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Part III - 
Science in Florida Caves
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SPELEOTHEMS!

The blast shattered the top of  a subaqueous cavern! Stalactites varying from the diameter of  a finger to over 
four feet were thrown out…The dipper of  the dredge, terminating a boom nearly thirty feet long, was let down 
into the cavern and swung around in all directions without encountering any obstructions. Here in the wet 
Everglades is a subaqueous cave. Yet the sections of  stalactites indicate great length and they could only have 
been formed in a cavern in which the floor, or at least the upper portion of  the cavern, was elevated above the 
water table.

From - Historic Trails by Land and Water, by John Small. Journal of  the New York Botanical 
Garden, vol. 22, 1921, p. 193-222. 

Figure 3.1. Solution-enlarged joint in Werner Cave, Marion 
County (photo by Art Palmer).
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Geology and Hydrology of  Karst in West-Central and North-Central Florida

Lee J. Florea, NSS 37909

The state of  Florida is blessed with the 
highest density of  large springs in North America 
and hundreds of  smaller springs where the water 
from limestone aquifers returns to the surface 
(Scott et al., 2004). Spectacular underwater caves 
supply water to these springs. Lesser known are 
the equally fantastic air-filled caves of  Florida 
and South Georgia (Florea, 2006; Lane, 1986). 
This paper features these underwater and air-
filled caves, explores the impact of  changes in sea 
level on karst in this near-coastal environment, 
and establishes several geologic and hydrologic 
characteristics that distinguish karst in the 
limestones of  the southeast from karst elsewhere 
in the U.S.

Origin of  the Florida Peninsula
The origin of  Florida dates to the final closure 

of  Iaptus Ocean at the end of  the Paleozoic era. 
Basement rocks in Florida, thousands of  feet 
below the land surface, consist of  granites and 
extrusive igneous rocks such as basalt that date 
to the late Precambrian and Cambrian (700 – 500 
million years ago [Mya]), as well as early Paleozoic 
(500 – 400 Mya) sandstones, siltstones, and 
shales (Lane, 1994). The fossils in the basement 
sedimentary rocks bear a strong resemblance 
to those in rocks of  the same age in northwest 
Africa. Southwest-northeast trends of  intrusive 
igneous rocks at depth in the Florida Panhandle, 
south Alabama, and south Georgia have led 
scientists to conclude that Florida was sutured 
to the North American continent by the end of  
the Permian or the beginning of  the Triassic (250 
– 230 Mya) (Lane, 1994).

The early Mesozoic supercontinent of  
Pangea, in part formed when Africa and North 
America collided, combined the known landmass 
of  the earth. However, the very same plate 
tectonics that brought Pangea together soon tore 
the supercontinent asunder. By the end of  the 

Triassic (200 Mya), North America pulled away 
from Africa and South America. Florida was 
left anchored to North America, but the intense 
forces of  this separation left the basement rocks 
south of  Tampa intensely faulted in a similar 
fashion to what is occurring today in the Great 
Rift Valley of  east Africa.

As North America drifted from Africa and 
South America during the Jurassic (200 – 145 
Mya), the waters from the newly forming Atlantic 
Ocean flooded the basement rocks of  Florida. 
First, the waters were shallow. Evaporation of  
these shallow waters resulted in thick deposits 
of  salt and gypsum. By the Cretaceous period 
(145 – 65 Mya), deposition of  evaporates slowly 
gave way to a carbonate “giga” platform that 
included much of  the circum-Caribbean region 
from Venezuela through the Yucatan, eastern 
Mexico and Texas, Florida and the Bahamas, and 
the east coast of  the U.S. as far north as New 
Jersey (Hine, 1997). This massive region of  
limestone deposition was stable through much 
of  the Paleogene (65 – 25 Mya), but gradually 
dwindled and separated into smaller platforms 
as the Gulf  of  Mexico widened and deepened. 
Carbonate deposition continued uninterrupted 
in the Bahamas and the Yucatan, but in much 
of  Florida and the rest of  the southeast U.S., 
limestone deposition ended as sands derived 
from the erosion of  the Appalachian Mountains 
covered the platform (Hine, 1997). Only in 
southernmost Florida has the deposition of  
carbonates persisted periodically up through the 
modern era.

