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Mentha (Nepetoideae, Lamiaceae) is a taxonomically complex genus that includes

economically important members such as spearmint and peppermint and species of global

conservation interest. Mentha is considered challenging systematically due to its high

incidence of polyploidy, diverse morphology, variation in base chromosome number, and

frequent interspecific hybridization. Our objectives were to test the monophyly of

Mentha and each of its traditionally recognized sections, assess phylogenetic

relationships of the Mentha species, test hypotheses of hybridization for the putative

stabilized allopolyploids (M spicata and M. canadensis), and determine the ancestral

base chromosome number using DNA sequence data from the chloroplast trnL-trnF and

nuclear ribosomal internal transcribed spacer (ITS) regions. Based on trnL-trnF data,

Mentha appears monophyletic. However, ITS data place the Mentha species into two

distinct clades that include 12 other Mentheae genera. None of the sections with more

than one species sampled form monophyletic groups based on either data set, and are

therefore inconsistent with traditional classification. Cloned ITS sequences of M.

canadensis and M. spicata support the hypothesis of hybridization as evidenced by

nucleotide site polymorphism in ITS direct sequences and divergent clones cluster with

different species. Moreover, our data indicate that M. spicata, rather than M. longifolia,

IX



may be a parent of M. canadensis. Character optimization of base chromosome number

on to the molecular phylogenies shows that x = 12 may be ancestral based on trnL-trnF

data or possibly x = 9 or x = 10 based on ITS data.



INTRODUCTION

The plant genus Mentha L. is well known as a systematically complex group

(Tutin et al., 1972; Harley and Brighton, 1977; Chambers and Hummer, 1994; Rosch, et

al , 2002; Tucker, in manuscript). Taxonomic difficulty may be due to high incidence of

polyploidy, variation in base chromosome number, diverse morphology, vegetative

propagation, and frequent interspecific hybridization (Morton, 1956; Harley and

Brighton, 1977; Tucker, in manuscript; Tucker and Chambers, in manuscript). Members

in this genus include several economically important plants such as spearmint (M

spicata), peppermint (M. xpiperita), and Japanese mint (M. arvensis) as well as two

species of global conservation interest (M gattefossei and M. requienii).

Geographic Distribution

Mentha is a member of the mint family (Lamiaceae; Labiatae A. L. de Jussieu),

subfamily Nepetoideae, tribe Mentheae (Wagstaff, 1992; Wagstaff et al., 1995). Most

Mentha species are widely distributed and occur primarily in Europe and Asia (Briquet,

1897; Tutin et al., 1972; Harley and Brighton, 1977; Gleason and Cronquist, 1991;

Tucker, in manuscript). Moreover, three species are found in Australia (M australis, M.

diemenica, and M. satureioides), and M. cunninghamii is a New Zealand endemic.

Mentha gattefossei is restricted to Morocco, and M. requienii is found in Southern

Europe, especially in Corsica (France), Sardinia, and Monte Cristo Island (Italy). In

addition, the North American M. canadensis is the only species native to the new world

(Harley and Brighton, 1977; Gleason and Cronquist, 1991). Members in this genus

usually grow well in moist places, especially close to streams. Some species escape from



cultivation and have become naturalized in roadsides and fields (Tutin et al., 1972;

Gleason and Cronquist, 1991).

Morphology

Mentha species are very diverse morphologically (Tutin et al., 1972; Harley and

Brighton, 1977). For example, there are three different types of floral inflorescences:

capitate, spicate, and verticillate. The capitate inflorescence consists of many sessile or

subsessile florets clustered at the tip of a peduncle. The spicate inflorescence is

elongated with sessile or subsessile flowers that bloom from the bottom upwards.

