
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-1-2011

Efficient Schema Extraction from a Collection of
XML Documents
Vijayeandra Parthepan
Western Kentucky University, vijayeandra@gmail.com

Follow this and additional works at: http://digitalcommons.wku.edu/theses
Part of the Databases and Information Systems Commons, and the Programming Languages and

Compilers Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Parthepan, Vijayeandra, "Efficient Schema Extraction from a Collection of XML Documents" (2011). Masters Theses & Specialist
Projects. Paper 1061.
http://digitalcommons.wku.edu/theses/1061

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TopSCHOLAR

https://core.ac.uk/display/43619529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.wku.edu%2Ftheses%2F1061&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFICIENT SCHEMA EXTRACTION FROM A COLLECTION OF

XML DOCUMENTS

A Thesis

Presented to

The Faculty of the Department of Mathematics and Computer Science

Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Vijayeandra Parthepan

May 2011

EFFICIENT SCHEMA EXTRACTION FROM A COLLECTION OF
XML DOCUMENTS

Date Recommended May 28, 2011 _

~~
Dr. Guangming Xing, Director of Thesis

DQT ~rlk~
;

Dr. Zhonghang Xia

Dean, Graduate Studies and Research

iii

ACKNOWLEDGEMENTS

It was a great pleasure working under my graduate advisor, Dr. Guangming Xing,

who provided everything I needed to succeed. His inspiration and guidance made this

Master of Science degree so rewarding. He always promoted my work and encouraged

me to take the risks in my work and to express my ideas without any restrictions. I feel

very fortunate to have been his student. I would like to thank Dr. Xing for the immense

trust and patience he has over me. He constantly supported and directed me in each and

every step. Without him this thesis would not have been a possibility.

I would like to thank Dr. Qi Li and Dr. Zhonghang Xia for their valuable time and

suggestions that helped me improve this Thesis. I would like to thank all my friends at

Western Kentucky University and my family for the never ending support. I would like to

specially thank my father Mr. Parthepan Krishnaswamy and my mother Mrs. Geetharani

Narayanaswamy for their everlasting love and encouragement for me to succeed.

iv

TABLE OF CONTENTS

1 INTRODUCTION OF XML AND SCHEMA 1

1.1 Background . 1

1.2 XML Schema 4

1.3 Applications of XML .6

1.4 Contributions . 7

1.5 Thesis Structure . . 9

2 LITERATURE REVIEW 10

3 PROPOSED SCHEMA EXTRACTION PROCESS 18

3.1 Frequency Factor ()19

3.2 NFA for computing MDL . 20

3.3 Introducing edit distance concept . 28

4 PROPOSED SCHEMA EXTRACTION PROCESS 32

4.1 Overview of the implementation .33

4.2 Test data . . 34

4.3 Experimental studies on efficiency. 40

4.4 Experimental studies on the quality of schema42

4.5 Experimental studies on optimum frequency value47

5 CONCLUSION 49

v

LIST OF FIGURES

1.1 Catalog data and corresponding DTD structure 2

1.2 DTD document structure . . .3

1.3 XML tree representation of a sample DTD 4

2.1 Generated Catalog data from corresponding XML tree 11

2.2 Catalog data and corresponding parser output. 12

3.1 Thompson’s method for NFA construction 22

3.2 NFA for r3=a and r5=b in r4=r5*. 23

3.3 NFA for r2=b .23

3.4 NFA for r4=b*. 24

3.5 NFA for r1=ab*.24

3.6 NFA for r4=ab*+b 24

3.7 NFA simulation algorithm .27

4.1 Evaluation framework 32

4.2 Generated output DTD 37

4.3 Synthesized XML document39

4.4 Synthesized XML DTD elements. . . 39

4.5 Input DTD42

4.6 Generated DTD from collection-144

4.7 Generated DTD from collection-245

4.8 Generated DTD from collection-346

4.9 Generated DTD from collection-446

vi

LIST OF TABLES

4.1 Comparing time taken for schema inference40

vii

EFFICIENT SCHEMA EXTRACTION FROM A COLLECTION OF

XML DOCUMENTS

Vijayeandra Parthepan May 2011 69 Pages

Directed by: Dr. Guangming Xing

Department of Mathematics and Computer Science Western Kentucky University

The eXtensible Markup Language (XML) has become the standard format for data

exchange on the Internet, providing interoperability between different business

applications. Such wide use results in large volumes of heterogeneous XML data, i.e.,

XML documents conforming to different schemas. Although schemas are important in

many business applications, they are often missing in XML documents. In this thesis, we

present a suite of algorithms that are effective in extracting schema information from a

large collection of XML documents. We propose using the cost of NFA simulation to

compute the Minimum Length Description to rank the inferred schema. We also studied

using frequencies of the sample inputs to improve the precision of the schema extraction.

Furthermore, we propose an evaluation framework to quantify the quality of the extracted

schema. Experimental studies are conducted on various data sets to demonstrate the

efficiency and efficacy of our approach.

1

CHAPTER 1: INTRODUCTION OF XML AND SCHEMA

1.1 Background

The eXtensible Markup Language (XML) [3] has become the standard format

for data exchange on the Internet, providing interoperability between different

business applications. Such wide use results in large volumes of heterogeneous XML

data, i.e., XML documents conforming to different schemas. XML documents are

naturally tree structured, and may contain atomic and complex structures. XML

document can be viewed as an ordered labelled tree whose nodes are labelled with

the name of the tags, and the children of each node are ordered. XML documents are

also semi-structured as they incorporate both structural information and content [1].

Dealing with structure information is important to XML data storage and

management [9], and the presence of a schema can significantly simplify the

processing of XML documents. For example, elements from different documents

with similar structures can be stored together, resulting in reduced storage and faster

query processing. However, processing XML documents based on the schemas may

not be feasible in practice, since most XML documents are schema-less.

2

<catalogue>

 <book>

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>1998</year>

 <price>16.99</price>

 </book>

 <book>

 <title>XML</title>

 <author>Author A</author>

 <author>Author B</author>

 <author>Author C</author>

 <author>Author D</author>

 <year>2011</year>

 <price>10</price>

 </book>

</catalogue>

catalogue book+

book title author+ year price

author #PCDATA

year #PCDATA

price #PCDATA

Figure 1.1: Catalog data and corresponding DTD structure.

An XML document is well-formed if it follows basic rules for XML such as,

1. There is exactly one element (root element) that contains all other elements.

2. Elements can be nested but may not overlap.

3

A well-formed document is valid if it contains a reference to a proper schema and

the document conforms to the constraints of that schema. Validation requires an XML

instance to contain all or some of the specified elements and attributes in the schema. An

XML document is said to be valid against a schema if the elements and attributes in the

XML document satisfy the constraints represented in the schema [18]. Based on the

schema, an XML document can be transformed into other formats without content

information. An XML document may include tags that describe the names of elements

and contents such as text data and other forms of data.

XML schema is used to define the format and contents of a given XML instance

[17], and it provides a mechanism to build relationships between schemas and elements.

XML schema is a rigorous representation of an XML based language in terms of

constraints on elements and attributes. The Document Type Definition (DTD) is the

mostly widely used schema to specify the structure of XML documents . A sample

XML document structure and the corresponding DTD can be illustrated by the following

two figures here.

Figure 1.2: DTD document structure.

4

Figure 1.3: XML tree representation of a sample DTD.

1.2 XML Schema

1. XML documents are naturally tree structured, and incorporate both structural

and content information [1] and the presence of a schema can significantly simplify the

processing of XML documents.

2. The schema information can be used to group XML elements [9] and this

grouping process involves finding XML documents of the same schema and grouping

them together.

3. Elements from different documents with similar structures can be stored together,

resulting in reduced storage and faster query processing.

4. The important prerequisite for XML schema based classification/clustering of

XML documents are the schema based algorithms where the availability of schemas is

very important.

5

5. In element level clustering similarity between elements of the two schemas is

checked and the XML document schemas are used for clustering.

Processing XML documents based on their schemas may not be feasible in certain

cases in practice, since some XML documents are schema-less. Most authoring

environments need to read and process schemas in order to understand and enforce the

content models of the document. If an XML document relies on default attribute values,

at least part of the declaration must be processed in order to obtain the correct default

values. In case of web applications, invalidated input from web requests is considered as

one of the important vulnerability and it may be avoided by using a schema. The

semantics associated with white space in element content differs from the semantics

associated with white space in mixed content. Without a schema, there is no way for the

processor to distinguish between these cases, and all elements are effectively mixed

content. The presence of a schema is important for automation and optimization of search

engines. Schema is important for integrating (meta) data through schema matching,

processing meaningful queries over XML data and in the area of generic model

management.

Schema extraction is a very important step in the process of validation of

heterogeneous XML document collection which contains documents belonging to

different schemas and XML documents with no schemas exists. Data mining usually

combines XML documents from a variety of sources with different schemas and

considering the variety of the XML documents grouped and the complexity involved with

it, it is a challenge to find good schemas automatically. Heterogeneous XML documents

6

collection needs schema generation process, because each group of XML documents

would have come from different schemas. Schema extraction is very useful in the

implementation schema based classification/clustering algorithm for heterogeneous XML

document collection. Many of the optimization procedures rely on a well-fitting schema

to work properly and if there is no proper schema we would not be able to apply these

optimization procedures. Extracting schema from a collection of XML documents has

many real world applications and web applications that involve a lot of data. We can

motivate a myriad of potential applications for efficient, automated schema discovery

tools because naive approaches fail to produce the automatic generation of meaningful

schema from underlying data.

1.3 Applications of XML

XML is a highly suited language to represent richly structured information such as

dictionary content and any type of publishing house to marketing materials. XML has

well-structured storage of information, which enables innovative browsing interfaces.