Geologic Framework of  Florida Karst
Known caves and springs, with the 

exception of  those in the Miami region, have 
developed within Paleogene limestones that 
range in age from mid-Eocene to mid-Oligocene 
(approximately 42 million to 29 Mya) (Figure 3.2) 
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and cluster into regions where the limestones are 
exposed at the surface or are only thinly covered 
by younger sediments (Figures 3.2 and 3.3). One 
major cluster includes the Flint and Chipola 
River valleys of  south Georgia, Alabama, and 
the Florida panhandle (Figure 3.3). However, the 
focus of  this overview is the coastal lowlands of  
west-central and north-central Florida, bounded 
by the Suwannee River in the north and Tampa 
Bay in the south, which includes the cities of  
Brooksville, Ocala, Gainesville, and Lake City.

The Eocene and Oligocene limestones 
comprise the Floridan aquifer. Cretaceous and 
early Paleogene limestones and evaporates form 
the lower confi ning units for modern groundwater 
fl ow (Miller, 1986). Younger strata, including the 
Miocene Hawthorn Group throughout Florida 
(Scott, 1988), the Pliocene calcareous sands of  
the Tamiami Formation in south Florida (Fish 
and Stewart, 1991), and the mostly Pleistocene 
limestones of  the Biscayne aquifer in southeast 
Florida (Cunningham et al., 2006; Parker et al., 
1955), overlay and confi ne the Floridan where 
not exposed at the surface (Scott et al., 2001). 
The Floridan is estimated to contain over 19,000 
km3 of  water and is among the most productive 
and largest freshwater aquifers in the world 

(Miller, 1986).
The thickness of  the Floridan aquifer 

generally increases to the south and averages 
600 meters (m) thick in much of  west-central 
Florida (Miller, 1986). In peninsular Florida and 
south Georgia, the stratigraphic units within 
the Floridan are the middle Eocene Avon Park 
Formation, the late Eocene Ocala Limestone, 
the early Oligocene Suwannee Limestone, 
and, south of  Brooksville, the late Oligocene 
Tampa Limestone (Miller, 1986; Figure 3.2). The 
Ocala and Suwannee Limestones are the two 
stratigraphic units directly associated with most 
karst features, particularly where the aquifer is 
unconfi ned (Florea, 2006; Figure 3.2).

Regionally, the Ocala Limestone was 
deposited on a nearly fl at, distally steepened 
carbonate ramp during the 3-million year period 
of  the late Eocene (Loizeaux, 1995). It contains 
three depositional sequences that were deposited 
in progressively shallowing waters. The common 
names for these three sequences are the Inglis, 
Williston, and Crystal River members. The  Inglis 
is the oldest depositional sequence and the Crystal 
River is the youngest. The Inglis, Williston, and 
Crystal River depositional sequences range from 
12 to 35 m thick. These sequences are regionally 

Figure 3.2. Generalized stratigraphy and outcrop of  the Floridan aquifer in west-central and north-central Florida.
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Figure 3.3. Location of  springs and caves in the southeastern U.S.

correlative and are dominated by skeletal-peloidal 
packstone and grainstone. Each sequence 
contains two or three depositional cycles and 
each sequence is bound by a transgressive 
surface (Figure 3.4). The fauna is diverse and 
indicative of  open marine conditions. The large 
benthic foraminifera Nummulites and Lepidocyclina 
dominate, but other common organisms are 
found including smaller benthic foraminifera, 
bryozoa, mollusks, large echinoids, some red 
algae, and rare solitary corals. 

