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Around two centuries ago, changes were made to the entrances of Mammoth Cave and its 

passages. Today the Historic Entrance to Mammoth Cave is enlarged and the passage 

just beyond the entrance known as Houchins' Narrows has been cleared of rubble and 

filled with sediments. These enlargements have resulted in an increase in airflow 

throughout the Historic Section of the cave causing environmental conditions such as air 

temperature and airflow to fluctuate. These fluctuations have negatively impacted 

inhabitants and contents of the cave system. 

To restore natural conditions within the cave, Science and Resource Management 

personnel at Mammoth Cave National Park have been collecting large data sets on 

atmospheric conditions inside the cave. The author has access to data from eight sites 

within the cave. 

In this thesis, the author provides a brief introduction to the effects of the increase in 

airflow as well as a short discussion of the data gathered by Science and Resource 

Management. The author then proposes a natural cause for airflow (i.e., convection) in 

Mammoth Cave, constructs empirical models with this as the underlying driving force, 

ix 



and uses atmospheric data to verify the validity of the claim of convection as the force 

driving airflow in Mammoth Cave. Data from the site in Houchins' Narrows is used to 

predict atmospheric data at other locations in the cave. The author concludes this thesis 

with time series analysis on data from Houchins' Narrows. 

x 



CHAPTER 1 

AIRFLOW IN MAMMOTH CAVE: STUDIES OF THE PHENOMENON AND ITS 
EFFECTS 

1.1 Introduction 

Modifications begun nearly two centuries ago to the Historic Entrance of 

Mammoth Cave in Mammoth Cave National Park have created major changes in 

environmental conditions within the cave. These changes were caused by the increase in 

air movement within the Historic Section of the cave and have negatively affected 

inhabitants and contents of the system. In order to improve present conditions and return 

the cave to its proper state, Science and Resource Management personnel at Mammoth 

Cave National Park have been collecting atmospheric data within the cave system to 

determine the driving force behind the increase in airflow. Once this driving force is 

identified, mathematical models may be constructed and used to determine the proper 

course of action to return the cave to its proper state. 

1.2 Modifications by Humans to Mammoth Cave and their Effects 

Beginning 175 years ago, modifications have been made to the Historic Entrance 

of Mammoth Cave in an effort to make the cave more accessible to a steadily increasing 

number of visitors. These changes have included enlargement of the entrance and 

clearance of rubble from what is now known as Houchins' Narrows. A map of the 

Historic Section of Mammoth Cave is found in Appendix 4. Olson (1995) makes several 
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references to historical documentation describing the Historic Entrance and Houchins' 

Narrows during the 1800's as being much smaller than they are today. For example, 

William Blane, in his visit to the cave in 1822 (Blane 1824), described Houchins' 

Narrows as follows: 

"Immediately upon entering the cavern the passage is very narrow, and so low, 

that I was obliged to stoop to avoid knocking my head against the roof.'''' 

Olson (1995) states that the most major changes to Houchins' Narrows were made in the 

1930's when the Civilian Conservation Corps removed rock and sediment to widen the 

tourist's trail. The removal of these sediments enlarged the passage to 20 feet wide and 7 

feet tall. 

Unfortunately, these alterations to the cave entrances have brought about 

undesirable changes in the atmospheric conditions in the Historic Section of Mammoth 

Cave by decreasing resistance to airflow. With air more readily entering and exiting 

Mammoth Cave, environmental parameters such as air and rock temperature, relative 

humidity, and air flux are more readily influenced by outdoor conditions. These changes 

in environmental conditions within the cave have produced three observed results 

(Olson 1995): 

1. The absence of bats, especially Gray bats (Myotis grisescens) and Indiana bats 

(Myotis sodalis) which are endangered species. 

2. Formation of condensation above War of 1812 era saltpeter leaching vats, 

which results in biodegradation of these wooden artifacts. 
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3. An increase in the number of rockfalls in the Historic Section of Mammoth 

Cave. 

1.2.1 Past Presence of Bats in the Historic Section of Mammoth Cave 

Several sources document the past presence of bats in Mammoth Cave (most of 

the following may be found in a National Park Service document ("Cave Animals.. .")). 

Professor B. Silliman Jr. in 1850 (Silliman 1850) stated in a letter to a friend: 

"Bats are numerous in the avenues within a mile or two of the mouth of the 

cave. . . in the galleries where they most abound, we found countless groups of 

them on the ceilings chippering and scolding for a foothold among each other. 

On one little patch of not over four by five inches, we counted forty bats, and 

were satisfied that one hundred and twenty at least were able to stand on a 

surface afoot square; for miles they are found in patches of various sizes, and a 

cursory glance satisfies us that it is quite safe to estimate them by millions. " 

Olson (1995) states this clustering noted by Dr. Silliman is a characteristic of Gray bats. 

In a letter from an unknown author on January 21, 1810 ("The Subterranean. .."), large 

quantities of bats are said to hibernate at some point beyond the Rotunda: 

"We progressed but a little way before we discovered innumerable quantities of 

bats which had taken refuge therefrom the severities of the season; they were 

suspended from all parts of the rocks by their claws, with their heads down, and 

crowded so close that they resembled a continued black cloud; they appeared 

much disturbed at our intrusion which they manifested by a disagreeable hissing 
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or twittering noise, and so tenacious were they of the hold which instinct had 

caused them to take, they would suffer themselves to be burnt to death sooner 

than relinquish it." 

William N. Blane in 1822 wrote of "myriads" of bats in Audubon Avenue 

(Blane 1822). Godfrey T. Vigne in 1831 (Vigne 1831) makes reference to "thousands" of 

bats found in "clusters." Other references to bats in Mammoth Cave are made by 

Bird (1838), and even as late as 1870, Ralph Seymour Thompson (Thompson 1870) 

estimated the number of bats in the Historic Section of Mammoth Cave to be in the 

millions. Ebenezer Meriam in 1844 (Meriam 1844) stated the following: 

"Bats are numerous in some of its extensive apartments in winter, and so 

numerous, that it is a wonder where they all come from, or how they all find their 

way to this great headquarters. These bats hang in clusters like bees in 

swarming. . ." 

One place where bats are believed to have populated is Little Bat Avenue, and this 

claim is supported by Bullitt (1844) who reported "tens of thousands" of bats in this 

location. In addition, an undocumented source in 1856 ("The Mammoth Cave") noted 

"thousands" of bats here. 

Not only are there historical references to support the notion that bats once 

inhabited the Historic Section of Mammoth Cave but there is also scientific evidence 

which may be seen today. Toomey (1995) indicates evidence of the use of Lookout 

Mountain behind Rafinesque Hall by bats as a roosting location. This evidence includes 

large amounts of bat guano and numerous bat skeletons. The nature of the humeri of 



several of these skeletons indicates that they are the skeletons of the endangered Indiana 

bat. Toomey also notes that there are mummified remains of bats throughout the cave, 

one of which he believes to be of the genus Myotis, the genus of which Gray and Indiana 

bats are members. 

It is interesting to note that even today both Gray and Indiana bats are present in 

Dixon Cave (Olson 1996) which is very near the Historic Entrance to Mammoth Cave. 

1.2.2 Destruction of Remnants of a Nitrate Mining Operation 

Prior to and during the War of 1812, saltpeter (potassium nitrate) was extracted 

from the soils of Mammoth Cave for use in the making of gunpowder by the Dupont 

gunpowder works of Delaware (Lyons 1993). The process for removing the calcium 

nitrate from the soil demanded the construction of large wooden leaching vats within the 

cave itself. Cave sediments were placed in the vats where water was passed through so 

that the desired calcium nitrate would be dissolved in the water. This solution was then 

pumped through hollowed tree logs (often large tulip poplar trees) to the surface where it 

was mixed with wood ash to form saltpeter (Palmer 1981). 

Today, these wooden saltpeter leaching vats and the wooden piping system are in 

danger of being destroyed. The large volume of cool air flowing in through the Historic 

Entrance during the winter flows down through Broadway and Main Cave into Booth's 

Amphitheater where it collides with warm air flowing out of Gothic Avenue. These 

relatively cool and warm air masses collide and cloud formation results. Moisture from 

this process condenses onto the ceiling and drips onto the wooden leaching vats in this 

area resulting in the biodegradation of these artifacts. 
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1.2.3 The Increased Rate of Rockfalls in Mammoth Cave 

Occasional rockfalls within a cave system are a normal occurrence (particularly 

within the variable temperature zone), and the accelerated rate of rockfall currently 

witnessed in Mammoth Cave is directly related to the increase in the flow of air 

throughout the Historic Section of Mammoth Cave. During an unusually cold period in 

the winter of 1993 - 1994, a low outdoor temperature of -16 °F was reached on 

January 18 (Olson 1995). The extreme differential between the air temperature in the 

cave and the air temperature outside the cave resulted in a large influx of cold air down 

Houchins' Narrows and into the Rotunda Room. Either through thermal contraction of 

the cooled rock ceiling or through ice formation within the crevices between neighboring 

rocks in the ceiling, a 40 ton slab of rock became dislodged from the ceiling and crashed 

to the floor damaging saltpeter mining artifacts and a handrail. Other smaller and less 

significant rockfalls have also been observed. 

1.3 The Project to Restore the Natural Entrance Ecotone to Mammoth Cave 

An effort to restore the bat hibernaculum which historically existed in the Historic 

Section of Mammoth Cave began with the installation of a bat friendly gate in July 1990 

(Olson 1995). The gate that existed prior to this installation consisted of sheet metal 

panels which acted as a retardant against airflow. When that gate was replaced by one 

through which bats were able to fly, air exchange between the outdoors and the interior of 

the cave increased significantly. 

In order to understand the driving forces behind this increase in airflow, Science 

and Resource Management personnel at Mammoth Cave National Park have been 
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collecting atmospheric data from within the cave. Analysis of the data should provide 

clues of the force which drives airflow allowing Science and Resource Management 

personnel to take appropriate action to regulate airflow. With airflow moderated, natural 

conditions within the cave may be restored to what they were prior to the modifications 

made to the Historic Entrance and Houchins' Narrows. 

In this thesis, the process for modeling and predicting atmospheric data will 

consist of three stages: 

1. Identify the natural phenomenon driving airflow in the Historic Section of 

Mammoth Cave. 

2. Use data from a site near the entrance of Mammoth Cave to predict 

atmospheric conditions deeper within the cave. 

3. Predict atmospheric data in the entrance to the cave. 

Each of the three above steps in the data analysis may be combined to provide a 

mathematical model for predicting atmospheric conditions within the Historic Section of 

Mammoth Cave. 

The idea of studying atmospheric conditions in Mammoth Cave is not a new one. 

In his letter dated November 8, 1850, Professor B. Silliman Jr. suggested the study of 

daily temperature and barometric data measurements to support the claim of the immense 

size of Mammoth Cave. He suggested the study could also determine the presence of 

more than one entrance (Silliman 1850). In a newspaper article, John M. Nelson (a 

former cave guide) writes of observations made within the cave system (Nelson 1934). 

Measurements were taken daily at the old iron gate (wind velocity), the Corkscrew, and 
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River Hall, with these last two being air temperature measurements. Nelson reported 

velocity measurements as high as 45 miles per hour into the cave. However, the 

temperatures at both Corkscrew and River Hall were reported to have varied by no more 

than one degree Fahrenheit. 

The first of the current monitoring stations was installed in 1994 at Lookout 

Mountain behind Rafinesque Hall (Olson 1995). This site was the first of many Cave 

Atmospheric Monitoring (CAM) sites, with the current total being sixteen. 

Measurements are recorded in fifteen minute intervals, and typical data measurements 

taken at each site include air and rock temperature (°C), wind speed (m/sec), wind 

direction (degrees), and relative humidity (percent). The author has access to data from 

eight CAM sites, all located within or near the Historic Section of Mammoth Cave, as 

listed in Table 1.3.1. The locations of these sites are shown on the map found in 

Appendix 4. 

