre-treated and dried wood samples (fine powder). A TGA 

instrument (TGA: TA instruments Q-5000-I) as shown in Figure 2.7,  coupled with a 

mass spectrometer was used with inert gas flow in absence of oxygen. Sample cups used 

in TGA were made up of platinum. The temperature ramp rate chosen for the TGA 

analysis in this experimental work was 10°C/min.  

H. Thermo gravimetric analysis (TGA): 

 

Figure 2.7. Thermo gravimetric analyzer (TA instruments TGA-5000-I)  
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The powdered wood samples were placed in the platinum holders of thermo gravimetric 

analyzer and pyrolyzed up to 1000° C at a heating rate of 10°C/min under nitrogen flow 

of 200ml/min. Then the results obtained from thermo gravimetric analyzer and from the 

coupled mass spectrometer were compared and analyzed. 
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III. RESULTS AND DISCUSSION 

 The main objectives of this study were:  

A. Objectives: 

i) To evaluate the influence of heating rates on pyrolysis products obtained from 

wood pyrolysis. 

ii)  To evaluate the influence of acid pre-treatment on pyrolysis products obtained 

from pre-treated wood pyrolysis.  

 The volatile products obtained from the Flash, Fast, and Slow pyrolysis of yellow 

pine wood in a tube furnace were extracted by using a SPME fiber and analyzed by using 

gas chromatograph- mass spectrometer (GC-MS). The results obtained from Flash, Fast, 

and Slow pyrolysis of original yellow pine wood at different temperature ranges are 

presented in the form of tables on the following pages. The analysis of the volatile 

products obtained by using GC-MS was qualitative, investigating the type of compounds 

produced from the pyrolysis. The library used to find the peaks from GC-MS was created 

by NIST. The volatile products obtained from all rates of pyrolysis, were mostly phenols 

with fewer number of other compounds. As per the literature, methanol, acetic acid, and 

water are the other major compounds which are expected to be seen in the byproducts 

obtained from wood pyrolysis. But we could not see any peaks for methanol, acetic acid, 

and water from GC-MS, which was mainly because of the use of SPME technique. In 

order to check for the presence of methanol, acetic acid , and water in the byproducts 

obtained from wood pyrolysis, thermogravimetric analysis was coupled with mass 

spectrometry, which will be explained in the later parts of this section.  

B. Analysis of original yellow pine wood: 
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From the results presented in the following tables, we can determine the influence of 

heating rates on the release of the volatile products from pyrolysis of wood.  

 

Table 3.1. Volatile products obtained from pyrolysis of yellow pine when temperature is 
maintained constantly at only 500°C using fast and slow heating rates    

 The volatile products obtained from pyrolysis of yellow pine using fast and slow 

heating rates, when temperature is maintained constantly at only 500°C are listed in  

Table 3.1.  

  The list of compounds given in Table 3.1 were the outcome of only qualitative 

analysis of the volatile products obtained by using GC-MS, investigating the type of 

compound produced. The cross marks against some of the substances indicate that 

particular compound produced by using the specified heating rate is below the detection 

limit of the instrument. The compounds, which are below the detection limit by using 

slow heating rate at 500°C, were detected in lower temperature ranges. This can be 
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observed by finding the name of the same compounds in other tables, which list the 

compounds produced at lower temperature ranges by using slow heating rates. 

 

 

Table 3.2. Volatile products obtained from pyrolysis of yellow pine when temperature is 
maintained in the range of 400°C - 500°C using flash (Rt-500°C) , fast and slow heating 
rates. 

 The volatile products obtained from pyrolysis of yellow pine using flash (Rt-

500°C), fast and slow heating rates, when temperature is maintained in the range of 

400°C -  500°C are listed in Table3.2.  