The Suwannee Limestone was deposited on 
a shallow, moderate- to high-energy carbonate 
platform (Hammes, 1992). It contains three 
depositional cycles, each of  which is composed 
of  a varying number of  higher frequency 
depositional cycles. Grainstones dominate the 
Suwannee, with individual grainstone bodies 
up to 30 m thick. They generally consist of  

varied mixtures of  skeletal and peloidal grains 
of  various origins. Packstones constitute most 
of  the remaining facies; mud-supported fabrics 
are rare. The fauna is generally open marine and 
diverse but dominated by bryozoa, red algae, 
benthic foraminifera, mollusks, and echinoids.

Subaerial exposure surfaces, indicating 
periods of  lower sea level, are common in the 
limestones of  Florida, as are paleokarst features 
associated with these surfaces. Of  particular 
importance is the mid-Oligocene unconformity 
at the top of  the Suwannee Limestone as it marks 
the end of  100 million years (Ma) of  nearly 
continuous carbonate deposition in the Florida 
peninsula. Where the Suwannee is confined in 
south Florida, the exposure surface is associated 
with varying amounts of  rhizoliths, caliche, karst 
breccia, red-stained surfaces, pedogenetically 
altered limestones, infiltrated sediment, and 
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Figure 3.4. Elevation log that includes depositional fabric and lithology, sequence stratigraphy, and matrix permeability 
for a core at Radar Hill in Citrus County, Florida.

FLOREA GEOLOGY AND HYDROLOGY OF FLORIDA KARST
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Figure 3.5. Exposure surface at the contact between the 
early Oligocene Suwannee Limestone (below) and the 
late Oligocene Tampa Limestone (above) within Rivard 
Cave in Southern Hernando County. Note the mid-
Oligocene paleokarst in the form of  solution pits within 
the Suwannee Limestone that are filled with silts and 
clays from the time period of  the exposure surface (photo 
by Dorien McGee).

microkarst (Budd et al., 2002; Figure 3.5). On 
the depositional high of  the Ocala Platform, 
however, the Suwannee Limestone has been 
partly or entirely removed and late Oligocene 
and early Miocene siliciclastic sediments fill large 
sinkholes and solution-enlarged fractures that 
penetrate deep into the Ocala Limestone (Yon 
and Hendry 1992; Florea et al., 2007; Figure 
3.6). These paleokarst deposits often include 
paleontological remains of  vertebrates 24-29 Ma 
in age (Morgan and Czaplewski, 2003).

Several generations of  Miocene and younger 
karst features are present in Florida. The origin 
of  these paleokarst features is tied to the complex 
sea level history during the past 30 million years. 
Younger sediments fill many of  the older features. 
Others remain open as caves. Deciphering the 
multigenerational history of  Florida karst is a 
complex undertaking and it is far from complete 
(Florea et al., 2007; Figure 3.7).

Hydrology and Climate of  Florida Karst
Florida karst is broadly characterized as 

eogenetic karst (Florea, 2006) because the 
limestones retain significant primary porosity and 
permeability (Vacher and Mylroie, 2002), with 
porosities as high as 30-40% (Budd and Vacher, 
2004) and permeabilities of  the rock matrix 
ranging between 10-11 and 10-14.5 m2  (Florea 
and Vacher, 2006; Budd and Vacher, 2004). 
This contrasts with the Paleozoic, telogenetic 
limestones of  the Mammoth Cave region, where 
the limestone porosity averages 2-3% and the 
matrix permeability is on the order of  10-17.7 m2 

(Worthington et al., 2000).
Eogenetic karst primarily occurs in modern 

or geologically recent carbonate depositional 
environments in tropical to subtropical latitudes. 
The climate characteristics of  eogenetic karst 

Figure 3.6. Paleokarst in the form of  chert fill within 
a solution enlarged fracture within the Eocene Ocala 
Limestone. The early Oligocene Suwannee Limestone 
was entirely removed during the late Oligocene and the 
early Miocene, and is the inferred date for this paleokarst 
feature near Belleview in southern Marion County (photo 
by Jason Polk).