CAM Site Data Gathered 
Houchins' Narrows Air Temperature; Rock Temperature; Wind Speed; Wind Direction 
Corkscrew Air Temperature; Relative Humidity 
Booth's Amphitheater Air Temperatures at Floor, Ledge, Ceiling 
Wright's Rotunda Air Temperature; Relative Humidity 
River Hall Air Temperature; Relative Humidity 
Little Bat Avenue Air Temperature; Relative Humidity 
Rafinesque Hall Air Temperatures at Floor, Ceiling;Relative Humidity 
Mushroom Vats Air Temperature; Relative Humidity 
Table 1.3.1 - Listing of CAM Sites Along the Historic Section of Mammoth Cave and the 

Data Gathered at Each 

According to an illustration in the book by Palmer (1981), the Historic Section of 

Mammoth Cave is lower in elevation than the remaining cave system. Therefore, even 

though Houchins' Narrows is higher in elevation than the other CAM sites in the Historic 
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Section of Mammoth Cave, it will have airflow patterns consistent with lower entrances 

in caves. This fact will be important in Chapter 2. 

Air flux, which is the directional change in the volume of air per unit time, in 

Houchins' Narrows is of particular interest. This data is not gathered directly in 

Houchins' Narrows but must be calculated using wind speed and direction measurements. 

The change in volume of air per unit time is obtained by multiplying the speed of the air 

(in meters per second) by the cross-sectional area of the passage at the CAM site 

(according to Science and Resource Management, at the Houchins' Narrows CAM station 

the cross-sectional area is 19.2 m2). The directional element is introduced by defining air 

flux as positive when airflow is into the cave and negative when airflow is out of the 

cave. Therefore, air flux in Houchins' Narrows, denoted FH (m3/sec), is given by 

There are several assumptions about the nature of the airflow required in the 

formulation given by (1.3.1). They are: 

1. Airflow in Mammoth Cave behaves as an incompressible flow. 

2. Airflow through Houchins' Narrows and past the CAM site is uniform across 

each cross-section. 

Air is not an incompressible fluid, but velocities and pressures in Mammoth Cave are 

relatively insignificant; thus the flow of air in Mammoth Cave may be considered an 

incompressible fluid flow. Furthermore, Houchins' Narrows is a passage large enough so 

If Incast, 
If Outcast (1.3.1) 
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that energy lost to friction between the sides of the passage and the air mass will be small 

when compared to the total energy flowing through the passage. Airflow in Houchins' 

Narrows may be assumed uniform over any cross-section. 

There are three data measurements taken in Houchins' Narrows: temperature of 

the air, temperature of the rock, and flux of air. Plotting each of these measurements 

along the same time axis gives a useful look at the nature of the data. Figure 1.3.1 shows 

a typical set of line plots for Houchins' Narrows data gathered during the winter. 
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Figure 1.3.1 - Line Plots of Houchins' Narrows Data, Julian Days 1 - 20 of 1997 

Figure 1.3.1 gives a good indication of how Houchins' Narrows data behaves. 

For example, air temperature is coolest when air is flowing into the cave and warmest 

when air is flowing out of the cave. Also, rock temperature tends to be a rough 

approximation of air temperature. 
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1.4 Plexiglas Panels on the Bat Gate in the Historic Entrance 

In an effort to impede air movement through Houchins' Narrows and the Historic 

Section of Mammoth Cave, Science and Resource Management personnel placed 

Plexiglas panels over the bat friendly gate in the Historic Entrance. The reduction in 

airflow was almost instantaneous. The retrofit was done on March 1, 1996 (Julian 

day 61), and Science and Resource Management reported a 30% reduction in the volume 

of air flowing through Houchins' Narrows under equivalent air temperatures. This effect 

may be seen in Figure 1.4.1. 
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Figure 1.4.1 - Figure Showing Decrease in Airflow Due to Installation of Plexiglas Panels 
on Bat Gate in Historic Entrance on March 1, 1996 

Another air panel configuration was completed around March 1997. This time the 

Plexiglas panels were placed on spring loaded hinges secured on the bat gate with the 

panels opening towards the outdoors. Ideally, when air is flowing into the cave at 

velocities that are too large, the panels will be pushed closed thereby blocking air currents 

and reducing airflow velocities. 
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1.5 Thesis Direction 

This thesis consists of four chapters. This first chapter has been an introduction to 

the history of airflow and contents of the cave affected by airflow in the Historic Section 

of Mammoth Cave. In the first chapter, the author has also introduced the data gathered 

by Science and Resource Management personnel. In the second chapter, the author will 

use the data to show airflow is driven by a physical phenomenon known as the chimney 

effect. The author, in Chapter 3, will then construct a regression model which allows the 

prediction of temperature at a given CAM site based on atmospheric data from Houchins' 

Narrows. In Chapter 4, the author will describe how to use time series analysis as a tool 

for predicting air flux in Houchins' Narrows. In the final chapter, Chapter 5, the author 

provides a short summary of the thesis and reemphasizes the goals of Science and 

Resource Management personnel. 



CHAPTER 2 

EVALUATING THE CHIMNEY EFFECT HYPOTHESIS WITH DATA ANALYSIS 

2.1 Introduction 

Airflow in Mammoth Cave is believed to be driven primarily by temperature 

differentials, or, equivalently, density differentials, between air outside the cave system 

and air inside the cave system. To determine whether or not this belief is accurate, data 

gathered by Science and Resource Management personnel will be analyzed. If the data 

behaves in the manner predicted by the chimney effect hypothesis, then it may be 

concluded that the chimney effect is the driving force behind airflow in Mammoth Cave. 

In this chapter, the analysis will include the construction of frequency 

distributions of air flux in Houchins' Narrows at different times throughout the year, 

scatter plots for air flux in Houchins' Narrows as a function of temperature differentials 

between the air in Houchins' Narrows and Booth's Amphitheater, and temperature 

stratification as seen in the Booth's Amphitheater temperature data. 

2.2 The Chimney Effect Hypothesis 

The chimney effect is a method of heat transfer, also known as convection, 

whereby cooler, more dense air will fall in elevation around warmer, less dense air. It is 

often called the chimney effect since it is the cause of airflow exiting the chimney of a 

13 
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house in the winter. During the winter, when the outdoor air temperatures are cooler 

than those indoors, the warmer indoor air becomes buoyant since it is less dense than the 

cooler outdoor air. With the momentum of this buoyancy, the warmer indoor air rises out 

the chimney to be replaced by cooler air from openings in the lower portions of the 

house. This behavior is illustrated in Figure 2.2.1. 

Airflow driven by temperature differentials in complex cave systems such as 

Mammoth Cave behaves analogously to airflow driven by temperature differentials in a 

house. For example, lower entrances to the cave will have air flowing into them when 

outdoor temperatures are cooler than indoor air temperatures (the air in the cave is less 

dense than the air outside the cave so that it rises out of upper entrances and is replaced 

through influx of air in lower entrances). When the outdoor temperature is warmer than 

the temperature of air within the cave, lower entrances to the cave will have air flowing 

out of them (air in the cave is more dense than air outside the cave and falls out of lower 

entrances to be replaced by air flowing in through upper entrances). This idea is 

illustrated in Figure 2.2.2. In his study of atmospheric conditions in Harrison's Cave in 

Barbados, West Indies, Fred L. Wefer discusses this same phenomenon (Wefer 1994). 
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air temperature. 

Figure 2.2.1 - Chimney Effect in a House 
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Figure 2.2.2 - Chimney Effect in the Lower Entrance to a Cave 

2.3 Frequency Distributions and Sample Statistics of Air Flux in Houchins' Narrows 

One way to evaluate the accuracy of the chimney effect hypothesis in Mammoth 

Cave is to consider the frequency distributions of air flux values in Houchins' Narrows. 

If these frequency distributions behave as the chimney effect hypothesis predicts, they 

will then serve as evidence in support of the hypothesis. 

According to Palmer (1995), the average temperature beyond the variable 

temperature zone is about 55° - 57°F (13° - 14°C). In the summer, outdoor air 

temperatures are consistently above air temperatures within the cave system so that the 

cave air is cooler than the outdoor air and flows out of lower entrances. Similarly, 

outdoor air in the winter varies from being cooler to being warmer than air in the cave, 

and there is consequent alternation between inward and outward flow of air in a lower 
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Day January February March April May June July August September 
1 43 20 29 45 55 68 81 68 71 
2 43 11 38 44 64 64 80 72 71 
3 29 2 28 61 68 70 75 76 70 
4 27 3 42 57 74 65 67 77 73 
5 29 13 56 44 75 64 69 78 74 
6 25 27 52 39 69 73 71 79 76 
7 18 30 44 38 65 73 78 80 76 
8 15 39 17 44 73 68 76 80 74 
9 25 40 16 37 73 65 71 74 74 

10 32 47 27 43 74 65 66 70 75 
11 34 48 36 54 68 71 69 70 71 
12 30 32 37 68 54 72 74 71 70 
13 36 34 53 66 54 74 76 70 58 
14 44 47 64 51 51 76 77 73 59 
15 40 38 59 56 67 82 73 74 59 
16 45 36 47 48 75 77 70 77 69 
17 60 25 51 53 74 78 77 78 64 
18 62 32 46 64 77 80 81 79 60 
19 31 36 44 69 78 78 83 77 61 
20 20 48 34 64 77 80 80 80 63 
21 33 55 30 64 76 81 80 79 67 
22 37 56 29 70 67 76 80 78 64 
23 44 65 34 58 69 83 71 79 68 
24 37 53 52 49 80 81 71 79 70 
25 27 55 51 67 76 78 75 75 61 
26 41 65 33 61 74 69 70 72 68 
27 37 66 40 49 71 70 70 73 70 
28 26 45 47 63 72 74 73 73 59 
29 39 25 42 71 68 77 73 74 55 
30 34 54 50 64 82 71 75 60 
31 23 56 63 73 72 

Table 2.3.1 Mean Daily Outdoor Temperatures (°F) at Mammoth Cave National Park in 
1996 (Data Courtesy of the Department of Geography and Geology at Western Kentucky 

University) 
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entrance. These characteristics of outdoor air temperatures in Mammoth Cave National 

Park may be seen in the daily mean outdoor air temperature data in Table 2.3.1. This 

data was provided by the Department of Geography and Geology at Western Kentucky 

University. 

Houchins' Narrows is a lower entrance; so during the summer consistent outward 

air flux is expected, and in the winter air flux is expected to alternate between being into 

the cave and being out of the cave. This oscillation suggests a high degree of randomness 

in the air flux observations. Figures 2.3.1 and 2.3.2, respectively, show frequency 

distributions for air flux in Houchins' Narrows in the summer and in the winter. Summer 

data is tightly clustered around some mean value indicating a relatively small value for 

the sample standard deviation; the mean is -15.22 m3/sec, which is out of the cave, and 

the sample standard deviation is 5.59 m3/sec. This data is random 

Julian Days and Year Air Flux Sample Mean Air Flux Standard Deviation 
91 110,1996 10.4764 17.0579 
111 130, 1996 -6.3859 13.5356 
131 150, 1996 -12.3937 15.2005 
151 170, 1996 -12.9098 8.9594 
195 - 210, 1996 -15.6752 5.1802 
221 - 240, 1996 -14.6188 5.2937 
245 - 265, 1996 -8.0686 10.5012 
270 - 290, 1996 4.0606 14.7323 
321 - 346, 1996 14.8697 9.3893 
348 - 366, 1996 14.9118 11.0193 

1 - 20, 1997 17.3895 130585 
21 - 40, 1997 11.4814 7.3856 
41 - 60, 1997 9.6473 11.3118 
61 - 77, 1997 8.2528 8.3869 

Table 2.3.2 - Sample Means and Standard Deviations for the Indicated Sets of Air Flux 
Data (All Values in m3/sec) 

but well behaved. In contrast, the winter data has a wide range of values and is highly 

random; the mean is 18.37 m3/sec, which is into the cave, and the sample standard 



deviation is 14.10 m3/sec. This data is random but not well behaved (a list of several sets 

of air flux data along with their means and standard deviations are shown in Table 2.3.2). 

Hence, these frequency distributions for airflow data in Houchins' Narrows support the 

o 
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Air Flux (mA3/sec) Range 

Figure 2.3.1 - Frequency Distribution for Summer Air Flux Data 

chimney effect hypothesis. Frequency distributions of air flux in Houchins' Narrows 

throughout the year behave as the chimney effect hypothesis indicates they would; these 

frequency distributions are found in Appendix 1. 
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Air Flux (mA3/sec) Range 

Figure 2.3.2 - Frequency Distribution for Winter Air Flux Data 
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The following section uses the average daily outdoor temperature in Table 2.3.1 to 

show further that air flux data in Houchins' Narrows supports the chimney effect 

hypothesis. 