 The list of compounds given in Table 3.2 were the outcome of only qualitative 

analysis of the volatile products obtained by using GC-MS, investigating the type of 

compound produced. The cross marks against some of the substances indicate that 

particular compound produced by using the specified heating rate is below the detection 
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limit of the instrument. The compounds, which are below the detection limit by using 

flash heating rate in this particular temperature range were detected in a lower 

temperature range. The compounds, which are below the detection limit by using slow 

and fast heating rates in this particular range of temperature were also detected in lower 

temperature ranges. All this can be observed by finding the name of the same compounds 

in other tables, which list the compounds produced at lower temperature ranges.  

 

 

Table 3.3. Volatile products obtained from pyrolysis of yellow pine when temperature is 
maintained in the range of 300°C - 400°C using flash (Rt-400°C) , fast and slow heating 
rates. 



30 
 

 
 

 The volatile products obtained from pyrolysis of yellow pine using flash (Rt-

400°C), fast and slow heating rates, when temperature is maintained in the range of 

300°C -  400°C are listed in Table 3.3.  

 The list of compounds given in Table 3.3 were the outcome of only qualitative 

analysis of the volatile products obtained by using GC-MS, investigating the type of 

compound produced. The cross marks against some of the substances indicate that 

particular compound produced by using the specified heating rate is below the detection 

limit of the instrument. The compounds, which are below the detection limit by using 

flash heating rate at this particular temperature range were detected in a higher 

temperature range. But the compounds, which are below the detection limit by using slow 

heating rate at this particular range of temperature were detected in a lower temperature 

range. All this can be observed by finding the name of the same compounds in other 

tables, which list the compounds produced at temperature ranges higher and lower than 

this particular range of temperature.  
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Table 3.4. Volatile products obtained from pyrolysis of yellow pine when temperature is 
maintained in the range of Rt - 300°C using flash, fast and slow heating rates. 

 The volatile products obtained from pyrolysis of yellow pine using flash (Rt-

500°C), fast and slow heating rates, when temperature is maintained in the range of  Rt -  

300°C are listed in  Table 3.4.  

 The list of compounds given in Table 3.4 were the outcome of only qualitative 

analysis of the volatile products obtained by using GC-MS, investigating the type of 

compound produced. The cross marks against some of the substances indicate that 

particular compound produced by using the specified heating rate is below the detection 

limit of the instrument. The compounds, which are below the detection limit by using 

flash, fast , and slow heating rates at this particular temperature range were detected in a 

higher temperature range. This can be observed by finding the name of the same 
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compounds in other tables, which list the compounds produced at higher temperature 

ranges.  

 From the above four tables 3.1, 3.2, 3.3, and 3.4, it was observed that most of the 

volatile products obtained from the pyrolysis of untreated wood were phenols with fewer 

number of other compounds. The overall volatile products obtained from wood pyrolysis 

by using Flash, Fast and Slow heating rates were the same, but  the volatile products 

obtained at different temperature ranges like Room temperature-300°C, 300°C -  400°C, 

and 400°C -500°C in Flash, Fast, and Slow pyrolysis were different. From this it can be 

deduced that by using slow heating rates, compounds were produced at lower apparent 

temperatures, when compared to that of flash and fast heating rates. 

 The samples of yellow pine wood, which was pre-treated with sulfuric acid and 

dried   were subjected to pyrolysis by using fast and slow heating rates. The sulfuric acid 

used for the pre-treatment was of different concentrations, like 7%, 10%, and 20%. The 

changes in the dimensions and mass of the resulting carbonized wood pieces were 

measured to calculate the charcoal yield. The resulting mass percent decrease in charcoal 

yields obtained from the wood pyrolysis using different concentrations of sulfuric acid 

are presented in Table 3.5.   