FLOREA GEOLOGY AND HYDROLOGY OF FLORIDA KARST



230 CAVES AND KARST OF FLORIDA
2008 NSS CONVENTION GUIDEBOOK

Figure 3.7. Geologic time scale with relative sea level, stratigraphic units, and major karst events on the Florida 
Platform.
reflect low-latitude locations and proximity to 
warm marine water. Rainfall is seasonal, with 
intense but short-lived convective thunderstorms 
during the summer, infrequent tropical cyclones 
during the late summer and early fall, and a dry 
season that typically lasts from December to 
May.

The geologic and climatic distinctions of  
eogenetic karst are apparent in the hydrology 
of  the Floridan aquifer. For example, it cannot 
be assumed that the storm events during 

the rainy season equate to aquifer recharge. 
Evapotranspiration of  rainfall is huge, perhaps 
as high as 90% during the summer (Martin and 
Gordon, 2000). The common, convective-style 
rain events during the summer do not appear 
as independent peaks in the hydrographs at 
many west-central and north-central Florida 
springs (Florea and Vacher, 2007). Rather, the 
hydrographs show smooth, seasonal or longer-
period cycles (Florea and Vacher, 2006). In 
contrast, infrequent, large, and widespread 

FLOREA GEOLOGY AND HYDROLOGY OF FLORIDA KARST
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storms, such as hurricanes, do appear as 
identifiable events in water level and spring 
discharge data and appear to be the principal 
contributor to changes of  storage within the 
Floridan aquifer. For instance, water levels in the 
unconfined Floridan aquifer have been observed 
to rise more than two meters during the weeks 
following rainfall from hurricanes (Florea and 
Vacher, 2007; Figure 3.8). 

During infrequent and widespread storms, 
recharge to the unconfined Floridan aquifer 
occurs simultaneously in caves and in the 
limestone matrix over large distances (Florea and 
Vacher, 2007). Water chemistry further indicates 
that water exchanges freely between caves and 
the rock matrix (Martin and Dean, 2001). Both 
are a direct consequence of  the high permeability 
of  Florida limestones. Despite the ability of  
the rock matrix to transmit water, recharge to 
the unconfined Floridan aquifer appears to be 
strongly controlled by fractures in the epikarst 
and the vadose zone (Florea and Vacher, 2007).

The relationship between recharge, water 
level, and discharge in the unconfined Floridan 
aquifer reveals another important distinction 

Figure 3.8. Daily precipitation (dashed line) and hourly 
water level measurements (thick solid line) in Briar 
Cave near Ocala in Marion County. Daily discharge 
measurements at Rainbow Springs is shown by the dash-
dot line. Hourly, in-cave, drip-rate data at Briar Cave 
are shown as individual data points. The thin, solid line 
is a 3-day moving average though the drip-rate data. Note 
that the water-level and drip-rate data have incomplete 
records due to problems with the instrumentation.

between Florida karst and epigenic karst elsewhere 
in the U.S. Outside of  Florida,  discrete recharge 
occurs through sinking streams and is transmitted 
via conduits to springs. In Florida, the points of  
recharge and discharge are separated and water 
courses through the limestone via a complex 
system of  disjunct caves, solution enlarged 
fractures, and rock matrix at several horizons 
(Florea, 2006). This is not to say that sink and 
rise systems do not exist in Florida. There are 
certainly many examples of  “underground river” 
caves in Florida, particularly along the Cody Scarp 
in the Florida panhandle and the north-central 
Florida aquifer (Upchurch, 2002), which include 
the Santa Fe River Sinks and Rise (Martin and 
Dean, 2001) and the Wakulla-Leon Sinks Cave 
System (Loper et al. 2005; Lane, 1986). 

Caves in West-Central and North-Central 
Florida

Caves in the Paleogene, highly permeable, 
coastal-karst aquifers of  west-central and north-
central Florida differ substantially from caves 
elsewhere in the U.S., especially from those in 
the ancient, low permeability limestones of  
inland karst regions like Mammoth Cave (e.g., 
Palmer, 2007). Two aspects of  those differences 
are cave morphology and cave levels. For this 
discussion, examples of  cave morphology and 
cave levels in west-central and north-central 
Florida will illustrate important components of  a 
conceptual model for how caves organize within 
the unconfined Floridan aquifer.