2.4 Air Flux in Houchins' Narrows as it Compares to Average Daily Outdoor 
Temperatures and Barometric Pressure 

Section 2.3 showed the frequency distributions for air flux in Houchins' Narrows 

as they vary throughout the year. These frequency distributions show that, on average, 

air flux is highly dependent on the season of the year, and since air temperature varies 

greatly with season, it may be postulated that air flux in Houchins' Narrows is highly 

dependent upon outdoor air temperatures. 

£ <u f-

* * 

4 0 0 

Julian Day 
• - Average Daily Temperature * - Average Daily Air Flux 

Figure 2.4.1 - Average Daily Air Flux in Houchins' Narrows and Average Daily Outdoor 
Temperature at Mammoth Cave National Park in 1996 

To see further that airflow is driven by seasonal temperature variations, consider 

the data in Figure 2.4.1 which shows average daily air flux in Houchins' Narrows along 

the same time axis as average daily outdoor temperature. These values for average daily 

flux were calculated using the Sigma Stat transform in Figure 2.4.2. When temperatures 



outside are relatively cold, as in winter, air flux has values greater than zero, indicating 

airflow is into the cave. When air temperatures outside are relatively warm, as in 

summer, air flux has values less than zero, indicating airflow is out of the cave. This is 

the behavior predicted by the chimney effect hypothesis. 

'This transform goes through flux data in the Houchins' Narrows data sets 
'averaging flux each day. 
'It also takes the resulting averages and places them into the neighboring 
'column so that viewing the averages for each time period is much easier. 
'NOTES: Air Flux data must be in column 3 

Julian Day must be in column 4 
Time must be in column 5 
Columns after column 5 must be empty (except cell(15,l)) 
The last day of data will not be included if the day is not complete 

cell(15,l)=l; Used to denote row to put averages into 
cell(16,l)=l; Used to count measurements between days 
cell(17,l)=cell(4,l); Used to denote the day of current measurements 

for i=2 to size(col(3)) do 
if cell(4,i) = cell( 17,1) then 
cell(16,l)=cell(16,l) + 1 

else 
x=col(3,i-cell( 16,1 ),i-1) 
cell(9,cell( 15, l))=cell(4,i-l) 
cell( 10,cell( 15,1 ))=mean(x) 
cell( 15,1 )=cell( 15,1)+1; Increments row to move average info to 
cell(16,l)=l; Resets counting cell 
cell(17,l)=cell(4,i); Resets current day 

end if 
end for 

Figure 2.4.2 - Sigma Stat Transform Used to Average Air Flux Data 

It has been shown that the average daily air flux values in Houchins' Narrows are 

highly dependent upon average outdoor daily temperatures. But is average daily airflow 
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dependent upon any other outdoor parameters, such as average daily barometric pressure? 

To answer this question, consider the scatter plots of average daily air flux in 

Houchins' Narrows as a function of average daily air temperature and average daily 
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Figure 2.4.3 - Observed Dependence of Average Daily Air Flux in Houchins' Narrows on 
Average Daily Outdoor Air Temperature on Julian days 44 - 274 of 1996 

barometric pressure shown in Figure 2.4.3 and Figure 2.4.4, respectively (average daily 

barometric pressure data for 1996 is found in Table 2.4.1 on the following page). 

Notice the data in Figure 2.4.3 shows a clear dependence of average daily air flux 

in Houchins' Narrows on average daily outdoor temperature. In fact, using regression 

analysis (see section 3.1 for a detailed discussion of regression techniques) to fit a line to 

this data gives a value of R-squared equaling .865, so that 86.5% of the variations in air 

flux values may be accounted for by the behavior of the outdoor air temperature. So, at 

least on a daily basis, air flux in Houchins' Narrows is highly dependent upon outdoor air 

temperatures. 
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Day January February March April May June July August September 
1 1005 1021 1016 1018 1015 1021 1015 1016 1015 
2 999 1025 1011 1020 1015 1020 1010 1016 1014 
3 1012 1031 1027 1015 1015 1017 1011 1017 1014 
4 1018 1039 1026 1014 1015 1016 1013 1018 1013 
5 1023 1036 1013 1023 1017 1019 1015 1019 1012 
6 1020 1032 1007 1018 1020 1016 1014 1020 1012 
7 1019 1022 1018 1016 1021 1013 1011 1020 1012 
8 1025 1013 1031 1015 1020 1010 1009 1019 1012 
9 1018 1016 1036 1019 1021 1009 1013 1019 1012 
10 1022 1012 1038 1021 1019 1013 1019 1017 1015 
11 1011 1017 1033 1018 1017 1012 1019 1014 1015 
12 1014 1024 1022 1012 1021 1013 1016 1013 1013 
13 1015 1017 1017 1009 1012 1015 1013 1017 1013 
14 1015 1005 1015 1013 1022 1016 1012 1019 1014 
15 1022 1011 1009 1009 1017 1016 1016 1019 1013 
16 1019 1018 1007 1017 1017 1016 1020 1020 1005 
17 1014 1014 1009 1018 1016 1014 1021 1019 1016 
18 1005 1014 1006 1014 1017 1010 1020 1020 1020 
19 1021 1007 1001 1011 1014 1010 1016 1022 1018 
20 1026 1011 1011 1011 1010 1012 1015 1023 1015 
21 1028 1014 1014 1018 1000 1013 1014 1023 1011 
22 1025 1011 1017 1016 1012 1013 1013 1021 1014 
23 1012 1006 1021 1018 1012 1014 1015 1021 1017 
24 1015 1020 1016 1021 1015 1014 1016 1020 1017 
25 1025 1018 1016 1007 1015 1016 1016 1017 1017 
26 1015 1013 1030 1007 1012 1019 1020 1015 1014 
27 1026 1010 1025 1018 1010 1019 1022 1015 1012 
28 1028 1020 1015 1013 1009 1019 1021 1018 1018 
29 1020 1025 1016 1009 1012 1019 1021 1018 1022 
30 1018 1013 1013 1017 1017 1018 1017 1024 
31 1021 1008 1020 1017 1016 

Table 2.4.1 Mean Daily Barometric Pressures (mb) at Nashville WSG Airport in 1996 
(Data Courtesy of the Department of Geography and Geology at Western Kentucky 

University) 
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Figure 2.4.4 - Observed Dependence of Average Daily Air Flux in Houchins' Narrows on 
Average Daily Barometric Pressure at Nashville WSG Airport on Julian days 44 - 274 of 

1996 

In contrast, the data in Figure 2.4.4 does not show any relationship between air 

flux in Houchins' Narrows and the barometric pressure outside the cave system (the 

barometric pressure data was taken from a weather station in Nashville, Tennessee, but it 

will be assumed that barometric pressure at Mammoth Cave National Park is 

approximately the same as that in Nashville). Using regression analysis to fit a line to 

this data gives a value of R-squared equaling .01, so there is essentially no linear 

dependence of average daily air flux in Houchins' Narrows on average daily barometric 

pressure. It may be true that fitting a nonlinear set of basis functions to the data in 

Figure 2.4.4 will produce a higher value for R-squared, but the random nature of the 

scatter plot would imply that no such set of basis functions will exist. 

Since the value of R-squared is high for the linear regression performed on 

average daily air flux as a function of average daily outdoor temperature and since the 

value of R-squared is low for average daily air flux as a function of average daily 

barometric pressure, it may be conjectured that, at least on a daily basis, airflow in the 
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Historic Section of Mammoth Cave is driven by temperature differentials and is not 

driven by changes in barometric pressure. 

2.5 Diurnal Cycles in Houchins' Narrows Summer Air Flux Data 

Outdoor air temperature in Mammoth Cave National Park during the summer is 

consistently above the average cave air temperature of 55° - 57°F. However, the 

temperature differential in the day is larger than the temperature differential at night. 

Thus, air exchange during the day is expected to be larger than air exchange during the 

night. 

Julian Day 

Figure 2.5.1 - Air Flux in Houchins' Narrows on Julian Days 192 - 212 of 1996 

Figure 2.5.1 shows air flux in Houchins' Narrows for Julian days 192 - 212 of 

1996. The vertical gridlines occur at midnight of the beginning of the day indicated. At 

this time or shortly thereafter, air flux values obtain the maximum for the day. 

Conversely, minimum values for air flux occur a little after noon each day. Since 

positive flux is into the cave and negative flux is outcast, maximum values of air flux 
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correspond to the smallest amounts of outcast air; this phenomenon occurs during the 

night, just as expected. Similarly, minimum values of air flux correspond to the largest 

amounts of outcast air; this phenomenon occurs during the day, just as predicted by the 

chimney effect hypothesis. 

2.6 Air Flux in Houchins' Narrows as a Function of Temperature Differential 
Between the Air in Houchins' Narrows and the Air in Booth's Amphitheater 

The chimney effect hypothesis states that cooler air will fall in elevation when in 

the presence of warmer air, which will rise to take the place of the cooler air. When it is 

winter in Mammoth Cave National Park and outdoor air is cooler than the air inside the 

cave, air within the cave rises out of upper entrances and is replaced through influx of 

cooler air through lower entrances such as the Historic Entrance. This cooler outdoor air 

rushes in through the Historic Entrance, down through Houchins' Narrows, into the 

Rotunda, and down Broadway into Main Cave where it passes the Booth's Amphitheater 

CAM site (see Appendix 4 for a map). As this air is flowing along the passage, it is 

absorbing heat from the walls of the cave system and becoming warmer. Therefore, it is 

expected that sites deeper within the cave system than Houchins' Narrows will have 

warmer air temperatures than those in Houchins' Narrows. 

Let T h denote the air temperature (in °C) at the Houchins' Narrows CAM site and 

let T a denote the air temperature at the CAM site in question. As before, let FH denote 

the air flux in Houchins' Narrows. When airflow is into the cave, that is when FH > 0, it 

is expected that T a will be greater than TH for a a CAM site lower in elevation than 

Houchins' Narrows. Letting 

AT = Ta - Tf (2.6.1) 
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the chimney effect hypothesis implies that AT > 0 when FH > 0. 

Figure 2.6.1 shows a scatter plot of Julian Days 1 - 20 of 1997 for air flux in 

Houchins' Narrows as a function of the temperature differential 

where TB is the temperature of the air at the floor probe in Booth's Amphitheater. Since 

it is true that when AT is approximately greater than zero, air flux in Houchins' Narrows 

is also greater than zero, the data in Figure 2.4.1 behaves as the chimney effect hypothesis 

implies it should. These scatter plots behave similarly at other times during the year and 

are shown in Appendix 2. 

AT = TR - T, B H (2.6.2) 
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Figure 2.6.1 - Air Flux in Houchins' Narrows (m3/sec) as a Function of the Temperature 
Differential AT = TB TH for Julian Days 1 20, 1997 
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2.7 Temperature Stratification in Booth's Amphitheater Data as Local Evidence of 
the Chimney Effect 

Figure 2.7.1 shows air temperature data at the floor, a ledge, and the ceiling in 

Booth's Amphitheater for Julian Days 57 - 80 of 1996. The temperature at the floor is 

consistently cooler than the air temperature at the ledge, which is consistently cooler than 

the air temperature at the ceiling. Therefore, this data set shows that locally warmer air 

l . F l o o r T e m p 2 . L e d g e Temp 3.Ceil . Temp 

Figure 2.7.1 - Booth's Amphitheater Data for Julian Days 57 - 80, 1996 

rises above locally cooler air. Extending this idea and applying it to the entire cave 

system gives further support of the chimney effect hypothesis. Other data sets for 

Booth's Amphitheater (found in Appendix 3) show a similar relationship between air 

temperatures at the three probes, although summer data sets show air temperature at the 

ledge to be cooler than that at the floor. Thus far, no explanation for this anomaly has 

been conceived. 
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2.8 Temperature Stratification Between CAM Sites 

Similar to the temperature stratification in Booth's Amphitheater, levels in 

temperature may also be seen when air temperatures at the various CAM sites are plotted 

along the same axis. Figure 2.8.1 shows air temperatures at several CAM sites for Julian 

1 .Houchins1 Narrows 2. Corkscrew 3. Rafinesque Hall 
4. Wrightte Rotunda 5. Booths Amphi. 6. Little Bat Ave. 

Figure 2.8.1 - Air Temperatures at Designated CAM Sites for Julian Days 1 - 20, 1997 

days 1 - 20, 1997. The site labeled 1 is consistently cooler than 3 which is cooler than 2 

and so forth. A complete listing of this order is found in Chart 2.8.1 below along with the 

elevations at each site (elevation data was estimated using an illustration in the book by 

Palmer (1981)). 