XML is also a fundamental component in many XML web services and it is used to store

and exchange data in the internet environment that may include private messages of

customers. XML is widely used in arbitrary data structures like in web services and

servers. XML is also used to process data in many application programming interfaces

(APIs) and in schema systems that are used in developing XML-based languages. A large

number of Office-productivity tool like Microsoft‘s ‗Office word‘, ‗Open office‘ and

Apple‘s ‗iWork‘ use XML-based languages. XML is useful in dynamically storing and

7

retrieving data in a variety of web applications. XML is used in applications where you

need portability and in internet portability of web documents is very essential because of

the rapid increase in information volume across the internet. XML provides

interoperability between different business applications and so it is widely used in

internet which results in large volumes of heterogeneous XML data, i.e., combination of

XML documents conforming to different schemas.

Storing in XML format is useful when the data gathered on the web will be sent to

applications on non-Windows platforms. A relational database matches data by using the

most common characteristics found within the data set and the resulting groups of data

are organized and this makes the data more organized. For example, a data set containing

all the book information in a library can be grouped by the year each book was published

and so on. For such a grouping we need to sort the XML documents based on their

schema. Hence, this process is useful in relational database management system

(RDBMS). RDBMS has many applications in XML data storage in different fields like

financial records, medical records, personal information, and manufacturing logistical

data.

1.4 Contributions

In this thesis, efficiently extracting schema information from a large collection

of XML documents will be studied. We propose a practical XML schema extraction

method for a collection of XML documents by integrating some of the best XML schema

extraction methods that are in practice. A system was proposed and implemented to

8

address two key issues that arise in the extraction of schema from a collection of XML

documents: accuracy and generalization of the inferred XML schema. It is very

important to find tradeoffs between these two factors in order to produce the optimal

XML schema. When we increase the accuracy of the schema generation process, the

complexity and the size of the XML schema increases accordingly. On the other hand,

when we make the schema more generalized, it may produce an XML schema that

matches a broad range of XML documents. In this thesis, we will introduce a frequency

factor to control the level of accuracy and the level of generalization of the target XML

schema.

The minimum description length (MDL) computation is necessary for ranking

the regular expressions. We propose the method of using the cost of a NFA to

compute the MDL. We compare the MDL computation by using a NFA and by using

regular expression. Based on these comparison result fine tunings to our techniques

are made. Using NFA for finding the cost of regular expressions increases the accuracy

and simplifies the matching process of the regular expressions. The effectiveness of this

approach is increased when the XML files from fairly different XML data collections are

used. The framework to compute edit distances between XML documents and

inferred schemas provides an alternative to the traditional algorithms for tree-to-tree

edit distance in evaluating structural similarity between XML documents [9]. The

XML schema extraction approach presented in this thesis has several advantages over

existing techniques. We will demonstrate the efficiency of our approach by using a

sample XML data generator to produce sample input data from a given schema and

regenerate the schema back from the sample input data by our approach. The sample

9

inputs from the XML data generator are then mixed with noise and the schema is

regenerated. The result from this experiment is then used for mapping with the input

schema to determine the measure of similarity. We generated various other XML test

cases like using a small number of large file XML files and a large number of small

XML files. Synthesized XML data from various complex schemas over the internet

are used for schema extraction and the results of these test cases show that our

schema extraction technique is more accurate than other approaches and is many

times faster than existing approaches.

1.5 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 presents the

existing and works on XML schema extraction. Chapter 3 presents the proposed

system, the techniques used in our system. Chapter 4 presents the results of our

experimental studies, demonstrating the efficiency and effectiveness of our

algorithms. A brief conclusion of the thesis is given in Chapter 5.

10

CHAPTER 2: LITERATURE REVIEW

XML schema is used to describe the XML documents and when schema is not

available, schema information can be inferred from the existing XML documents. In

practice, we need to automate the extraction of schema from a collection of XML

documents to quicken this process of validation. The schema extraction often requires

certain generalization of input data, because representing all the data as such will result in

bulky data. The ideal extracted schema should tightly represent the data and on the other

hand be concise and compact as well. So, automation of schema extraction becomes a

difficult and challenging task. The regular expressions which are generated by using

learning algorithms designed for deterministic finite automata (DFA) [15] and then

turning these automata into regular expressions tend to produce expressions which are

rather unreadable from a human perspective.

 We need to infer schema from a collection of XML documents, but inferring a

schema from a large collection of XML documents is challenging because:

1. XML document set acquired on the Internet tend to have noise documents which

can significantly degrade the accuracy of the inferred schema (even though there is

nothing wrong with the inference algorithms).

2. The procedure to infer the schema is time consuming when the number of

documents is large or the individual document is large in size.

3. There are no good criteria to evaluate the quality of the extracted schema.

11

<?xml version="1.0"?>

<catalog>

 <book>

 <title>Harry Potter</title>

 <author>J K.Rowling

 </author>

 <year>1998</year>

 <price>16.99</price>

 </book>

 <book>

 <title>XML</title>

 <author>Author A</author>

 <author>Author B</author>

 <author>Author C</author>

 <author>Author D</author>

 <year>2011</year>

 <price>10</price>

 </book>

 </catalog>

|- catalog (34)

 |- #text (0)

 |- book (14)

 |- #text (1)

 |- title (3)

 |- #text (2)

 |- #text (4)

 |- author (6)

 |- #text (5)

 |- #text (7)

 |- year (9)

 |- #text (8)

 |- #text (10)

 |- price (12)

 |- #text (11)

 |- #text (13)

 |- #text (15)

 |- book (32)

 |- #text (16)

 |- title (18)

 |- #text (17)

 |- #text (19)

 |- author (21)

 |- #text (20)

 |- #text (22)

 |- author (24)

 |- #text (23)

 |- #text (25)

 |- year (27)

 |- #text (26)

 |- #text (28)

 |- price (30)

 |- #text (29)

 |- #text (31)

 |- #text (33)

Figure 2.1: Generated Catalog data from corresponding XML tree.

Practically the number of elements in a collection of XML documents may be very

large and so it is difficult to extract the schema out of every document in the collection.

In such cases, we choose a small set of elements that may possibly be a good

representative of that collection. The process of selecting the representatives from a

12

collection must be done carefully such that the size of the XML document is not too

small or too large, as the structure of those documents may not be common in that

collection. Among the remaining documents, we randomly select a small subset

(representative) for schema extraction and then they are merged with the other

representatives.

<?xml version="1.0"?>

<catalog>

 <book>

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>1998</year>

 <price>16.99</price>

 </book>

 <book>

 <title>XML</title>

 <author>Author A</author>

 <author>Author B</author>

 <author>Author C</author>

 <author>Author D</author>

 <year>2011</year>

 <price>10</price>

 </book>

 </catalog>

|- catalog

 |- book

 |- title

 |- author

 |- year

 |- price

 |- book

 |- title

 |- author

 |- author

 |- year

 |- price

Figure 2.2: Catalog data and corresponding parser output.

Inferring XML schema from a collection of heterogeneous XML documents,

involves selecting a particular set of XML files that best represents the whole collection

of XML files and compare the strings generated from the XML parser that parses the set

of XML files. The intermediate parsed set of strings from a sample XML document is

represented here and the next step is the process of inferring regular expressions from

strings. Several publications have been published to address the problem of inferring

regular expressions from the set of strings which is equivalent to mining regular

13

expression from strings and so it is essential to know the existing methods. The problem

of inferring regular grammars from examples has been studied in various systems

like Xtract and IBM alphaWorks DDbE product. Among these systems, Xtract [6]

provides a more practical solution for pattern extraction from a collection of string.

One of the important contributions made by Xtract is the introduction of MDL in ranking

candidate expressions and it concentrates on improving the efficiency in computing the

MDL and adapts the framework for schema extraction for a large collection of XML

documents. In general, the MDL principle states that the best grammar (schema) to infer

from a set of data is the one that minimizes the sum of the length of the grammar and the

length of the data when it is encoded with the grammar. Inferring regular expressions

from a set of strings is used in sequence profiling [7], information extraction theory, and

web structure mining [6].

Schema Extraction Process

XML schema has syntax that incorporates the full expressing power of regular

expressions, manually deducing such a schema for even a small set of XML documents

created by a user could prove to be a complicated process. A schema extraction

algorithm should produce accurate and meaningful schemas that are also intuitive and

appealing to humans (i.e., resemble what a human expert is likely to come up with). The

Xtract [6] algorithm integrates many of the other schema extraction proposals as its

subroutines and finally tries to find the best schema extraction technique out of these

proposals. The generation of candidate schemas is an important task and is done in

14

generalization. The three major steps in Xtract algorithm namely generalization, factoring

and ranking are described here.

Generalization

The generalization component of this system infers a number of regular expressions

which have been found frequently on the real life schemas. This step prevents the system

to infer certain complex expressions that are less likely to occur in practice. If the number

of sequences that we consider for generalization is very less we may over generalize the

resulting schema and if the number of sequences is very large it needs to be more

generalized. This step is useful for generating the candidate schemas for the calculation

of the minimum length description process. In real life there may be numerous candidate

schemas that generalize the sub element sequences in the input, and choosing the

schema that best describes the structure of these sequences is a non-trivial task.

The generalization process involves two important steps, namely finding the

‗sequential‘ pattern and the ‗Or‘ patterns. The first step is the process of discovering the

sequential patterns and it involve setting up of the input threshold parameter value to r>1,

which is the minimum number of contiguous repetitions of subsequence r in s required

for the repetitions to be replaced. The maximum numbers of repetitions are analyzed and

the longest among them is chosen and the ties are subsequently resolved.