C. Analysis of sulfuric acid pre-treated yellow pine wood: 

 The volatile products obtained from the fast and slow pyrolysis  of sulfuric acid 

(7%, 10%, and 20%) pre-treated and dried wood pieces of yellow pine were extracted 

through SPME fiber and analyzed by using gas chromatograph- mass spectrometer,    

GC-MS. The analysis in this part of experimental work by using GC-MS was qualitative 
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and semi-quantitative, investigating the type of compounds produced and determining the 

increase or decrease in the amount of compounds produced. The semi-quantitative 

analysis was a comparison of the amount of compounds produced from using different 

concentrations of sulfuric acid for pre-treatment and a comparison of the amount of 

compounds produced by using different heating rates. The library used to find the peaks 

from GC-MS was created by NIST. For the semi-quantitative comparison, the peak areas 

of particular compounds were taken into account.  

 From the data to be presented in the following tables and graphs, we can 

investigate the influence of sulfuric acid pretreated wood pyrolysis on the charcoal yield 

and the production of volatile products.  

 

Figure 3.1. Shrinkage of wood block by 600°C treatment for Yellow Pine 
(A)  Original (B) treated with sulfuric acid (C) without sulfuric acid  
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The appearance of original and 600°C pyrolyzed wood blocks of Yellow Pine, with and 

without sulfuric acid pre-treatment are shown in Figure 3.1.  

 From Figure 3.1, it can be observed that the shrinkage of the pyrolyzed wood 

block, which is pre-treated with sulfuric acid, is less when compared to that of the 

untreated pyrolyzed wood block. It implies that the volume of charcoal can be increased 

by pre-treating the wood block with sulfuric acid before subjecting it to pyrolysis. This 

also suggests that pre-treatment of wood with sulfuric acid alters the decomposition 

pathways during pyrolysis.   

 

Table 3.5.  Percent decrease of dimensions in three directions and percent decrease of 

mass of the pyrolyzed wood blocks using different conditions.                                       

 The percent decrease of dimensions in axial, tangential and radial directions and 

Sno 
Wood 
Type 

Sulfuric acid 
Treatment 

Heating 
Rate 

Axial                      
% decrease 

Tangential 
%decrease 

Radial                         
% decrease 

Mass              
% decrease 

1 
Yellow 

Pine No Fast 23.076 35.391 29.385 75.338 

2 
Yellow 

Pine Yes  20% Fast 23.076 28 23.076 62.1106 

3 
Yellow 

Pine No Slow 18.336 36 30.952 75.3185 

4 
Yellow 

Pine Yes  20% Slow 25.462 23.913 25.462 62.521 

5 
Yellow 

Pine Yes  10% Slow 20.417 22.417 21.905 58.234 

6 
Yellow 

Pine Yes  7% Slow 20 24 20 60.843 
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the percent decrease in the mass of the pyrolyzed wood blocks by using different heating 

rates and with or without sulfuric acid (different concentrations) pretreatment are shown 

in Table 3.5.   

 From the data in Table 3.5, it was observed that 10 % sulfuric acid pretreatment 

of wood  followed by slow pyrolysis produced maximum mass yield of charcoal. This 

suggests that pre-treatmet of wood with sulfuric acid alters the decomposition pathways 

during pyrolysis, resulting in the production of different byproducts, which can be 

observed in the following parts of this section. 

 Furfural  Phenol  Phenol-
2-methyl  

Benzofuran
-2-methyl  

Naphthalene  Dibenzo   
furan  

YP Fast 
Treated Vs 
Untreated  

0 : 1  0.634 : 1  0.316 : 1  1: 0.965  1 : 0.281  1 : 0  

YP Slow 
Treated Vs 
Untreated  

0 : 1  0.394 : 1  0.541: 1  1 : 0.455  1 : 0.873  1 : 0.358  

YP Treated 
Fast Vs 
Slow 

0:0  0.708 : 1  0.593 : 1  1 : 0.637 1 : 0.671  0.549 : 1  

YP Treated 
Slow      
20% Vs  
10% Vs 7%  

0:0:0  0.545 : 
0.826 :  
1  

0.613: 
0.178:      
1  

1:           
0.267:      
0.319  

1:              
0.154:        
0.381  

1:      
0.252:  
0.195  

 