Site Number Site Name Site Elevation (feet) 
1 Houchins' Narrows 630 
3 Rafinesque Hall 600 
2 Corkscrew 625 
5 Booth's Amphitheater 590 
6 Little Bat Avenue 575 
4 Wright's Rotunda 600 

Chart 2.8.1 CAM Sites and their Elevations in Ascending Order of Air Temperature 
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Temperature increases as air moves from Houchins' Narrows to Rafinesque Hall. 

This course represents one of the possible paths that air may flow through the cave and 

shows air moves from higher elevations to lower elevations, getting warmed by its 

surroundings as it moves from one CAM site to the other (see map in Appendix 4). The 

same result is true for air flowing from Houchins' Narrows to Little Bat Avenue, as well 

as air flowing from Houchins' Narrows to the Corkscrew to Booth's Amphitheater. The 

exception is going from Booth's Amphitheater to Wright's Rotunda where the air at a 

higher elevation is warmer than that at a lower elevation. However, this temperature 

differential is driving airflow in the entire cave system and behaves exactly as the 

chimney effect hypothesis states it should. 

2.9 Relation Between Air Temperatures at Distinct CAM Sites 

In section 2.7, the stratification of air temperatures in Booth's Amphitheater was 

postulated to be caused by the chimney effect. Hence, another way to verify the chimney 

effect in the Historic Section of Mammoth Cave is to construct scatter plots of air 

temperatures at a higher elevation in the cave as a function of air temperatures at a lower 

elevation in the cave. If the form of this scatter plot is the same as that obtained when air 

temperature at the ledge of Booth's Amphitheater is plotted as a function of the air 

temperature at the floor of Booth's Amphitheater, then this data will provide further 

support of the chimney effect hypothesis. 

Figure 2.9.1 shows air temperature at the ledge of Booth's Amphitheater as a 

function of air temperature at the floor of Booth's Amphitheater for Julian days 1 - 20, 

1997. The relation looks as if it is approximately linear. The scatter plot for air 

temperature in Houchins' Narrows as a function of air temperature at the floor of Booth's 



30 

Amphitheater in Figure 2.9.2 is approximately linear as well; thus it supports the chimney 

effect hypothesis. 
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Figure 2.9.1 - Observed Dependence of Air Temperature at the Ledge of Booth's 
Amphitheater as a Function of Air Temperature at the Floor of Booth's Amphitheater, 

Julian Days 1 - 20, 1997 
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Figure 2.9.2 - Observed Dependence Between Air Temperature at Houchins' Narrows on 
Air Temperature at the Floor of Booth's Amphitheater, Julian Days 1 20, 1997 



31 

Figure 2.9.3 shows air temperature in the Corkscrew as a function of air temperature in 

River Hall; these two CAM sites are directly connected by a narrow, rubble filled 

passage. The relation is nearly linear, just as in Figure 2.9.1 and Figure 2.9.2. Therefore, 

these scatter plots reinforce the hypothesis that airflow in Mammoth Cave is driven by 

the chimney effect. 
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Figure 2.9.3 - Observed Dependence of Air Temperature in the Corkscrew on Air 
Temperature in River Hall, Julian Days 1 - 20, 1997 

2.10 Conclusions 

There is much evidence to indicate that the chimney effect is driving the flow of 

air in the Historic Section of Mammoth Cave. Frequency distributions and means of air 

flux values consistent with those expected under natural convective processes, a high 

level of correspondence between mean daily air flux and outdoor air temperature values, 

and diurnal patterns in the air flux values obtained during the summer are a few of the 

ways data from the CAM stations support the chimney effect hypothesis. 



Now that it has been established that temperature differentials are the driving 

force behind airflow in Mammoth Cave, it will be possible to construct models which 

relate airflow and air temperature. An accurate model will allow the prediction of air 

temperature at one CAM site based on atmospheric data from another CAM station. The 

construction of such a mathematical model is the subject of Chapter 3. 



CHAPTER 3 

PREDICTING AIR TEMPERATURE IN THE HISTORIC SECTION OF MAMMOTH 
CAVE 

3.1 Introduction 

In Chapter 1 the goal was set forth to determine the temperature at various CAM 

sites within the Historic Section of Mammoth Cave based upon atmospheric conditions in 

Houchins' Narrows. In this chapter, the author will accomplish that task through 

regression analysis of data gathered by Science and Resource Management personnel at 

Mammoth Cave National Park. 

Mooney and Swift (in press) describe the regression process of fitting data to a 

linear combination of basis functions. For example, the set of paired values (t , TH), 

where t is Julian time and TH is air temperature (in °C) in Houchins' Narrows, plotted in 

Figure 3.1.1 shows a linear relationship between Julian time and air temperature. Hence, 

the trend in the data may be approximated by the linear function TH = fit) = |30 + (3^, 

where (30 and [}, are appropriate constants — that is, the function f is a linear combination 

of the set of basis functions {l,t}. Regression may, in general, be performed with any set 

of independent basis functions. 

33 
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Figure 3.1.1 The First Six Hours of Air Temperature Data from Houchins' Narrows in 
1997 

Once the trend in the data is identified and a set of basis functions has been 

determined, the value of the coefficients must be determined. This computation is 

usually accomplished through the use of computer software (for the work in this thesis, 

Sigma Stat has been used). The data in Figure 3.1.1, for example, have best fit 

coefficients (30 = 6.762 and (3j = -1.353, so the l ine/= 6.762 1.353f describes the trend 

in this data. Figure 3.1.2 shows the line/along with the original data. 

There are measures which describe how well the regression equation fits the 

original data. The residuals are the vertical distances between each of the data points and 

the regression equation, so for a perfect fit each of the residuals is zero. In order to 

quantify the quality of a regression fit, a value known as R-squared is calculated. For 

paired data (Xj, y;), the value of R-squared is given by 

r 2 = X t f i " 30 
X ( y ; - y)2 + - y.)2 ' (3.i.i) 
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_ A 

where y is the mean of the y;'s and y; is the value for the y; predicted by the regression 

equation. A value of R-squared close to one indicates a good fit and a value of 

R-squared close to zero indicates a poor fit. The regression fit in Figure 3.1.2 has a value 

of R-squared equaling .921 (92.1% of the deviation is accounted for by the model). For a 

detailed discussion of regression, see Mooney and Swift (in press). 
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Figure 3.1.2 - Data in Figure 3.1.1 and Its Line of Best Fit 

In order to determine the appropriate basis functions to be used in the linear 

regression performed in this chapter, it will be necessary to construct an approximate 

model of airflow throughout the Historic Section of Mammoth Cave. This model should 

relate air temperature, rock temperature, and air flux data from Houchins' Narrows to air 

temperature data at the CAM site in question. That is, 

X, = G ( T h , R h , F h ) 5 (3.1.2) 

where G is the function defining the relation between the designated location and 

Houchins' Narrows, TH is air temperature in Houchins' Narrows, RH is rock temperature 
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(°C) in Houchins' Narrows, FH is air flux in Houchins' Narrows (m3/sec), and the 

subscript a denotes the CAM site in question. For example, the subscript B will be used 

to denote air temperature data at the floor of Booth's Amphitheater. A complete list of 

the designations of a is given in Table 3.1.1. 

CAM Site a CAM Site a 
Corkscrew CO Booth's Amphitheater ba or B 

Wright's Rotunda wr Little Bat Avenue lb 
River Hall ri Rafinesque Hall ra 

Mushroom Vats mu Houchins' Narrows hn or H 

Table 3.1.1 - Notation Assigned to Each CAM Site 

Constructing the appropriate model is a multiple step process. The first step will 

be to derive a model which is believed to account for the general trend in the data. From 

the derived theoretical model, nonlinear regression analysis will be applied to data 

gathered by Science and Resource Management personnel. Next, a refinement of the 

original model will be achieved by adding a new basis function which accounts for some 

physical phenomenon not previously considered. This process will be repeated until all 

effects are taken into account and the residuals are minimized so that the model is as 

accurate as possible. The final model will have the form 

T« = G/s ( TH > RH > FH ) n 1 -3 

where (3 is the (3th step in the refinement process and a is an identification code for the 

CAM site in question. 
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3.2 The First Step - A Temperature Dependent Version of Bernoulli's Equation 

Bernoulli's equation relates variables between two points in a fluid flowing within 

a tube, as illustrated in Figure 3.2.1. Mott (1979) states Bernoulli's equation as follows: 

w 
P . V P 
— + z, + — r 2g 

w P 

r 
.2 A 

2 , , * 2 

y (3.2.1) 

where w is the weight (metric tons) of some set volume of fluid at both points, y is the 

specific weight (N/m3) of the fluid, pa is the pressure (N/m2) at each point, z a is the 

elevation (m) at each point, va is the velocity (m/sec) of the fluid at each point, and g is 

the acceleration due to gravity(m/sec2). 

Figure 3.2.1 - Illustration Showing Conditions Under which Bernoulli's Equation may be 
Utilized 

This relationship is valid only if temperature is assumed to be constant throughout 

the tube, so that weight and volume are constant and are therefore equivalent measures 

for the element of fluid. Bernoulli's equation requires either weight or volume of the 

fluid to remain constant. There are instances in the following derivation when it will be 

convenient to allow weight rather than volume to remain constant as well as situations 

where volume will be desired to remain constant rather than weight. Since the goal is to 
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get an idea of the nature of the temperature dependence of air flux and there is little 

change in the volume of air with temperature changes, interchanging which of volume 

and weight is considered constant will have little effect on determining the nature of such 

dependence. 

Substances in an open system undergo volumetric expansion or contraction upon 

heating and, according to Joseph et al. (1978), do so according to the expression 

where (3 (°C1) is an expansion coefficient dependent upon the material, V and V0 are 

volume (m3), and AT is the change in temperature T T0 (°C). So if the temperature 

increases and (3 > 0, for example, then the value of (3At is positive, and the volume of the 

substance will increase from V0 to V for the same mass of material. This idea is 

illustrated in Figure 3.2.2. 

Figure 3.2.2 - When the Temperature of Most Substances Increases, so Does the Volume 
They Take Up 

Density, denoted p (metric tons/m3), is defined by 

v = v0(i + PAT) (3.2.2) 
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(3.2.3) 

where m is mass (metric tons) and V is volume. As volume increases and mass remains 

constant, the density must decrease. This idea is illustrated in Figure 3.2.3. 

v 

Temperature 

Increase ^ 

Figure 3.2.3 - If the Volume of a Set Mass of Material Increases, then the Density of the 
Mass throughout the Volume Decreases. 

Mass is related to weight by the equation 

w = mg (3.2.4) 

where w denotes weight. Solving for m and substituting into (3.2.3) gives 

P = 
w 

Vg (3.2.5) 

This equation implies if, for a fixed volume V0, the density decreases, then so must the 

weight of the amount of material contained in that volume. 

Combining these facts implies that the same volume of a material at different 

temperatures will have different weights (since its density has changed). Hence, the 

introduction of the variables Wj and w2 into Bernoulli's equation to account for the 
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temperature differential between sitel and site 2 is justified. Furthermore, the specific 

weight y is also temperature dependent. So, Bernoulli's equation now becomes 

w, 
Pi vf 
— + Zi + T -
r, 2g 

= W- p 
r2 

2 A 
2 , ^ V 2 + z, + — 2 2 g (3.2.6) 

Solving for w in (3.2.5), substituting into (3.2.6), and dividing by the constant Vg gives 

A 
.2 \ 

• + Z i +• 
7, 2g 

P2 
P_ 
72 

.2 A 
2 , , ¥ 2 - + z2 + — 2g (3.2.7) 

A relation between the density of a material and its temperature is required. Letting the 

mass remain constant in (3.2.3) and considering two cases where the densities of the mass 

are different gives 

P i v i = P2V2 (3.2.8) 

Simple algebraic manipulation gives 

A 
P2 V, (3.2.9) 

Recalling (3.2.2), letting V = V2 and V0 = Vj, dividing by Vj, and substituting 

into (3.2.9) yields 

— = (1 + PAT) 
Pi (3.2.10) 
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Solving for pj, substituting into (3.2.7) and dividing out common terms, gives 

(l + £AT) 
.2 

7i 
• + z , + -

2g 
P 
7 2 

v2^ 
2 * 2 + z2 +" 

2g (3.2.11) 

Equation (3.2.11) is a temperature dependent relation between conditions in two 

locations of a tube. 