In the process of discovering ‗Or‘ patterns, the first step is the process of procedure

partition where the ‗Or‘ patterns are discovered based on the various values of d to

control the degree of generalization. We are using the novel heuristic algorithms for

finding patterns in each input sequence and replacing them with appropriate regular

15

expressions to produce more general candidate schemas. Kleene stars generated are used

to produce regular sub expressions that generalize the patterns observed in the input

sequences. The generalization rules that we use are based on the discovery of frequent,

neighboring occurrences of subsequences and symbols within each input sequence. The

explosion in the number of resulting patterns is controlled by practical, real-life schema

examples as used in Xtract algorithm. Although simple in most cases, the heuristics are

effective for real data sets.

Factoring

The factors of the common sub-expressions from the generalized candidate schemas

obtained from the generalization step need to be more concise. For example if there is a

simple expression like (ab+ac), it can be further factored to a(b+c). By doing this we are

reducing the cost of encoding of the schema, as we can see the size is considerably

reduced. This reduction of cost will result in more efficient schema generation. There are

several choices made while factoring a common real life schema based on the sequences

that are on the schema and these factored forms of the candidate schemas must also be

added to the MDL calculation module. Even though all schemas may further be factored,

not all schema factoring are efficient. We are using tight rules are factoring the data and

the cost of factoring may also be a factor in improving the efficiency of schema

generation and so, we try to generate different schema files and try to find the optimum

method of schema generation. The MDL principle is the one that is general enough to

cover a large subset of the input sequences, but at the same time the structure of the large

16

subset is also brought out. We are using the greedy algorithm to share the common

prefixes and suffixes and have the minimal overlap with other selected schemas.

Ranking

The final and the most important contribution of Xtract is the introduction of MDL

to rank the candidate expressions. The MDL principle has its roots from the information

theory and it provides an optimal theory for schema extraction. The ranking of the

candidate schemas is done by choosing the best set of candidate schemas that best

represent the original input conditions. Choosing the best schema may be done by

computing the cost of each and every candidate schemas and ranking the schema based

on the number of bits required to describe the schema. This ranking thus provides us a

direct measure of the conciseness. Selecting the optimum schema from the collection of

XML documents involves the natural mapping in to the Facility Location Problem (FLP),

which is known to be NP-complete and so we designed a efficient approximation

algorithm with guaranteed performance ratios.

A target function L=Ls+Ld is used to deduce the optimal schema where,

Ls denotes the length of the schema, and

Ld denotes the length of the documents encoded using the corresponding schema.

The target function helps to give a measure of the optimum schema that can be

generated from the candidate schemas that are generated from the previous steps. The

17

sample patterns that may occur in a given collection of XML documents is shown here,

which gives an overview of the kind of ranking algorithm that is being used.

Take the string ababab as an example: we may have the following three patterns:

1) ababab

2) (ab)*

3) (a|b)*

It is easy to see that pattern 1) is longest, but when used for encoding the input

string, it would be shortest as the input is just one occurrence of the pattern. Pattern 3)

can be the simplest, but when used in encoding the string, it is longest as there are six

steps of choices. The MDL principle gives the best theory to infer from a set of data is the

one which minimizes the sum of the length of the theory in bits and the length of the data

in bits when encoded with the help of the theory. Each schema is assigned a MDL cost

and the schemas with the lower MDL costs are ranked higher. Based on these ranks the

given XML files are used to determine the optimum schema.

18

CHAPTER 3: PROPOSED SCHEMA EXTRACTION PROCESS

Although inferring schema from an XML document is simple to describe, inferring a

schema from a large collection of XML documents is a challenging task. We need to

balance the precision and generality factor of the extracted schema from a XML

document collection. We need to make sure that the extracted pattern precisely describes

the sample documents without covering those documents (with different structures)

outside of the sample set. At the same time the extracted pattern should be general

enough to cover those documents that share similar structure with those in the sample set.

According to our proposed algorithm, the frequencies of the child sequences are

evaluated and the sequences with low frequencies may not be covered by the inferred

grammar. This would help reduce the negative effects of noises in the classification

process. The minimization function used in Xtract is modified by introducing a frequency

factor that helps to maintain the balance between the generalization and specialization of

the schema being generated.

We employ Rissanen‘s MDL principle [16] to derive the optimal schema from the

set of candidate schemas. To balance the precision and generalness of the inferred

schema, a frequency factor (), is introduced in the target function for the MDL. This

frequency factor achieves the balance between the generalization and accuracy of the

generated schema because it allows the user to set the optimum range value to find a

schema almost close to the original schema. The selection of the optimal schema from

our algorithm has a direct and natural mapping to the Facility Location Problem (FLP)

which involves the evaluation of various sites for a new facility. We are using a NFA in

19

order to match the existing candidate schemas to find more generalized schema. The step

has simplified the process of generating the more generalized schemas and some of the

complex schemas that cannot be generated from the traditional Xtract algorithm can be

generated by the use of NFA in the factoring step. The improvements made in our

schema extraction system from a collection of XML documents are clearly described

below.

 3.1 Frequency Factor ()

The first heuristics is the introduction of a balancing factor for the target function

in calculating MDL. Whenever a pattern is to be extracted from a collection of XML

documents, there are the following important two factors:

Precision: The extracted pattern precisely describes the sample documents while

doesn‘t cover those documents (with different structures) outside of the sample set.

Generality: The extracted pattern should be general enough to cover those

documents that share similar structure with those in the sample set.

Instead of using the target function L=Ls+Ld, L=Ls+Ld is used as a target function

for our proposed system for the overall cost minimization. The parameter of is used to

balance the precision and generality of the inferred schema.

20

A target function L= Lg + Ld is used to deduce the optimal schema where,

 denotes the frequency factor,

Ls denotes the length of the schema, and

Ld denotes the length of the documents encoded using the corresponding schema.

The introduction of is used to control the ranking of different patterns that are

generated for schema extraction. When the same sequence patterns may appear in the

input documents multiple times, the frequency can be used to give the input with higher

frequency more weight in the overall MDL calculation. So the optimization of L=Ls+Ld

can be represented as,

L=Ls+ iLdi

Where i is the weight of sequence i. This optimization procedure not only improves

the accuracy of the inferred schema, but also reduces the time needed for inference of

schema.

3.2 NFA for computing MDL

The second improvement is the introduction of NFA for regular expression matching

in computing the MDL. We compute the cost of encoding a sequence using a NFA

simulation of the regular expression, instead of computing the cost of encoding a

sequence using a regular expression. The cost to encode a string using a regular

21

expression can be computed recursively [6]. For an input string of length l, it take O(ls)

time to compute the cost of encoding where s is the size of the input document. When the

size of the input document is large, this can be very time consuming. We will show this

can be reduced to O(l) in practice when NFA simulation is used.

An NFA is a 5-tuple ,,,, 0 FQQA structure where,

 is the finite set of input symbols,

 Q is a finite set of states,

QQ
0

is the set of starting states,

QF is the set of final states,

δ is the transition function defined from }{)(Qpow to)(Qpow , and

)(Qpow is the power set of Q.

The NFA with ε-moves (also sometimes called NFA-epsilon or NFA-lambda)

replaces the transition function with one that allows the empty string ε as a possible input.

We could also show that ordinary NFA and NFA with epsilon moves are equivalent and

that one can construct the other, which recognizes the same language.

22

NFA Construction

Thompson‘s NFA construction algorithm may be used for converting a regular

expression in to an NFA. This method constructs a regular expression from its

components using epsilon transaction () concept. The epsilon transaction () acts as

glue for the subcomponent NFA‘s. A -transaction adds nothing because there may be

no change to the original regular expression, but still it is very useful. An NFA can be

constructed from a regular expression using Thompson‘s method.

Figure 3.1: Thompson‘s method for NFA construction.

23

Let us construct an NFA for the regular expression ab*+b. Now, comparing this to

the form r1+r2, where r1=ab* and r2=b, we can construct the NFA for this specific

regular expression. We will construct the automation for r1, which in turn can be

represented by r1=r3r4, where r3=a and r4=b*. The automation for r3 and r4 can be

represented by the following figure.

Figure 3.2: NFA for r3=a and r5=b in r4=r5*.

The NFA for the regular expression r2 is simple and can be represented by

constructing the respective automation for r2 as shown in this figure.

Figure 3.3: NFA for r2=b.

24

Figure 3.4: NFA for r4=b*.

Figure 3.5: NFA for r1=ab*.

Figure 3.6: NFA for r4=ab*+b.

25

NFA engine processes a particular language element by using greedy matching that

matches as much of the input string as possible also saves its state after successfully

matching a sub expression. If a match eventually fails, the engine can return to a saved

state so it can try additional matches and this process of abandoning a successful sub

expression matches so that later language elements in the regular expression can also

match is known as backtracking. NFA engines uses backtracking to test all possible

expansions of a regular expression in a specific order and accept the first match. Since a

traditional NFA backtracks, it can visit the same state multiple times if it arrives at the

state over different paths. So, it can run exponentially slowly in the worst case. Because a

traditional NFA engine accepts the first match it finds, it can also leave other (possibly

longer) matches undiscovered. Traditional NFA engines are more favoured by

programmers because they offer greater control over string matching than either DFA or

POSIX NFA engines they can run slowly in the worst case, you can steer them to find

matches in linear or polynomial time by using patterns that reduce ambiguities and limit

backtracking. In other words, although NFA engines trade performance for power and

flexibility, in most cases they offer good to acceptable performance if a regular

expression is well-written and avoids cases in which backtracking degrades performance

exponentially.

 Lazy construction method is used when we encounter a large XML document that

cannot be computed directly by using a NFA. Some experiments are done to evaluate the

space usage of the lazy construction to make sure that the method is feasible for large

document in real applications and as a result of these experiments, DFA in place of NFA

will not significantly introduce more space usage, and using the lazy construction to get

26

DFA for matching cost is feasible for large XML documents. The performance of NFA

simulation can be significantly improved by using a lazy construction of DFA. Although

the size of a DFA can be exponential to the size of the corresponding NFA, the size of the

DFA in practice tends to be small. In fact, the number of states in the DFA is smaller than

the size of corresponding NFA in many cases.

