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Abstract    Since the advent of techniques to investigate gene expression on a large scale, 

numerous circadian rhythms in mRNA abundance have been reported. These rhythms generally 

differ in amplitude and phase. First studies on circadian rhythms of transcription on a large scale 

are also emerging. We investigated to what extent the same circadian regulatory mechanism of 

transcription can give rise to rhythms in RNA amount that differ in phase solely based on a 

parameter that is not regulated by the circadian clock. Using a discrete-time approach, we 

modeled a sinusoidal rhythm in transcription with various constant exponential RNA decay rates. 

We found that the slower the RNA is degraded the later the phase of the RNA amount rhythm 

compared to the phase of the transcriptional rhythm. However, we also found that the phase of 

the rhythm in RNA amount is limited to a time frame spanning the first quarter of the period 

following the phase of the transcriptional rhythm. This finding is independent of the amplitude 

and vertical shift of the transcriptional rhythm or even of the way RNA degradation is modeled. 

We confirmed our results with a continuous-time model, which also allowed us to derive a 

simple formula that relates the phase of a rhythm in mRNA amount solely to the phase and 

period of its sinusoidal transcriptional rhythm and its constant mRNA half-life. This simple 

formula even holds true for the best sinusoidal approximations of a non-sinusoidal rhythm of 

transcription and mRNA amount. When using our discrete-time approach to model constant rates 

of transcription with a sinusoidal RNA half-life, on the other hand, we found that varying the 

constant component of the system, i.e. the rate of transcription, does not change the phase of the 

rhythm in RNA amount. In summary, our data show that at least four distinct circadian 

regulatory mechanisms are required to allow for all phases in rhythms of RNA amount, one for 

each quarter of the period. 
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INTRODUCTION 

 

Many behavioral, physiological, and biochemical activities in a variety of organisms have 

been reported to show a circadian rhythm. Circadian rhythms are those rhythms that continue 

under constant conditions with a period of about a day, that show temperature-compensation of 

their period, and that entrain to the daily environmental time cues such as light/dark or 

temperature changes (Johnson and Hastings, 1986). Circadian rhythms are based on the circadian 

clock, which is an endogenous, biochemically-based timer that regulates these rhythms through 

mechanisms summarily termed the output pathway.  

 

Reports of rhythmic gene expression at the level of mRNA amount have been particularly 

numerous, because with the advent of techniques like microarray analysis it became possible to 

determine rhythms in mRNA amount on a large scale. In Arabidopsis for example, which was 

the first organism investigated in this manner (Harmer et al., 2000), 6% of the more than 8000 

genes tested showed a statistically significant circadian rhythm in mRNA amount. These 453 

rhythms differ greatly in amplitude and phase, with all six possible phases (due to the 4-hour-

sampling intervals) well represented. Since the amount of an mRNA is determined by its rate of 

synthesis versus its rate of degradation, experiments to determine circadian transcription on a 

large scale have also been performed. Based on the enhancer-trap method with luciferase as 

reporter gene, even 36% of the 335 lines assayed in Arabidopsis showed a statistically significant 

circadian rhythm of transcription (Michael and McClung, 2003). Circadian rhythms of mRNA 

degradation have not been tested on a large scale yet. There is, however, some evidence 
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suggesting degradation rates in the form of a circadian rhythm for a few particular mRNAs 

(Lidder et al., 2005; Kim et al., 2005) 

 

When investigating the model organism Chlamydomonas reinhardtii (Jacobshagen et al., 

2001), we found that several of its genes show a circadian rhythm in mRNA amount albeit with 

various amplitudes and phases. For one of these genes, LHCB-1, we demonstrated that the 

circadian clock regulates the expression of this gene at the level of transcription (Jacobshagen et 

al., 1996). Our results prompted us to question whether the other genes with rhythms in mRNA 

amount show a circadian rhythm in transcription identical to LHCB-1, despite the differences in 

phase at the mRNA amount level. A few sample calculations revealed that even when two genes 

have the exact same circadian rhythm of transcription, their rhythms in mRNA amount can differ 

in phase solely because of a difference in their constant rate of mRNA degradation. These 

calculations showed that the gene with the slower mRNA degradation rate will have a later phase 

in its circadian rhythm of mRNA amount.  

 

In order to more comprehensively investigate circadian transcription with various 

constant mRNA degradation rates, we turned to the method of discrete-time modeling. To our 

surprise we found that although the phase can vary depending on the constant RNA degradation 

rate chosen, there is a limit to how much it can vary. The phase of the rhythm in mRNA amount 

can occur no more than a quarter of the period later than the phase of the rhythm in transcription. 

If this is truly the case, then an organism needs at least four distinct mechanisms by which the 

circadian clock regulates gene expression in order to allow for all possible phases of rhythms in 

mRNA amount. 
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We confirmed our discrete-time modeling results by developing a solvable differential 

equation, yielding a continuous-time model with an explicit formula. The differential equation 

also allowed us to derive a simple formula for the phase of the rhythm in mRNA amount solely 

in terms of the phase and period of the sinusoidal transcriptional rhythm and the constant half-

life of the mRNA. Since the sinusoidal mRNA amount rhythm has a period identical to the 

transcriptional rhythm, our formula may be used to calculate the phase of an underlying 

transcriptional rhythm from experimentally determined mRNA half-life and mRNA amount 

rhythm under the condition that the mRNA half-life is constant.  

 

 

MATERIALS AND METHODS 

 

DISCRETE-TIME MODELING  

 

Discrete-time modeling (Fig. 1) was performed using the computer program STELLA 

version 8.1 at 0.25 h time-steps with Euler's Method chosen as numerical integration method. 

The amount of RNA was modeled as a "reservoir" that could not be negative. In all our models, 

the amount of RNA is expressed in "RNA units" which can represent equally well particular 

units of RNA amount or RNA concentration. 