3.3 Applying Bernoulli's Equation to Houchins' Narrows and Booth's Amphitheater 
Data 

Equation (3.2.11) gives a temperature dependent relation between airflow in two 

distinct locations within a tube. This equation will be used as a basis for the nonlinear 

regression in the following section — that is, (3.2.11) will be used to determine the linear 

combination of functions of air flux and air temperature in Houchins' Narrows which best 

describes temperature in Booth's Amphitheater; and the coefficients for these functions 

will be determined using regression techniques. Since (3.2.11) will not be used explicitly 

to determine the relation between air temperature in Booth's Amphitheater and air 

temperature and flux in Houchins' Narrows, many of the conditions imposed on 

Bernoulli's equation may be disregarded. 

The conditions for applying Bernoulli's equation are: 

1. 

2. 

Fluid in question must be incompressible. 

There must be no mechanical devices to add or to remove energy between the 

two sites in consideration. 
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3. There may be no heat exchange between the fluid and its surroundings. 

4. There is no energy lost due to friction. 

Air is a compressible fluid, but airflow through a cave system may be considered 

incompressible. Incompressible flows have the property that changes in parameter values 

at a given point instantaneously affect parameter values at another point. To support the 

claim that airflow in Mammoth Cave is behaving as an incompressible fluid, consider the 

data in Figure 3.3.1. Figure 3.3.1 shows airflow in Houchins' Narrows and air 

temperature at the floor of Booth's Amphitheater on the same set of axes for Julian days 1 

20 of 1997. Observe that each event in Houchins' Narrows corresponds with each event 

in Booth's Amphitheater at the same point in time, indicating no time delay before the 

effects of conditions in one site are manifested in another. Hence, Figure 3.3.1 supports 

the claim that airflow is incompressible. 

o o 
<n < 

X 
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Houchins' Air Flux Booth's Air Temp 

Figure 3.3.1 Airflow in Houchins' Narrows and Air Temperature at the Floor of Booth's 
Amphitheater along the Same Time Axis, Julian Days 1 - 20, 1997. 
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The second assumption of no mechanical devices adding or removing energy in 

going from site to site is invalid in going from Houchins' Narrows to Booth's 

Amphitheater (see the map of the CAM sites in Appendix 4 to visualize this airflow 

pattern). The passage branches in the Rotunda so that air may flow into Audubon 

Avenue or Broadway and Main Cave (where Booth's Amphitheater is located). Audubon 

Avenue could be either an energy source or an energy sink depending on the direction of 

airflow. This effect will be taken into account in the refinement process which follows in 

section 3.6. 

Assumption 3 is invalid since there is constant heat exchange between the rock 

and the air throughout the cave. Figure 3.3.2 shows air temperature and rock temperature 

in Houchins' Narrows as each varies in time for Julian days 1 20 of 1997. Air 

temperature has a definite effect on rock temperature in Houchins' Narrows since rock 

temperature follows the same trend as does air temperature indicating heat exchange 

between air and rock in Houchins' Narrows. The same effect may be assumed 

throughout the Historic Section of Mammoth Cave and will be taken into account in 

section 3.7. 

10r 

u 5-

<D H 0" 3 0" 

<D -5-ft 
6 <u 
H -10-

-15-

Air Temp * Rock Temp 

Figure 3.3.2 - Graph Showing Heat Exchange Between Air and Rock in Houchins' 
Narrows 
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The walls of the Mammoth Cave system are irregular and course, so friction 

losses are significant. However, as a simplifying assumption, friction losses will be 

assumed insignificant. This assumption is a reasonable one since air flux (and, therefore, 

flow of energy) is large throughout the cave. 

3.4 Equations Defining Relationship Between Conditions in Houchins' Narrows and 
Booth's Amphitheater - Phase 1 Bernoulli Model 

Allowing Booth's Amphitheater to be Site 1 and Houchins' Narrows to be Site 2, 

(3.2.11) may be applied to airflow from Houchins' Narrows to Booth's Amphitheater. 

There are no air velocity measurements available for Booth's Amphitheater since there is 

little flow through this section, so the wind speed (and therefore velocity) here may be 

assumed to be zero, and hence the flux is zero as well by (1.3.1). Therefore, (3.2.11) 

becomes 

PH V, 
1 

T = — 
B P 

2 \ 

1 -
7H 

+ zH + 
2g 

7B 
+ z , 

+ T H ' 

(3.4.1) 

The quantities zH and zB are the elevations of the CAM sites and thus are 

constants. The values pH and pB are pressures at each CAM site, but pressure is assumed 

not to be a driving force behind airflow in Mammoth Cave. So, for the moment, pH and 

pB will be considered constants and equal. Recall that (3 and g are also constants. 

The only remaining quantities on the right hand side of (3.4.1), other than VH and 

Th , are the specific weights of the air at each CAM site, yH and yB. The value of y is 

temperature dependent and therefore varies over time since the temperature at each CAM 
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site varies over time. A table and graph showing the temperature dependence of y are 

shown in Figure 3.4.1; the data is from Mott (1979). 

In Houchins' Narrows, where air temperature varies most, the minimum and 

maximum air temperatures from April 1996 to March 1997 were -12.89° and 15.83°C, 

respectively (as shown in Table 3.4.1). Hence y ranges from about 13 N/m3 to 

11.8 N/m3 and has a range of 1.2 N/m3. Equation (3.4.1) has a 1/y term which will then 

vary from 1/13 m3/N to 1/11.8 m3/N and a range of (1/11.8 m3/N - 1/13 m3/N) or 

.00783 m3/N. The variation in this term will be considered insignificant. 

Temperature Specific Weight Temperature Specific Weight Temperature Specific Weight 
(°C) (N/mA3) (°C) (N/mA3) (°C) (N/mA3) 

-40 14.85 20 11.81 80 9.802 
-30 14.24 30 11.42 90 9.532 
-20 13.67 40 11.05 100 9.277 
-10 13.15 50 10.71 110 9.034 

0 12.67 60 10.39 120 8.805 
10 12.23 70 10.09 

60 
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Figure 3.4.1 - Specific Weight of Air at Standard Atmospheric Pressure and Sea Level 
(Tabular and Graphic Form) 
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Based upon the previous assumptions and (3.4.1), the relationship between air 

temperature at the floor in Booth's Amphitheater and air temperature and velocity in 

Houchins' Narrows is 

Tb = a ^ + b + T H > ( 3 A 2 ) 

Julian Days and Year Minimum Temperature (°C) Maximum Temperature (°C) 
91 - 110, 1996 -6.029 10.23 
111 130,1996 2.707 13.39 
131 - 150, 1996 2.913 14.5 
151 170, 1996 9.01 15.83 
195 - 210, 1996 10.43 14.07 
221 - 240, 1996 10.36 15.37 
245 - 265. 1996 8.01 12.89 
270 - 290, 1996 3.586 13.26 
321 - 346, 1996 -3.179 8.7 
348 - 366, 1996 -10.29 6.119 

1 - 20. 1997 -12.89 6.468 
21 -40, 1997 -5.936 7.66 
41 - 60. 1997 -3.179 8.51 
61 77, 1997 -3.456 7.81 

Table 3.4.1 - Minimum and Maximum Air Temperatures in Houchins' Narrows 

where a' and b are appropriate constants to be determined using regression techniques in 

the following section. However, air velocity in Houchins' Narrows is related to air flux 

in Houchins' Narrows by (1.3.1). Squaring (1.3.1) and substituting into (3.4.2) yields 

Tb = aFH + b + TH_ ( 3 A 3 ) 

The set {1,TH,FH} will be the set of basis functions used in the regression of section 3.5. 

Using (3.4.3) together with the regression coefficients in the following section, a Phase 1 

Bernoulli model will be constructed. The model will be called a "Phase 1 Bernoulli 

model" since it is the first phase in a series of refinements based upon Bernoulli's 

equation. 
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3.5 Regression Analysis of Houchins' Narrows and Booth's Amphitheater Data 

In order to verify that data measurements match the behavior dictated by (3.4.4), it 

is necessary to construct a three dimensional scatter plot showing the observed 

dependence of air temperature at the floor of Booth's Amphitheater upon air temperature 

and air flux in Houchins' Narrows. So, let FH be air flux in Houchins' Narrows, TH be air 

temperature in Houchins' Narrows, and TB be air temperature at the floor of Booth's 

Amphitheater for each point in time and plot the series of ordered triples (FH, TH, TB) on 

a set of axes. Doing so for Julian Days 1 20 of 1997 results in the three dimensional 

scatter plot of Figure 3.5.1. 

It is easy to see the data are following a definite relationship; in fact, a reasonable 

guess at what relationship the data follows is quadratic in air flux in Houchins' Narrows 

plus a linear air temperature term in Houchins' Narrows, just as predicted. Hence a 

reasonable guess at the relationship seen in Figure 3.5.1 is given by (3.4.4). The 

constants a and b are determined using nonlinear regression techniques, the results of 

which are shown in Regression Sheet 3.5.1. Using the values for a and b in the regression 

sheet gives the following relationship between air temperature at the floor of Booth's 

Amphitheater and air temperature and flux in Houchins' Narrows: 

Tb = ,0103F^ + 4.452 + TH ( 3 5 1} 

An idea for how effective this model is at predicting air temperature at the floor of 

Booth's Amphitheater may be obtained through analysis of Regression Sheet 3.5.1. 
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Figure 3.5.1 - Scatter Plot of Air Temperature at Floor of Booth's Amphitheater with Air 
Temperature and Flux in Houchins' Narrows, Julian Days 1 - 20 of 1997 

R = 0.854 Rsqr = 0.730 Adj Rsqr = 0.730 

Standard Error of Estimate = 1.958 

Coefficient Std. Error t P VIF 
a 0.0103 0.000127 80.727 <0.001 2.811 
b 4.452 0.0749 59.430 <0.001 2.811 

Analysis of Variance: 
DF SS MS F P 

Regression 1 19857.040 19857.040 5181.662 <0.001 
Residual 1918 7350.114 3.832 
Total 1919 27207.154 14.178 

Normality Test: Failed (P = 0.040) 
Constant Variance Test: Failed (P = <0.001) 
Power of performed test with alpha = 0.050: 1.000 

Regression Sheet 3.5.1 - Regression Results Using (3.4.4) as Basis Function 
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For example, a value of R-squared equaling .730 indicates the model accounts for 73.0 % 

of the variance in the data. Failing the normality test indicates the residuals are not 

normally distributed, so the model does not on average predict the air temperature at the 

floor of Booth's Amphitheater. Failing the constant variance test indicates there is 

variance in the residuals which may not be explained by the basis functions considered in 

this model. The terms a and b both have P-values of <.001, indicating 99 percent 

confidence in the accuracy of the values of the best fit coefficients. 

3.6 Heat Exchange with Audubon Avenue in the Rotunda Room of Mammoth 
Cave - Phase 2 Bernoulli Model 

Assumption 3 in section 3.3 was to disregard energy losses due to mechanical 

devices outside the system in question. However, air flowing from Houchins' Narrows to 

Booth's Amphitheater must go through the Rotunda, into which Audubon Avenue runs. 

Here energy may be lost or gained depending on the direction of the airflow. This idea is 

illustrated in Figure 3.6.1 below. 

Broadly Broadway 

Houchins1 

Narrows 

Audjbon 
A^etije 

Houchins1 

Narrows 

Audubon 
Avenue 

Figure 3.6.1 - Possible Scenarios for Energy Exchange in the Rotunda in Winter and 
Summer, Respectively 
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Assuming incompressibility, airflow in a branching cave system is analogous to 

current flow in an electric circuit. Hence, Kirchhoff's Current Law may be applied to 

flow at the junction in the Rotunda. Tocci (1983) states Kirchhoff's Current Law as 

"At any junction point or node in an electric circuit the sum of the currents flowing into 

the junction must equal the sum of the currents flowing away from the junction at any 

instant of time." 