Table 3.6. Ratios of normalized peak areas of  particular compounds from SPME-GC-MS 
of the volatile products obtained from different pyrolysis experiments using different 
conditions. 
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 The ratios of the normalized peak areas of particular compounds which show 

significant difference in their production from SPME-GC-MS of the volatile products 

obtained from different pyrolysis experiments by using different conditions are shown in 

Table 3.6. The conditions of the pyrolysis experiment include different heating rates, with 

and without sulfuric acid pre-treatment, and different concentrations of sulfuric acid used 

for the pre-treatment. 

 In order to compare the above data more clearly, each comparison has been 

plotted into separate bar graphs as shown in the following Figures 3.2 - 3.5. 

 

Figure 3.2. Graph showing differences in the peak areas of particular compounds from 
the experiments 

 The peak areas of particular compounds produced from the pyrolysis of sulfuric 

acid pre-treated yellow pine wood and untreated yellow pine wood by using fast heating 

rate are compared in the form of bar graphs in the above Figure 3.2. 

Yellow Pine - Fast - Treated Vs Untreated 

 From the above graph, it can be observed that by using fast heating rate the 

amount of phenols produced from the pyrolysis of sulfuric acid pre-treated yellow pine 
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wood is less when compared to that of untreated yellow pine wood, and the amount of 

furan derivatives produced from the pyrolysis of sulfuric acid pre-treated yellow pine 

wood is more when compared to that of untreated yellow pine wood. The untreated 

yellow pine wood produced furfural on pyrolysis but when the wood was treated with 

sulfuric acid, furfural was no longer produced. 

 The increase in the production of furan derivatives is a very significant result, 

because furan derivatives are the compounds which have higher energy density than that 

of ethanol. Since ethanol is the major component of the first generation biofuels, many of 

the researchers are trying to replace ethanol with furan derivatives ( higher efficiency 

than ethanol)  in the second generation biofuels.  

 

 

Figure 3.3. Graph showing differences in the peak areas of particular compounds from 
the experiments Yellow Pine - Slow- Treated Vs Untreated 
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 The peak areas of particular compounds produced from the pyrolysis of sulfuric 

acid pre-treated yellow pine wood and untreated yellow pine wood by using slow heating 

rate are compared in the form of bar graphs in the above Figure 3.3. 

 From the above graph, it can be observed that even by using slow heating rate the 

amount of phenols produced from the pyrolysis of sulfuric acid pre-treated yellow pine 

wood is less when compared to that of untreated yellow pine wood, and the amount of 

furan derivatives produced from the pyrolysis of sulfuric acid pre-treated yellow pine 

wood is more when compared to that of untreated yellow pine wood. The untreated 

yellow pine wood produced furfural on pyrolysis but when the wood was treated with 

sulfuric acid, furfural was no longer produced. 

 When treated and untreated wood pyrolysis were compared using slow heating 

rate and fast heating rate, slow heating rates  produced the same results as that of fast 

heating rates, that is the sulfuric acid pre-treatment increased the abundance of furan 

derivatives and decreased the abundance of phenols. But when treated wood pyrolysis 

using slow and fast heating rates were compared, the results are as shown in Figure 3.4.      
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Figure 3.4. Graph showing differences in the peak areas of particular compounds from 
the experiments 

 The peak areas of particular compounds produced from the pyrolysis of sulfuric 

acid pre-treated yellow pine wood by using fast and slow heating rates are compared in 

the form of bar graphs in the above Figure 3.4. 