 

Transcription rhythmic, RNA half-life constant 
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Transcription was modeled as a cosine wave with a period of 24 h, a phase where the 

minimum occurred at 0 min into the time domain, and an amplitude of 0.5 so that it was 1 RNA 

unit/h at its maximum and 0 RNA unit/h at its minimum (Enzyme_gene_TF = 0.5-

0.5*COS((2*PI/24)*TIME) in Fig. 1). The inclusion of an Enz_Amplification_Factor that could 

be varied to a different value from one allowed for changes in amplitude of the transcriptional 

rhythm in order to analyze the effect of these amplitude changes on the resulting rhythm in RNA 

amount (Enz_Amplitude_Factor = 1 or variable in Fig. 1). The addition of a basic constant rate 

of transcription to be chosen by the experimenter allowed for the analysis of effects on the 

resulting rhythm in RNA amount from possible vertical shifts of the rhythm in transcription 

(Basal_Transcription = 0 or variable Fig. 1).  The combination of all three parameters determined 

the rate of RNA synthesis in the model (INFLOWS: RNA_Transcription = 

Enzyme_gene_TF*Enz_Amplitude_Factor+Basal_Transcription in Fig. 1). 

 

RNA degradation was modeled via exponential decay ([RNA] - [RNA] 2- t/h) for which 

the constant half-life (h) in hours could be chosen (OUTFLOWS: RNA_Degradation = (RNA-

RNA*2^(-DT/halflife))/DT in Fig. 1). The phase of the rhythm in RNA amount (RNA(t) in Fig. 

1) was determined by visually identifying the time of the highest or lowest value in the data 

table. Precision for the data table was set to "free float".  

 

Transcription rhythmic, RNA degradation via Michaelis-Menten equation constant 

 

In a different approach, RNA degradation was modeled via the Michaelis-Menten 

equation (Vmax [RNA]/(KM + [RNA]) in order to account for the action of an RNase. Various 
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values for both Vmax and KM could therefore be chosen to run the model with all other aspects 

identical to the model based on RNA exponential decay in Figure 1 (OUTFLOWS: 

RNA_Degradation = Vmax*RNA/(RNA+Km).  

 

Transcription constant, RNA half-life or % RNA degradation rhythmic 

 

When transcription was modeled at a constant rate, but the RNA half-life with a rhythm, 

the OUTFLOWS were modeled identical to Figure 1, except that the half-life was modeled as a 

cosine wave with a period of 24 h (halflife = (Amplitude_Factor-

Amplitude_Factor*COS((2*PI/24)*TIME))+Vertical_Shift). This allowed us to vary the 

amplitude and vertical shift of the rhythm in RNA half-life. The constant rate of transcription 

was modeled to be chosen by the experimenter in RNA units/h.  

 

To model a rhythm in % RNA degradation instead of RNA half-life, the % RNA 

degradation was modeled as a cosine wave with a 24 h period whose amplitude and vertical shift 

could be chosen (Percent_degradation = (Amplitude_Factor-

Amplitude_Factor*COS((2*PI/24)*TIME))+Vertical_Shift). This rhythm was then integrated 

into the RNA degradation term (OUTFLOWS: RNA_Degradation = 

RNA*Percent_degradation). 

 

 

CONTINUOUS-TIME MODELING 
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Some algebraic manipulations and the generation of graphs from our solutions were 

performed using the computer program MathematicaTM. 

 

  

 

RESULTS 

 

DISCRETE-TIME MODELING 

 

Rhythmic transcription, constant RNA half-life  

 

We decided to model the rate of transcription as a sinusoidal wave, because many of the 

transcriptional rhythms measured with nuclear run-on assays or luciferase as a reporter gene 

generally resemble a sine wave (Liu et al, 1995; So and Rosbash, 1997; Michael and McClung, 

2003). In addition, the seven circadian rhythms in mRNA amount that we detected in the model 

organism Chlamydomonas reinhardtii also resemble a sine wave (Jacobshagen et al., 2001). We 

decided to model RNA degradation via exponential decay, because when RNA degradation is 

measured experimentally, it usually follows this pattern and is therefore most commonly 

expressed in half-lives.   

 

As demonstrated in Figure 2, a longer constant RNA half-life indeed leads to a later 

phase in the rhythm in RNA amount although the rhythm in the sinusoidal rate of transcription is 

the same as for the shorter constant RNA half-life. For the specific rhythm in transcription 
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modeled in this example (red in Fig. 2), the resulting rhythm in RNA amount has its peak only 

0.25 h later than the transcriptional rhythm when the RNA half-life is 0.1 h (blue in upper panel 

of Fig. 2) but 3 h later when the constant half-life is lengthened to 2.5 h (blue in lower panel of 

Fig. 2). Identical results are achieved when comparing the troughs or any other phase reference 

points. This demonstrates that the phase of a rhythm in RNA amount can be shifted based on a 

parameter that is not controlled by the circadian clock. Figure 2 also demonstrates that the period 

of the RNA amount rhythm remains identical to the period of the transcriptional rhythm for both 

constant half-lives.  

 

Limits to phase 

 

When modeling longer and longer RNA half-lives, we discovered to our surprise that the 

phase of the resulting rhythm in RNA amount approached a final value. For our specific rhythm 

in transcription, the phase could not be more than 6 h later than the transcriptional rhythm (Fig. 

3), which represents exactly a quarter of its 24 h period.  

 

In order to understand what happens when very long RNA half-lives are chosen, it is 

instructive to look at the case of the extremely long half-life of 1000 h or 41.67 days (Fig. 4). In 

the beginning, the amount of RNA increases with a small amplitude rhythm on top of this 

general increase (upper panel in Fig. 4, note that the x-axis goes up to 1200 h instead of the 120 h 

in Fig. 2). However, when running the model long enough or starting out with the proper high 

amount of initial RNA, the RNA amount stabilizes to a high constant value on top of which it 

cycles with a stable, very low amplitude (lower panel in Fig. 4, note that the y-axis for the 
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amount of RNA goes from 719.4 to 723.4). Generally it can be said that the longer the RNA 

half-life, the more cycles it takes for the amount of RNA to stabilize when starting with an initial 

RNA amount of zero.  

 

Table 1 summarizes the amount of RNA that can be found at the peak and trough for 

various RNA half-lives after the RNA amount has stabilized.  Table 1 also shows that the 

amplitude when expressed as the amount of RNA that lies between the peak and the trough first 

increases with longer RNA half-lives but goes towards a final value for very long RNA half-lives 

(3.82 in this specific example). When the amplitude is expressed as the difference in RNA 

amount between peak and trough as a portion of the peak value, however, it continues to become 

smaller with longer RNA half-lives. For our example, the portion of RNA amount between the 

peak and the trough is only 0.5% of the peak amount when the extreme half-life of 1000 h is 

chosen (Table 1). 