Verticillate is another type of elongated inflorescence composed of three or more flowers

at several nodes. Consequently, there is no single diagnostic trait, and thus a combination

of characters must be used to define Mentha. Tucker (in manuscript, p. 1) defines

Mentha based on the following characters: 'stamens 4, ± equal, filaments naked, anthers

with parallel distinct thecae, ± actinomorphic calyx, weakly 2-lipped corolla, and

subellipsoidal nutlets with rounded apex.' Gleason and Cronquist (1991, p. 443) use the

following characters: 'stamens 4, exert beyond the corolla-throat, sometimes even

surpassing the lips, corolla 4-lobed or 5-lobed or nearly regular, upper lip of the corolla

well developed and manifest, formed by fusion of two, inflorescence essentially axillary,

the verticils several to many, subtended by foliage leaves and separated by internodes, or

the uppermost subtending leaves smaller and internodes shorter, calyx 10-13 nerved,

regular or weakly 2-lipped, the lobes of the upper and lower lips similar or differing in

shape and size.' Phylogenetic utility of these traits has not been tested.

Traditional Classifications

The history of Mentha systematics has been very confusing and even its current



status remains uncertain. Monophyly of Mentha is questionable because several

members of Mentha have sometimes been placed in other, presumably closely related

genera such as Micromeria, Pulegium, Audibertia, Menthella, Thymus, Satureja and

Preslia (Briquet, 1897; Tucker, in manuscript). Circumscription of Mentha species is

ambiguous. As a result, many new species (over 3,000 names) have been described

(Tucker, in manuscript). For example, 113 new taxa were published for Hungary alone

(Trautman, 1925). Moreover, many species (such as M. longifolia) are divided into

multiple subspecies. Tucker (in manuscript) proposes 19 different subspecies of M.

longifolia ranging from Western Europe to the Himalayas and three subspecies (capensis,

polyadena, and wissii) in Southern Africa. European subspecies of M. longifolia

generally correspond to political boundaries. Yet, taxonomic treatments for Mentha

recognize only 13-18 species (see Table 1: Briquet, 1897; Harley and Brighton, 1977;

Chambers and Hummer, 1994; Tucker, in manuscript).

Not only has circumscription of the Mentha species been problematic but also

their infrageneric classification. For example, Mentha has been divided into two to six

groups (Table 1). Briquet (1897) divided the Mentha species into five sections (sect.

Eupulegia, sect. Audibertiae, sect. Verticillatae, sect. Capitatae, and sect. Spicatae)

within two subgenera (subg. Pulegium and subg.. Menthastrum), and M. cervina was

placed in the genus Preslia. Harley and Brighton (1977) divided Mentha into five

sections: sect. Audibertia, sect. Eridontes, sect. Mentha, sect. Preslia, and sect. Pulegium.

Section Eriodontes included four Australasian species plus one Japanese species while

the well-known economically important mints (e.g., spearmint) were placed in sect.

Mentha, which is the largest and taxonomically most complex (Harley and Brighton,



1977). However, in Tucker's classification (in manuscript) based on morphology, base

chromosome number, and major essential oil components, Mentha consists of 18 species

divided into two sections: sect. Mentha and sect. Pulegium. This classification excludes

M. cunninghamii from Mentha.

Debatable relationships occur not only at infrageneric levels but also at the

suprageneric level. For instance, based on chloroplast DNA restriction site variation,

Mentha is most closely related to Thymbra (Wagstaff et al., 1995). However, in an

analysis of 10 Mentheae genera based on internal transcribed spacer (ITS) data, Mentha

is closely related to Thymus and Ziziphora (Prather et al., 2002). Although monophyly of

Nepetoideae, the largest subfamily in Lamiaceae, is strongly supported (Cantino and

Sander, 1986; Cantino, 1992), phylogenetic relationships within the subfamily are

unclear (Wagstaff et al., 1995). Parsimony analysis of chloroplast DNA restriction site

variation shows that the tribe Mentheae sensu Bentham (1876) is polyphyletic, but the

tribe Mentheae sensu Cantino et al. (1992) is monophyletic (Wagstaff et al., 1995)