NFA cost computation

Given an NFA and an input string, we can determine whether or not the NFA

accepts the input by using the NFA simulation algorithm. NFA simulation algorithm

basically matches the given input string with the NFA that is being considered and once

when the given word is accepted the cost of the word is sent as a result. If the given string

did not match the NFA, then it returns -1. It is a simple algorithm and very useful for

calculations.

27

// computes the cost of NFA simulation

// returns -1 if the input is not accepts by the NFA

int accept(NFA nfa, String input) {

 int cost = 0;

 Vector current = new Vector(nfa.numOfStates());

 current.set(nfa.start, true);

 for (each literal in input) {

 current = transit(current, literal);

 cost = cost + countTrue(current);

 }

 if(current.get(nfa.final))

 cost = -1;

 return cost;

}

Vector transit(Vector current, int literal)

{

 Vector next = new Vector(current.size());

 for (each entry in current)

 if (current.get(i) == true)

 for(each j s.t. j(i, literal)

 next.set(j, true);

}

Figure 3.7: NFA simulation algorithm.

28

NFA Performance Evaluation

Although the non-determinism in an NFA is not preferred in many applications, it

provides a similar measure as encoding an input string using a regular expression. As the

non-determinism in a simulation cost increases, it will result in longer corresponding

encoding using the regular expression. It takes O(ls) time to use NFA simulation to

determine whether or not an input string can be accepted by an NFA, where l is the length

of the input string and s is the number of states in the NFA. When we use a DFA, it

contains only finite state and so it cannot match a pattern with back references. It does

not construct an explicit expansion and so, it cannot capture sub expressions. When

traditional NFA engines perform pattern matching, their processing order is driven by the

regular expression pattern.

3.3 Introducing edit distance concept

The third contribution of this thesis is the introduction of edit distance to quantify the

quality of the schema. We use the edit distance between XML document and schema

(denoted by),(sd , where d is the document and s is the schema) [11], which is defined

as the minimum cost of the edit scripts (insert a node, delete a node, or replace a node)

that transforms an XML document such that it conforms to the XML schema. As the edit

distance is related with the size of the document, we use normalized distance concept.

29

||||

),(
),(ˆ

sd

sd
sd

It is essential for us to measure for how well the document d conforms to schema s.

Consider the case of clustering the XML data. Here, there are two types of algorithms for

specifying XML documents similarities. First are structure-based only algorithms and

second are structure and content algorithms [19]. Generally the main difference between

these two methods is that element level specifies the similarity between tree elements

(particularly the similarity in the name structure) whereas structure level studies the

similarity of the whole tree and ignores the elements details [21].

Among these Pair wise based algorithms are more common which first create a

similarity matrix for each pair of documents. This matrix is initialized by a criterion for

measuring similarity between two documents. The pair wise algorithms use tree edit

distance to calculate the similarity between two XML documents. We need to calculate

the minimum distance between two trees T1 and T2 while using insert, delete and edit

operations for each node of the tree. We must consider a cost for each of these operations

that are computed depending on the node tags. So in order to specify the similarity

between two XML documents, it suffices to calculate the minimum cost of converting T1

tree to T2 tree by a sequence of operations [21]. In other words, we calculate how many

operations are required to convert T1 to T2. This cost is the similarity between T1 and T2.

The edit distances depend on the size of the document, as a larger document tends to

have larger distance to a schema even if it conforms to the schema better than a small

document. To overcome this, we use normalized edit distance. For a document doc and a

schema r, the normalized edit distance can be defined by the following formula:

30

)min(||

|]]|..1[,[
),(ˆ

rdoc

docFvC
docrd S

where |doc| denotes the size of the document, and min(r) denotes the size of the

smallest document that can be generated by the schema r from the starting symbol vs in r.

Based on the definition of C[vS, F[1..|doc|]], the normalized edit distance ranges between

0 and 1, where 0 means the document doc conforms to schema r, and 1 means a complete

deletion of doc and a rebuilding of a new document from r.

Given a document doci, a collection of documents D, and the corresponding schema

s(D) for D, we define the distance between doci and D as

)),((ˆ
, iDi docDsd

Similarly, the pair-wise distance of documents di and dj is defined as

2

)(
),(

}{,}{, ij docjdoci

ji docdoc

 .

The value of (doci, docj) lies between 0 and 1. A smaller (doci, docj) indicates the

two documents being structurally more similar. In the case of a document clustering task,

a matrix of pair-wise distances may be used to feed the clustering algorithm.

Generally the main differences between pair wise and incremental algorithms are

time complexity and application. In the best case, pair wise algorithms are from order of

two but incremental algorithms work in linear time and are useful for online

31

environments [19]. Hence, we can use this edit distance concept for our schema

computation. In our algorithm, given a collection of XML documents with similar

structures, an XML schema can be inferred from training documents from the collection.

The quality of the inferred schema can be measured by the normalized edit distances

between the testing XML documents and the schema.

32

CHAPTER 4: IMPLEMENTATION AND EXPERIMENTAL STUDIES

In this section, we investigate the efficiency, effectiveness, and scalability of the

algorithms presented in this chapter on various data sets. The general overview of our

experiment to be conducted is shown in the figure.

Figure 4.1: Evaluation framework.

The data sets to be used in our experiments are generated by an XML generator. The

input DTD and the noise DTD are given as inputs to the XML data generator which

generates the XML documents conform to the input DTD and the noise DTD

Sample DTD

Random

XML Data

Generator

XML document’s

Collection

Noise DTD

Random

XML Data

Generator

Schema

Extractor

Distance

Computation

Result

Evaluation

33

respectively. These XML documents collections are then used as inputs for the schema

generation algorithm. The distance between each XML document is calculated by MDL

principle of our proposed XML schema extraction algorithm and eventually we are

generating the schema corresponding to the particular set of XML documents. Result

evaluation is the process of showing the effectiveness and efficiency of our algorithms by

comparing our results with previous existing algorithms.

4.1 Overview of the implementation

Eclipse is the Integrated Development Environment (IDE) that we use for the java

implementation of the algorithms in this thesis. The experiments were performed on a

laptop having Intel Core2 Duo-2.2 GHz processor running Microsoft-Windows 7

platform and four Giga Bytes of main memory running eclipse. We used IBM‘s XML

generator jar file [13] and it was implemented using a java program to generate the

random XML files from the DTDs that are edited using WordPad.

The proposed method was implemented in Java and we are using the XML4J parser1

to parse XML documents. We are implementing both the original algorithm and our

modified algorithm in Java to make a good comparison of improvement in efficiency by

using our method. We implemented the MDL Subsystem using the greedy method

instead of the Facility Location Problem (FLP) approximation [6]. Implementation of the

schema extraction algorithm may consume less time to extract the schema than other

algorithms because of using NFA that is faster than the regular expression

implementation. The implementation involves a regular expression class that helps to

34

convert the regular expression that was used to compared before in to individual NFA‘s

and then calculate the distance value from the resulting NFA‘s. The edit distance

normalization that we used is known to improve the processing of multiple XML

documents, as this concept is widely used in XML cluster analysis for this purpose. XML

documents are represented as ordered, labeled trees and the tree edit distance is used to

find the similar XML documents. We also used frequency factor that we were talking

about in the previous chapters in our implementation of the proposed algorithm. The

frequency is fixed to a variable and depending on the results it is altered many times, so

that we can come to an optimum frequency value that balances the generalization and

specialization of the resulting schema for the most common XML document collection

that may be encountered in the practical world. In order to show the improvement in

efficiency and accuracy, we compare the resulting schemas of our approach with results

from some of the previously implemented algorithms.

4.2 Test data

A java program to generate the random XML data is written by using IBM‘s XML

generator jar file. Our test data is generated by using the sample input DTDs. We can

control the number of elements in that particular XML file and the size and various other

fine details in our program. The generation of data set is a very important part of testing

and further development of our proposed system because, we design our proposed system

based on the results produced. Careful designing of the data set is required in order to

make our testing more meaningful. All the experiments in this paper were done on

35

synthetic XML documents generated manually derived from [22, 23]. The XML

document collection data set contains 500 XML documents including a small frequency

of noise which is important to make the collection of XML documents heterogeneous and

test the frequency factor that we use. The number of tags varies from 10 to 200 in these

sources and the nesting level varies from 2 to 30. Majority of these documents contains a

number of different documents that have structural and semantic differences. Hence, even

though documents are from the same DTD, they might not be considered similar enough

to be grouped into the same type of XML document [20].

