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To elucidate the signal transduction chain mediating circadian clock control, this 

work focuses on the isolation of Chlamydomonas reinhardtii mutants which are defective 

in circadian gene expression. In a previous study, the reporter gene ARS2 encoding the 

arylsulfatase enzyme was fused to the promoter of the circadian-regulated CABII-1 gene 

and transformed into the Chlamydomonas nucleus. The ble marker was introduced into 

the genome of this transformant via insertional mutagenesis to generate mutants defective 

in circadian CABII-1 expression. Potential mutants were selected based on aberrant 

single-point accumulative arylsulfatase activity. In this study, the arylsulfatase activity 

over the entire growth cycle was further investigated in these mutants and the reliability 

of the single-point screen was assessed. Of the 16 strains whose accumulative 

arylsulfatase activity did not differ from the nonmutagenized control in the single-point 

screen, 12 still showed no significant difference in a multiple-point screen. Of the 9 
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potential mutants with significant difference to the control in the single-point screen, 3 

showed no significant difference in the multiple-point screen. Subsequently, 8 of the 

candidate mutants with aberrant reporter enzyme activity in the multiple-point screen 

were characterized by the abundance of their mRNA. The peak-to-trough ratio of CABII-

1 and ARS2 transcript abundance was significantly reduced in 4 of these mutants. 
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CHAPTER I 

INTRODUCTION 

A biological rhythm that persists under constant conditions and has a period of 

about 24 hours is called a "circadian rhythm". Circadian rhythms are found in many 

organisms, ranging from bacteria to human beings, where they control various biological 

activities including behavior, metabolism, and gene expression (Pittendrigh 1960). A 

circadian rhythm shows three basic characteristics (Johnson and Hastings 1986). First, it 

is a self-sustaining rhythm that continues under constant environmental conditions with a 

period of approximately 24 hours. The second important feature of a circadian rhythm is 

that environmental signals reset the phase and entrain the rhythm to the daily 

environmental changes. The third characteristic is that the period length of a circadian 

rhythm is temperature-compensated. Because a circadian rhythm can persist without 

external time cues, it must be driven by an internal clock. The mechanism of the 

circadian clock is not completely understood yet. A model for the entire timing system 

states that it consists of at least three components (Aronson et al. 1994, Kreps and Kay 

1997): 1) the input pathway which mediates environmental entrainment; 2) a central 

pacemaker which generates the approximately 24-hour oscillation; and 3) the output 

pathway through which various biological activities are regulated to show a circadian 

rhythm. 

Within the past decades, extensive studies in several model organisms have 
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advanced the understanding of the molecular basis of the central oscillator. Thus far, 

nearly all evidence supports a mechanism based on feedback loops that contain both 

positive and negative elements. Clock genes yield clock proteins which feed back to 

repress their own expression (negative elements). Positive elements activate clock gene 

expression to keep the oscillator from winding down (Dunlap 1999). In the fungus 

Neurospora, the frequency gene (frq) encodes the FREQUENCY protein (FRQ) which 

acts at least indirectly to depress the level of the frq transcript (Aronson et al. 1994). Two 

regulatory genes, white collar-1 (wc-1) and white collar-2 (wc-2), positively regulate frq 

transcription (Crosthwaite et al. 1997). In Drosophila, the autorepression of the period 

(per) and timeless (tint) gene by their protein products gives rise to the oscillation 

(reviewed by Dunlap 1999). The two proteins CLOCK (dCLK) and CYCLE (dCYC) 

activate per and tim by binding to an E-box target sequence in their promoters 

(Hogenesch et al. 1998). In the unicellular cyanobacterium Synechococcus, the three 

genes kaiA, JcaiB, and kaiC were identified as essential for circadian phenotypes. While 

kaiC expression is repressed by its own protein product to create a negative feedback, 

KaiA protein enhances kaiBC expression to keep the loop oscillating (Johnson and 

Golden 1999). In the suprachiasmatic nuclus (SCN), the site of the master clock in the 

mammalian brain, three period genes and two cryptochrome (cry) genes are involved in 

the negative feedback loop. The rhythmic transcription of the mPer and mCry genes is 

positively regulated by the transcription factors CLOCK and/or BMAL1, a homologue of 

CYCLE in Drosophila (Reppert and Weaver 2000). However, in higher plants, no 

unequivocal oscillator component has been identified yet. In the plant model organism 

Arabidopsis thaliana, evidence shows that TIMING OF CAB EXPRESSION-1 (tocl) 

could be a candidate for an oscillator component. In the tocl-1 mutant, multiple circadian 
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outputs are altered (Somers et al. 1998) and the tocl gene has recently been cloned 

(Strayer et al. 2000). The Arabidopsis pseudo-response regulator 1 (APRR1) was 

reported to be identical to the TOC1 gene product, and the APRR1/TOC1 family is 

proposed to be the molecular basis of the biological clock in higher plants (Matsushika et 

al. 2000). 

Another important aspect of the circadian timing system is the output pathway 

which encompasses the signal transduction mechanisms the oscillator employs to regulate 

downstream events causing the rhythmicity of diverse biological processes. Since the 

1950s, it has been gradually recognized that a wide variety of behavioral, physiological, 

and biochemical variables are controlled by the circadian clock, such as leaf movement 

and photoperiodic flower-induction in plants, eclosion in Drosophila, and body 

temperature in humans. They all show rhythms that persist in constant darkness or 

constant light with an endogenous period of about 24 hours. Recently, more and more 

clock-controlled genes (ccgs) have been identified. Disruption of central oscillator 

components could affect the rhythmicity of these genes and the products of these genes 

are not necessary for clockwork function. The most direct way for the central oscillator to 

regulate downstream events is to use products from ccgs that are regulated (directly or 

indirectly) by the core feedback loops. It is therefore easily possible that the output 

pathway from the oscillator to clock-controlled gene expression will be short compared 

with more complex processes such as plant cell expansion and flowering (Somers 1999). 

In Neurospora, 11 ccgs have been identified using subtractive hybridization and 

differential screens of time-of-day-specific libraries (Bell-Pedersen 2000). The molecular 

analysis of eas (ccg-2) revealed an activating clock element (ACE) within its promoter. 

The ACE sequences are currently being used to biochemically identify upstream 
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regulatory factors responsible for eas cycling in an attempt to trace the output pathway 

back to the oscillator (Bell-Pedersen 2000). In Drosophila, studies have focused on the 

pigment-dispersing factor gene (pdf). Genetic analysis has shown that pdf is clearly 

involved in circadian ouptut, regulating locomotor activity in flies (Renn et al. 1999). 

However, directly connecting pdf regulation to the central oscillator mechanism has been 

difficult because pdf RNA levels do not oscillate. In mammals, the vasopressin gene, a 

ccg, was the first example identified to be directly regulated by the CLOCK/BMAL1 

heterodimer, an essential clock component (Jin et al. 1999). CLOCK also regulates 

another ccg, the albumin D-element binding protein (dbp) gene which is a member of the 

PAR leucine zipper transcription factor family. CLOCK regulates dbp by binding to 

several E-box motifs within putative enhancer regions located in the first and second 

intron (Ripperger et al. 2000). Research into the circadian clock in plants revealed 

circadian regulation of gene expression at many levels: at the level of transcription 

(Millar and Kay 1991, Liu et al. 1996), transcript abundance (Fujiwara et al. 1996, Zheng 

et al. 1998), translation (Mittag et al. 1994), and posttranslational processing (Nimmo 

1998). Upstream components regulating circadian gene expression are currently being 

discovered in Arabidopsis thaliana. In the early-flowering 3 (elf3) mutant, expression of 

all circadian-regulated genes examined was disrupted under constant white-light 

suggesting that the elf3 phenotype could be due to a defective circadian output pathway 

(Hicks et al. 1996). The GIGANTEA (GJ) gene mutation leads to an altered period and 

reduced amplitude in the circadian expression of ccgs suggesting that GI is involved in an 

outer feedback loop essential to maintain circadian amplitude and period length (Park et 

al. 1999). LHY and CCA1 are both Myb-related proteins with strong homology to each 

other (Schaffer et al. 1998, Wang and Tobin 1998). Expression of both, LHY and CCA1, 
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shows a circadian rhythm. Overexpression of these two genes can repress their own 

expression and overexpression of CCA1 can also repress LHY expression. A mutation in 

either of these two genes alters all circadian rhythms examined. Thus, if LHY and CCA1 

are not components of the central oscillator, they may be closely associated with it. 