Cave morphology 
Cave exploration in west-central and north-

central Florida has revealed that many cave 
passages are wider than they are tall and contain 
pillars of  rock that have not dissolved (Florea, 
2006). The walls of  the cave passages are 
complex with cuspate, pocket-like, or taffoni-like 
structures (Figure 3.1 and 3.9). Rose diagrams of  
cave passage orientations demonstrate a preferred 
alignment along a regional set of  NW-SE and 
NE-SW fractures (Florea, 2006; Figure 3.10). 
Passages along fractures may have a vertical, 
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Figure 3.9. Robert Brooks preparing to dive in the 
Tangerine Entrance of  Thornton’s Cave in western 
Sumter County. Note the complex solution sculpting of  
the walls (photo by Tom Turner).

Figure 3.10. Length-weighted rose diagrams for the orientation of  all 
segments of  cave survey obtained from caves in the Brooksville Ridge 
(left) and from 14 caves in Marion County to the north and east. The 
data from this study reveal a regional WNW-ESE (100°-120°) and 
NNE-SSW (20°-40°). Both are related to regional fracture sets.

fissure-like component to their morphology. 
Links between fracture-oriented passages are 
commonly low and wide (Figure 3.11). Some 
caves exhibit a morphology that resembles the 
three dimensional spongework found in the 
hypogenic caves of  the Guadalupe Mountains 
of  New Mexico (Hill, 1987) or the flank margin 
caves found on young carbonate islands (Mylroie 
and Carew, 1995).

Maps of  air-filled caves in west-central 
Florida (Florea, 2006) have shown that passage 
soften group into dense network mazes, such 
as at Warren Cave (Krause, 1967). In contrast, 

tributary networks linking sinking streams 
to springs are rare, even in large underwater 
cave systems that extend for miles. With few 
exceptions, air-filled caves do not extend great 
distances. Low and wide passages pinch into low 
crawlways. Fissure-type passages thin into narrow 
fractures. Sediments and structural collapses 
commonly block further exploration. Because of  
the lack of  sinking streams, connections between 
the caves and the land surface are limited. Natural 
cave entrances are frequently solution enlarged 
fissures. Many caves are discovered because they 
are encountered during alteration of  the land 
surface, particularly from limestone quarrying. 

Underwater caves are often much larger than 
their air-filled counterparts. The average passage 
cross-section in air-filled caves rarely exceeds 
10 m2. However, the largest tunnels in the 
underwater caves may have a cross-section three 
orders of  magnitude larger, or greater than 1000 
m2, such as at the underwater caves in Hernando 
County - Eagles Nest, Dipolder, Twin-Dees, and 
Weeki Wachee Springs.

Cave levels 
Changing sea levels have a great influence in 

this coastal environment. In the recent geologic 
past, locations less than 22 m above modern sea 
level were flooded, and much of  west-central 
Florida was a shallow sea. During these times, the 
Brooksville Ridge possibly became an archipelago 

Brooksville Ridge data
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20o- 40o

100o - 120o
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Figure 3.11. Bill Walker in a low and wide passage 
within Busted Well Cave near Ocala in Marion County 
(photo by Sean Roberts). 
of  islands and the cities along the Cody Scarp, 
such as Ocala and Gainesville, would have been 
located along the paleo-shoreline. In contrast, 
during the last ice-age, global sea levels were 
about 125 m lower than at present. During this 
ice-age, the Florida Peninsula was twice as wide 
and the coast was about 200 km further west 
of  its present location. At that time, the present 
day springs and many of  the submerged caves in 
west-central and north-central Florida were dry 
and in the center of  the exposed peninsula.