<!ELEMENT inproceedings ((author, (chapter| volume| note| publisher| month|

ee, publisher| pages, journal) | cite, (note| journal| note, title| author, journal| editor, url|

publisher, isbn) | year, (month| url| year| crossref, isbn| month, school) | cdrom, (isbn|

booktitle| year| chapter, booktitle| crossref, title) | (publisher| pages| publisher, volume|

volume| note, cdrom) , author| month, (ee| school| cite, series| publisher, chapter) |

editor, (url| pages| cite, title| address, address) | (school| title| volume| url, school) ,

number| booktitle, (journal| booktitle| volume, url) | note, (year| year, title| month,

cite) | (url| title| crossref) , pages| series, (series| number, title) | journal, (series| url,

address) | isbn, (journal| address, year) | address, (note, month| year, isbn) | author| ee|

url| editor| EMPTY| series| volume| cdrom| number| month| journal| school| address|

cite| crossref| note| isbn| pages| ee, journal| crossref, ee| volume, volume| school,

publisher| chapter, note| pages, url| number, isbn, booktitle)) >

<!ELEMENT publisher (EMPTY) >

<!ELEMENT volume (EMPTY) >

<!ELEMENT author (EMPTY) >

36

<!ELEMENT cdrom (EMPTY) >

<!ELEMENT chapter (EMPTY) >

<!ELEMENT booktitle (EMPTY) >

<!ELEMENT ee (EMPTY) >

<!ELEMENT pages (EMPTY) >

<!ELEMENT journal (EMPTY) >

<!ELEMENT series (EMPTY) >

<!ELEMENT cite (EMPTY) >

<!ELEMENT note (EMPTY) >

<!ELEMENT title ((ref, (sub, i| sup| sup, tt) | sub, (ref| ref, i) | (tt| sup, i) , sub|

EMPTY| sup| sub| i| i, i)) >

<!ELEMENT sub ((sub, (tt, (sub| ref) | sup| i| sub, i) | tt, (ref| sup| ref, ref| sup,

sub) | i, (ref| sup, ref| ref, sup| i) | (ref| sup, i) , tt| sup| tt| i| (sub| ref) *)) >

<!ELEMENT sup ((sub, (tt| ref| i, tt| sup, i| sub) | ref, ((sub| i) , sub| sup| ref, i) |

i, (sup| ref, sup) | tt| i| sup| sub| tt, ref| sup, tt, sub| ref*)) >

<!ELEMENT tt ((tt, (ref| tt| i| sub| tt, sup) | i, (tt| ref| sub, sup| ref, sub) | sub, (i|

tt| i, sup| tt, tt) | ref, (sup| ref, sub) | tt| ref| i| sup, ref, sub| (sub| sup) *)) >

<!ELEMENT i ((ref| sub| i| sup| ref, sub| tt* | tt, sup, sup| i, sup, i| (tt, (sub| tt) |

ref| i| sup| tt) , tt| (ref| i) , sub, ref)) >

<!ELEMENT ref (EMPTY) >

<!ELEMENT year (EMPTY) >

<!ELEMENT month (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT editor (EMPTY) >

<!ELEMENT number (EMPTY) >

<!ELEMENT crossref (EMPTY) >

<!ELEMENT school (EMPTY) >

<!ELEMENT address (EMPTY) >

37

<!ELEMENT isbn (EMPTY) >

<!ELEMENT book ((title, (journal| year| month| editor, note| note, url) | (note|

year, pages| crossref, cite| editor, crossref| number, url) , publisher| (isbn| url| chapter,

editor| year, year| pages, author) , chapter| volume, (month| number| title| pages) | (

isbn| year, year| note, cdrom| isbn, author) , volume| author, (author| editor| year, year)

| url, (isbn| booktitle| pages, ee) | cdrom, (school| url, crossref| booktitle, url) | ee, (

series| journal, note| cdrom, isbn) | month, (year| series, title| year, school) | note, (

journal| year, author) | school, (address| crossref, booktitle) | booktitle, (url| booktitle,

pages) | crossref, (number, editor| volume, cdrom) | EMPTY| note| number| url| school|

cite| year| editor| title| author| ee| pages| journal| cdrom| booktitle| publisher, journal|

series, pages| pages, number| chapter, title| number, year| editor, chapter, url| isbn,

number, address| cite, journal, (volume| note))) >

Figure 4.2: Generated output DTD.

XML documents are also generated from dblp DTD [24] and used it to test the

accuracy of our method. In order to make the structural and semantic differences between

the XML documents generated, we split this DTD in to four sub DTDs. We created these

sub-DTDs in a way that the derived synthetic XML documents would share almost the

same node tags in most of the levels, but may also contain some different relationships in

some of the levels. We designed the first sub DTD such that, it contained only the two

nodes namely, ―article‖ and ―in proceedings‖ node in the first level of the dblp DTD and

the corresponding nodes in the sublevels. The second sub-DTD contained the two nodes

namely ―proceedings‖ and ―book‖ node. The third sub-DTD contained only the ―book‖

38

node and the last sub DTD contained the ―master thesis‖ and ―www‖ node. The

generated XML data set by using XML generator consists of a total of 500 XML files.

100 XML files derived from the original DTD, 100 XML files derived from the first sub-

DTD, 100 XML files derived from the second sub-DTD, 100 XML files derived from the

third sub-DTD, and 100 XML files derived from the fourth sub-DTD are combined to

form this collection of 500 XML files. The test case is created by using these different

sub-DTDs because it avoids the redundant data sets from the XML data generator. The

elimination of redundancy is very important when we try to create a test case that is a

close match of a practical XML document collection. The output DTD in the figure

denotes the DTD generated from algorithm by using the test case described here.

Some of the real-life DTDs are used in our experiments to find the accuracy of our

proposed algorithm. We generated 200 to 1000 XML documents for each DTD document

using the XML Generator and used it for our study. The important aim of our test is to

make sure that our method performs well in most common practical situations of XML

schema extraction and so we selected the most common DTDs that are available on the

internet. For instance in one of our test case, we generated a 500 XML files belonging to

the same DTD and mixed them with 10 noise files of different DTD in order to simulate a

more common test case.

39

Figure 4.3: Synthesized XML document.

Figure 4.4: Synthesized XML DTD elements.

40

4.3 Experimental studies on efficiency

No of files Noise

Time with

DFA

Time

without DFA

200 1 1164 1225

200 3 8535 8609

200 2 41101 42959

200 20 5254 5398

200 10 5052 5533

500 10 22570 23033

500 30 26670 28643

500 50 30004 31964

450 50 26330 26810

Table 4.1: Comparing time taken for schema inference.

The second group of study is to evaluate the improvements in running time. Please

note that the lazy construction of DFA works better when the number of sample input and

the size of the input are large enough. The comparison of the time for schema inference

from different xml documents using original regular expression matching and our

41

proposed method is presented in the following table. Please note the file size is not the

exact, and unit for the time in the table is millisecond.

The time taken for the generation of the DTD is calculated by finding the difference

between the system time at the point of starting the execution of the program and the end

of the execution of the program. We are comparing the total time taken to compute the

MDL by using NFA, with the total time taken without NFA. The total time taken to

compute the MDL by using NFA is 121022339 milliseconds and by using regular

expression are 248041995 milliseconds for this set of data. From this sample data the

time improvement factor (f) may be calculated which denotes the time improvement

obtained from our proposed method of schema extraction from XML document

collection. The data shown above is one of the actual data obtained from our java

program implementation that used the sample XML documents that we generated for our

study. The improvement factor in this case is found to be around 2 and so we can say by

using NFA for the schema extraction process is approximately two times faster. The

above comparison clearly shows that our method reduces the time needed to infer

schemas from a collection of XML documents.

052
121022339

248041995

NFA with time

NFA without time
.F

42

4.4 Experimental studies on the quality of schema

<!ELEMENT #text () >

<!ELEMENT personnel (person*) >

<!ELEMENT person (name, email* , (url* | url* , link)) >

<!ELEMENT name ((family, given| given, family)) >

<!ELEMENT given (EMPTY) >

<!ELEMENT family (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT email (EMPTY) >

<!ELEMENT link (EMPTY) >

<!ELEMENT PARTS (TITLE, PART*) >

<!ELEMENT TITLE (EMPTY) >

<!ELEMENT PART (ITEM, MANUFACTURER, MODEL, COST) >

<!ELEMENT ITEM (EMPTY) >

<!ELEMENT MANUFACTURER (EMPTY) >

<!ELEMENT MODEL (EMPTY) >

<!ELEMENT COST (EMPTY) >

Figure 4.5: Input DTD.

XML files with different complexities are given as input and the results on quality

check show that the DTDs generated from our algorithm to be closest to the optimal

DTD. The input DTD used for XML generation here are obtained from practical sources

over the internet. We are selecting a set of XML files that does not have much of

43

duplicate data and with fair amount uniqueness among the set of XML files generated

from our random XML data generator.

The input DTD with moderate complexity level is used in this experiment and our

random XML data generator generates the sample XML document collection and a total

of distinctly different 500 random XML files are generated by using the input DTD

shown here. The XML files generated differs in structure and size and the files size of the

XML files generated ranges from 50 kilo bytes to 50 mega bytes. The 500 XML files are

used as input along with 20 XML files with different schemas (noise data) to the samples.

In validation testing, the first 200 documents are used as input and about 20 documents

with different schemas (noise data) were inserted to get the test case. The remaining 300

documents are used to validate the schema inferred from the samples. The DTD is

generated from our implementation of the proposed algorithm and the quality of the DTD

generated may be calculated by mapping the DTD generated to the input DTD.

According to our experiments with different DTD samples, we realized that our

output depends on the frequency of occurrence of a particular DTD type and it becomes

clear when we see the following test case, where the input gets changed considerably

with the change in frequency of a set of XML data. The XML files in different

collections of XML documents are considerably altered, by changing the frequency of

occurrence of one or more of the certain pattern in DTD file.

44

<!ELEMENT personnel ((person, (person| person, person) | person)) >

<!ELEMENT person (((name, email| name) , ((email, (email| url| email, url) |

email| url) , (url, (link| url| url, link) | link| url) | email| url| link| email, email) | name))

>

<!ELEMENT name ((family, given| given, family)) >

<!ELEMENT given (EMPTY) >

<!ELEMENT family (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT email (EMPTY) >

<!ELEMENT link (EMPTY) >

<!ELEMENT PARTS (TITLE, PART, PART, PART, PART) >

<!ELEMENT TITLE (EMPTY) >

<!ELEMENT PART (ITEM, MANUFACTURER, MODEL, COST) >

<!ELEMENT ITEM (EMPTY) >

<!ELEMENT MANUFACTURER (EMPTY) >

<!ELEMENT MODEL (EMPTY) >

<!ELEMENT COST (EMPTY) >

Figure 4.6: Generated DTD from collection-1.