Expression of the CAB gene family which encodes chlorophyll a/b binding proteins of 

photosystem I and II is circadian regulated (Kay 1993). Loss of CCA1 affects the 

circadian expression of the CAB genes (Green and Tobin 1999). A mutation in LHY also 

leads to arhythmic CAB expression (Schaffer et al. 1998). CCA1 protein was 

demonstrated to interact with the promoter of at least two of the CAB genes. (Wang et al. 

1997). A protein kinase, CK2, was identified to interact with and phosphorylate the 

CCA1 protein (Sugano et al. 1998). Overexpression of CK2 shortens the period of several 

circadian rhythms of gene expression including CAB. These results indicate the shortness 

of the output pathway between the central oscillator and some ccgs. 

With the goal of understanding the signal transduction chain from the central 

oscillator to circadian gene expression, this study further advanced the screening for 

mutants defective in circadian transcription using the model organism Chlamydomonas 

reinhardtii. 

Chlamydomonas reinhardtii is a unicellular, eukaryotic green alga. It has a cell 

wall, a chloroplast, and two flagella with which it can swim. Chlamydomonas reinhardtii 

shows several advantages as a model organism for molecular studies of the circadian 

output pathway (Harris 1989). 1) It has well-defined genetics and biochemistry. 2) It can 

grow in a simple medium which makes the whole study inexpensive and easy to 

manipulate. 3) The organism is unicellular which provides the most simplified approach 

to circadian output studies. 4) It can also grow in total darkness if acetate is provided as 
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an alternative carbon source, so mutants defective in photosynthesis can survive. 5) 

Chlamydomonas shows high amplitude circadian expression from the CABII-1 promoter 

even in the dark as long as heterotrophic growth medium is provided (Nikaido et al. 

1994). 6) The Chlamydomonas reinhardtii transformant Carnil carrying the reporter gene 

ARS2 transcriptionally fused to the CABII-1 promoter is readily available (Jacobshagen et 

al. 1996). 

ARS2 was chosen as reporter gene to reflect circadian expression of CABII-1 

because it is the only reporter currently available for Chlamydomonas that allows 

detection of quantitative differences in expression via a simple assay (Quinn and 

Merchant 1995, Jacobshagen et al. 1996, Ohresser et al. 1997). Other reporter genes like 

the gene encoding p-glucuronidase (GUS) are not expressed when integrated into the 

Chlamydomonas genome (Blankenship and Kindle 1992). ARS2 is a Chlamydomonas 

gene that was developed as a reporter (Davies et al. 1992). It codes for the arylsulfatase 

enzyme, which is excreted from Chlamydomonas cells and its activity can easily be tested 

in the culture supernatant. The endogenous ARS2 gene is not expressed under sulfur-

sufficient condition, not even at the mRNA level (Davies et al. 1994). In Carnil, ARS2 

exhibits a circadian rhythm of mRNA abundance like that of CABII-1 consistent with a 

circadian control of CABII-1 at the transcriptional level (Jacobshagen et al. 1996). 

However, the arylsulfatase enzyme is too stable to reflect the circadian rhythm of its 

mRNA abundance (Jacobshagen et al. 1996). It is a useful reporter at the enzyme level 

only when accumulative differences in ARS2 expression are to be determined over a 

longer time period. Another foreign gene, ble, was successfully introduced into the 

Carnil genome via insertional mutagenesis (Yuan 1999). The integration may affect 

functional genes involved in the output pathway regulating circadian expression of 
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CABII-1. Based on aberrant accumulative arylsulfatase activity determined at a single 

time point during late logarithmic to early stationary phase, about 1000 transformants 

were screened for potential mutants in circadian CABII-1 expression (Yuan 1999). 

To further characterize these potential mutants and to evaluate ARS2 as a reporter 

at its enzyme activity level, the pattern of arylsufatase activity over a complete culture 

growth cycle was determined in this study. Differences in ARS2 expression may be due 

to a defect at the transcriptional or the posttranscriptional level. In order to distinguish 

between these two possibilites, the amount of ARS2 and CABII-1 mRNA was determined. 

As has been demonstrated (Jacobshagen and Johnson 1994), after synchronization by a 

12-hour dark pulse, the circadian rhythm in CABII-1 mRNA abundance of 

Chlamydomonas reaches a trough after about 15 hours in constant dim light at 17°C and a 

peak after about 27 hours. Consequently, the mRNA amount for ARS2 and CABII-1 was 

measured in each mutant at these two time points, and compared with that of Carnil. 

Mutants thus identified will be further characterized and their defective gene will be 

isolated. The approach will allow to elucidate components in the output pathway of the 

circadian timing system in Chlamydomonas. 



CHAPTER II 

MATERIALS AND METHODS 

Strains and Growth Conditions 

The transformant Carnil was derived from Chlamydomonas reinhardtii Dangeard 

stain CC125 (Chlamydomonas Genetics Center at Duke University). Carnil contains two 

reporter genes, ARS2 and NIT 1, each transcriptionally fused to the promoter of CABII-1 

(Jacobshagen et al. 1996). Three single colony isolates of Carnil, named single 1, single2, 

and single3, had been cultured separately for over 5 years before being used in this study. 

The 26 potential mutants of Carnil were obtained by transforming Carnil with the ble 

marker and screening for aberrant expression of the ARS2 gene (Yuan 1999). 

Liquid stock cultures were obtained by inoculating 50 mL of 0.3 high-salt 

medium (0.3 HSM) (Sueoka 1960) in 125 mL Erlenmeyer flasks from slants and growing 

them photoautotrophically on an orbital shaker (Innova 2100 Platform shaker, New 

Brunswick Scientific, Edison, NJ) at 250 rpm, room temperature and a constant light 

intensity of 9 |uE/m s from above. 

For measuring arylsulfatase enzyme activity excreted into the culture medium, 

experimental cultures were grown mixotrophically in SGII medium (Sager and Granick 

1953) starting at a concentration of 104 cells/mL under otherwise the same condition as 

above. 

For RNA analyses, cells were inoculated from the liquid stock into 1 L bottles of 

8 
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0.3 HSM at a concentration of 104 cells/mL. The experimental cultures were grown 

photoautotrophically in an incubator at a constant temperature of 17 °C and aeration by 

an aquarium pump. Two 20 W Gro-lux light tubes from each side illuminated the cultures 

providing a constant light intensity of 55 p.E/m2s per side. When cultures reached the late 

logarithmic phase (1-2.5 x 106 cells/mL), they were synchronized by putting them into 

darkness for 12 hours. Darkness was achieved by wrapping the bottles in aluminum foil. 

Following synchronization, cultures were put into constant dim light at an intensity of 20 

(iE/m s by covering the light tubes with several layers of tissue wipers. 

Plasmids 

Plasmid pHS16 (Shepherd et al. 1983) contains a 0.3 kb CABII-1 cDNA fragment 

originally cloned into pBR322 but later subcloned into the PstI site of pSP65 by K. 

Kindle. The fragment is specific for the CABII-1 transcript. Plasmid pJD27 was created 

by inserting an approximately 1.9 kb ARS2 cDNA fragment into the pUC19 vector (J. 

Davies, personal communication). The ARS2 fragment can be released by double 

digestion with restriction enzymes SacI and Hindlll. 