Yellow Pine - Treated- Fast Vs Slow 

 From the above graph, it can be observed that from the pyrolysis of sulfuric acid 

pre-treated wood the amount of phenols obtained by using slow heating rate is more 

when compared to that obtained by using fast heating rate, and the amount of furan 

derivatives obtained by using slow heating rate is more when compared to that obtained 

by using fast heating rate. This implies that the abundance of the volatile products is more 

by using slow heating rate when compared to that fast heating rate. Since slow heating 

rate produced more amounts of volatile products, slow heating rate was chosen in specific 

to carry out the next set of experiments using different concentrations of sulfuric acid pre-

treatment for wood pyrolysis.  
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Figure 3.5. Graph showing differences in the peak areas of particular compounds from 
the experiments 

 The peak areas of particular compounds produced by using slow heating rate for 

the pyrolysis of sulfuric acid pre-treated yellow pine wood using different concentrations 

of sulfuric acid like 20%, 10%, 7% for pre-treatment are compared in the form of bar 

graphs in the above Figure 3.5. 

Yellow Pine –Slow- Treated – 20% Vs 10% Vs 7%  

 From the above graph, it can be observed that by using slow heating rate for the 

pyrolysis of sulfuric acid pre-treated wood the amount of phenols obtained is higher 

when 7% of sulfuric acid is used for the pretreatment, and the amount of furan 

derivatives obtained is higher when 20% of sulfuric acid is used for the pretreatment. The 

untreated yellow pine wood produced furfural on pyrolysis but when the wood was 

treated with sulfuric acid, furfural was no longer produced. 

 This data implied that using higher concentrations of sulfuric acid (20%) 

produced maximum amounts of furan derivatives, which are of major research interest. 

These furan derivatives have higher energy density than that of ethanol. Since ethanol is 
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the major component of the first generation biofuels, many of the researchers are trying 

to replace ethanol with furan derivatives ( higher efficiency than ethanol)  in the second 

generation biofuels. 

 The thermo gravimetric analysis of original yellow pine wood and the sulfuric 

acid pre-treated yellow pine wood was performed using a thermogravimetric analyzer 

(TGA) which was coupled with a mass spectrometer. The mass spectrometer used in this 

part of the experimental work was different from the GC-MS which have been used 

before for the other set of experiments . The thermo gravimetric analysis (TGA) curves 

and its derivative curves for treated and untreated samples of yellow pine are shown in 

the Figures 3.6, 3.7, 3.11, 3.12, 3.16, and 3.17. The thermo gravimetric analysis and mass 

spectrometry coupled data of the treated and untreated samples of yellow pine wood are 

shown in the Figures 3.8, 3.9, 3.10, 3.13, 3.14, and 3.15. When the derivative of thermo 

gravimetric analysis curve was coupled with the mass spectrometry peaks obtained, the 

release of water, methanol and acetic acid during decomposition was identified. Apart 

from methanol, acetic acid, and water, many other compounds were also seen but it was 

hard to make conclusions about other compounds as they were seen all over the 

temperature range. The TGA curves obtained from the thermal analysis of treated and 

untreated samples of yellow pine wood were overlapped as shown in Figures 3.16 and 

3.17 to compare the different temperature ranges of decomposition.    

D. Thermo gravimetric analysis:   
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Figure 3.6. TGA of original yellow pine  

The thermo gravimetric curve of original yellow pine is shown in the above Figure 3.6. 
 
 

 

Figure3.7. DTG of yellow pine 

The derivative of  thermo gravimetric analysis of original yellow pine is shown in the 

above Figure 3.7. 

 From the Figures 3.6 and 3.7, it can be observed that yellow pine showed rapid 

decomposition in a temperature range of 250°C - 400°C. The starting weight loss before 
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100°C is mainly due to the loss of moisture from the sample.  The peak seen at 1000°C in 

the DTG of yellow pine is because of the oxidation, which is done at the end of the 

process to clean up the TGA.   
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Figure 3.8. TGA of yellow pine, indicating the release of water (m/z 18) 