Periods of  stationary sea level appear 
to be archived in the caves of  west-central 
Florida. Throughout the air-filled caves of  the 
Brooksville Ridge, for example, detailed surveys 
reveal levels of  passage at 3-5 m (Werner Cave – 
Citrus County), 12-15 m (Blowing Hole – Citrus 
County), and 20-22 m (Brooksville Ridge Cave 
– Hernando County) above modern sea level 
(Florea et al., 2007; Figure 3.12). Along the Cody 
Scarp, an additional, higher level of  passage is 
found at 30 m above modern sea level – such as at 
Warren Cave in Alachua County. These air-filled 
cavities align with nearby geomorphic terraces 
(Cooke, 1931; Healy, 1975), which suggest 
cavity formation during higher paleo-altitudes 
of  sea level and water table. Similarly, passages 
in underwater caves and cavities in drilled wells 
cluster at depths of  15 m, 35 m, 70 m, and 90-
120 m below the modern water table (Florea et 
al., 2007; Figure 3.12). The major underwater 

discoveries made in 2007 at Weeki Wachee 
Springs, for example, have revealed massive 
caverns to depths of  123 m. The depths of  
underwater cave levels in Florida generally agree 
with marine terraces submerged in the Gulf  of  
Mexico identified using multi-beam bathymetry 
(Florea et al. 2007; Figure 3.12), which formed at 
previously lower sea levels and water tables.

Conceptual model of  Karst in Florida
Figure 3.13 is a present conceptual model 

of  where cavernous porosity occurs within the 
unconfined Floridan aquifer of  west-central and 
north-central Florida. There are five components 
to the model:

a.  At the largest scale, the caves organize 
along paleo-water tables that cut across geologic 
structure (Florea et al., 2007). However, at the 
scale of  an individual cave, variations in the 
depositional permeability of  the eogenetic 
limestones (Budd and Vacher, 2004) appear to 
influence passage morphology, such as at Floral 
City Cave in Citrus County where a horizon 
of  low-wide passage is inclined to the modern 
water table (Figure 3.14). It appears possible, 
indeed likely, that cave levels can step between 
various favored intervals within the stratigraphy 
(Klimchouk, 2003).

b.  The levels in air-filled caves occur at 
consistent elevations above modern sea level 
over widespread areas and align with nearby 
geomorphic terraces. For example, Brooksville 
Ridge Cave in Hernando County and Briar 
Cave in Marion County, separated by more than 
35 miles, both have low-wide passages at an 
elevation of  20-22 m. These air-filled passages 
reflect higher sea levels. The shoreline was 
close, sea level and the water table were nearly 
coincident, and they organize according to a sea 
level datum. They represent a single generation 
of  cave development.

c.  The submerged caves reflect lower sea 
levels and organize according to depth below 
the modern water table (Florea et al., 2007). The 
paleo-shoreline was much further away at the 
time the level of  passage formed along a sloping 
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Figure 3.12. Histogram of  elevations relative to datum of  
surveyed passages in 9 caves within the Brooksville Ridge, 
spot elevations in underwater caves, and cavities in drilled 
wells (Florea et al., 2007). The horizontal marks to the 
right compare these topographic elevations of  geomorphic 
terraces of  Cooke (1935) and bathymetric elevations of  
marine terraces in the Gulf  of  Mexico (Florea et al., 
2007).

paleowater table. This effect is illustrated by a 
specific example: the case of  Twin-Dees Cave vs. 
Peacock Springs. Both caves contain a prominent 
level of  passage at a water depth around 15 
meters. However, the water table at Twin-Dees 
Cave, which is near the modern shoreline of  
Hernando County, is near sea level. The water 
table at Peacock Springs, in Suwannee County 
150 km north and approximately 70 km inland, 
is at nearly 15 meters. 