 

Relevance to experiments 

 

In experiments to determine rhythms in RNA amount through northern blot analysis, an 

amplitude of at least two fold is often considered significantly above background noise. A two-

fold amplitude rhythm will show an RNA amount between peak and trough that is 50% of the 

peak amount. Consequently, such experiments would only be able to detect rhythms with a phase 

of up to about 4.9 h later than the phase of the transcriptional rhythm in our specific example 

(Table 1). They would not detect those rhythms whose phases are between 4.9 and 6 h later.  
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Effect of amplitude and vertical shift 

 

We also investigated the effect of varying the amplitude of the transcriptional rhythm in 

our discrete-time model (Table 2). We did this because promoters that are regulated by the same 

circadian mechanism but differ in their strength will give rise to rhythms of transcription that 

differ in amplitude. A weak promoter will give rise to a lower amplitude than a strong promoter 

although the phase and period will remain the same. Not surprisingly, we found that the larger 

the amplitude of the transcriptional rhythm the larger the amplitude of the rhythm in RNA 

amount (compare amounts of RNA between peak and trough in Table 2). In fact, the amplitude 

of the rhythm in RNA amount changes by the same factor with which the amplitude of the 

transcriptional rhythm is changed. But more importantly, we also found that the phase of the 

rhythm in RNA amount is unaffected. The same constant RNA half-life will give rise to the same 

phase of the rhythm in RNA amount regardless of the amplitude of the transcriptional rhythm.  

 

We also modeled our sinusoidal transcriptional rhythm with various vertical shifts by 

adding various constant rates of transcription (Table 2). Such a constant rate of transcription may 

account for a basic low-level promoter activity on top of which the activity of the promoter 

exhibits circadian regulation. In this case, the amplitude of the rhythm in RNA amount does not 

change, i.e. the amount of RNA between peak and trough is the same for a particular RNA half-

life regardless of the vertical shift (Table 2). Only when this amount of RNA between peak and 

trough is expressed as a percent of the peak value will it become smaller as the vertical shift 

increases. However, the phase of the rhythm in RNA amount is again unaffected (Table 2). The 

same constant RNA half-life will give rise to the same phase of the rhythm in RNA amount 
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regardless of the vertical shift of the transcriptional rhythm.  

 

In conclusion, neither changes in amplitude nor in vertical shift in our rhythmic 

transcription model will change the phase of the resulting rhythm in RNA amount. Instead, this 

phase, as compared to the transcriptional rhythm, depends solely on the particular constant RNA 

half-life chosen. Consequently, our finding that the phase of the rhythm in RNA amount is 

limited to between 0 and 6 h later than the phase of our 24-h-period transcriptional rhythm holds 

true regardless of the transcriptional rhythm's amplitude or vertical shift. Amplitude and vertical 

shift may, however, determine whether a rhythm in RNA amount can be detected experimentally 

or falls below the limit of detection.  

 

RNA degradation via Michaelis-Menten equation 

 

We also modeled RNA degradation using the Michaelis-Menten equation (Vmax 

[RNA]/(KM + [RNA]). This approach might be considered to better reflect the action of an 

RNase, the specific kind of enzyme that actually degrades RNA in organisms. The Michaelis-

Menten equation contains two parameters that can be varied, Vmax and KM. When using various 

value combinations for these two parameters in our model, we principally obtained the same 

results as for the exponential decay model of RNA degradation. The phase of the rhythm in RNA 

amount may range between 0 and 6 h later than the phase of our transcriptional rhythm but not 

beyond (data not shown). However, not all Vmax and KM combinations fall under this pattern. 

Some combinations (extremely low Vmax with extremely high KM) will cause such a slow RNA 

degradation that the amount of RNA continues to increase without ever stabilizing to cycle 
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around final values. Some other combinations (extremely high Vmax with extremely low KM) will 

lead to such a fast RNA degradation that, due to the limitations of our discrete-time approach, the 

amount of RNA bounces between zero and a positive value. The amount of RNA under these 

conditions should remain zero at all times. It bounces, because the STELLA program executes 

the calculation of outflows from the RNA amount without inflows added but calculates the 

amount of RNA for the next time point from the outflows and the inflows. This problem can be 

circumvented by programming STELLA to calculate the outflows with the inflows added 

(replace RNA with RNA+(RNA_Transcription*DT)), although this has the disadvantage that the 

phase of the rhythm in outflows is now shifted to occur earlier by one time point interval. We 

also discovered that certain combinations of Vmax and KM lead to rhythms in RNA amount that do 

not strictly show a sine wave pattern. The consequence is that its phase cannot really be 

compared to the phase of the sinusoidal transcriptional rhythm since the shape of both rhythms 

differs. The lower panel in Figure 5 shows such an example.  

 

Transcription constant but RNA half-life rhythmic 

 

The amount of RNA might also show a rhythmic pattern due to a rhythm in RNA 

degradation instead of transcription. In order to investigate this kind of situation, we modeled a 

constant rate of transcription in combination with an RNA half-life that shows a sinusoidal 

pattern. Since an RNA half-life of 0 h leads to an instantaneous degradation of all RNA 

regardless of its amount, a situation not likely in an organism, we modeled the rhythm in RNA 

half-life with a trough of more than 0 h. For the two examples depicted in Figure 6, the cosine 

wave in RNA half-life has a period of 24 h, and either a peak of 1.25 h and a trough of 0.25 h 



 15 Jacobshagen 

(pink in upper panel of Fig. 6) or a peak of 40.25 h and a trough of 0.25 h (pink in lower panel of 

Fig. 6) with a constant transcription rate of 1 RNA unit/h in both cases. Figure 6 demonstrates a 

general finding with this kind of modeling set-up. The resulting rhythm in RNA amount does not 

follow an exact sinusoidal pattern. The phase difference between the RNA amount rhythm and 

the RNA half-life rhythm has therefore a different value depending on whether the peak or the 

trough is used as reference point.  