 The thermo gravimetric curve and the mass spectrometric peak of water (m/z 18) 

are shown in the above Figure 3.8, indicating the release of water during the 

decomposition of original yellow pine sample, whose TGA is shown in Figure 3.6. For 

this graph and all the subsequent graphs, every 10 minute increment indicates 100°C rise 

in temperature starting from room temperature. 
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Figure 3.9. TGA of yellow pine, indicating the release of methanol (m/z 31) 

Time (min) 
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 The thermo gravimetric curve and the mass spectrometric peak of methanol (m/z 

31) are shown in Figure 3.9, indicating the release of methanol during the decomposition 

of original yellow pine sample, whose TGA is shown in Figure 3.6.  
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Figure 3.10. TGA of yellow pine, indicating the release of acetic acid (m/z 44) 

 The thermo gravimetric curve and the mass spectrometric peak of acetic acid (m/z 

44) are shown in the above Figure 3.10, indicating the release of acetic acid during the 

decomposition of original yellow pine sample, whose TGA is shown in Figure 3.6. The 

peak observed in this Figure 3.10 is very small which can be observed by looking at the 

base line of the mass spectrum. 
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Figure 3.11. TGA of sulfuric acid pre-treated yellow pine wood 

The thermo gravimetric analysis of sulfuric acid pre-treated yellow pine is shown in the 
above Figure 3.11. 
 

 

Figure 3.12. DTG of sulfuric acid pre-tretaed yellow pine wood 

The derivative of  thermo gravimetric analysis of sulfuric acid pre-treated  yellow pine is 

shown in the above Figure 3.12. 

 From the above figure, it can be observed that sulfuric acid pre-treated yellow 

pine showed rapid decomposition in a narrow temperature range of 150°C - 250°C. It can 

also be observed that the temperature range of decomposition has broadened when 

compared to that of the TGA of original yellow pine. The starting weight loss before 

100°C is mainly due to the loss of moisture from the sample. The peak seen at 1000°C in 
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the DTG of yellow pine is because of the oxidation, which is done at the end of the 

process to clean up the TGA.    
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Figure 3.13. TGA of sulfuric acid pre treated yellow pine, indicating the release of water 
(m/z 18) 

 The thermo gravimetric curve and the mass spectrometric peak of water (m/z 18) 

are shown in the above Figure 3.13, indicating the release of water during the 

decomposition of sulfuric acid pre-treated yellow pine wood sample, whose TGA is 

shown in Figure 3.11. For the treated wood samples, the release of water was seen at 

lower temperatures when compared to that of untreated wood samples. This indicates that 

pre-treatment of wood altered the decomposition pathway during the pyrolysis. 
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Figure 3.14.TGA of sulfuric acid pre treated yellow pine, indicating that methanol (m/z 
31) is not released  
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 In Figure 3.14, by looking at the base line of the mass spectrum, it can be 

observed that no peak is obtained for the mass to charge ratio (m/z 31).The thermo 

gravimetric curve and the mass spectrum of methanol (m/z 18) are shown in the above 

Figure 3.14, indicating that methanol is not released during the decomposition of sulfuric 

acid pre-treated yellow pine wood sample, whose TGA is shown in Figure 3.11. This 

implied that methanol was not produced from the treated wood but it was produced from 

the untreated wood. 
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Figure 3.15. TGA of sulfuric acid pre treated yellow pine, indicating release of very small 
amounts of acetic acid (m/z 44) 

 In Figure 3.15, by looking at the uneven base line of the mass spectrum just below 

the peaks shown in derivative of thermogravimetric curve (DTG), it can be observed that 

a very small peak is obtained, which almost looks like a straight line for the mass to 

charge ratio (m/z 44). In order to compare all the graphs, same scale was chosen for all 

the graphs, but when the same data is plotted on a different scale, a good peak was 

obtained. The thermo gravimetric curve and the mass spectrometric peak of water      
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(m/z 44) are shown in the above Figure 3.15, indicating release of very small amounts of 

acetic acid during the decomposition of sulfuric acid pre-treated yellow pine wood 

sample, whose TGA is shown in Figure 3.11. For the treated wood samples, the release of 

acetic acid was observed at lower temperatures when compared to that of untreated wood 

samples. 