Determination of Cell Density and Arylsulfatase Activity Assay 

To determine the cell density of liquid stock cultures for inoculation or of 

experimental cultures for RNA analysis, 1 mL culture sample was treated with a drop of 

iodine tincture (0.25 g iodine in 100 mL 95% ethanol) to immobilize the cells (Harris 

1989) and the number of cells were counted with a hemacytometer. Cell densities of 

experimental cultures for arylsulfatase activity assays were determined by measuring 
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their optical density at 750 nm using a spectrophotometer (UV-1601, SHIMADZU, 

Columibia, MD). 

The activity of arylsulfatase excreted from the cells was assayed in the culture 

supernatant using p-nitrophenyl sulfate as the substrate as described (Jacobshagen et al. 

1996). One unit of arylsulfatase catalytic activity is defined as the amount of product p-

nitrophenol formed per 333 jiL culture supernatant that leads to an increase in absorbance 

at 410 nm of 1.0 within 30 min at 30 °C. 

Multiple-Point Mutant Screen at the Reporter Enzyme Level 

To evaluate the reliability of the previously used single-point mutant screen 

(Yuan 1999) and to obtain accurate enzyme activity information on the potential mutants, 

a multiple-point screen was performed. When liquid stock cultures reached their late 

logarithmic phase (0.5-2 x 106 cells/mL), 5 x 105 cells were transferred from the stock 

culture to a 125 mL Erlenmeyer flask containing 50 mL SGII medium so that the starting 

cell density for each experiment was 104 cells/mL. Therefore, the growth curves of 

different cultures were expected to be similar which made the sampling of several 

cultures at the same time possible. Sampling started 48 h after inoculation. About 12 

hours later, almost all cultures grew to their early or middle logarithmic phase and were 

sampled the second time. Cultures that grew slowly were not sampled untill they reached 

the logarithmic phase. During logarithmic phase, samples were taken about every 4-6 

hours until the cultures reached their stationary phase. After that, cultures were sampled 

about every 24 hours. Cell density and arylsulfatase activity of each sample was 

measured. Independent experiments were performed at least twice for each strain. 
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Isolation of CABII-1 and ARS2 cDNA Fragments 

Plasmid pHS16 containing a CABII-1 cDNA fragment and plasmid pJD27 

containing an ARS2 cDNA fragment were amplified in E. coli strain XL1 blue and 

isolated using the QIAfilter Plasmid Midi/Maxi kit (QIAGEN, Valencia, CA) according 

to the manufacturer's instruction. Isolated plasmid pHS16 was digested with the 

restriction enzyme PstI (New England Biolabs, Beverly, MA) while plasmid pJD27 was 

subjected to a double digest using Hindlll and SacI (New England Biolabs, Beverly, 

MA). For each 20 pL restriction digest volume, 5 jig plasmid and 10 units of each 

restriction enzyme was added. The digestion products were separated by electrophoresis 

on a 1.5% and 0.8% agarose gel, respectively. All DNA agarose gels were prepared in 1 x 

TAE buffer (0.04 M Tris-acetate, 0.001 M EDTA, pH 8.5) with 500 ng/mL ethidium 

bromide. Electrophoresis was performed in 1 x TAE buffer. DNA bands were visualized 

on a transilluminator (Transilluminator FBTI- 614, Fisher Biotech, Pittsburgh, PA) and 

images taken by a digital camera (DC40, Kodak Scientific Imaging Systems, New 

Haven, CT). The amount of DNA in each band was estimated by comparison to DNA 

mass standards using a computer program (Kodak ID 3.0 Imaging System, Kodak 

Scientific Imaging Systems, New Haven, CT). The -300 bp CABII-1 and -2000 bp 

ARS2 bands were cut out of the gels and purified using QIAEX II Gel Extraction Kit 

(QIAGEN, Valencia, CA) according to the manufacturer's instruction. To judge the 

purity and determine the concentration of the isolated DNA fragments, 4 |o.L of the 30 p.L 

CABII-1 fragment solution and 2 jiL of the 30 |iL ARS2 fragment solution were subjected 

to electrophoresis on a 1.5% and 1% agarose gel, respectively. 
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Northern Blot Analysis 

A. Sampling and RNA Extraction 

Chlamydomonas strains were grown as described (see growth conditions). Samples 

were taken at 15 hours and 27 hours in constant dim light which corresponds to the 

trough and peak, respectively, of the circadian CABII-1 and ARS2 mRNA abundance 

rhythm in Carnil (Jacobshagen et al. 1996). Sixty gram of ice was added immediately to 

each 150 mL sample to keep it in its original physiological state. Samples were 

centrifuged at 4,900 g for 5 min at 4 °C. Cells were resuspended in a small volume of 

supernatant and transferred to a 50 mL centrifuge tube (Corning Inc., Corning, NY). 

Cells were collected by centrifugation at 1,900 g for 10 min at 4 °C, frozen in liquid 

nitrogen and stored at -70 °C. 

Total RNA was isolated from cell pellets using TRIzol Reagent (Life Technology , 

Rockville, MD). Isolation was performed as suggested by the manufacturer except that 4 

mL TRIzol reagent was used for 1 to 4 x 108 Chlamydomonas cells. At the end of the 

procedure, dried RNA pellets were dissolved in diethylpyrocarbonate-treated water in 

different volumes (30 to 80 (iL) based on RNA yields. The concentration of RNA in the 

samples was determined spectrophotometrically by measuring the absorbance at 260 nm 

(Ultrospec 3000 by Amersham Pharmacia Biotech, Uppsala, Sweden). RNA samples 

were stored at -70°C. 

B. Electrophoresis and Membrane Blotting 

RNA samples were denatured by adding formamide/formaldehyde mix. To obtain 

157 nL formamide/formaldehyde mix, 20 ^L 10 x MOPS (0.4 M MOPS, 100 mM 
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sodium acetate, and 10 mM EDTA, pH 7.0), was combined with 37 JAL formaldehyde 

(37%) and 100 Ĵ L formamide. Each 4 (IL RNA sample containing 10 fig of RNA was 

mixed with 15 (iL formamide/formaldehyde mix and heated to 65 °C for 15 min. 

Following this treatment, 2 |liL of 10 x loading buffer (50% glycerol, 1 mM EDTA, 0.4% 

bromophenol blue, and 0.4% xylene cyanol) was added to each sample. 

Each RNA sample at an amount of 2.5 ng (5 p,L) was loaded three times onto a 1% 

agarose gel containing 1 x MOPS and 6.3% formaldehyde, and subjected to 

electrophoresis in 1 x MOPS at 3 V/cm gel for -3.5 hours. After electrophoresis, one part 

of the gel was stained with ethidium bromide (0.5 pg/mL) to evaluate whether all 

samples were loaded equally. The remaining gel was first incubated in water for 1 hour to 

remove the formaldehyde and then equilibrated in 10 x SSC solution (1 x SSC: 150 mM 

NaCl, 15 mM sodium citrate, pH 7.0) for 20 minutes. After equilibration, the RNA was 

transferred to neutral nylon membrane (Hybond-N, Amersham Pharmacia Biotech, 

Upsala, Sweden) through capillary blotting over night in 10 x SSC (Ausubel et al. 2000). 

Following transfer, RNA was cross-linked to the membrane using a UV-crosslinker (UV 

Stratalinker 1800, Stratagene, La Jolla, CA) at its automatic setting. 

C. Preparation of Radioactively Labeled Probes 

Using the isolated CABII-1 and ARS2 cDNA fragments as templates, radioactively 

labeled CABII-1 and ARS2 probes were synthesized in vitro using the Prime-a-Gene® 

labeling system (Promega, Madison, WI) and a-32P-dCTP (Amersham Pharmacia, 

Piscataway, NJ) according to the manufacturer's instruction. Unincoporated nucleotides 

were removed by NICK Sephadex G-50 column chromatography (Amersham Pharmacia 
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Biotech, Uppsala, Sweden) as described by the manufacturer (Promega, Madison, WI). 