 

As demonstrated with the example in Table 3, we generally found that a change in the 

constant rate of transcription does not lead to a change in the phase of the rhythm in RNA 

amount. This phase, instead, can be changed by varying either the amplitude or the vertical shift 

of the rhythm in RNA half-life (Table 4). A larger amplitude or a larger vertical shift will lead to 

a later phase of the rhythm in RNA amount. Notice that due to the change in shape, the peak of 

the RNA amount rhythm may occur later than the quarter of the period limit we encountered 

with our rhythmic transcription model. However, when the average of the peak and trough is 

taken as an indication for the phase, it will not go beyond this quarter of the period limit.  

 

We also modeled rhythmic RNA degradation in the form of percent degradation with a 

cosine wave and obtained basically the same results. The phase of the rhythm in RNA amount 

does not change when varying the constant rate of transcription but does change when varying 

either the amplitude or the vertical shift of the rhythm in percent RNA degradation (data not 

shown). The shape of the rhythm in RNA amount is also not strictly sinusoidal (Figure 7).  

 

In conclusion, although a rhythm in RNA amount may be due to a rhythm in transcription 
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or a rhythm in RNA half-life, these two possibilities differ greatly in the kind of parameters that 

determine the phase of the rhythm in RNA amount.  

 

CONTINUOUS-TIME MODEL 

 

The strict limits that we have discovered to the phase of a rhythm in RNA amount with 

respect to the phase of the sinusoidal transcriptional rhythm from which it is derived made us 

suspect a simple mathematical basis for these limits. We investigated this possibility by 

developing a differential equation for the amount of RNA resulting from rhythmic transcription 

and constant half-life-based RNA degradation.  

 

Mathematics behind the continuous-time model 

 

Let R(t)  be the amount of RNA present at a time t , in hours.  Let T(t) and D(t)  be the 

transcription and degradation rates, respectively, of the RNA in the system with respect to the 

time t  in hours.  By definition, the rate of change of the RNA present at time t  is the difference 

of the transcription and degradation rates, given by 

 

 R (t) = T(t) D(t),          (1) 

 

where  R (t) represents the derivative of R(t) .  This will be the basic underlying differential 

equation governing R(t) , the amount of RNA present at time t , regardless of how we model the 

degradation rate.  We are initially assuming that the RNA decays exponentially, with a constant 

half-life h . 
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We will assume that the transcription rate T(t) is a periodic function with period p , 

meaning that T(t + p) = T(t) for all t . Assuming exponential decay, the average rate of RNA 

degradation over the interval t, t + t[ ]  is given by 

 

1

t
R(t) R(t)2

t

h
 

 
 

 

 
 . 

 

Then, by taking the limit using L’Hopital’s Rule, we have 

 

D(t) = lim
t 0

R(t)

t
1 2

t

h
 

 
 

 

 
 = R(t) lim

t 0
2

t

h ln2
 

 
 

 

 
 
1

h

 

 
 

 

 
 =
ln2

h
R(t). 

 

Substituting into (1), we have that R(t)  will therefore be a solution to the differential equation 

 

 R (t) +
ln2

h
R(t) = T(t)            (2) 

 

with initial condition R(0) = k  for some constant k . 

 

 

We will further assume that transcription is sinusoidal and that T(t) has therefore the form 

 

T(t) = a0 + a1 cos
2

p
t

 

 
 

 

 
 + b1 sin

2

p
t

 

 
 

 

 
           (3) 

 



 18 Jacobshagen 

for some constants a0, a1, and b1.  Thus, T(t) can be expressed in the form a0 + Acos
2

p
t

 

 
 

 

 
 , 

with period p , mean value a0, amplitude A = a1
2

+ b1
2 , and  satisfying bothcos

2

p

 

 
 

 

 
 =
a1
A

 

and sin
2

p

 

 
 

 

 
 =
b1
A

. 

 

Substituting equation (3) into the differential equation (2) yields a first-order differential 

equation that is solvable using Laplace transforms.  Let (s)  denote the Laplace transform of 

R(t) .  Then, applying the Laplace transform term-by-term, we have  

 

s (s) k +
ln2

h
(s) =

a0
s

+
a1p

2s+ 2b1p

4 + p2s2
. 

 

Solving for (s) , we have 

 

(s) =
h

hs+ ln2
k +

a0
s

+
a1p

2s+ 2b1p

4 + p2s2
 

 
 

 

 
 . 

 

Applying the inverse Laplace transform term-by-term yields the general solution 

 

R(t) = 2
t

h k
ha0

ln2
+
hp pa1 ln2 + 2h b1( )

4h2 2 + p2(ln2)2

 

 
 

 

 
 +
ha0

ln2

                       +
hp

4h2 2 + p2(ln2)2
a1 cos

2
p
t tan 1 2 h

pln2

 

 
 

 

 
 

 

 
 

 

 
 + b1 sin

2
p
t tan 1 2 h

pln2

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 .

  (4) 
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An example of how we can use this general solution to predict the RNA amounts for a 

particular periodic transcription rate, RNA half-life, and initial RNA value is shown in Figure 8.  

In this example, which is a replication of the discrete-time example in the lower panel of Figure 

2, we show the RNA amount curve when p = 24  hours, h = 2.5  hours, and the transcription rate 

is given by 

 

T(t) = 0.5 0.5cos
12
t

 

 
 

 

 
 . 

 

Therefore, k = T 0( ) = 0, a0 = 0.5 , a1 = 0.5 , and b0 = 0.  Thus the continuous curve for the RNA 

amount at any time t 0 is  

 

R(t) = 2
t

3 5

4 ln2
+

720ln2

25 2
+ 576(ln2)2

 

 
 

 

 
 +

5

4 ln2

30

25 2
+ 576(ln2)2

cos
12
t tan 1 5

24 ln2

 

 
 

 

 
 

 

 
 

 

 
 . 

 

The above solution, depicted graphically in Figure 8, shows that the initial discrete-time model 

depicted in Figure 2 is fairly accurate. Only close inspection reveals that the model in Figure 2 is 

slightly off in terms of amplitude and phase due to its resolution limits.  