d.  Because paleo-water tables are not 
horizontal surfaces – they are at higher elevations 
inland than at the shore – some cave levels at 
or below the modern water table may represent 
multiple generations of  passage development. 
This may be the case at some air-filled caves, 

such as Floral City Cave, Thornton’s Cave in 
Sumpter County, and the lower level of  Briar 
Cave in Marion County. All of  these caves occur 
at a similar elevation, 12-15 meters above sea 
level, yet remain partially flooded in the modern 
configuration of  the water table (Figure 3.15). 
The deeper, underwater caves most certainly 
represent multiple generations of  solution 
history, which may partially explain their greater 
size.

e.  Finally, a single paleo-water table can pass 
through cave levels associated with different sea-
level stands. Such stair-stepping occurs because 
later water tables reoccupy zones dissolved by 
earlier water tables. As a result, the present water 
table can pass through caves at a higher elevation 
further inland near the Cody Scarp than beneath 
the Brooksville Ridge, while at the same time 
connecting to modern sea level at the present 
shoreline (Figure 3.13). A great example of  this 
process is seen at Finch’s Cave in Marion County, 
where the modern water table has reoccupied a 
cave passage at 15 meters above sea level. Calcite 
crusts deposited on the walls of  Finch’s Cave 
at an earlier time in the cave’s history are being 
dissolved by the present day water table (Figure 
3.16). 

Hazards Assessment and Resource 
Management of  Florida Karst 

Sinkholes
Rapid urbanization has characterized Florida 

development since the 1950s and an estimated 
1000 new residents move to Florida each day. 
With urbanization has come an increase in 
groundwater consumption. Currently, more than 
90% of  18-million Florida residents rely upon 
groundwater (Scott et al., 2004), particularly from 
the vast underground reservoir of  the upper 
Floridan aquifer that yields an estimated 1.1x1010 
liters of  fresh water per day (Miller, 1986). 

Concurrent with increased pressures for 
developable land and greater groundwater 
withdrawals is an increase in the report of  
sinkhole collapses, particularly in Pasco and 
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Figure 3.13. Concept sketch of  how the cavernous porosity in the upper part of  the Floridan aquifer of  west-central 
Florida connects to paleo-water tables and paleo-shorelines. Index map at lower right indicates the approximate location 
of  the vertically exaggerated cross-section that is not to scale. Note that the Withlacoochee River runs generally north-
south through the cross-section and divides the uplands of  the Brooksville Ridge from the Cody Scarp and the Ocala 
Platform. Paleo-sea levels relative to Cooke’s terraces are identified. Black ovals identify cavernous horizons. Some ovals 
are labeled with representative cave names from the text or figures; however, these caves do not necessarily align along the 
cross-section. Dashed lines indicate paleo-water tables that intersect the caves. Note that multiple paleo-water tables may 
occupy some cavernous horizons, as in the case of  the lower level of  Briar Cave. Also note that the paleo-water tables are 
not horizontal surfaces. Rather, they grade to their contemporaneous paleo-shorelines. The inflection in the paleo-water 
tables beneath the Withlacoochee River reflects recharge to the Floridan aquifer by the river and reduced permeability in 
the aquifer caused by sediments that infiltrate karst features in the river bed.

Hernando Counties on the Gulf  coast and in 
the metropolitan Orlando area (Tihansky, 1999; 
Figure 3.17). Sinkhole and other subsidence-
related phenomena caused more than 100 million 
dollars in structural damage in Florida in 1997 
and damage estimates continue to increase every 
year.

By 2006, many homeowners saw their 
property insurance premiums triple. Many 
insurers have ceased writing homeowner 
policies in the state (hurricanes have significantly 
influenced this trend), leaving many with a state-
funded, high-risk insurer-of-last-resort, Citizen’s 

Insurance. The direct threat to personal property 
caused by sinkhole phenomena drives a high level 
of  government and public interest in Florida 
about sinkhole processes. As the occurrence of  
sinkhole collapses increase, so do the number 
of  engineering firms, environmental consulting 
companies, and law offices established solely for 
evaluation and intervention of  sinkhole damage. 