Previous Studies in Characterization Techniques of Mints

Several studies have been done to assess relationships in Mentha. However, no

robust phylogeny for the genus is available. For economic applications, it is important to

identify and characterize mint species and named hybrids (Rosch et al., 2002). The use

of only morphological features is insufficient when differentiating the commercial mint

cultivars. Thus, many techniques have been applied to precisely identify mint taxa. For

example, 11 accessions were analyzed by Khanuja et al. (2000) representing six Mentha

taxa (M. arvensis, M. spicata, M. spicata cv. viridis, M. xpiperita, M. xpiperita cv.

citrata, and M. x gracilis), and 17 accessions were analyzed by Fenwick and Ward



(2001) representing three Mentha taxa (M spicata, M. xpiperita, and M. xgracilis)

using Randomly Amplified Polymorphic DNA (RAPD) markers demonstrating that this

technique can be used to distinguish Mentha taxa. RAPDs were also useful in identifying

somatic hybrids between M. spicata and M. xpiperita (Krasnyanski et al., 1998). A

combination of micro-Raman spectroscopy and hierarchical cluster analysis proved to be

a rapid and easy characterization method for discriminating Mentha taxa (Rosch et al.,

2002). Gas chromatogram profiles applied by Tucker et al. (1991) were also able to

distinguish Mentha genotypes; however, this technique is slower and more expensive for

screening larger numbers of plants (Fenwick and Ward, 2001).

Base Chromosome Number and Polyploidy

Four different base (haploid) chromosome numbers are found in Mentha: x = 9,

x = 10, x = 12, andx = 18 (Harley and Brighton, 1977; Chambers and Hummer, 1994).

Most species have a base chromosome number of x = 12. Mentha requienii is the only

species with a base chromosome number of x = 9 while in M. japonica, M. gattefossei,

and M. pulegium the base chromosome number is x = 10. In M. cervina the base

chromosome number is x = 12; however, it has also been counted as x = 18 (2n = 36) by

Makarov and Reznikova (1972) and Harley and Brighton (1977). If Mentha is

monophyletic and the ancestral base chromosome number is x = 9, 10, 12, or 18, then the

indication is that there have been at least three chromosome loss or gain events (e.g., one

event from x = 12 to x =10 by losing two chromosomes, or one event from x = 9 to x = 10

by gaining one chromosome). Until the ancestral base chromosome number has been

determined, the pattern of chromosome evolution in Mentha cannot be examined.



According to Harley and Brighton (1977) and Chambers and Hummer (1994),

only five Mentha species (M cervina, M. longifolia, M. pulegium, M. requienii, and M.

suaveolens) are diploid. However, some diploid species such as M. longifolia and M.

pulegium have also been reported as tetraploids. Ploidy levels of the remaining species

range from triploid to decaploid (Table 2). The most common ploidy levels are

hexaploid (e.g., M. arvensis) and octaploid (e.g., M. aquatica).

Hybridization

Hybridization in Mentha occurs frequently in both wild and cultivated

populations; however, only in sect. Mentha do hybrids occur naturally (Morton, 1956;

Harley and Brighton, 1977; Tucker, 1990). Because hybrids often show morphological

intermediacy and diversity as well as genetic variability (McDade, 1995, 2000), they

create difficulties in species delimitation and also complicate problems in systematics and

phylogenetics. Normally, hybrids are sterile due to unfavorable interactions between

parental species' genomes (Rieseberg et al, 1996). However, some hybrids become

stable species (Arnold, 1992). To reconstruct phylogenetic relationships,

phylogeneticists assume that 'the evolutionary history of living organisms has been a

series of divergent speciation events' (McDade, 2000; p. 147). Therefore, hybrids that

have reticulating evolutionary histories may cause incorrect phylogenies.