Thus, consider Figure 3.6.2 which shows a portion of an electric circuit with one input 

and two outputs. Letting I, represent the amount of current flow in the input circuit and 

Figure 3.6.2 - Current Flow in a Branching Electric Circuit 

I2 and I3 represent the amount of current flow from the two outputs, Kirchhoff's Current 

Law implies that the relationship between these three variables is 

I, = I2 + I3 . (3.6.1) 

If airflow going between Houchins' Narrows and Booth's Amphitheater is 

analogous to current flow through an electric circuit, then the corresponding equation to 

(3.6.1) which relates air flux in Houchins' Narrows to air flux in Booth's Amphitheater 

and air flux in Audubon Avenue is given by 



F = F + F A H L A T X ] 
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(3.6.2) 

where FH, FA, and FB are air flux values in Houchins' Narrows, Audubon Avenue, and 

Broadway as it moves past Booth's Amphitheater, respectively. Simple algebraic 

manipulation of (3.6.2) gives 

F A = F H - F B • ( 3 . 6 . 3 ) 

But F a represents energy loss between Houchins' Narrows and Booth's Amphitheater, 

thus the introduction of a linear air flux term into (3.4.4) to account for this energy loss is 

appropriate. 

Houchins' Air Flux (mA3/sec) 

Figure 3.6.3 - Bernoulli Phase 1 Residuals 

Figure 3.6.3 shows the residuals from the Phase 1 Bernoulli model in section 3.5 

as they relate to air flux in Houchins' Narrows. The scatter plot shows a clear 

relationship between the residuals and air flux when the flux values are below about 15 

cubic meters per second. So, beyond this point some other force is causing fluctuations 



in air temperature at the floor of Booth's Amphitheater. Up to the flux value of about 15 

cubic meters per second, the residuals are approximately quadratic in Houchins' Narrows 

air flux, and it is appropriate to introduce a linear flux term into (3.4.3) to use as a basis 

for regression analysis of Houchins' Narrows and Booth's Amphitheater data. 

Introducing a linear air flux term will change the best fit coefficient on the square flux 

term in (3.4.3), and a quadratic function in air flux will be added to the original basis 

function. Hence, air temperature at the floor of Booth's Amphitheater as a function of air 

temperature and flux in Houchins' Narrows is given by 

TB = aF* + bFH + c + TH . (3 6 4) 

The results of the regression performed on the CAM data for Julian days 1 - 20 of 

1997 are shown in Regression Sheet 3.6.1 below. The value for R-squared here is .725 

R = 0.851 Rsqr = 0.725 Adj Rsqr = 0.724 

Standard Error of Estimate = 1.831 

Coefficient Std. Error t P VIF 
a 0.00684 0.000238 28.780 <0.001 11.239 
b 0.106 0.00640 16.624 <0.001 11.091 
c 4.220 0.0714 59.095 <0.001 2.922 

Analysis of Variance: 
DF SS MS F P 

Regression 2 16894.815 8447.407 2520.808 <0.001 
Residual 1917 6424.003 3.351 
Total 1919 23318.817 12.152 

Normality Test: Passed (P = 0.163) 
Constant Variance Test: Failed (P = <0.001) 
Power of performed test with alpha = 0.050: 1.000 

Regression Sheet 3.6.1 - Regression Results Using (3.6.4) as Basis Function 
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which is lower than the .730 value of R-squared obtained using the Phase 1 Bernoulli 

model. However, the Phase 2 Bernoulli model passes the normality test where the Phase 

1 Bernoulli model does not. Hence, even though this upgraded model does not improve 

the value of R-squared, it is still an improvement on the Phase 1 Bernoulli model since 

the residuals are normally distributed and the model is on average predicting the behavior 

of air temperature at the floor of Booth's Amphitheater. 

3.7 Heat Exchange with the Surroundings in the Historic Section of Mammoth 
Cave - Phase 3 Bernoulli Model 

The air flowing through the Historic Section of Mammoth Cave comes into direct 

contact with the rock walls and ceilings of these passages. Hence, heat exchange between 

the air and the rock is expected, and line plots for air temperature and rock temperature in 

Houchins' Narrows support this claim. The line plots for Julian days 1 - 20 of 1997 are 

shown in Figure 3.7.1. Rock temperature tends to follow air temperature 

Air Temp * Rock Temp 

Figure 3.7.1 - Air Temperature and Rock Temperature in Houchins' Narrows, Julian 
Days 1 - 20 of 1997 
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by taking on approximately the same values as the air temperature. This relation 

indicates the exchange of heat between the air and the rock in Houchins' Narrows. 

Since there is heat exchange between the air and rock in the Historic Section of 

Mammoth Cave and therefore in the section of cave between Houchins' Narrows and 

Booth's Amphitheater, there is energy loss or gain in going from Houchins' Narrows to 

Booth's Amphitheater. To account for this heat exchange in the model of air temperature 

at the floor of Booth's Amphitheater, let 

ATH.R = TH TR n 7 11 

denote the temperature difference between air and rock in Houchins' Narrows. Adding 

this basis function to (3.6.4) gives 

TB = aF* + bFH + c + TH + eATH.R ( 3 J 2 ) 

Assuming the temperature in Houchins' Narrows TH represents potential energy, 

then it is expected that some of this potential energy may be lost or some may be gained 

in the Rotunda Room when air flows into or out of Audubon Avenue. This potential may 

also be lost to or gained from the rock walls and the ceiling of the passages. It is 

therefore appropriate to introduce a scaling factor onto the TH term in (3.7.2). Hence, 

(3.7.2) becomes 

Tb = aFH + bFH + c + dTH + eATH.R ( 3 ? 3 ) 
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Using (3.7.3) as the basis for regression analysis of Houchins' Narrows and 

Booth's Amphitheater gives the results in Regression Sheet 3.7.1. The value of 

R-squared is .99 indicating 99% of the variance in the data is taken into account. 

R = 0.995 Rsqr = 0.990 Adj Rsqr = 0.990 

Standard Error of Estimate = 0.185 

Coefficient Std. Error t P VIF 
a 0.000346 0.0000296 11.710 <0.001 16.945 
b -0.0201 0.000746 -26.933 <0.001 14.701 
c 6.042 0.0111 543.681 <0.001 6.896 
d 0.420 0.00164 255.732 <0.001 5.819 
e -0.367 0.00205 -179.414 <0.001 8.944 

Analysis of Variance: 
DF SS MS F P 

Regression 4 6619.927 1654.982 48126.677 <0.001 
Residual 1915 65.853 0.0344 
Total 1919 6685.780 3.484 

Normality Test: Passed (P = 0.669) 
Constant Variance Test: Passed (P = 0.185) 
Power of performed test with alpha = 0.050: 1.000 

Regression Sheet 3.7.1 - Regression Results Using (3.7.3) as Basis Function 

The remaining one percent may be assumed to be noise associated with the 

instrumentation. Both the normality test and the constant variance test are passed further 

indicating that this is an effective model. All P-values associated with the coefficients 

a,b,c,d, and e are less than .001 indicating at least 99 percent confidence in the value of 

these coefficients. 
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Using the values for a,b,c,d, and e in Regression Sheet 3.7.1 and substituting into 

(3.7.3) gives 

Tb = .000346F* - .020 1Fh + 6.042 + ,420TH - .367ATH.R ( 3 ? 4 

Figure 3.7.2 shows TB as predicted by (3.7.4) compared to the actual data measurements. 

The model determined by (3.7.4) is extremely effective in predicting the real temperature 

measurements of air temperature at the floor of Booth's Amphitheater. 

* Pred BooFloTem BooFloTem 

Figure 3.7.2 Air Temperature at the Floor of Booth's Amphitheater as Predicted by 
(3.7.4) Compared to the Actual Measurements for Julian Days 1 - 20, 1997 

The next objective is to determine how effective the model obtained for Julian 

days 1 - 20 of 1997 is at modeling other days throughout the year. The topic is discussed 

in the following section. 
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3.8 Applicability of the Phase 3 Bernoulli Model to Other Booth's Amphitheater Data 
Sets 

Equation (3.7.4) was extremely effective in determining air temperature at the 

floor of Booth's Amphitheater for Julian days 1 - 20 of 1997. However, the question 

arises: just how well does this model predict for other data sets? To answer this question, 

(3.7.4) will be used to predict air temperature at the floor of Booth's Amphitheater for 

Julian days 348 - 366 of 1996 and Julian days 21 - 40 of 1997. 
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Figure 3.8.1 - Figure Showing How (3.7.4) Predicts Booth's Floor Temperature for Julian 
Days 348 -366, 1996 

Figure 3.8.1 shows the predicted values and the actual values for air temperature 

at the floor probe in Booth's Amphitheater for Julian days 348 - 366 of 1996. 

Equation (3.7.4) still does an effective job of predicting values for these Julian days, but 

it is not so accurate for Julian days 1 - 20 of 1997, the data set for which the regression 

coefficients were determined. The same is true for Julian days 21 - 40 of 1997, as 

illustrated in Figure 3.8.2. 
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Figure 3.8.2 - Figure Showing How (3.7.4) Predicts Booth's Floor Temperature for Julian 
Days 21 -40, 1997 

Equation (3.7.4) does not do as well at predicting the values in data sets other than 

for Julian days 1 20 of 1997. However, it still is effective at predicting the behavior of 

air temperature at the floor of Booth's Amphitheater. It is therefore reasonable to assume 

that the basis function given by (3.7.3) will still hold for these data sets and that 

performing a regression analysis for each data set will yield an effective model. A 

summary of the regression results using (3.7.3) as a basis function is given in 

Month Data Set a b c d e R-squared 
4 hn&ba 91-110, 1996 0.00022 -0.0288 4.943 0.463 -0.423 0.961 

4.5 hn&ba 111-130, 1996 0.000179 -0.0249 4.432 0.541 -0.475 0.909 
5 hn&ba 131-150, 1996 -0.000321 -0.0251 4.239 0.584 -0.576 0.911 
6 hn&ba 151-170, 1996 -0.000383 -0.0255 2.695 0.747 -0.772 0.816 
7 hn&ba 195-210, 1996 -0.0000319 -0.0183 7.471 0.278 -0.202 0.486 
8 hn&ba 221-240, 1996 -0.00022 -0.0229 -1.402 1.098 -1.082 0.587 
9 hn&ba 245-265, 1996 -0.0000364 -0.0128 5.786 0.453 -0.456 0.828 
10 hn&ba 270-290, 1996 0.0000141 -0.0128 6.24 0.412 -0.371 0.924 

11.5 hn&ba 321-346, 1996 0.0000898 -0.0258 6.935 0.306 -0.252 0.947 
12 hn&ba 348-366, 1996 0.000476 -0.0301 6.849 0.317 -0.251 0.98 
1 hn&ba 1-20, 1997 0.000346 -0.0201 6.042 0.42 -0.367 0.99 

1.5 hn&ba 21-40, 1997 -0.000107 -0.0297 6.335 0.321 -0.261 0.943 
2 hn&ba 41-60, 1997 -0.000649 -0.0182 5.985 0.408 -0.37 0.978 

2.5 hn&ba 61-77, 1997 -0.0000598 -0.0207 6.832 0.273 -0.212 0.885 
Table 3.8.1 Regression Results when Phase 3 Bernoulli Model is Applied to Indicated 

Data Sets 
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Table 3.8.1. The names of data files listed under the second column of Table 3.8.1 are 

formatted as follows: 

"hn&ba" indicates Booth's Amphitheater temperature data is modeled as a 

function of Houchins' Narrows data. 

"91-110" - for example, indicates Julian days of data used in regression. 

"1996" - for example, indicates year from which data sets are taken. 

Figure 3.8.3 shows the values of R-squared from Table 3.8.1. The model achieves 

values of R-squared above .90 for months between October (month 10) and May (month 

5) indicating the Phase 3 Bernoulli model is adequate for months when air temperature 

outside the cave system may fall below the air temperature within the cave system. 

However, in July (month 7) the value of R-squared decreases to a value 

of .486. 

Approximate Month 

Figure 3.8.3 - Values of R-squared for the Phase 3 Bernoulli Model when Applied to 
Houchins' Narrows and Booth's Amphitheater Data During the Indicated Months of 1996 

and 1997 
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The low values of R-squared are indicators of the inappropriate application of the 

Phase 3 Bernoulli model to summer data. This failure may be explained by the nature of 

airflow during the summer. During the summer, air flows out of Houchins' Narrows. 