The specific activity of the probes was about 1.3 x 109 cpm/jag DNA as determined in a 

scintillation counter (1500 TRI-CARB liquid scintillation anlyzer, Packard, Downers 

Grove, IL). 

D. Hybridization and Autoradiography 

Membranes were cut into two parts, one part for hybridization with the CABII-1 

probe and the other for hybridization with the ARS2 probe. Membranes (12 cm x 4 cm or 

8 cm x 4 cm) which would be hybridized with the same probe were put into the same 

glass bottle (35 mm diameter, 15 cm length) and prehybridized in 10 mL of hybridization 

solution at 44°C for 2 hours in a hybridization oven (Autoblot Mini Hybridization Oven, 

Bellco Glass Inc., Vineland NJ). The hybridization solution consisted of 50% 

formamide, 6 x SSPE (0.9 M NaCl, 60 mM NaH2P04, 6 mM EDTA, pH 7.4), 5 x 

Denhardt's reagent (0.01 g each of Ficoll 400, polyvinylpyrrolidone, and bovine serum 

albumin in 10 mL H2O), 0.5% sodium dodecyl sulfate (SDS) and 0.1 mg/mL salmon 

sperm DNA. The hybidization solution was discarded and 10 mL new hybridization 

solution with 1.5-2.5 x 107 cpm of either the CABII-1 or ARS2 probe was added to the 

bottle for hybridization at 44 °C overnight. Membranes were washed twice in 2 x SSC for 

5 min at room temperature, twice in 2 x SSC, 1% SDS for 30 min at 68 °C and twice in 

0.1 SSC for 30 min at room temperature. After washing, blots were wrapped with Saran 

wrap and exposed to autoradiography film (Hyperfilm MP, Amersham Pharmacia 

Biotech, Piscataway, NJ). Films were developed as follows: 4 min in developer solution 

(Kodak GBX Developer and Replenisher) without shaking, 30 sec in water with constant 
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shaking and 4 min in fixer solution (Kodak GBX Fixer and Replenisher) with 5 seconds 

of shaking for every 30 seconds interval. 

E. Quantitative Analysis 

Computer images of the ethidium bromide stained gels under UV light 

(Transilluminator FBTI- 614, Fisher Biotech, Pittsburgh, PA) were captured by a digital 

camera (DC40, Kodak Scientific Imaging Systems, New Haven, CT), and the 16S rRNAs 

were quantified using the KODAK ID 3.0 program (Kodak Scientific Imaging Systems, 

New Haven, CT). 

Autoradiograms of the Northern blots were scanned with a UC840 scanner 

(MacVersion, UMAX) using the Adobe photoshop program, and the intensity of the 

bands was quantified using the NIH Image program version 1.6. 



CHAPTER III 

RESULTS 

Variability of Reporter Gene Expression in Nonmutagenized Carnil 

The criterion that had been used in a previous mutant screen based on the ARS2 

reporter was for potential mutants to show aberrant accumulative reporter enzyme 

activity compared with nonmutagenized Carnil. Therefore, the stability of ARS2 

expression at the arylsulfatase activity level is very important in Carnil. In order to judge 

this stability, the arylsulfatase enzyme activity in Carnil was compared with the activity 

in three single-cell isolates of Carnil that had been maintained separately for over five 

years. 

Carnil and its single-cell isolates were first grown on an orbital shaker with 

speeds of 125 rpm, at room temperature and a constant light intensity of 20 |jE/m2s 

(condition 1). But since the supernatant of the cultures was yellow, it was suspected that 

the condition led to some cell lysis. To avoid this problem, cultures were instead grown 

on an orbital shaker with speeds of 250 rpm, at room temperature and a constant light 

intensity of 9 |_iE/m2s (condition 2). No yellow supernatant was observed under this 

condition in any culture. In order to compare ARS2 expression between different strains, 

the highest arylsulfatase activity during culture growth was chosen as criterion, because it 

should provide the greatest sensitivity. All arylsulfatase activities obtained were 

standardized to 1 OD cell density at 750 nm to exclude the effect of variations in cell 

16 
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amount during culture growth. Highest arylsulfatase activities for Carnil and its isolates 

under the two different culture conditions are shown in Table 1. Under condition 1, single 

isolate2 showed significantly lower aylsulfatase activity compared to all other cultures, 

while under condition 2, no significant difference was observed among the original 

Carnil and its three single isolates (p = 0.87). The results indicate that condition 2 is 

more optimized and that under this condition ARS2 expression at the enzyme activity 

level is stable in Carnil. Further experiments were all exclusively performed under 

condition 2. 

Figure 1 shows the arylsulfatase activity pattern throughout an entire culture 

growth cycle for nonmutagenized Carnil and its isolates under condition 2. The enzyme 

activity increases during the logarithmic phase, reaches its highest level during early 

stationary phase and decreased slowly afterwards. The slow decrease during stationary 

phase is probably due to proteases released from the cells. 

Characterization of Potential Mutants at the Reporter Enzyme Activity Level 

The previous selection of potential mutants based on reporter enzyme activity was 

carried out as a "single-point screen" (Yuan 1999). Each culture was tested at only a 

single time point, usually when it reached about stationary phase, and only a single assay 

was performed. It made the screening of about one thousand mutagenized strains 

possible. The arylsulfatase activity at the single time point was compared to the 

respective activity in a nonmutagenized Carnil culture of the same cell density as 

determined from a standard curve. Strains that had at least 50% lower or 50% higher 

arylsulfatase activity were considered significantly different and therefore potential 

mutants. As shown in Table 2, some of the isolated strains were renamed in order to 
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Table 1: Comparison of reporter enzyme activity for Carnil and its three single-cell 

isolates under two different conditions. ARS2 reporter expression was determined as 

arylsulfatase enzymatic activity excreted into the culture medium. The data show the 

highest enzyme activities during a culture growth cycle relative to the culture density and 

represent the average of two independent experiments. SD indicates the standard 

deviation, * indicates that arylsufatase activity was tested only once. Condition 1: shaker 

speeds of 125 rpm at room temperature and a constant light intensity of 20 jiE/m2s. 

Condition 2: shaker speeds of 250 rpm at room temperature and a constant light intensity 

of 9 fiE/m2s. 

Strains Condition 1 Condition 2 Strains 

Arylsulfatase activity/cell 
density 

(U/OD750nm) 

SD Arylsulfatase activity/cell 
density 

(U/OD750nm) 

SD 

Carnil 2.69 0.086 2.46 0.22 

single 1 2.75 0.24 2.59* 

single2 1.72 0.15 2.7* 

single3 2.55 0.05 2.62* 
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Figure 1: Arylsulfatase activity pattern in cultures of original Carnil and its three 

single-cell isolates. Enzymatic activities of the arylsulfatase reporter released into the 

culture medium were examined over a complete culture growth cycle. Cell density is 

indicated by the optical density at 750 nm. Arylsulfatase activity is standardized to the 

optical density of the culture. Cultures were grown in mixotrophic medium under 

condition 2 (at room temperature, a constant light intensity of 9 |iE/m2s, and a shaker 

speed of 250 rpm). 



Table 2: Assignment of new names to several isolates from the single-point 

To avoid confusion, the new names are used throughout this thesis. 

Original name New name 
34 5/13/99 #24 
102 6/18/99 #26 
79 7/14/99 #25 
23 7/14/99 #23 
17 7/14/99 #21 
20 7/14/99 #22 
118??? #28 
2 7/4/99 #19 

118s 6/13/99 #29 
118 6/13/99 #27 
7 7/4/99 #20 
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avoid confusion. 