 

 

Derived formula for difference in phase between transcriptional and RNA amount rhythm 

 

The solution in (4) describes what experimental data should look like given the 

assumption of a sinusoidal transcription curve and constant exponential decay of the RNA.  It is 

not purely periodic (see the first few hours in Figure 8 as an example) because of the first term, 
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but becomes mostly periodic over a period of time, since lim
t
2

t

h = 0.  (For example, in the curve 

shown in Figure 8, the magnitude of the exponential term is less than 0.1 after 11 hours.)  After 

sufficient time has passed, the solution looks like 

 

ha0
ln2

+
hp

4 2h2 + p2(ln2)2
a1 cos

2

p
t tan 1 2 h

pln2

 

 
 

 

 
 

 

 
 

 

 
 + b1 sin

2

p
t tan 1 2 h

pln2

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 .      (5) 

 

Therefore, we will draw conclusions from just the portion of the formula shown in (5). 

 

 The first term in (5) represents a vertical shift of 
ha0
ln2

.  Thus, the vertical shift of 

the RNA amount is directly proportional to the half-life h ;  that is, multiplying the half-life by a 

factor of c  will multiply the vertical shift by a factor of c .  The second term gives the sinusoidal 

part of the steady-state solution, which has the same period p  as the transcriptional rhythm. The 

amplitude of this rhythm equals the amplitude of the transcriptional rhythm multiplied by the 

factor 
hp

4 2h2 + p2(ln2)2
. Thus the amplitude is dependent upon but not directly proportional to 

h . This factor, and therefore also the amplitude, will become larger as h  becomes larger, with 

the factor reaching a final value of 
p

2
.   

 

But most importantly, the phase difference of the curve with respect to the transcription 

curve is  

p

2
tan 1 2 h

pln2

 

 
 

 

 
 . 
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Notice that the difference in phase is only dependent upon two parameters, the period p  and the 

half-life h .  In our example shown in Figure 8, the phase difference is 
24

2
tan 1 2 (2.5)

24 ln2

 

 
 

 

 
 3.03 

hours.  But notice in particular that, as h 0 , the phase difference goes to 
p

2
tan 10 = 0, and as 

h , the phase difference goes to 
p

2 2
=
p

4
.  It means that for our continuous-time 

modeling the phase of the RNA amount rhythm is limited to between 0 h and a quarter of the 

period later than the phase of the transcriptional rhythm and therefore that at least four circadian 

regulatory mechanisms are required to allow for all possible phases of rhythms in RNA amount. 

 

Interestingly, the result for an infinite half-life h  holds regardless of how we model RNA 

degradation.  An infinite half-life corresponds to 0 degradation. In the Michaelis-Menten model 

for example, 0 degradation would correspond to Vmax = 0 or an extremely large value for KM  or 

both.  If we assume 0 degradation, we can simply remove the degradation rate D(t)  from our 

differential equation in (1). If we then still assume a p-periodic transcription rate T(t) as in (3), 

we have  

 

 R (t) = a0 + a1 cos
2

p
t

 

 
 

 

 
 + b1 sin

2

p
t

 

 
 

 

 
 , 

 

which is easily solvable, with solution 

 

R(t) = a0t +
p

2
a1 sin

2

p
t

 

 
 

 

 
 b1 cos

2

p
t

 

 
 

 

 
 

 

 
 

 

 
 + k +

pb1
2

, 

 

or equivalently,  
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R(t) = a0t +
p

2
a1 cos

2

p
t
2

 

 
 

 

 
 + b1 sin

2

p
t
2

 

 
 

 

 
 

 

 
 

 

 
 + k +

pb1
2

. 

 

Notice that the periodic part of the solution also has the same period p  as the transcription rate 

T(t), with phase difference 
p

2 2
=
p

4
 hours. 

 

 

Rhythmic transcription rates that do not follow a sinusoidal pattern  

 

Circadian rhythms of transcription might not necessarily resemble a sine wave. An 

extreme example would be a burst-like pattern where most of the time transcription is silent but 

about every 24 h it is high for a short period of time. We therefore also investigated the 

relationship between transcription and RNA amount for transcription with any periodic function 

in combination with constant exponential RNA decay using the continuous-time model. 

 

Any periodic function of bounded variation (loosely, having finite arc-length over the 

period) can be expressed as infinite sum of trigonometric functions of the same period, known as 

a Fourier series.  We will therefore assume that  

 

T(t) = a0 + an cos
2 n

p
t

 

 
 

 

 
 + bn sin

2 n

p
t

 

 
 

 

 
 

 

 
 

 

 
 

n=1

                (6) 

 

for some constants a0 , an , and bn , n = 1, 2, ... .  Substituting equation (6) into the differential 

equation (2) again yields a differential equation that is solvable using Laplace transforms.  Let 
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(s)  denote the Laplace transform of R(t) .  Then, applying the Laplace transform term-by-term, 

we have  

 

s (s) k +
ln2

h
(s) =

a0
s

+
an p

2s+ 2bnnp

4n2 + p2s2
 

 
 

 

 
 

n=1

. 

 

Solving for (s) , we have 

 

(s) =
h

hs+ ln2
k +

a0
s

+
an p

2s+ 2bnnp

4n2 + p2s2n=1

 

 
 

 

 
 . 

 

Applying the inverse Laplace transform term-by-term yields the general solution 

 

R(t) = 2
t

h k
ha0

ln2
+

hp

4h2n2 2 + p2(ln2)2 pan ln2 + 2hn bn( )
n =1

 

 
 

 

 
 +
ha0

ln2

          +
hp

4h2n2 2 + p2(ln2)2
an cos

2 n

p
t tan 1 2 hn

pln2

 

 
 

 

 
 

 

 
 

 

 
 + bn sin

2 n

p
t tan 1 2 hn

pln2

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

n=1

.

  (7) 

 

  

An example of how we can use this general solution to predict the RNA amounts for a 

particular periodic transcription rate, half-life, and initial value is shown in Figure 9.  In this 

example, we show the RNA amount curve when p = 24  hours, h = 3 hours, k =1, and the 

transcription rate is given by 

 

T(t) =1.5 + 0.5cos
12
t

 

 
 

 

 
 + 0.5sin

12
t

 

 
 

 

 
 + 0.2cos

6
t

 

 
 

 

 
 0.5sin

6
t

 

 
 

 

 
 . 