This air flowing out of Houchins' Narrows has passed through much of the upper 

portions of the cave system and so its temperature has stabilized by the time it has 

reached the Historic Section of Mammoth Cave. The air temperature at all CAM sites in 

the Historic Section should then be approximately equal, and so the air temperature at the 

floor of Booth's Amphitheater should be approximately the same as the air temperature in 

Houchins' Narrows. This result is shown to be true in Figure 3.8.4 by the temperature 

differential between the air in Booth's Amphitheater and the air in Houchins' Narrows 

being about zero. However, the temperature differential driving the air flux in the 

summer data is that between Houchins' Narrows air and the air in another, upper location 

in the cave. Only by considering this temperature differential will an accurate model be 

derived. 

Figure 3.8.4 - Temperature Differential Between Houchins' Narrows Air Temperature 
and Booth's Amphitheater Floor Air Temperature Data for Julian Days 195 - 210 of 1996 
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Figure 3.8.5 shows the best fit coefficients a,b,c,d, and e which correspond to the 

values of R-squared in Figure 3.8.3. Similar to the values of R-squared in Figure 3.8.3, 

the values of the coefficients do not change significantly from September to May. 

However, in the summer the values are unstable and vary greatly. This factor is another 

indicator of the inappropriate application of the Phase 3 Bernoulli model to summer data. 

Approximate Month 

Figure 3.8.5 - Best Fit Coefficients Corresponding to the R-squared Values in 
Figure 3.8.3 

3.9 Application of the Bernoulli Model to Other CAM Sites 

Up to this point, all regression fits have been between Houchins' Narrows and 

Booth's Amphitheater data. It would be equally as interesting to see how the model 

predicts conditions at CAM sites other than Booth's Amphitheater. Letting a represent 

the abbreviation for the CAM site in question, the regression will have the form 

T = aF ĵ + bFH + c + dTH + eATH.R n q 
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Performing this regression analysis for the CAM sites at Corkscrew, Wright's Rotunda, 

River Hall, and Rafinesque Hall on data from Julian days 1 - 20 of 1997 results in the 

coefficients in Table 3.9.1. Abbreviations used for CAM sites are as defined in 

Table 3.1.1. 

Month Data Set R-squared 
1 hn&co 1-20, 1997 -0.0000128 0.00264 7.917 0.233 -0.258 0.976 
1 hn&ba 1-20, 1997 0.000346 -0.0201 6.042 0.42 -0.367 0.99 
1 hn&wr 1-20, 1997 -0.000315 0.109 8.415 0.339 -0.617 0.319 
1 hn&ri 1-20, 1997 -0.0000208 0.00727 7.365 0.0769 -0.124 0.844 
1 hn&ra 1-20, 1997 -0.0000134 0.00515 5.953 0.175 -0.202 0.963 

Table 3.9.1 The Phase 3 Bernoulli Model Applied to the Indicated Data Sets from Julian 
Days 1 - 20 of 1997 

The model is effective at predicting values at locations near Houchins' Narrows 

since the values for R-squared at Corkscrew, Booth's Amphitheater, River Hall, and 

Rafinesque Hall are all above .84. However, CAM sites further in the cave have lower 

values of R-squared. The value of R-squared for Wright's Rotunda data is .319 since the 

variations in air flux in Houchins' Narrows are not resulting in variations in air 

temperature in Wright's Rotunda. Atmospheric conditions in Houchins' Narrows have 

little effect on conditions in Wright's Rotunda, as seen by the data in Figure 3.9.1. 

Houchins' Air Flux ' Wright's Rotunda 

Figure 3.9.1 Air Flux in Houchins' Narrows and Air Temperature in Wright's Rotunda, 
Julian Days 1 20 of 1997 
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3.10 Conclusions 

Chapter 3 has constructed a mathematical model which predicts air temperature at 

CAM sites throughout the Historic Section of Mammoth Cave based upon atmospheric 

conditions in Houchins' Narrows. The task was accomplished using Bernoulli's equation 

as the primary description of temperature driven airflow within a tube. Then, the effects 

of a branching cave system and heat flow between the air and its surroundings are added 

to account for energy the air loses in going from Houchins' Narrows to the CAM site in 

question. When combined, these factors resulted in an effective mathematical model. 

With a model constructed to predict conditions at CAM stations other than those 

at Houchins' Narrows, the next logical step is to construct a model to predict atmospheric 

conditions in Houchins' Narrows. One approach to this construction is time series 

analysis. This task is begun in the following chapter. 



CHAPTER 4 

FORECASTING HOUCHINS' NARROWS DATA WITH TIMES SERIES ANALYSIS 

4.1 Introduction 

Science and Resource Management personnel in Mammoth Cave National Park 

have been gathering atmospheric data from Houchins' Narrows since January of 1996. 

With such a large set of data available, it is possible to completely understand and model 

the processes determining atmospheric parameters within Houchins' Narrows. The use of 

time series analysis is one approach to modeling this data. 

Time series analysis uses the idea of a recursion relation. That is, the measured 

quantity at time t is assumed to be a function of the t - 1 previous measurements, or 

X, = g (Xt_, , X t.2 , . . . , X , ) . (4.1.1) 

It is the goal of time series analysis to determine the function g which effectively predicts 

the data in question. 

The ultimate goal of Science and Resource Management at Mammoth Cave 

National Park is to configure air panels on the gate in the Historic Entrance of Mammoth 

Cave to regulate air and restore natural conditions. Different configurations will result in 

a different set of atmospheric conditions throughout the cave. 

64 
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Time series analysis may first be used to predict air flux, air temperature, and rock 

temperature measurements at the Houchins' Narrows CAM site. Then, using the Phase 3 

Bernoulli model developed in Chapter 3, temperatures may be predicted at the remaining 

CAM stations. This analysis will determine if the current retrofitting is having the 

desired effect. If not, a new configuration will be established. This process will be 

repeated several times. If the proper configuration is achieved, then no further study will 

be necessary. If the desired atmospheric conditions are not achieved, the time series of 

Houchins' Narrows data necessary to produce the desired results will be determined 

through experimentation with the Phase 3 Bernoulli model. The necessary air panel 

configuration to generate the determined time series may be interpolated from the time 

series data already gathered under different retrofits. 

The process of arriving at a model that will predict values in a time series is a long 

one and is more complex than anything done thus far in this thesis. For these reasons, 

Chapter 4 of this thesis will not represent an attempt to arrive at a model for predicting 

the sequences of atmospheric data in Houchins' Narrows but will be an attempt to prepare 

the data for modeling. This chapter will provide the foundation for further research. 

4.2 Houchins' Narrows Air Flux Data as a Time Series 

By definition, a time series is a sequence of observations taken as time progresses. 

Hence, the sequence of air flux values {Ft} in Houchins' Narrows obtained by Science 

and Resource Management personnel is a time series and may be modeled using the tools 

of time series analysis. Moreover, there are a finite number of observations taken at 
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Figure 4.2.1 - The Sequence of Air Flux Values for Julian Days 202 - 211 of 1996 

discrete time steps, so the sequence {FJ is a discrete time series. Figure 4.2.1 shows the 

sequence of air flux values in Houchins' Narrows for Julian days 202 - 211 of 1996. 

To model the air flux data in Figure 4.2.1, it is first important to develop some of 

the basic definitions and theorems involved in time series analysis; this development will 

be accomplished in the following section. 

4.3 A Brief Introduction to Stationary Processes 

In time series analysis, each observation Xt from the sequence of observations 

{Xt} is considered to be a random variable with its own probability distribution function. 

Analysis of the time series will use some of the basic properties of random variables as 

indicators of the characteristics of the time series. The following definitions are useful 

for this purpose and were taken from Brockwell and Davis (1996). 
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Definition 4.3.1 - Let { Xt} be a time series with E(Xt
2) < °°for all t. The mean fl as a 

function of time t is given by 

jUx(t) = E(X t) ( 4 3 J ) 

The covariance of { Xt} is given by 

7 x ( r , s ) = Cov (X r ,X s) = E[(Xr - //x(r))(X, - ^x(s))] 

where r, s, and t are integers. 

Definition 4.3.2 The process { Xt} is stationary if 

(i) /lx(t) is independent oft, 

and 

(ii) y x (t + h, t) is independent of t for each h and so only depends upon h. 

There are two forms of stationarity: weak stationarity and strict stationarity. Definition 

4.3.2 is the definition of weak stationarity. Much of the theory of time series analysis is 

devoted to stationary processes; in order to use this theory it is necessary to either 

transform nonstationary data until the residuals are stationary or study nonstationary 

processes. Hence, it is necessary to develop a way of determining if the sequence in 

question is a stationary process. The next few definitions will be used to accomplish that 

procedure. 
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Definition 4.3.3 - Let { Xt} be a stationary time series. The autocovariance function 

The autocorrelation function (ACF) of { Xt} is 

7 x (h) 

(4.3.4; 

Definitions 4.3.1 through 4.3.3 are in terms of the random variable Xt. However, 

it is not practical to consider random variables since the time series which are generally 

considered are small samples from a sequence of realized values of the random variables. 

The sample analogue of the combination of the previous definitions is therefore given in 

Definition 4.3.4. 

Definition 4.3.4 - Let x]t ..., xn be observations of a time series. The sample mean of 

Xj, ..., xn IS 

(ACVF) of { Xt} is 

7 x ( h ) = Cov(Xt + h , X t ) . (4.3.3) 

(4.3.5) 

The sample autocovariance function is 

7(h) = - £ ( x t + |h| - x)(xt - x), 
1 

-n < h < n. 
t=i (4.3.6) 
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The sample autocorrelation function is 

P(h) = - n < h < n. 
(4.3.7) 

These definitions provide enough basic information for creating a method to 

determine if a given time series is a stationary process. Based upon information in 

Brockwell and Davis (1996), the method involves the ACF and is given in the following 

proposition. 

Proposition 4.3.1 - Let ybe the autocovariance function and p be the autocorrelation 

function of some process { Xt}. Then p is the autocorrelation function of a stationary 

process if and only if p(0) = 1. 

Proposition 4.3.1 therefore provides a convenient method for verifying if a given time 

series is stationary or is not stationary. 

ACF 

- 1 

Figure 4.3.1 Sample Autocorrelation Function (ACF) of Houchins' Narrows Air Flux 
Data, Julian Days 202 - 211 of 1996 
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Figure 4.3.1 shows that air flux data in Figure 4.2.1 is not a stationary process 

since the ACF at lag 0 is not equal to one. Assuming the realizations in Figure 4.2.1 

represent the mean of the process which defines air flux in Houchins' Narrows during this 

time span, the mean varies as time progresses. It is therefore necessary to perform some 

preliminary modeling of the data until the residuals are a stationary process and then 

model the residuals using the tools of time series analysis. 

4.4 Detrending Houchins' Narrows Air Flux Data Using the Classical 
Decomposition Model 

One possible approach taken to transform the air flux data in Figure 4.2.1 into a 

stationary time series is to break the original sequence {FT} into three components: a 

trend component, a seasonal component, and a noise component. The process is called 

the classical decomposition. Letting mt denote the trend component, st denote the 

seasonal component, and Yt denote a zero mean noise sequence, the classical 

decomposition model of the general sequence {Xt} is given in Definition 4.4.1. 

Definition 4.4.1 The classical decomposition model for the time series (XJ is given by 

X t = m t + s t + Y t, t = 1, . . . , n, ( 4 4 ^ 

d 
where E( Yt) = 0, st+d = st, and X Sj = 0. 

i=i 

By (4.4.1), subtracting the trend and seasonal components from the original time series 

will give the noise sequence {Yt} — that is, 
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Yt = Xt - mt - s t , t = 1, . . . , n. (4.4.2) 

Figure 4.4.1 shows the original air flux sequence {Ft} along with the estimated 

trend and seasonal components. The air flux data in Figure 4.2.1 has a trend which is 

modeled well by the quadratic function of time i given by 

F(i) = -17.6462 + .01590 i - .0000153 i2 . ( 4 4 3 ) 

Since summer air flux data exhibits diurnal flow patterns as discussed in section 2.5, the 

seasonal component of the data has an approximate period of d = 96 time steps (there are 

96 data measurements taken each day). 

4 7 

Vertical scale: 1 unit = .100000 

Figure 4.4.1 - The Original Air Flux Time Series for Julian Days 202 - 211 of 1996 
Shown with the Best Fit Trend and Seasonal Components 

Figure 4.4.2 shows the residuals from the models fit in Figure 4.4.1, with the 

mean of the process removed. Figure 4.4.2 shows a process which has a mean of about 
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zero; this claim may be verified by considering the frequency distribution for the 

residuals given in Figure 4.4.3. The distribution is approximately normal with mean zero. 