To examine the efficiency of the single-point screen and to further characterize 

the mutants at their reporter enzyme level, the arylsulfatase activity of 16 strains without 

significant difference to Carnil (Figure 2) and 9 strains with significant difference 

(Figure 3) were examined using a "multiple-point screen." In this screen, the aiylsulfatase 

activity of each strain was monitored at multiple time points throughout the logarithmic 

and stationary phase of the liquid culture. As depicted in Figure 2 and 3, enzyme activity 

patterns show only low variation between the two independent experiments in most 

strains examined. When comparing the highest arylsulfatase activity of the two 

experiments, the values vary at an acceptable range (between 0% and 30%). The overall 

pattern of mutants #4, #6, #9, #7, #24, #23, and #29 in Figure 2 and #1, #10, #11, #14, 

#16, and #21 in Figure 3 differ prominently from nonmutagenized Carnil. Among them, 

#1 and #21 in Figure 3 clearly show a much higher arylsulfatase activity while #6, #9, 

and #24 in Figure 2 and #10, #14, and #16 in Figure 3 clearly show a significantly lower 

activity. 

In order to allow for a simple comparison with the single-point screen, the 

highest value of enzyme activity for each strain was calculated as a percentage to that of a 

Carnil control culture. As shown in Table 3, 12 out of the 16 strains with no significant 

difference in the single-point screen still showed no significant difference in the multiple-

point screen. However, significantly lower enzyme activity was detectable in 3 strains 

(#9, #6, and #24) and significantly higher activity in 1 strain (#7). 

Of the 9 potential mutants with significant difference to Carnil in the single-point 

screen, 3 showed no significant difference to Carnil in the multiple-point screen (#12, 

#13, #18 in Table 4). Four of the mutants (#10, #11, #14, and #16) still showed 
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Figure 2. Arylsulfatase activity pattern for strains with similar enzyme activity compared to nonmutagenized Carnil in the 

single-point screen. Enzymatic activities of the arylsulfatase reporter released into the culture medium were examined over a 

complete culture growth cycle. Cell density is indicated by the optical density at 750 nm and arylsulfatase activity is standardized to 

the optical density of the culture. Cultures were grown in mixotrophic medium under condition 2 (at room temperature, a constant 

light intensity of 9 pE/m s, and a shaker speed of 250 rpm). Thin lines with open circles represent the Carnil control while bolt lines 

with solid diamonds represent the potential mutants. Two independent experiments are depicted for each strain. 
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Figure 3. Arylsulfatase activity pattern in strains with aberrant enzyme activity compared to nonmutagenized Carni l in the 

single-point screen. For explanation see legend to Figure 2. 
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Table 3: Comparison of single-point and multiple-point screen: strains with no 

significant difference to nonmutagenized Carnil in the single-point screen. The 

previous single-point screen involved a single measurement of reporter activity at a single 

time point. The reporter arylsulfatase activity in the culture medium is expressed as a 

percentage to that of nonmutagenized Carnil at the same culture density. In the multi-

point screen, several time points were taken and the highest arylsulfatase activity value 

which was standardized to the cell density at 750 nm is expressed as a percentage of the 

respective value for a Carnil control culture. The data for the multi-point screen represent 

the average of two independent experiments. For some single-point screen data (>) the 

true value is probably higher, since measurements were taken at absorbances greater than 

2.0 and therefore beyond the linear range of the spectrophotometer. 

Mutant Single-point 
screen 

Multi-point 
screen 

Remarks 

#4 61.5% 83% The ratio of enzyme activity to culture 
density remains constant. 

#5 60.7% 100% Culture grows to only low density 
#6 64.3% 33% The ratio of enzyme activity to culture 

density remains constant. 
#7 63.3% 151% 
#9 70.9% 0 % No arylsulfatase enzyme activity. 

#24 >119% 40.7% Cannot grow in autotrophic medium. 
#15 57.0% 71% 
#26 >124% 56.6% 
#25 >120% 74.6% 
#23 >120% 55.7% 
#22 >124% 73.7% 
#28 >125% 72.4% The ratio of enzyme activity to culture 

density remains constant. 
#19 >120% 74% 
#29 >118% 92.4% Culture grows to only low density 
#27 >118% 63.3% The ratio of enzyme activity to culture 

density remains constant. 
#20 >138% 56% 
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significantly lower enzyme activity in the multiple-point screen, and one (#21) still 

showed significantly higher enzyme activity. Surprisingly, mutant #1 which exhibited 

significantly lower enzyme activity in the single-point screen (46.6%) showed 

significantly higher enzyme activity in the multiple-point screen (195%). Compared with 

the multiple-point screen, about 44% of the isolated mutants in the single-point screen 

could not be verified. 

Based on results of the multiple-point screen, 8 potential mutants were selected 

for further screening at their mRNA abundance level. Among them were mutants #9 and 

#16 which showed no arylsulfatase activity in the multiple-point screen, #10, #14 and #6 

which showed significantly lower enzyme activity, and #1 which showed significantly 

higher enzyme activity. Strains #4 and #23 were also selected because their arylsulfatase 

activity showed an aberrant pattern compared to Carnil although their highest 

arylsulfatase activity value did not significantly differ from Carnil. Instead of increasing 

gradually during the logarithmic phase, the arylsulfatase activity in mutant #4 was 

maintained at a constant level. The enzyme activity of mutant #23 was still increasing 

even after the culture reached its stationary phase. 

Mutant #21 which showed significantly higher enzyme activity could not be 

analyzed because it grew too slow under the conditions used for RNA sampling. Further 

experiments need to be performed under appropriate conditions to obtain mRNA data and 

to elucidate the reason for the growth difficulty. Mutant #24 was not analyzed at its 

mRNA level because it cannot grow under autotrophic conditions which were the 

conditions used for RNA sampling. Mutant #7 and #11 which showed 151% and 50% 

arylsulfatase activity, respectively, were not selected in this study. However, they are still 

interesting and further characterizations of these mutants are needed. 
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Table 4. Comparison of single-point screen and multiple-point screen: strains with 

significant difference to nonmutagenized Carnil in the single-point screen. For 

explanation, see legend to Table 3. The data for the multiple-point screen represent the 

average of two independent experiments. 

Mutant Single-point 
screen 

Multiple-point 
screen 

Remarks 

#1 46.6% 195% Highest enzyme activity appears during 
mid-logarithmic phase. 

#10 13.1% 46% The ratio of enzyme activity to culture 
density remains constant. 

#11 13.0% 50% The ratio of enzyme activity to culture 
density remains constant. 

#12 24.8% 74.5% 
#13 35.6% 75% 
#14 36.3% 37% The ratio of enzyme activity to culture 

density remains constant. 
#16 9.5% 0 % No arylsulfatase enzyme activity 
#18 24.3% 86.7% 
#21 >148% 198% 
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Preparation of Templates for Probe Synthesis 

To prepare templates for probe synthesis, the CABII-1 and ARS2 fragments were 

isolated from plasmid pHS16 and pJD27, respectively. Both plasmids were isolated from 

the E. coli strain XL1 blue. The -300 bp CABII-1 cDNA fragment was released from 

pHS16 by digestion with PstI restriction enzyme and separated from the vector by 1.5% 

agarose gel electrophoresis (Figure 4). The -300 bp fragment was isolated from the 

agarose gel and dissolved in 30 pi buffer. Four pi of this extract were subjected to 

electrophoresis on a 1.5% agarose gel in order to judge its purity and determine the 

concentration. As shown in Figure 5, the fragment was pure, since no other nucleic acid 

fragment was visible in the gel. The concentration of the isolated CABII-1 fragment was 

estimated at about 10 ng/pl and the yield at about 38%. Plasmid pJD27 was double 

digested with Hindlll and SacI to release the ARS2 fragment from the vector. After 

separation by electrophoresis on a 0.8% agarose gel (Figure 6), the -2000 bp ARS2 

fragment was purified from the gel using the same method as for the CABII-1 fragment. 

Two pi of the 30 pi extracted solution were subjected to electrophoresis on a 1% agarose 

gel. As shown in Figure 7, the ARS2 fragment was pure and the concentration was 

estimated at about 15 ng/pl. The yield was about 45%. 