 

Figure 3.16. Comparison of  TGA of original yellow pine and sulfuric acid pre-treated 
yellow pine 

 

Figure 3.17. Comparison of DTG of original yellow pine and sulfuric acid pre-treated 
yellow pine 
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 From the above Figures 3.16 and 3.17, it can be observed that sulfuric acid pre-

treatment lowered the onset temperature and also broadened the temperature range of 

decomposition. This implies that when yellow pine is pre-treated with sulfuric acid, the 

decomposition takes place at much lower temperatures. It can also be observed that the 

mass yield obtained from treated wood is more than 20% and the mass yield obtained 

from untreated wood is less than 20%. The peak seen at 1000°C in the DTG of treated 

and untreated yellow pine is because of the oxidation, which is done at the end of the 

process to clean up the TGA.   

 



50 
 

IV. CONCLUSIONS 

 As stated in the Results and Discussion section, the main objectives of this study 

were: (i) to evaluate the influence of heating rates on pyrolysis products obtained from 

wood pyrolysis, and (ii) to evaluate the influence of acid pre-treatment on pyrolysis 

products obtained from pre-treated wood pyrolysis.  

i) Influence of heating rates:  

 By using the Flash, Fast, and Slow heating rates, most of the 

volatile products obtained from the pyrolysis of untreated wood were  

phenols.  The volatile products obtained at different temperature ranges 

like Room temperature-300°C, 300°C -  400°C, and 400°C -500°C in 

Flash, Fast, and Slow pyrolysis were different. However, the overall 

volatile products obtained from wood pyrolysis (i.e. the overall list of all 

the compounds obtained from different temperature ranges in wood 

pyrolysis  by using different heating rates) were the same. It has been 

deduced that by using slow heating rates, compounds were produced at 

lower apparent temperatures , when compared to that of flash and fast 

heating rates. 

ii) Influence of sulfuric acid pre-treatment: 

a) Charcoal yield: It was observed that the shrinkage of the 

pyrolyzed wood block, which is pre-treated with sulfuric acid 

is less when compared to that of the untreated pyrolyzed wood 

block. It was observed that 10 % (compared to that of 7% and  
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20%) sulfuric acid pretreatment of wood  followed by slow 

pyrolysis produced maximum mass yield of charcoal. This 

implied that the mass yield of charcoal can be increased by pre-

treating the wood block with 10% sulfuric acid before 

subjecting it to pyrolysis.  

b) Volatile products: It was observed that by using slow heating 

rate for the pyrolysis of sulfuric acid pre-treated yellow pine 

wood, the amount of phenols obtained was lower and the 

amount of furan derivatives obtained was higher. This increase 

in production of furan derivatives by using sulfuric acid pre-

treatment is a good improvement for the production of 

Furanics, the furan based biofuels, which are of  increasing 

research interest because of their significant advantages over 

the first generation biofuels.   

c) Thermo gravimetric analysis: It was observed that sulfuric acid 

pre-treatment of yellow pine wood lowered the onset 

temperature and also broadened the temperature range of 

decomposition. When the thermo gravimetric analysis and the 

mass spectrometry results were coupled, it was observed that 

during the decomposition of untreated yellow pine wood, 

water, methanol, and acetic acid were released. But during the 

decomposition of treated yellow pine wood, only water and 
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acetic acid were released and there was no production of 

methanol. 
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V. FUTURE WORK 

1. To find out the exact mechanism for the production of furan derivatives from the 

sulfuric acid pre treated wood pyrolysis. 

2. To determine the charcoal yield by using concentrations higher than 10% and less 

than 20% of sulfuric acid. 

3. To do an additional study on charcoal properties like surface area. 

4. To try with other types of wood.  
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