<!ELEMENT personnel ((person, (person| person, person) | person)) >

<!ELEMENT person ((name, ((email* | email* , url) , (url| url, url) | email, (

email| email, email) | email| email* , url* , link) | name| name, email, email)) >

<!ELEMENT name ((family, given| given, family)) >

<!ELEMENT given (EMPTY) >

45

<!ELEMENT family (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT email (EMPTY) >

<!ELEMENT link (EMPTY) >

<!ELEMENT PARTS (TITLE, PART, PART, PART, PART) >

<!ELEMENT TITLE (EMPTY) >

<!ELEMENT PART (ITEM, MANUFACTURER, MODEL, COST) >

<!ELEMENT ITEM (EMPTY) >

<!ELEMENT MANUFACTURER (EMPTY) >

<!ELEMENT MODEL (EMPTY) >

<!ELEMENT COST (EMPTY) >

Figure 4.7: Generated DTD from collection-2.

<!ELEMENT personnel (person) >

<!ELEMENT person (name) >

<!ELEMENT name (family, given) >

<!ELEMENT given (EMPTY) >

<!ELEMENT family (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT email (EMPTY) >

<!ELEMENT link (EMPTY) >

<!ELEMENT PARTS (TITLE, PART*) >

<!ELEMENT TITLE (EMPTY) >

<!ELEMENT PART (ITEM, MANUFACTURER, MODEL, COST) >

<!ELEMENT ITEM (EMPTY) >

46

<!ELEMENT MANUFACTURER (EMPTY) >

<!ELEMENT MODEL (EMPTY) >

<!ELEMENT COST (EMPTY) >

Figure 4.8: Generated DTD from collection-3.

<!ELEMENT personnel (person) >

<!ELEMENT person (name) >

<!ELEMENT name (family, given) >

<!ELEMENT given (EMPTY) >

<!ELEMENT family (EMPTY) >

<!ELEMENT url (EMPTY) >

<!ELEMENT email (EMPTY) >

<!ELEMENT link (EMPTY) >

<!ELEMENT PARTS (TITLE, PART*) >

<!ELEMENT TITLE (EMPTY) >

<!ELEMENT PART (ITEM, MANUFACTURER, MODEL, COST) >

<!ELEMENT ITEM (EMPTY) >

<!ELEMENT MANUFACTURER (EMPTY) >

<!ELEMENT MODEL (EMPTY) >

<!ELEMENT COST (EMPTY) >

Figure 4.9: Generated DTD from collection-4.

47

The input DTD represents the original DTD corresponding to the XML files

collection that contains the four different collections of the sample XML files are taken

for our experiments and the tests are done by decreasing and increasing the frequency of

occurrence of a particular pattern of data in the DTD and the results are shown below.

The results of our experiments shows that the frequency of occurrence of the type of

XML files can considerably change the pattern of the DTD generated. Some of the data

that we used for our experiments are shown here and the accuracy of the DTD that we

compute through our implementation of our techniques is seen from these results.

4.5 Experimental studies on optimum frequency value

The fine tuning of the frequency and maintaining the balance between accuracy and

generalization of the generated DTD documents are done by mapping the frequency of

the DTD‘s generated from our approach. For this purpose, we are carefully designing our

test case such that mapping would be easy and efficient. For our experiments, we take

two different DTD‘s DTD-1 and DTD-2 that are distinctly different from one another.

We first generate 500 random XML files corresponding to DTD-1 and DTD-2 and we

split those 500 XML files corresponding to DTD-1 in to 5 groups of 100 each and

similarly, we are splitting those 500 XML files corresponding to DTD-2 in to 5 groups of

100 each. 10 files from the first group of random XML files generated from DTD-1 is

taken and similarly, the 10 files from the first group of random XML files generated from

DTD-2 is taken and swapped from each other. This will form the test case 11 and test

case 21. Essentially, test case 11 will contain 90 random XML files from DTD-1 and 10

48

random XML files from DTD-2; whereas test case 21 will contain 90 random XML files

from DTD-2 and 10 random XML files from DTD-1. Similarly, we are repeating the

same procedure for all other test cases by swapping 10 files from respective test cases of

DTD-1 and DTD-2. As the result of this swapping operation, we designed the rest of the

test cases containing majority of the XML files from DTD-1 and we name them test case

11, 12, 13, 14 and 15. The test cases containing majority of the XML files from DTD-2

are named as test case 21, 22, 23, 24 and 25. Each of the test cases are separately

executed in our implementation of the technique that we were talking about in our paper

and the output DTD obtained is noted. We are naming the output for test case 11 as DTD

11 and the name naming terminology has been followed for all other test cases and

because of the use of noise XML files in to the original XML files, the original DTD to

be generated is altered and a variety of DTD‘s are generated. By mapping these generated

DTD‘s, we would be able to determine the optimum frequency to be set for our

algorithm.

49

CHAPTER 5: CONCLUSION

Inferring a concise and accurate schema from a large collection of XML documents

is important for XML data management. Based on Xtract, we proposed using NFA

simulation in place of regular expression matching to improve the efficiency of XML

schema inference. We have also proposed using a weighted target function to balance the

generality and preciseness of the inferred schema, which can be important for noise

reduction in XML classification/clustering.

The significant advantage in using our proposed XML schema extraction algorithm

to the existing algorithm is that we can alter the amount of accuracy or the generalization

that the schema needs. XML schema extraction algorithm is able to match the regular

expressions by using NFA which simplified the processes of joining the individual

candidate schemas and decreases the time taken for execution considerably. We are also

exploring the possible level of complexity that the regular expression in practise contains,

so that we can more easily customise frequency value for each user.

The proposed XML schema extraction algorithm can handle a wide range of

heterogeneous XML documents collection. The efficiency of the schema generation

process is increases many times by our proposed XML schema extraction algorithm. The

quality of the generated schema is improved considerably by our proposed XML schema

extraction algorithm. We investigated the usability of this algorithm and the potential

user who may be any one ranging from a data miner in a complex situation to an ordinary

user in a simpler situation. We introduced the ideas for implementing the algorithms

50

efficiently with respect to time and memory constraints. Flexible and efficient methods of

the practical XML schema generation step are explored.

51

APPENDIX

In chapter 4 the test cases generated from the synthesized DTDs DTD-1 and DTD-2

[23] are used in the experiment to map the optimum frequency value. DTD-1 and DTD-2

are used to generate 500 samples of XML files each by using the XML generator. The

test cases are divided in to 100 files each by taking 90 files from DTD-1 and 10 files from

DTD-2 and name them test case 11, test case 12, test case 13, test case 14 and test case

15. Similarly the other test cases are generated by taking 90 files from DTD-2 and 10

files from DTD-1 and name them test case 21, test case 22, test case 23, test case 24 and

test case 25. The test cases are designed to make sure that we could efficiently map the

frequency value from the generated DTD in our method. The DTD-1 and DTD-2 used in

our experiments are shown here.

DTD-1

<!-- FORMAT

** -->

<!-- RNAML: The root of any rnaml document.

************************** -->

<!ELEMENT rnaml (molecule)*>

<!ATTLIST rnaml

 version (1.1) #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- MOLECULE: A given RNA molecule.

********************************* -->

<!ELEMENT molecule (identity?, sequence*, structure?)>

52

<!ATTLIST molecule

 id ID #REQUIRED

 type (rna | dna) "rna"

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- IDENTITY: The symbolic description of the RNA molecule. --

>

<!ELEMENT identity (name, taxonomy?)>

<!ATTLIST identity

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT name (#PCDATA)> <!-- type: string --

>

<!-- SEQUENCE: A description of the rna sequence. -->

<!ELEMENT sequence (numbering-system*, seq-data?, seq-annotation?)>

<!ATTLIST sequence

 strand CDATA #IMPLIED

 length CDATA #IMPLIED

 circular (true | false) #IMPLIED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- NUMBERING SYSTEM: A numbering-system provides how the

bases are -->

<!-- numbered. used-in-file indicates if the numbering-system is the -->

<!-- one used throughout the file. If no numbering system is provided -->

<!-- or used-in-file, the numbering from 1 to N is used. -->

<!ELEMENT numbering-system ((numbering-range)* | numbering-

table)>

<!ATTLIST numbering-system

 id ID #REQUIRED

 used-in-file (true | false) "false"

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

53

 database-ids IDREFS #IMPLIED>

<!ELEMENT numbering-range (start, (end | length))>

<!ATTLIST numbering-range

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT numbering-table (#PCDATA)> <!-- type: space delimited

integers -->

<!ATTLIST numbering-table

 length CDATA #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- SEQ-DATA: The actual data for a sequence. The IUPAC (1984) -

->

<!-- symbols should be used: -->

<!-- G=G, A=A, U=U, C=C, R=G|A, Y=U|C, M=A|C, K=G|U,

-->

<!-- S=G|C, W=A|U, H=A|C|U, B=G|U|C, -->

<!-- V=G|C|A, D=G|A|U, N=G|A|U|C -->

<!ELEMENT seq-data (#PCDATA)> <!-- type: string -->

<!ATTLIST seq-data

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- SEQ-ANNOTATION -->

<!ELEMENT seq-annotation (modification | segment)*>

<!ATTLIST seq-annotation

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT modification (base-id, modified-type)>

<!ATTLIST modification

 comment CDATA #IMPLIED

54

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT modified-type (#PCDATA)> <!-- type: string -->

<!ELEMENT segment (seg-name?, base-id-5p, (base-id-3p | length))>

<!ATTLIST segment

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT seg-name (#PCDATA)> <!-- type: string -->