Northern Blot Analysis of CABII-1 and ARS2 mRNA Abundance 

Figures 8 to 10 show that Carnil and all potential mutants examined synthesize 

mRNAs that hybridize with probes for CABII-1 and ARS2. Therefore, although no 

arylsulfatase activity was detectable in the culture supernatant of mutants #9 and #16, 

both retain their ability to synthesize ARS2 transcript. The results suggest that the defect 
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Lanel Lane2 Lane3 Lane4 

3054 bp 

2036 bp 

394 bp 

344 bp 

298 bp 

Figure 4. Restriction digest of purified plasmid pHS16 containing a CABII-1 cDNA 

fragment. The plasmid pHS16 was digested with PstI to release the ~300 bp CABII-1 

fragment from the -3000 bp vector. The fragments were separated by electrophoresis on 

a 1.5% agarose gel. Lane 1: 1 (ig of 1 kb molecular weight ladder. Lanes 2, 3 and 4: 

restriction digest products of 2.5 ^g, 2.5 |ag, and 5 |ig plasmid, respectively. 
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Lane 1 Lane 2 

Figure 5: Purified -300 bp CABII-1 cDNA fragment. Four pL of the isolated CABII-

1 cDNA solution was subjected to electrophoresis on a 1.5% agarose gel. Lane 1: 1 pg of 

1 kb molecular weight ladder. Lane 2: 4 pL (-40 ng) extracted CABII-1 fragment. 
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Lane 1 Lane2 Lane3 

Figure 6. Restriction digest of purified plasmid pJD27 containing a ARS2 cDNA 

fragment. The plasmid pJD27 was double digested with Hindlll and SacI to release the 

-2000 bp ARS2 fragment from the -3000 bp vector. The fragments were separated by 

electrophoresis on a 0.8% agarose gel. Lane 1: 1 (ig of 1 kb molecular weight ladder. 

Lanes 2 and 3 : restriction digest products of 5 |ig plasmid each. 



Figure 7: Purified -2000 bp ARS2 cDNA fragment. Two pL of the isolated ARS2 

cDNA solution was subjected to electrophoresis on a 1% agrose gel. Lane 1: 1 pg of 1 kb 

molecular weight ladder. Lanes 2 and 3: 2 pL (-30 ng) extracted ARS2 fragment each. 
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#1 #6 #23 carnil carnil #6 

CABII-1 

ARS2 

16S rRNA 
15 27 15 27 15 27 15 27 15 27 15 27 

time in constant light [h] 

Figure 8: Northern blot analysis of potential mutants and nonmutagenized Carnil 

under constant dim light. The expected trough (15h) and peak (27h) time point for the 

circadian rhythm in CABII-1 and ARS2 mRNA abundance was tested for the strains 

indicated above. The upper panel shows the single autoradiograph obtained when 

hybridizing with a probe for the CABII-1 mRNA and the middle panel the single 

autoradiograph obtained with the reporter probe. The lower panel shows the 16S rRNA 

portion of the ethidium bromide-stained gel as an indicator for the amount of total RNA 

loaded in each lane. 
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Figure 9: Northern blot analysis of more potential mutants under constant dim 

light. For explanation see legend to Figure 8. The upper and middle panel each 

represents a single autoradiograph. 
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Figure 10: Northern blot analysis of more potential mutants and nonmutagenized 

Carnil under constant dim light. For explanation see legend to Figure 8. The upper and 

middle panel each represents a single autoradiograph. 
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in ARS2 expression in these mutants occurs at the posttranscriptional level rather than the 

transcriptional level and therefore should not affect CABII-l expression. In Carnil, the 

CABII-1 and ARS2 transcripts both show low amounts at 15 h in constant dim light and 

high amounts at 27 h as expected. The difference is due to the circadian rhythm in CABII-

1 promoter activity which drives both genes in Carnil (Jacobshagen et al. 1996). The 

ethidium bromide stained 16S rRNA in Figures 8 to 10 makes it possible to assess 

whether all samples were loaded at equal amounts. 

CABII-1 and ARS2 mRNA abundances in Carnil and the potential mutants were 

quantified as shown in Figures 11, 12 and 13. Expression of ARS2 was in accordance 

with CABII-1 expression in all strains examined. A strain whose peak-to-trough ratio of 

CABII-1 and ARS2 mRNA abundances was less than one third of the respective ratio for 

Carnil was considered significantly different. As shown in Table 5, the peak-to-trough 

ratio for CABII-1 of Carnil was on average 5.11. A significant decrease would therefore 

represent a peak-to-trough ratio of less than 1.70. Results in Table 5 indicate that the 

peak-to-trough ratio of CABII-1 for mutant #10, #14 and #23 shows a significant decrease 

from that of Carnil. The mRNA abundance in mutant # 1 is also aberrant. In one 

experiment, the peak-to-trough ratio was significantly reduced while in the other 

independent experiment the trough value was even larger than the peak value (Table 5). 

The expression of CABII-1 in mutants #4, #6, #9, and #16 is not significantly different 

from Carnil in accordance with their most likely defect at the posttranscriptional level of 

ARS2 expression. However, the results for mutant #4 and #16 need to be confirmed, 

especially since the data for one experiment could not be normalized to the amount of 

16S rRNA. 

Surprisingly, no overt relationship between mRNA abundance and enzyme 
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#23 Carnil Carnil # 6 

• CABII-1 15h 

• CABIM 27h 

• ARS2 15h 

0ARS2 27h 

• CABIM 15h 

• CABIM 27h 

• ARS2 15h 

Q ARS2 27h 

# 1 # 6 #23 Carnil Carnil # 6 

Figure 11: Quantitative analysis of RNA blots from potential mutants and 

nonmutagenized Carnil depicted in Figure 8. A. Relative amount of CABII-1 and 
l 

ARS2 mRNA at the expected trough (15 hour in constant dim light) and peak (27 hour in 

constant dim light) time point during their circadian rhythms. B. Same amount of CABII-

1 and ARS2 mRNA as in "A" but normalized to thel6S rRNA abundance. "*" indicates 
that the strain has aberrant CABII-1 and ARS2 mRNA amounts. 
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• CAB IH 15h 

• CABIH 27h 

• ARS2 15h 

0ARS2 27h 

#4 #6 #10 #10 #9 #14 #16 
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• ARS2 15h 

0ARS2 27h 

#6 #10 #10 #9 #14 #16 

Figure 12: Quantitative analysis of RNA blots from potential mutants depicted in 

Figure 9. For explanation see legend to figure 11. 
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Figure 13: Quantitative analysis of RNA blots from potential mutants and 

nonmutagenized Carnil depicted in Figure 10. For explanation see legend to figure 11. 

In mutants # 4, # 16 and Carnil, the 16S rRNA band in ethidium bromide-stained gel was 

damaged and could not be used to normalize mRNA abundances in these strains. 
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Table 5. Peak-to-trough ratios of CABII-1 and ARS2 mRNA abundances in Carnil 

and the potential mutants. The peak value was defined as the amount of mRNA after 27 

h in constant dim light and the trough value after 15 h in constant dim light. The ratios 

shown are derived from the amount of mRNA normalized to the 16s rRNA. * indicates 

not normalized data. "1" shows the results of the first experiment and "2" of the second. 

CABII-1 

Peak-to-trough ratio 

ARS2 

Peak-to-trough ratio 

Strain 1 2 Strain 1 2 

Carnil 6 .33 3 .88 Carnil 5.72 4 .80 

#1 1.35 0.82 #1 1.10 1.43 

#4 2.06 * 1.66 #4 2.10 * 1.47 

#6 2.04 2 .78 #6 3.10 7.01 

#9 2.27 2 .55 #9 6 . 6 1 4.33 

#10 1.50 1.55 #10 1.79 1.53 

#14 1.58 1.09 #14 1.47 1.31 

#16 1.75 * 1.39 #16 37.07 * 2 .64 

#23 1.25 1.41 #23 1.34 1.66 
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activity was observed. Although mutant #10 and #14 showed significantly lower reporter 

enzyme activity, their CABII-1 and ARS2 mRNA abundances were consistently higher 

than the control (Figures 12 and 13). The mRNA abundance of mutant #1 which showed 

very high enzyme activity was maintained at a level similar to that of #10 and #14 

(Figures 11 and 13). 