In the case of  dramatic cover-collapse 
sinkholes, investigations are simple and the cause 
of  karst activity is obvious. On the other hand, the 
vast majority of  damage is caused by the subtle 
settling of  the ground through the raveling of  
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Figure 3.14. Map of  a portion of  Floral City Cave in 
eastern Citrus County (see index map inset). Contours 
on the map designate the elevation of  a 1.5-foot tall 
laterally continuous horizon with respect to a water table 
datum of  10.8 m above sea level. The contour interval is 
0.05 m . The northern and eastern sections of  the cave 
are principally tall, narrow fractures where the laterally 
continuous horizon plunges beneath the level of  passage.

sands into cover-subsidence sinkholes. In these 
cases, the ground motion is imperceptible and 
the damage that results manifests as cracks in 
walls or foundations, doors that will not close, or 
even floors that are no longer level. For a more-
definitive determination in the cover-subsidence 
cases, detailed fieldwork including geophysical 
surveying is required. Of  particular use are 
methods that utilize shallow seismic techniques, 
measure electrical resistivity (Dobecki and 
Upchurch, 2006), and employ ground-penetrating 
radar (Kruse et al., 2006).

Springshed Protection
Freshwater discharge from springs in the 

upper Floridan aquifer has been a ubiquitous 
part of  human life in Florida. Native cultures 
established communities on spring runs, such 
as at the Crystal River Archeological Site. 
Modern towns, like Dunellon, Tarpon Springs, 
Silver Springs, and High Springs, grew astride 
their supply of  freshwater. Water quality data 
from many springs in Florida, however, reveals 
unnerving trends. Nitrate levels have increased 
primarily as a result of  anthropogenic pollution 
such as fertilizers for lawns, golf  courses, and 
citrus groves (Scott et al., 2004). Chlorides and 
sulfates have also increased, particularly along the 

Figure 3.15. A portion of  passage in Thornton’s Cave in western Sumter County. This cave is at an elevation of  15 
meters and is occupied by the modern water table. Water from the cave discharges into the adjacent Withlacoochee River 
(photo by Alan Cressler).
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coast where salt-water intrusion occurs (Scott et 
al., 2004). Changes in water chemistry at Florida 
springs greatly reduce species biodiversity and 
are a primary cause of  algae blooms.

The protection of  the quality of  spring water 
in Florida has become a very important cause with 
many stakeholders. Government entities, such 
as the Florida Department of  Environmental 
Protection and the National Forest Service, 
protect dozens of  major springs in Florida. 
Additionally, major bottling companies, such as 
Nestle, Dannon, and Coca-Cola, market Florida 
spring water around the nation. Finally, more 
than 1 million visitors spend $65-million per year 
at the parks that protect Florida’s four largest 
springs (Bonn and Bell, 2003). 

In part because of  these economic pressures, 
the Florida Department of  Environmental 
Protection with support of  the Florida Legislature 
founded the Florida Springs Initiative and Task 
Force in September of  1999 and in 2001 allocated 
2.5-million dollars in research funding (Scott and 
Means, 2003). Much of  this money has been 
spent delineating recharge areas for major springs 
and identifying sources of  pollution (Scott and 
Means, 2003). However, the Florida Geological 
Survey and the Florida Cave Survey have both 
begun to compile and archive information on 

Figure 3.16. A portion of  the wall of  Finch’s Cave near 
the city of  Belleview in southern Marion County. Notice 
the remnants of  a calcite crust. The modern water table 
has reoccupied the cave and is dissolving the crust, which 
was deposited at a time when the water table was much 
lower (photo by Jason Polk).

previously known and newly discovered caves.
Operating independently and in cooperation 

with the Springs Task Force, Florida cavers, 
scientists, and citizens have made major strides 
toward the protection of  surface and subsurface 
karst resources. With these conservation efforts, 
we anticipate that the Florida Cave Survey will 
grow far beyond the 1,900 caves and springs 
presently listed in the database. Our knowledge 
concerning the integral role of  these caves in 
the upper Floridan aquifer and their role in the 
unique ecosystems of  Florida will also most 
certainly grow.
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