<!-- STRUCTURE: A description of the structure of the rna. -->

<!-- name: A description of the structure. -->

<!ELEMENT structure (model)*>

<!ATTLIST structure

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- MODEL: A model for the RNA structure. -->

<!ELEMENT model (model-info?, base*, str-annotation?, secondary-

structure-display?)>

<!ATTLIST model

 id ID #IMPLIED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT model-info (method?, resolution?, free-energy*)>

<!ATTLIST model-info

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT method (#PCDATA)> <!-- type: string -->

<!ATTLIST method

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

55

 database-ids IDREFS #IMPLIED>

<!ELEMENT resolution (#PCDATA)> <!-- type: float, unit: angstroms

-->

<!ATTLIST resolution

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT free-energy (#PCDATA)> <!-- type: float, unit:

kcal/mole -->

<!ATTLIST free-energy

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- BASE: A base is a residue in secondary or tertiary structure. -->

<!ELEMENT base (strand?, position, base-type?, alt-loc?, insertion?,

atom*)>

<!ATTLIST base

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT base-type (#PCDATA)> <!-- type: string -->

<!ELEMENT alt-loc (#PCDATA)> <!-- type: char -->

<!ELEMENT insertion (#PCDATA)> <!-- type: char -->

<!-- ATOM: An atom with support for PDB fields. -->

<!ELEMENT atom (atom-type, coordinates?, occupancy?,

 temp-factor?, seg-id?, element?, charge?)>

<!ATTLIST atom

 serial CDATA #IMPLIED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT atom-type (#PCDATA)> <!-- type: string -->

<!ELEMENT coordinates (#PCDATA)> <!-- three space delimited

floats -->

<!ELEMENT occupancy (#PCDATA)> <!-- type: float -->

56

<!ELEMENT temp-factor (#PCDATA)> <!-- type: float -->

<!ELEMENT seg-id (#PCDATA)> <!-- type: string -->

<!ELEMENT element (#PCDATA)> <!-- type: string -->

<!ELEMENT charge (#PCDATA)> <!-- type: string -->

<!-- STR-ANNOTATION: -->

<!ELEMENT str-annotation ((base-conformation | base-pair |

 base-triple | base-stack | helix |

 pseudoknot |

 single-strand | distance-constraint |

 surface-constraint)*)>

<!ATTLIST str-annotation

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- BASE-CONFORMATION: -->

<!ELEMENT base-conformation (base-id, pucker?, glycosyl?,

 base-torsion-angles?)>

<!ATTLIST base-conformation

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT pucker (#PCDATA)> <!-- type: string -->

<!ELEMENT glycosyl (#PCDATA)> <!-- type: string

-->

<!ELEMENT base-torsion-angles (alpha?, beta?, gamma?, delta?,

epsilon?,

 zeta?, chi?, nu0?, nu1?, nu2?, nu3?, nu4?)>

<!ATTLIST base-torsion-angles

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT alpha (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT beta (#PCDATA)> <!-- type: float, unit: degrees -->

<!ELEMENT gamma (#PCDATA)> <!-- type: float, unit: degrees

-->

57

<!ELEMENT delta (#PCDATA)> <!-- type: float, unit: degrees -->

<!ELEMENT epsilon (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT zeta (#PCDATA)> <!-- type: float, unit: degrees -->

<!ELEMENT chi (#PCDATA)> <!-- type: float, unit: degrees -->

<!ELEMENT nu0 (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT nu1 (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT nu2 (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT nu3 (#PCDATA)> <!-- type: float, unit: degrees --

>

<!ELEMENT nu4 (#PCDATA)> <!-- type: float, unit: degrees --

>

<!-- BASE-PAIR: A base pair requires two bases from the same molecule

-->

<!-- (molecule id unnecessary) or from two molecules. -->

<!ELEMENT base-pair (base-id-5p, base-id-3p, edge-5p?, edge-3p?,

 bond-orientation?, strand-orientation?)>

<!ATTLIST base-pair

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT base-id-5p (base-id)> <!-- type: string -->

<!ELEMENT base-id-3p (base-id)> <!-- type: string -->

<!ELEMENT edge-5p (#PCDATA)> <!-- type: string -->

<!ELEMENT edge-3p (#PCDATA)> <!-- type: string -->

<!ELEMENT bond-orientation (#PCDATA)> <!-- type: string --

>

<!ELEMENT strand-orientation (#PCDATA)> <!-- type: string --

>

<!-- BASE-TRIPLE: A base triple is formed of two or three base-pairs. --

>

<!ELEMENT base-triple ((base-pair | base-pair-id),

 (base-pair | base-pair-id),

 (base-pair | base-pair-id))>

<!ATTLIST base-triple

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

58

 database-ids IDREFS #IMPLIED>

<!-- BASE-STACK: -->

<!ELEMENT base-stack (base-id, base-id)>

<!ATTLIST base-stack

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- HELIX: -->

<!ELEMENT helix (base-id-5p, base-id-3p, length)>

<!ATTLIST helix

 id ID #IMPLIED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- PSEUDOKNOT: -->

<!ELEMENT pseudoknot (helix-id, helix-id)>

<!ATTLIST pseudoknot

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT helix-id EMPTY>

<!ATTLIST helix-id

 ref IDREF #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- SINGLE-STRAND: A single strand is a segment! -->

<!ELEMENT single-strand (segment)>

<!ATTLIST single-strand

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- DISTANCE-CONSTRAINT: -->

59

<!ELEMENT distance-constraint (base-id, atom-type,

 base-id, atom-type,

 mean, range?, weight?)>

<!ATTLIST distance-constraint

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT mean (#PCDATA)> <!-- type: float, unit: angstroms

-->

<!ELEMENT range (#PCDATA)> <!-- type: float, unit: angstroms -

->

<!ELEMENT weight (#PCDATA)> <!-- type: float -->

<!-- SURFACE-CONSTRAINT: -->

<!ELEMENT surface-constraint (base-id, atom-type, surface-value?)>

<!ATTLIST surface-constraint

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT surface-value (#PCDATA)> <!-- type: float -->

<!-- SECONDARY-STRUCTURE-DISPLAY -->

<!-- X,Y coordinates can be defined for the sequence and then -->

<!-- used to display the secondary structure. -->

<!ELEMENT secondary-structure-display (ss-base-coord)*>

<!ATTLIST secondary-structure-display comment CDATA

#IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- This provides an x,y position for a base. -->

<!ELEMENT ss-base-coord (base-id, coordinates)>

<!ATTLIST ss-base-coord

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- GENERAL ELEMENTS

** -->

60

<!ELEMENT url (#PCDATA)> <!-- type: string -->

<!ELEMENT file (#PCDATA)> <!-- type: string -->

<!ELEMENT path (url | file)>

<!ELEMENT person (first-name, last-name, affiliation*)>

<!ELEMENT first-name (#PCDATA)> <!-- type: string -->

<!ELEMENT last-name (#PCDATA)> <!-- type: string

-->

<!ELEMENT affiliation (#PCDATA)> <!-- type: string -->

<!ELEMENT program (prog-name | prog-version | reference)*>

<!ELEMENT prog-name (#PCDATA)> <!-- type: string -->

<!ELEMENT prog-version (#PCDATA)> <!-- type: string

-->

<!ELEMENT date (day?, month?, year)>

<!ELEMENT day (#PCDATA)> <!-- type: integer -->

<!ELEMENT month (#PCDATA)> <!-- type: integer

-->

<!ELEMENT year (#PCDATA)> <!-- type: integer

-->

<!ELEMENT position (#PCDATA)> <!-- type: integer

-->

<!ELEMENT start (#PCDATA)> <!-- type: integer -->

<!ELEMENT end (#PCDATA)> <!-- type: integer

-->

<!ELEMENT length (#PCDATA)> <!-- type: integer

-->

<!ELEMENT base-id (molecule-id?, model-id?, strand?, position)>

<!ELEMENT molecule-id EMPTY>

<!ATTLIST molecule-id

 ref IDREF #REQUIRED>

<!ELEMENT model-id EMPTY>

<!ATTLIST model-id

 ref IDREF #IMPLIED>

<!ELEMENT strand (#PCDATA)> <!-- type: string

-->

<!ELEMENT base-pair-id EMPTY>

<!ATTLIST base-pair-id

61

 ref IDREF #REQUIRED>

<!ELEMENT alignment-id EMPTY>

<!ATTLIST alignment-id

 ref IDREF #REQUIRED>

DTD-2

<!—FORMAT

** -->

<!-- RNAML: The root of any rnaml document.

************************** -->

<!ELEMENT rnaml (molecule | database-entry | analysis | revision)*>

<!ATTLIST rnaml

 version (1.1) #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- MOLECULE: A given RNA molecule.