Overall, the results indicate that mutants #1, #10, #14 and #23 are the most likely 

candidates for a defect in circadian CABII-1 expression. The mRNA abundance pattern of 

mutant #21, #24, #7 and #11 still needs to be analyzed under appropriate conditions. 



CHAPTER IV 

DISCUSSION 

Chlamydomonas reinhardtii Strain Carnil As A Useful Model Organism to Study the 
Circadian Output Pathway 

Most circadian oscillator components have been identified by genetic and 

biochemical analyses of mutants defective in rhythmic outputs. In Drosophila, per and 

tim were isolated and further characterized from mutants that showed long-period, short-

period or arythmic locomotor activity (Young 1998). In Neurospora mutants defective in 

the conidiation rhythm, several loci were identified using forward genetic approaches. 

These loci include frq, wc-2, chr, and prd-1 (Bell-Pedersen 2000). Similar studies were 

performed in rodents. For instance, clock was isolated from a mouse mutant with a long-

period wheel-running activity (Antoch et al. 1997). And CKIs was identified through 

genetic analysis of the short-period hamster mutant called tau (Lowrey et al. 2000). 

As circadian gene expression is probably closer to the central oscillator compared 

with complicated circadian behaviors, it should be easier to identify mechanisms of 

signal transduction in the output pathway through the study of mutants defective in 

rhythmic gene expression (Somers 1999). In an effort to identify intermediate factors in 

the circadian output pathway, this study focused on screening of Chlamydomonas 

reinhardtii mutants defective in circadian CABII-1 expression. CABII-1 is a member of 

the CABII gene family encoding the chlorophyll a,b-binding proteins of photosystem II. 

4 6 
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In Chlamydomonas strain Carnil, a promoterless ARS2 gene is fused downstream of the 

CABII-1 promoter. In this transformant, ARS2 mRNA abundance shows a similar period 

and amplitude as that of the endogenous CABII-1 gene (Jacobshagen et al. 1996). The 

result indicates that the circadian clock in Chlamydomonas regulates the expression of 

CABII-1 at the transcriptional level. 

Reporter genes provide a convenient method for monitoring circadian rhythms of 

transcription. When a particular promoter is controlled by the circadian clock, a reporter 

gene inserted downstream of such a promoter should be expressed under clock control. 

Currently, the most ideal reporter is luciferase. Rhythmic control over the target promoter 

by the circadian clock in this case is simply reflected by the oscillations in intensity of 

bioluminescence with high resolution. Luciferase has been extensively used in the study 

of ccgs in cyanobacteria (Liu et al. 1995). It has also been successfully applied in 

Arabidopsis (Somers et al. 1998) and Drosophila (Stanewsky et al. 1998). Mutants in 

other aspects of the circadian clock were also isolated by using luciferase as a reporter. 

However, this gene and other heterologous genes are generally difficult to express in 

Chlamydomonas possibly due to codon mismatches. ARS2 is a Chlamydomonas gene. It 

encodes the enzyme arylsulfatase which is synthesized in response to sulfur limitation 

(Lien and Schreiner 1975). Arylsulfatase is secreted into the medium where it is readily 

assayed using a chromogenic substrate. Davies and coworkers (1992) developed ARS2 as 

a reporter under sulfur-sufficient condition. Under this condition, endogenous ARS2 is 

not expressed even at the mRNA level. In the last few years, it has been successfully used 

as a reporter in Chlamydomonas and the evolutionary related alga Volvox (Kucho et al. 

1999, Hallmann and Sumper 1994). However, arylsulfatase is not an ideal reporter for 

circadian studies. Although ARS2 mRNA abundance in Carnil exhibits the same 
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circadian rhythm as that of CABII-1, arylsulfatase activity released into the medium 

shows a monotonic increase due to its long half-life (Jacobshagen et al. 1996). Therefore, 

arylsulfatase was used in this study as a reporter of accumulative changes over several 

circadian cycles as the primary level of mutant screening. 

Assessment of ARS2 As A Reporter At the Enzyme Activity Level in A Screen for 
Circadian Output Mutants 

There are certainly advantages for using arylsulfatase as a reporter when 

screening for circadian output mutants. Although the input pathway was shown to affect 

the free-running period (Kay 1993), mutants in the input pathway that exhibit a shorter or 

longer free-running period will not show a significantly higher or lower accumulative 

arylsulfatase activity under constant conditions. Similarly, mutations in the oscillator 

were often reported to lead to a short-period, long-period or arythmic phenotype of 

circadian outputs. But a mutant with a longer or shorter period will not show a difference 

in accumulative transcriptional activity over several circadian cycles compared to wild-

type. Therefore, mutations in the input pathway or the oscillator will not be picked up by 

the applied screen in most cases. 

The kind of screening method used makes the selection of potential mutants from 

thousands of transformants possible. But screening at the arylsulfatase activity level also 

has several limits. As shown in Figure 14, there are a number of sites where mutations 

can occur within and outside the circadian timing system. Due to this fact in combination 

with the low time resolution of the arylsulfatase reporter, some of the isolated mutants 

will not necessarily be true circadian output mutants. 1) The CABII-1 promoter may 

contain response elements regulated by signaling pathways other than the circadian clock 
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(site 6 in Figure 14). In Arabidopsis, both the circadian oscillator and a direct 

phototransduction pathway control the CAB promoter (Millar and Kay 1996). Light 

activation at the transcriptional level has also been reported for the Chlamydomonas 

CABII-1 gene (Jasper et al. 1991). Therefore, a mutation in components of the 

phototransduction pathway may also lead to an aberrant accumulative arylsulfatase 

activity. 2) If a mutation occurs in the regulatory mechanism of the endogenous ARS2 

that leads to an activation of the gene under sulfur-sufficient conditions, accumulative 

arylsulfatase activity would be increased (site 7 in Figure 14). But since the CABII-1 gene 

would not be affected by such a mutation, this kind of mutant will be excluded by 

analysis of CABII-1 transcript abundance. 3) Mutations at the posttranscriptional level of 

ARS2 expression may occur such as a defective excretion of arylsufatase to the medium. 

Or the promoter or coding region of the ARS2 reporter might be affected by a mutation 

(site 5 in Figure 14) leading to abolishment of enzyme activity. However, these mutants 

can also be ruled out by subsequent mRNA level screening. 4) A mutation could occur in 

the oscillator such that an arhythmic phenotype with significantly higher or lower 

accumulative arylsulfatase activity arises (site 2 in Figure 14). This kind of mutation 

could be identified by further studies like the examination of other circadian outputs. 5) 

Some mutants truly defective in the output pathway could be missed (site 3 in Figure 14) 

like phase-shifting mutants which will show wild-type accumulative arylsulfatase 

activity. 

Insertional Mutagenesis in Carnil 

Insertional mutagenesis has been successfully used to generate mutants in a wide 

variety of organisms (Lee et al. 1995, Cummings et al. 1999, Ermilova et al. 2000, Prieto 
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Figure 14: Possible mutations in Carni l affecting CABII-1 and ARS2 expression. Site 1 indicates a possible mutation in the input 

pathway of the circadian timing system, site 2 in the circadian oscillator, and site 3 in the circadian output pathway. Sites 4 and 5 

indicate possible mutations in the promoter or coding region of CABII-1 and the ARS2 reporter construct, respectively. Site 6 indicates 

a possible mutation in pathways that regulate CABII-1 transcription other than the circadian clock such as a light induction pathway, 

and site 7 a possible mutation in the regulation of the endogenous ARS2 gene. 
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et al. 1996, Amsterdam et al. 1999). Depending on the recipient organism and the specific 

biological phenomenon under investigation, the frequency of mutants that were recovered 

varies considerably. In Coprinus cinereus, a screen of REMI-generated transformants 

yielded sporulation-defective mutants at a frequency of 1.2% (Cummings et al. 1999). In 

Chlamydomonas reinhardtii, 5 out of 8630 arginine-independent transformants were 

defective in their chemotaxis towards various sugars (Ermilova et al. 2000) while 2 

regulatory mutants for nitrate assimilation were obtained out of 8975 transformants in 

another experiment (Prieto et al. 1996). 