Hence, the residuals {Yt} are indeed a zero mean process. 

147 

-159 
961 

Vertical scale: 1 unit 
Max. on vertical scale 

. 100B00E+00; 

.147477E+02; Min. = -.159283E+02 

Figure 4.4.2 - Classical Decomposition Residuals when Seasonal Component with Period 
d = 96 Data Points and Quadratic Trend Component are Removed 

Frequency 

dl .TTTvn 
Mean = 

Horizontal Scale : 1 unit = .3184E+B1 
Max. Frequency : 114 in [ .00, .25) 

. 74&76E—07 Std . Deu . = .35315E+01; C.Skeuness = .2148 

Figure 4.4.3 - Frequency Distribution for Residuals in Figure 4.3.2 
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However, this outcome does not indicate whether the residuals in Figure 4.4.2 are 

a stationary time series. To arrive at an answer to this question, the ACF for the data is 

plotted in Figure 4.4.4. Since the value of the sample ACF at lag zero is not equal to one, 

the sequence of residuals obtained by removing seasonal and quadratic trend 

- 1 
Figure 4.4.4 - The Sample Autocorrelation Function (ACF) for Residuals in 

Figure 4.4.2 

components from air flux data for Julian days 202 - 211 is not a stationary time series. 

This example illustrates that there is no way to guarantee a given series of models will 

result in a set of residuals which are a stationary process, and it is often necessary to 

experiment with a range of models before a stationary time series is acquired. 

4.5 Smoothing Air Flux Data with a Finite Moving Average Filter 

Since the classical decomposition model did not arrive at a sequence of residuals 

which were a stationary process, it is necessary to manipulate the data to find a model 

which will result in a stationary sequence of residuals. One such way to manipulate the 

data is through a finite moving average filter, essentially a smoothing process which 

1 
ACF 

0 
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averages a specified number of data points. It is defined as follows based on a discussion 

in Brockwell and Davis (1996). 

Definition 4.5.1 - Let q be a nonnegative integer and { Xt} be a time series. The 

(2q + 1) - term moving average filter is then given by 

1 q 
A t =

 r 2 a + q + l < t < n - q , 
(4.5.1) 

where Xt is given by 

if t < 1 
V 

' 1 v if t > n n (4.5.2) 

Figure 4.5.1 shows the 5 - term moving average and the original sequence for air 

flux in Houchins' Narrows during Julian days 202 - 211 of 1996. This may produce a 

better fit than was obtained by using only the classical decomposition model in the 

previous section. The sequence arrived at through the 5 - term moving average filter is 

shown alone in Figure 4.5.2. 
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Figure 4.5.1 - The Original Sequence of Air Flux Values from Figure 4.2.1 Along with its 
5 - term Moving Average 

Vertical scale: 1 unit = .100000E+08; 
Max. on vertical scale = -.195840E+01; Min. = -.254B99E+02 

Figure 4.5.2 - The 5 - term Moving Average for Air Flux Data, Julian Days 202 - 211 of 
1996 
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Figure 4.5.3 shows the sample ACF for the 5 - term moving average sequence of 

data derived from the original air flux sequence {Ft}. The value of the ACF at lag zero is 

very nearly one, so this sequence is approximately stationary. However, the data has not 

been detrended or deseasonalized. The maximum lag available with the ITSM96 

software (software which is supplied with Brockwell and Davis (1996)) is 40, so it is 

likely that much of the seasonality and trend which might be seen in the behavior of the 

ACF is not visible in Figure 4.5.3 due to the relatively small number of lags available. 

Figure 4.5.3 - The Sample ACF of the Smoothed Data in Figure 4.5.2 

Figure 4.5.4 shows the smoothed air flux data along with its estimated seasonal 

and trend components. Again, the period of the data's "Seasonal" component is 

estimated at d = 96 data points and the quadratic trend component is given by 

i 
ACF 

0 

- 1 

F(i) = -17.6668 + .01599 i - .0000154 i2 
(4.5.3) 
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961 
Uertical scale: 1 unit = .1800B0 

Figure 4.5.4 - Smoothed Air Flux Data with Its Estimated Seasonal and Trend 
Components, Julian Days 202 - 211 of 1996 

The residuals derived from the seasonal and trend fit in Figure 4.5.4 are shown in 

Figure 4.5.5. The residuals show behavior similar to that of the smoothed data. 

973 

-975 
0 961 

Vertical scale: 1 unit = . 100000E-01; 
Max. on vertical scale = .97298IE+81; Min. = -.975381E+01 

Figure 4.5.5 Residuals of the Deseasonalized and Detrended Smoothed Air Flux Data, 
Julian Days 202 - 211 of 1996 
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Frequency 

-5 +5 
Horizontal Scale : i unit = .195IE+01 
Max. Frequency : 79 in I .08, .25) 

Mean = -.14558E-05; Std.Dev.= .29355E+01; C.Skeuness = .1620 

Figure 4.5.6 - Frequency Distribution of the Residuals in Figure 4.5.5 

The frequency distribution of the residuals in Figure 4.5.6 shows that the residuals 

are a zero mean process. Further, the ACF in Figure 4.5.7 shows that the sequence of 

residuals in Figure 4.5.5 is approximately a stationary time series (the sample ACF at lag 

zero is close to one). 

- 1 

ACF 

Figure 4.5.7 - Sample ACF of the Residuals in Figure 4.5.5 
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It has now been established that the sequence of residuals is stationary. Next, the 

sequence of residuals must be analyzed to determine if it is a sequence of independent, 

identically distributed (iid) random variables. If this is the case, no further modeling is 

necessary since the values may be randomly generated. On the other hand, if the 

sequence is not iid, then it will be necessary to utilize more of the tools of time series 

analysis. 

The sample ACF in Figure 4.5.7 shows the autocorrelations up to lag 40. At each 

of these lags, the sample ACF falls outside the bounds ±1.96/Vn (these are the horizontal 

bounds shown around the lag axis) where n is the number of data points. An iid sequence 

with finite variance and large n may be approximated by a normal random variable with 

mean zero and variance 1/n, denoted N(0,l/n). Hence, it is expected that 95% of the 

sample ACF values should fall within the bounds ±1.96/Vn for an iid sequence of random 

variables. The sample ACF in Figure 4.5.7 does not have 95% of its values falling within 

the bounds ±1.96/Vn, so the sequence of residuals shown in 

Figure 4.5.5 is not a realization from a sequence of iid random variables. 

4.6 Conclusions and Further Directions with Time Series Analysis 

In Chapter 4, the author began to analyze air flux data from Houchins' Narrows 

through the use of time series analysis. The original sequence of air flux values for Julian 

days 202 - 211 of 1996 were not realizations from a stationary process and so had to be 

detrended and deseasonalized. The residuals in section 4.5 obtained by removing the 

trend and seasonal components from the original air flux time series are realizations from 

a stationary process since the autocorrelation function at lag zero is approximately equal 

to one. 
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Since the residuals obtained in the previous section were not realizations from an 

iid sequence of random variables, it is necessary to use more tools from time series 

analysis to arrive at an accurate model for the data. One model commonly used for 

stationary processes is the autoregressive moving average model. This model predicts 

values using a linear combination of previous values along with a linear combination of 

white noise components. Its definition follows. 

Definition 4.6.1 - The process { Xt} is an ARMA(p.q) process if { Xt} is stationary and if 

for every t 

xt - (j), xt, ••• - <f)pXt.p = zt + e, zt, + - + 0qz,q, (4 6 l) 

where { Zt} ~ WN( 0, a2). ({ X,J is an ARMA(p.q) process with mean jl. if {Xt - fl} is an 

ARMA(p,q) process.) 

The process {Zt} in (4.6.1) is a sequence of random variables known as white noise, a 

sequence of uncorrelated random variables with given means and variances. The next 

stage in the modeling procedure begun in this chapter will construct an ARMA model for 

airflow data in Houchins' Narrows during the summer. 

In this chapter, the author has considered air flux data in the summer, when the 

time series data were well-behaved and obtaining a stationary process was relatively easy. 

However, atmospheric data sets are most complex during the winter, and winter is the 

time during the year when atmospheric conditions deviate most from those which are 

desired by Science and Resource Management personnel. It is therefore both more 
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difficult and more important to understand these processes during seasons other than the 

summer. 

It is highly likely that atmospheric data from Houchins' Narrows during time 

periods other than summer may not be detrended and deseasonalized to arrive at a 

stationary time series (as was the case with the summer air flux data analyzed in this 

chapter). Processes such as this are known as nonstationary processes, and, just as is the 

case with stationary processes, there are methods available to predict time series which 

are nonstationary. Hence, an extremely important goal to achieve in the future is to 

analyze and predict non-summer data using techniques for nonstationary time series. 



CHAPTER 5 

CLOSING REMARKS 

5.1 Thesis Summary 

Atmospheric conditions within Mammoth Cave have been altered by modified 

entrances and passageways. Because of these changes, bats no longer inhabit the cave in 

the large numbers that have historically been present, valuable artifacts are in danger of 

being destroyed, and rockfalls are occurring at an increased rate. In order to restore the 

natural entrance ecotone, the increase in airflow must be understood and models of 

airflow must be created. Use of atmospheric data obtained by Science and Resource 

Management personnel at Mammoth Cave National Park allows both the evaluation of a 

proposed mechanism driving airflow in Mammoth Cave and the creation of mathematical 

models describing this airflow. 

Convective heat transfer, also known as the chimney effect, is the primary driving 

force behind airflow in Mammoth Cave. An effective model of the temperature at 

various sites within the Historic Section of Mammoth Cave was established using a 

modified, temperature dependent version of Bernoulli's equation. The final model was 

labeled a Phase 3 Bernoulli model since it was the third phase in a series of refinements 

based upon the incompressible fluid flow equation known as Bernoulli's equation. When 

regression analysis was performed on atmospheric data from the Historic Section of 

Mammoth Cave using the set of basis functions implied by the Phase 3 Bernoulli model, 

82 
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values of R-squared as high as .99 were obtained, resulting in a model which was 

extremely effective in predicting air temperatures in Mammoth Cave. 

When coupled with this Phase 3 Bernoulli model, using time series analysis to 

predict conditions in Houchins' Narrows will allow the prediction of air temperature at 

other CAM sites. This knowledge should allow Science and Resource Management 

personnel to bring into place an effective air panel configuration on the gate of the 

Historic Entrance in Mammoth Cave. Each air panel configuration will produce a unique 

time series in each set of data within the Historic Section of Mammoth Cave (especially 

at the Houchins' Narrows CAM site). Hence, when enough air panel configurations have 

been utilized, time series values under other configurations may be interpolated using the 

data gathered. 

With atmospheric conditions restored, bats should return to the Historic Section of 

Mammoth Cave, destruction of cave artifacts should cease, and the rate of rockfalls 

should decrease to previous, normal levels. 

5.2 Restoration of the Natural Entrance Ecotone in Mammoth Cave 

The primary goal of the study conducted by Science and Resource Management 

personnel is to restore natural conditions within the Historic Section of Mammoth Cave. 

However, before atmospheric conditions may be restored, the original set of conditions 

must be known. One of the best indicators of past conditions in Mammoth Cave is the 

nature of past bat populations in Mammoth Cave, and knowledge of the species of bat 

present at a given location will indicate the correct set of atmospheric conditions for that 

location (Olson 1996). Bats are effective indicators of past environmental conditions 
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since they are extremely sensitive to even slight changes in environmental parameters 

(National Speleological Society 1984). 

Using the desired set of environmental parameters at a CAM site together with the 

models derived in this thesis, the proper air panel configuration may be determined. This 

goal may be attained by using the following procedure: 

1. Determine the desired set of atmospheric conditions at the CAM site in 

question. 

2. Using the Phase 3 Bernoulli model, experiment with different data from 

Houchins' Narrows until the desired parameter values are obtained at the 

CAM site. 

3. Interpolate what the air panel configuration should be to arrive at the correct 

sets of Houchins' Narrows data. 

Using this procedure should allow the determination of the proper air panel configuration 

to restore the Natural Entrance Ecotone in Mammoth Cave. 



APPENDIX 1 

FREQUENCY DISTRIBUTIONS FOR AIR FLUX IN HOUCHINS' NARROWS 
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APPENDIX 2 

AIR FLUX IN HOUCHINS' NARROWS AS A FUNCTION OF TEMPERATURE 
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Based on a Map by Max Kaemper (Kaemper 1908) 
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