********************************* -->

<!ELEMENT molecule (identity?, sequence*, structure?)>

<!ATTLIST molecule

 id ID #REQUIRED

 type (rna | dna) "rna"

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- IDENTITY: The symbolic description of the RNA molecule. --

>

<!ELEMENT identity (name, taxonomy?)>

<!ATTLIST identity

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

62

 database-ids IDREFS #IMPLIED>

<!ELEMENT name (#PCDATA)> <!-- type: string --

>

<!-- SEQUENCE: A description of the rna sequence. -->

<!ELEMENT sequence (numbering-system*, seq-data?, seq-annotation?)>

<!ATTLIST sequence

 strand CDATA #IMPLIED

 length CDATA #IMPLIED

 circular (true | false) #IMPLIED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- NUMBERING SYSTEM: A numbering-system provides how the

bases are -->

<!-- numbered. used-in-file indicates if the numbering-system is the -->

<!-- one used throughout the file. If no numbering system is provided -->

<!-- or used-in-file, the numbering from 1 to N is used. -->

<!ELEMENT numbering-system ((numbering-range)* | numbering-

table)>

<!ATTLIST numbering-system

 id ID #REQUIRED

 used-in-file (true | false) "false"

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT numbering-range (start, (end | length))>

<!ATTLIST numbering-range

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT numbering-table (#PCDATA)> <!-- type: space delimited

integers -->

<!ATTLIST numbering-table

 length CDATA #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

63

 database-ids IDREFS #IMPLIED>

<!-- SEQ-DATA: The actual data for a sequence. The IUPAC (1984) -

->

<!-- symbols should be used: -->

<!-- G=G, A=A, U=U, C=C, R=G|A, Y=U|C, M=A|C, K=G|U,

-->

<!-- S=G|C, W=A|U, H=A|C|U, B=G|U|C, -->

<!-- V=G|C|A, D=G|A|U, N=G|A|U|C -->

<!ELEMENT seq-data (#PCDATA)> <!-- type: string -->

<!ATTLIST seq-data

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- SEQ-ANNOTATION -->

<!ELEMENT seq-annotation (modification | segment)*>

<!ATTLIST seq-annotation

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT modification (base-id, modified-type)>

<!ATTLIST modification

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT modified-type (#PCDATA)> <!-- type: string -->

<!ELEMENT segment (seg-name?, base-id-5p, (base-id-3p | length))>

<!ATTLIST segment

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT seg-name (#PCDATA)> <!-- type: string -->

<!-- DATABASE-ENTRY: -->

<!ELEMENT database-entry (database, entry, path?)>

64

<!ATTLIST database-entry

 id ID #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!ELEMENT database (#PCDATA)> <!-- type: string -->

<!ELEMENT entry (#PCDATA)> <!-- type: string -->

<!-- ANALYSIS: -->

<!ELEMENT analysis (program | date | author | reference)*>

<!ATTLIST analysis

 id ID #REQUIRED

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- REVISION: -->

<!ELEMENT revision (#PCDATA | date)*>

<!ATTLIST revision

 comment CDATA #IMPLIED

 reference-ids IDREFS #IMPLIED

 analysis-ids IDREFS #IMPLIED

 database-ids IDREFS #IMPLIED>

<!-- GENERAL ELEMENTS

** -->

<!ELEMENT url (#PCDATA)> <!-- type: string -->

<!ELEMENT file (#PCDATA)> <!-- type: string -->

<!ELEMENT path (url | file)>

<!ELEMENT person (first-name, last-name, affiliation*)>

<!ELEMENT first-name (#PCDATA)> <!-- type: string -->

<!ELEMENT last-name (#PCDATA)> <!-- type: string

-->

<!ELEMENT affiliation (#PCDATA)> <!-- type: string -->

<!ELEMENT program (prog-name | prog-version | reference)*>

<!ELEMENT prog-name (#PCDATA)> <!-- type: string -->

<!ELEMENT prog-version (#PCDATA)> <!-- type: string

65

-->

<!ELEMENT date (day?, month?, year)>

<!ELEMENT day (#PCDATA)> <!-- type: integer -->

<!ELEMENT month (#PCDATA)> <!-- type: integer

-->

<!ELEMENT year (#PCDATA)> <!-- type: integer

-->

<!ELEMENT position (#PCDATA)> <!-- type: integer

-->

<!ELEMENT start (#PCDATA)> <!-- type: integer -->

<!ELEMENT end (#PCDATA)> <!-- type: integer

-->

<!ELEMENT length (#PCDATA)> <!-- type: integer

-->

<!ELEMENT base-id (molecule-id?, model-id?, strand?, position)>

<!ELEMENT molecule-id EMPTY>

<!ATTLIST molecule-id

 ref IDREF #REQUIRED>

<!ELEMENT model-id EMPTY>

<!ATTLIST model-id

 ref IDREF #IMPLIED>

<!ELEMENT strand (#PCDATA)> <!-- type: string

-->

<!ELEMENT base-pair-id EMPTY>

<!ATTLIST base-pair-id

 ref IDREF #REQUIRED>

<!ELEMENT alignment-id EMPTY>

<!ATTLIST alignment-id

 ref IDREF #REQUIRED>

66

BIBILIOGRAPHY

1. Abiteboul, S (1997). Querying semi-structured data. In F.N. Afrati and P. G.

Kolaitis (Eds.), Proceedings of the ICDT Conference (pp. 1-18). Berlin Heidelberg New

York: Springer.

2. Bertino, E., Guerrini, G., & Mesiti, M. (2004). A matching algorithm for

measuring the structural similarity between an XML document and a DTD and its

applications. Information Systems, 29(1), 23-46.

3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., & Yergeau, F. (2004).

Extensible Markup Language (XML) 1.0 (Third Edition). W3C, from

http://www.w3.org/TR/2004/REC-xml-20040204/.

4. Canfield, R., Xing, G. (2005). Approximate matching of XML document with

regular hedge grammar. International Journal of Computer Mathematics. 82(10), 1191-

1198.

5. Denoyer, L., Gallinari, P., & Vercoustre A.(2006). Report on the XML Mining

Track at INEX 2005 and INEX 2006. In Fuhr, N., Lalmas, M., &Trotman, A. (Ed.) INEX

2006 Lecture Notes in Computer Science (4518) (pp. 432-443). Berlin Heidelberg New

York: Springer.

6. Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S., & Shim, K. (2000).

XTRACT: A system for extracting document type descriptors from XML documents. In

W. Chen, J.F. Naughton, and P.A. Bernstein (Eds.), Proceedings of the International

Conference on Management of Data (pp. 165–176). New York: ACM.

7. Ugo Galassi and Attilio Giordana, 2005. Learning regular expressions from noisy

sequences. In SARA, 92-106.

67

8. Hopcroft, J.E., Motwani, R., & Ullman, J.D. (2006). Introduction to Automata

Theory, Languages, and Computation, 3rd Edition, Addison-Wesley.

9. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A.,

Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., & Yu, C. (2002).

Timber: A native XML database. VLDB Journal. 11(4), 274–291.

10. Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar

Vaithyanathan, and H. V. Jagadish. (2008). Regular expression learning for information

extraction. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP '08). Association for Computational Linguistics, Morristown, NJ,

USA, 21-30.

11. Xing, G.(2006). Fast Approximate Matching Between XML Documents

and Schemata. In X. Zhou, J. Li, H. Shen, M. Kitsuregawa and Y. Zhang(Eds.), APWeb

2006 Lecture Notes in Computer Science (3841) (pp. 425-436). Berlin Heidelberg New

York: Springer.

12. Xing. G, Guo. J, and Xia. Z (2006). Classifying XML Documents Based

on Structure/Content Similarity. In N. Fuhr, M. Lalmas and A. Trotman (Eds.), INEX

2006 Lecture Notes in Computer Science (4518) (pp. 444-457). Berlin Heidelberg New

York: Springer.

13. XML Generator can be retrieved from

http://www.alphaworks.ibm.com/tech/xmlgenerator.

14. Jan Hegewald, Felix Naumann, Melanie Weis. XStruct: Efficient Schema

Extraction from Multiple and Large XML Documents, icdew, pp.81, 22nd International

Conference on Data Engineering Workshops (ICDEW'06), 2006.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jagadish:H=_V=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Al=Khalifa:Shurug.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chapman:Adriane.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lakshmanan:Laks_V=_S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nierman:Andrew.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Paparizos:Stelios.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Paparizos:Stelios.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Patel:Jignesh_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Divesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wiwatwattana:Nuwee.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Cong.html

68

15. J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient ex-traction of schemas

for XML documents. In Information Processing Letters, 2003.

16. J. Rissanen, Modeling by shortest data description. Automatica, 14:465–

471, 1978.

17. Lili Sun and Yan Li, XML Schema. XML Documents with Usage Control.

In IJCSNS International Journal of Computer Science and Network 170 Security, VOL.7

No.10, October 2007.

18. Makoto Murata from IBM Tokyo Research Lab, Dongwon Lee from Penn

State University Murali Mani from Worcester Polytechnic Institute and Kohsuke

Kawaguchi from Sun Microsystems. Taxonomy of XML Schema Languages using

Formal Language Theory. In Extreme Mark-up Languages 2000.

19. Mohamad Alishahi, Mahmoud Naghibzadeh and Baharak Shakeri Aski.

Tag-name based clustering of XML documents. In International Journal of Computer and

Electrical Engineering, Vol. 2, No. 1, February, 2010 1793-8163.

20. Richi Nayak from Queensland University of Technology, School of

Information Systems, Brisbane, Australia. Fast and effective clustering of XML data

using structural information. In Knowledge and Information Systems, Volume 14, Issue

2, January 2008.

21. R. Nayak. XML Data Mining: Process and Applications. In Song, Min and

Wu, Yi-Fang, Eds, Idea Group Inc. /IGI Global, 2008.

22. The Wisconsin‘s XML data bank. Accessed from:

http://www.cs.wisc.edu/hiagara/data.html.

23. The XML data repository. Accessed from:

69

http://www.cs.washington.edu/research/xmldatasets/.

24. Michael Ley. Book DTD. Accessed from: http://www.informatik.uni-

trier.de/~ley/db/about/dblp.dtd.

25. P. Antonellis, C. Makris, N. Tsirakis. XEdge: clustering homogeneous and

heterogeneous XML documents using edge summaries. In SAC 2008, pp. 1081-1088,

2008.

26. Supoj Sutanthavibul, Brian V.Smith and Paul King. An interactive

drawing tool named Xfig. Accessed from: http://epb.lbl.gov/xfig/frm_introduction.html.

	Western Kentucky University
	TopSCHOLAR®
	5-1-2011

	Efficient Schema Extraction from a Collection of XML Documents
	Vijayeandra Parthepan
	Recommended Citation