In this study, Carnil had been mutagenized via insertional mutagenesis with the 

ble marker (Yuan 1999). This kind of mutagenesis generally leads to a complete loss of 

function of the affected gene (Rochaix et al. 1998). It can be assumed that the circadian 

clock acts on CABII-1 and on ARS2 reporter expression through either circadian 

activation or repression. Disruption of components of the circadian transduction chain 

should therefore lead to either constant high or constant low transcription of both genes. 

As a consequence, the accumulative arylsulfatase activity in mutants would be 

significantly higher or lower compared with nonmutagenized Carnil. Since selection of 

prospective mutants is based on aberrant reporter enzyme activity, the stability of ARS2 

expression in nonmutagenized Carnil is very important. In our experiments under 

optimized conditions, arylsulfatase activity of nonmutagenized Carnil and its three 

single-cell isolates showed a stability of ARS2 expression that is acceptable (p - 0.87, 

SAS version 8). Therefore, variations of arylsulfatase activity in mutagenized Carnil can 

reasonably be assumed to be due to a genetic defect. 
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Comparison of Single-Point Screen with Multiple-Point Screen 

Of the 16 strains whose arylsulfatase activity did not differ significantly from 

Carnil in the single-point screen (Table 3), 12 also showed no significant difference 

using the multiple-point screen. The reliability of the single-point screen in identifying 

wild-type expression level is therefore about 75% in this particular study. However, since 

the selection of strains was not random but in favor of those with activities just below the 

level that would make them significantly different, the reliability of the single-point 

screen is most likely higher. The four strains that showed aberrant enzyme activity are: 

#6, #7, #9, and #24. Mutant #9 showed no detectable enzyme activity in the multiple-

point screen but 70.9% in the single-point screen. Mutant #6 showed a significantly lower 

arylsulfatase activity of 33% in the multi-point screen compared with 64.3% in the 

single-point screen. Mutant #7 showed significantly higher arylsulfatase activity (151% 

in the multiple-point screen as compared to 63.3% in the single-point screen) and mutant 

#24 showed significantly lower arylsulfatase activity (40.7% in the multiple-point screen 

as compared to >119% in the single-point screen). Interestingly, mutant #24 was unable 

to grow under photoautotrophic conditions. The different results between the two 

screening methods are either due to the single-point screen being more unreliable or a 

genetic change occurred in the strain after it had been characterized by the single-point 

screen. 

Of the 14 potential mutants that were significantly different from Carnil in the 

single-point screen, 9 were only available for further studies. Of these 9 mutants, 3 

showed no significant difference to nonmutagenized Carnil in the multiple-point screen 

(#12, #13, #18 in Table 4) and one the opposite mutant phenotype (#1 in Table 4. Notice 

the significantly lower activity in the single-point screen compared to the significantly 
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higher activity in the multiple-point screen.). The selection error in favor of mutants that 

could not be verified is therefore about 44% in the single-point screen. 

Overall, the single-point screen compared to the multiple-point screen is a 

reasonably reliable and certainly rapid way to screen for potential mutants as a first step. 

The multiple-point screen is still necessaiy to verify mutant phenotypes and thereby 

reduce the number of potential mutants that need to be screened at the mRNA level. 

Analysis of CABII-1 and ARS2 mRNA Abundance 

Although no enzyme activity was detectable in mutants #9 and #16 in the 

multiple-point screen, ARS2 mRNA abundance in these two strains was similar to 

nonmutagenized Carnil in northern blot analyses. The most likely explanation for this 

result is that the mutation in #9 and #16 occurred at the posttranscriptional level of ARS2 

reporter expression. The mutants are therefore not useful for circadian studies but could 

be useful for studies of the sulfur-response system in Chlamydomonas (Grossman 2000). 

The ARS2 and CABII-1 mRNA abundance of strain #4 was also measured. 

Although highest arylsufatase activity of this strain is not significantly aberrant compared 

with Carnil, its enzyme activity pattern differs considerably. However, the mRNA 

abundance rhythms are similar to Carnil. Mutant #6 which exhibits significantly 

decreased arylsulfatase activity also shows a similar transcript abundance pattern as 

Carnil. Aberrant activity patterns in these strains should therefore be caused by a 

mutation that acts at the posttranscriptional level of ARS2 reporter expression. 

For mutants #10 and #14 which showed significantly reduced reporter enzyme 

activity, northern blot analysis revealed that their mRNA abundance pattern taken at two 

time points is also aberrant. The peak-to-trough ratio for the amount of CABII-1 transcript 
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was 1.53 for mutant #10 and 1.34 for mutant #14 compared to 5.11 for nonmutagenized 

Carnil. Mutant #23 which has 55.7% reporter enzyme activity and a somewhat different 

overall pattern also showed a decreased peak-to-trough ratio (peak/trough = 1.33). It 

indicates that #10, #14 and #23 show either a greatly reduced amplitude or an arhythmic, 

erratic expression pattern. An unexpected phenotype is shown by mutant #1 since it 

exhibited significantly lower enzyme activity in the single-point screen (46.6%) but very 

high enzyme activity in the multiple-point screen (195%). Results from the mRNA level 

screen revealed that the mRNA abundance pattern in this strain is aberrant. The CABII-1 

mRNA abundance peak value is less than the trough value (peak/trough = 0.82) in one 

experiment and slightly larger than the trough value (peak/trough = 1.35) in the other 

experiment. But although the two experiments differ somewhat in their results, both are 

similar in revealing a considerably reduced peak-to-trough ratio. One possibility is that 

the expression of CABII-1 is constant in this mutant and the difference between the two 

experiments is due to experimental variability. Further research is needed to better assess 

this mutant. 

We also noticed that ARS2 and CABII-1 transcript abundances show a similar 

pattern in all strains investigated, i.e., when the amount of ARS2 mRNA is aberrant, the 

amount of CABII-1 mRNA is aberrant in the same way. It indicates that none of the 

mutations affect CABII-1 or the ARS2 reporter by interfering directly with the coding 

region or their c/s-acting elements. It further indicates that the endogenous ARS2 gene 

was not affected either. The results also show that the expression of CABII-1 and the 

ARS2 reporter gene is highly repeatable between the two independent experiments in 

most strains investigated. It suggests that also at the transcriptional level ARS2 shows a 

high enough stability to make it a valuable reporter. 



55 

In summary, this study has shown that mutants #1, #10, and #14 and #23 are the 

most promising for harboring a defect in the circadian output pathway, because they 

exhibit aberrant reporter expression at both the enzyme and mRNA level with concurrent 

expression of the CABII-1 gene. In the future, the precise circadian pattern of CABII-1 

mRNA abundance in these mutants needs to be analyzed by high-resolution sampling. 

Although the most promising mutant phenotype might be considered to show a 

completely abolished rhythm of CABII-1 and ARS2 expression, residual rhythmicity will 

necessarily occur if CABII-1 expression is under hierarchical circadian regulation. 

Mutants #1,#10, #14 and #23 are therefore very interesting, even though they might still 

show some low amplitude rhythm in CABII-1 expression. 

Conclusion 

Of the 8 strains with aberrant arylsulfatase activity in the more rigorous multiple-

point screen that were analyzed further in this study, 4 exhibited aberrant mRNA patterns 

as well. The selection efficiency at the laborious CABII-1 mRNA level was therefore 

greatly increased with the use of the prescreen. The major conclusion of this work is that 

ARS2 at the level of arylsulfatase activity is a valuable reporter especially since reporter 

systems with high time-resolution are so difficult to use in Chlamydomonas reinhardtii. 
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