 

Note that the two curves no longer have the same shape, thus the concept of a “phase 

difference” between the two curves is no longer valid.  However, since the trigonometric 
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functions that form the basis for the Fourier series are orthogonal under the L2 0, p[ ]  norm, we 

may form a best-fit sinusoidal for both the transcription curve T(t) and the RNA amount curve 

R(t) , after the effects of the exponential part of the solution fade, by truncating both 

trigonometric formulas to just the constant term and the trigonometric functions of period p .  

The approximations of the curves appear in Figure 9 as dashed lines of the same color.  We may 

then talk about the phase difference of the sinusoidal best approximations.  The phase difference 

of these best approximations will still be limited to 
p

4
.  In the example shown in Figure 9, the 

phase difference between the best sinusoidal fits is 
24

2
tan 1 2 (3)

24 ln2

 

 
 

 

 
 3.24  hours.   

 

 

DISCUSSION 

 

We believe we have shown that under the special case of the circadian clock regulating 

transcription but not RNA degradation, rhythms in RNA amount of all possible phases can only 

be achieved through a minimum of four distinct mechanisms the circadian clock employs to 

regulate transcription. This follows necessarily from our finding that the phase of the rhythm in 

RNA amount under such conditions is limited to a time frame spanning the first quarter of the 

period following the phase of the transcriptional rhythm. The limit holds true regardless whether 

discrete- or continuous-time modeling is used. It is independent of the amplitude and vertical 

shift of the transcriptional rhythm or the way RNA degradation is modeled, and also applies to 

the best sinusoidal approximation of a transcriptional rhythm that has a non-sinusoidal pattern.  
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Our findings make it particularly interesting to inspect the phases found for rhythms in 

transcription determined on a large scale in order to evaluate whether they show only four 

precise phases, each a quarter of the period apart. For the 128 different circadian rhythms of 

transcription in Arabidopsis discovered through the enhancer-trap method with luciferase as 

reporter (Michael and McClung, 2003), the phases as determined by their time of peak vary 

considerably.  However, it is noteworthy that only six out of these 128 rhythms do not show a 

phase of exactly either subjective dawn, midday, dusk or midnight (CT 0, 6, 12 or 18) within the 

range of their standard deviation (see Table III in the supplement to Michael and McClung, 

2003). Similar experiments in Drosophila (Stempfl et al., 2002) were unfortunately mainly 

carried out in light/dark cycles so that additional direct light effects cannot be excluded and for 

the experiments carried out in constant darkness the phase of the rhythms are not given. Our 

findings also raise the question of whether RNA degradation is generally rather constant or 

shows a circadian rhythm instead. Methods to determine RNA decay rates on a large scale were 

recently developed (Gutierrez et al., 2002; Raghavan and Bohjanen, 2004) but have not been 

applied to this question yet. For a few particular mRNAs, there is some evidence for a circadian 

rhythm in RNA processing/degradation (Frisch et al, 1994; So and Rosbash, 1997) or more 

specifically RNA degradation (Kim et al, 2005; Lidder et al., 2005; Garbarino-Pico et al., 2007). 

 

An entirely different picture arises when modeling RNA degradation under control of the 

circadian clock with constant transcription. In this case, varying the non-rhythmic component of 

the system, i.e. the transcription rate, will not alter the phase of the RNA amount rhythm. 

Although this is an interesting finding, it is also the only conclusion we can draw with real 

confidence from this set-up. Since changing the amplitude of the exponential RNA decay rhythm 
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also changes the shape of the RNA amount rhythm, the concept of "phase difference" between 

RNA decay and RNA amount rhythm does not really apply. We therefore did not pursue this set-

up further. However, we can at least say that the peak as well as the trough of the RNA amount 

rhythm changes its relationship to the respective parameter of the RNA decay rhythm when the 

amplitude or vertical shift of the RNA decay rhythm is changed. And when the average of the 

peak and the trough is taken as reference point, the phase will not be later than a quarter of the 

period compared to the phase of the RNA decay rhythm. 

 

Modeling circadian transcription with various forms of RNA degradation has been 

reported before, although not with the same intention as we have done here. Modeling was 

mainly performed in order to fit actual experimental data for a particular gene and therefore be 

able to conclude on aspects of the expression of this gene not experimentally determined. So and 

Rosbash (1997), for example, have already demonstrated that a longer constant RNA half-life 

will lead to a later phase in the RNA amount rhythm. However, only when modeling rhythmic 

RNA degradation in addition to circadian transcription were they able to fit their nuclear run-on 

data with their mRNA amount data for the per gene. Therefore, they argued that the circadian 

clock must regulate the expression of the per gene not only at the transcriptional level but also at 

the level of RNA stability or processing. Similarly, Kim and coworkers (2005) modeled 

rhythmic transcription and rhythmic RNA degradation for the AANAT gene. Rhythmic RNA 

degradation was modeled in this case based on the amount rhythms of three heterogeneous 

nuclear ribonucleoproteins, which they showed to mediate degradation by specifically binding to 

the 3' UTR of the AANAT mRNA. Gachon and coworkers (2006) finally modeled circadian 

transcription based on their promoter binding activity data for three rhythmic transcription 
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factors. They then modeled RNA degradation via constant RNA half-lives in an effort to identify 

possible target genes of the transcription factors based on the phase of the rhythm in target RNA 

amount. Interestingly, their simulations produced only phases of up to 4.5 h later than the 

transcriptional rhythm despite their 24 h periods. However, they did not model extremely long 

RNA half-lives, possibly because they were only interested in rhythms of RNA amount that are 

experimentally detectable.   

 

When comparing promoter sequences of the many genes exhibiting a circadian rhythm in 

mRNA amount in Arabidopsis (Harmer et al., 2000), an "evening element" could be identified in 

the promoter of genes with a peak towards the end of the subjective day. This same evening 

element was also found in the study on Arabidopsis large-scale circadian transcription (Michael 

and McClung, 2003). When the evening element is exchanged with the CCA1-binding site 

previously shown to be important for morning-specific transcription, the phase of the 

transcriptional rhythm changes with its peak occurring towards subjective dawn (Michael and 

McClung, 2002). It is interesting that similar promoter elements specific for subjective midday 

or midnight could not be discovered. This finding together with the likelihood of circadian 

rhythms in mRNA decay raises the possibility that a distinct circadian regulatory mechanism 

might consist of a "classical" circadian transcriptional mechanism in combination with a 

circadian RNA decay mechanism. When attempting to model this situation using again a 

sinusoidal RNA half-life, we encountered the same problem as modeling a sinusoidal RNA half-

life with constant transcription, i.e. the shape of the RNA amount rhythm is not strictly 

sinusoidal and varies when amplitude or vertical shift of the half-life rhythm are varied. Proper 

modeling of rhythmic RNA degradation needs perhaps to be reevaluated after experimental data 
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on such a rhythm have been determined with high time resolution.  

 

Our model did not take into account possible effects of RNA processing or RNA nuclear 

export. These processes can be regulated (Terry et al., 2007; Keene, 2007) although there is 

currently no evidence that they might be the target of regulation by the circadian clock. If we 

assume that these processes occur with a combined constant exponential rate like we assumed for 

RNA degradation, we can simply expand our model by connecting two such models in series. 

The outflows of the first model unit, representing the processed/exported RNA, serve as the 

inflows to the next model unit. The amount of processed/exported RNA, which would be equal 

to the amount of degraded RNA in the single model, is proportional to the amount of RNA not 

processed/exported and therefore also shows a sinusoidal rhythm with a phase identical to the 

rhythm in not processed/exported RNA. The overall phase difference between the transcriptional 

rhythm and the rhythm of mature mRNA in the cytosol is now the sum of the phase differences 

caused by the half-life of each individual model unit. Consequently, the amount of mature 

mRNA in the cytosol can have a circadian rhythm up to half a period later, one quarter due to 

RNA processing/export and one quarter due to RNA degradation. This would, however, require 

that RNA processing/export rates are very slow. In addition, the amplitude of this rhythm in 

mature mRNA in the cytosol would become extremely small when expressed as % of the peak 

value for phases of between one and two quarters of the period later than the transcriptional 

rhythm. Therefore, by adding RNA processing/export with a constant half-life to our model, the 

minimally required distinct circadian regulatory mechanisms to allow for all phases of RNA 

amount rhythms reduces from four to two, but at the price of very low amplitudes for phases 

between one and two quarters of the period later than the transcriptional rhythm. 
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Our model may also be modified to include competition of two processes that occur with 

constant half-lives, like for example RNA processing/export and RNA degradation within the 

nucleus. The half-lives of processing and degradation, h1 and h2 , respectively, will combine to 

give an overall half-life of h =
h1h2
h1 + h2

.  The half-lives of both competing processes therefore 

determine the phase of the resulting rhythm in processed RNA that arrives in the cytosol, 

whereas its amplitude is determined by the factor 
ln2

h1

hp

4 2h2 + p2(ln2)2
. 

 

We succeeded in developing a simple formula that relates the phase of a rhythm in 

mRNA amount solely to the phase and period of its sinusoidal transcriptional rhythm (or its best 

sinusoidal approximation) and its constant mRNA half-life. This formula is 

 

RNA Tr
=

p

2
tan 1 2 h

pln2

 

 
 

 

 
  

 

where RNA  symbolizes the phase of the rhythm in RNA amount, Tr the phase of the rhythm in 

transcription, p the period of the transcriptional as well as the RNA amount rhythm and h the 

constant half-life of the RNA. This formula might prove useful. If any three of the four 

parameters have been experimentally determined with reasonably high accuracy and time 

resolution, it will be possible to calculate the fourth parameter using this formula. It might also 

be used to evaluate how well techniques like nuclear run-on or luciferase reporting truly reflect 

transcription. However, all these uses depend on the RNA decay rate being constant and 

therefore on a parameter that has not been sufficiently investigated yet. 
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Our findings also raise the possibility that many of the genes with "constant" amounts of 

mRNA are actually transcribed with a circadian rhythm but have an RNA decay rate that is very 

slow. Would there be an advantage to regulating the expression of a gene in this manner? It 

probably would not make much difference for the organism from the viewpoint of this particular 

gene and its function. However, it might be advantageous to an organism that lives in a 

predictably changing environment to commit its machinery to transcribing a particular gene 

during a certain time of day when resources are more plentiful or interference with other 

functions is minimized. 
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Figure/Table legends: 

 

Figure 1: Discrete-time modeling design. The program STELLA was used to model circadian 

transcription with constant RNA half-lives to determine the resulting rhythms in RNA amount. 

Upper panel: The components and their connections. Lower panel: The mathematical basis for 

each component. The square symbolizes the amount of RNA. The two circles with arrows 

symbolize the RNA transcribed (inflows) and degraded (outflows). The four simple circles 

symbolize the specific parameters for either the inflows or the outflows. The amount of RNA is 

expressed in RNA units, the rate of transcription in RNA units/h and the RNA half-life in h. Note 

that the rate of transcription is modeled as a cosine wave with a period of 24 h, a peak of 1 RNA 

units/h and a trough of 0 RNA units/h if not further modified in amplitude or vertical shift.  

 

Figure 2: The phase of the rhythm in RNA amount varies with the constant RNA half-life 

chosen for identical rhythms in transcription. Graphs were obtained from running the model 

in Fig. 1. The rate of transcription in RNA units/h is shown in red, the amount of RNA in RNA 

units is shown in blue. Upper graph: Constant RNA half-life of 0.1 h yielding a phase for the 

rhythm of RNA amount 0.25 h later than the transcriptional rhythm. Lower graph: Constant 

RNA half-life of 2.5 h yielding a phase for the rhythm of RNA amount 3.0 h later than the 

transcriptional rhythm. 

 

Figure 3: The phase of the rhythm in RNA amount has limits. Phase values were obtained 

from running the model in Fig. 1 with various RNA half-lives. The phase of the rhythm in RNA 

amount is expressed as delayed with respect to the phase of the rhythm in transcription.  
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Figure 4: For very long constant RNA half-lives, the amount of RNA increases for many 

cycles before it stabilizes to oscillate around final values. Graphs were obtained from running 

the model in Fig. 1 with a constant RNA half-life of 1000 h. The rate of transcription in RNA 

units/h is shown in red, the amount of RNA in RNA units is shown in blue. Upper graph: The 

amount of RNA for the first 50 cycles when the initial amount of RNA is zero. Lower graph: 

The amount of RNA after it has stabilized to cycle around final values because the model was 

run for an extended period of time. Note that the y-axis for the amount of RNA goes from 719.4 

to 723.4 

 

Figure 5: Modeling RNA degradation based on the Michaelis-Menten equation instead 

through exponential decay. The rate of transcription in RNA units/h is shown in red, the 

amount of RNA in RNA units is shown in blue. The rhythm in transcription is identical to that in 

Fig. 2 and 4. Upper graph: Vmax is 40 RNA units/h and KM is 200 RNA units. The rhythm in 

RNA amount shows a sine wave pattern. Lower graph: Vmax is 1.5 RNA units/h and KM is 1 

RNA unit. The rhythm in RNA amount does not show a strict sine wave pattern. 

 

Figure 6: Modeling a rhythmic RNA half-life with a constant rate of transcription. The 

RNA half-life in hours is shown in pink, the amount of RNA in RNA units is shown in blue. In 

both graphs, transcription was modeled at a constant rate of 1 RNA unit/h and the RNA half-life 

as a cosine wave with a period of 24 h. Upper graph: The RNA half-life was modeled with an 

amplitude of 0.5 h and a vertical shift of 0.25 h. Lower graph: The RNA half-life was modeled 

with an amplitude of 20 h and a vertical shift of 0.25 h. 
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Figure 7: Modeling rhythmic % RNA degradation with a constant rate of transcription. 

The % RNA degradation is shown in pink, the amount of RNA in RNA units is shown in blue. 

For both graphs, the transcription rate was modeled at a constant rate of 1 RNA units/h and the 

% RNA degradation as a cosine wave with a period of 24 h. Upper graph: RNA degradation 

was modeled with an amplitude of 0.25% and a vertical shift of 0%. Lower graph: RNA 

degradation was modeled with an amplitude of 2.5% and a vertical shift of 0%. 

 

Figure 8:  Example graph derived from the differential equation developed for a sinusoidal 

rhythm of transcription.  The rate of transcription in RNA units/h is shown in red, the amount 

of RNA in RNA units given by the solution (4) to the differential equation (2) is shown in blue.  

In this example, the period p  is 24 h, the RNA half-life h  is 2.5 h, the initial amount of RNA is 

0 RNA units, and the periodic transcription rate is given by  T(t) = 0.5 0.5cos
12
t

 

 
 

 

 
 ; that is, 

k = 0, a0 = 0.5 , b0 = 0, and a1 = 0.5 .  The blue curve is the result of substituting these values 

into (4). 

 

Figure 9:  Example graph derived from the differential equation developed for any 

periodic transcription.  The rate of transcription in RNA units/h is shown in red, the amount of 

RNA in RNA units given by the solution (7) to the differential equation (2) is shown in blue.  In 

this example, the period p  is 24 h, the RNA half-life h  is 3 h, the initial amount of RNA is 1 

RNA unit, and the periodic transcription rate is given by  

T(t) =1.5 + 0.5cos
12
t

 

 
 

 

 
 + 0.5sin

12
t

 

 
 

 

 
 + 0.2cos

6
t

 

 
 

 

 
 0.5sin

6
t

 

 
 

 

 
 ; that is k =1, a0 =1.5 , b0 = 0, 
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a1 = 0.5, b1 = 0.5 , a2 = 0.2 , and b2 = 0.5 .  The blue curve is the result of substituting these 

values into (7).  The dashed lines are best sinusoidal approximations. 

 

Table 1: Characteristics of the rhythm in RNA amount due to a specific rhythm in 

transcription and various constant RNA half-lives. The rate of transcription was modeled as a 

sine wave with a period of 24 h, an amplitude of 0.5 RNA units/h, and a vertical shift of 0 RNA 

units/h (see Fig. 1). "  Phase" refers to the time the phase of the rhythm in RNA amount is 

delayed with respect to the phase of the rhythm in transcription. "  RNA peak to trough" refers 

to the amount of RNA at the peak minus that of the trough. "*" denotes that these parameters are 

expressed in RNA units.  

 

Table 2: Changes in amplitude or vertical shift of the rhythm in transcription do not 

change the phase of the rhythm in RNA amount. Amplitude and vertical shift parameters 

given in the table are that of the modeled cosine wave-rhythm in transcription whose period was 

always 24 h. As in Table 1, "  Phase" refers to the time the phase of the rhythm in RNA amount 

is delayed with respect to the phase of the rhythm in transcription, "  RNA peak to trough" 

refers to the amount of RNA at the peak minus that of the trough, and "*" denotes that these 

parameters are expressed in RNA units. 

 

Table 3: Changes in the constant rate of transcription do not change the phase of the 

rhythm in RNA amount when it is driven by a rhythm in RNA half-life. The rhythm in RNA 

half-life was modeled as a cosine wave with a period of 24 h, an amplitude of 0.5 h and a vertical 

shift of 0.25 h. "  Phase peak" refers to the time the phase of the rhythm in RNA amount is 
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delayed with respect to the phase of the rhythm in RNA half-life when the peak was used as 

reference point, "  Phase trough" to the time this phase is delayed when the trough was used as 

reference point, "  RNA peak to trough" refers to the amount of RNA at the peak minus that of 

the trough, and "*" denotes that these parameters are expressed in RNA units. 

 

Table 4: Change in amplitude or vertical shift in the rhythm of RNA half-life leads to a  

change in phase of the rhythm in RNA amount. Data were obtained by running each specified 

cosine wave-rhythm in RNA half-life with at least the four constant rates of transcription of 0.3, 

1, 3, and 10 RNA units/h. "  Phase peak" refers to the time the phase of the rhythm in RNA 

amount is delayed with respect to the phase of the rhythm in RNA half-life when the peak was 

used as reference point, "  Phase trough" to the time this phase is delayed when the trough was 

used as reference point.  
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