In Mentha, there are 13 named hybrids (Harley and Brighton, 1977). These have

resulted from breeding experiments. Frequent interspecific hybridization in Mentha may

be due to gynodioecy: having carpellate and perfect flowers on separate plants (Harley

and Brighton, 1977; Tucker, in manuscript). Some species such as M. spicata and



M. canadensis are thought to be ancient hybrids. Mentha spicata (Fig. lb) has been

hypothesized to be an ancient stabilized allopolyploid between M. longifolia (Fig. la) and

M. suaveolens (Fig. lc) (Harley and Brighton, 1977). Mentha canadensis (Fig. 2b) is

thought to be an ancient stabilized allopolyploid between M. longifolia (Fig. 2a) and

M. arvensis (Fig. 2c) (Tucker and Chambers, in manuscript). Mentha canadensis has the

somatic chromosome number of 2n = 96 (octaploid) and a verticillate inflorescence.

Some differences between the hypothesized parents of M. canadensis are as follows:

Mentha arvensis has the somatic chromosome number of 2n = 72 or 96

(hexaploid/octaploid) and a verticillate inflorescence while M. longifolia has the somatic

chromosome number of 2n = 24 or 48 (diploid/tetraploid) and a spicate inflorescence.

Economically Important Mints

Many species and named hybrids of Mentha have considerable economic

importance (Krasnyanski et al., 1998; Schulz et al., 1999; Mirzaie-Nodoushan et al.,

2001; Tucker, in manuscript) such as M. spicata (spearmint), M. aquatica, M. arvensis

(cornmint, Japanese mint, menthol mint), M. canadensis, M. pulegium (European

pennyroyal), M. xpiperita (peppermint), M x gracilis, and M. x villoso-nervata. Shoots

and leaves of mints are used as condiments in food, for example in Thai and Indian

cooking. The major components of the peppermint and Japanese mint essential oils are

/-menthol, menthone, isomenthone, and cineole (Schulz et al., 1999; Anon, 2001),

whereas spearmint oil is composed primarily of carvone and /-limonene (Fujita and Nezu,

1980 in Imai et al., 2001; Pino et al., 2001). Their essential oils and derivatives are not

only processed into flavorings for food, candy, chewing gum, chewing tobacco, and

cigarettes but are also used in cosmetic formulations and perfumed products as fragrance
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components in shampoo, cooling gel, shaving cream, bubble bath, deodorant, toothpaste,

floss, mouthwash, and oral spray (Chambers and Hummer, 1994; Khanuja et al., 2000;

Anon, 2001; Srivastava et al., 2002).

Mint essential oils also have medicinal properties. For example, both spearmint

and peppermint oil show antibacterial and antifungal properties (Dikshit and Husain,

1994; Tassou et al. 1995; Adam et al. 1998; Imai et al., 2001). An extract of spearmint

oil is also anticarcinogenic (Villasenor et al., 1997) and insecticidal (Franzios et al.,

1997). Peppermint oil may be used as antiallergic, antiinflammatory (Arakawa et al.

1992) and antispasmodic medicine (Foster et al., 1980). Moreover, peppermint oil has

been shown to have animal feeding repellent activity (Ries et al., 2001) and has been

evaluated for larvicidal activity against mosquitoes (Ansari et al., 2000). In addition,

peppermint extract was found to contain an antimutagen against dietary carcinogen in

human cancer (Samejima et al., 1995)

The world market for menthol mint essential oils is -20,000 tons per year.

Menthol mint is mainly grown in China, India, Brazil, Japan, France, and the United

States. In India, about 145,000 ha of menthol mint are now cultivated (Srivastava, 2002).

In the United States, peppermint, native spearmint, and Scotch spearmint (M x gracilis)

are also grown commercially (Krasnyanski et al. 1998; Johnson and Cummings, 2000).

In 2001, The US harvested 19,500 and 78,500 acres of spearmint and peppermint,

respectively (USDA-National Agricultural Statistics Service, 2002). Spearmint

production is 2,052,000 lb and yields 105 lb spearmint oil. Peppermint production is

higher (6,343,000 lb), but with a lower yield (81 lb).



Species of Global Conservation Interest

According to the IUCN (World Conservation Union) Red List of Threatened

Plants, two Mentha species are listed among the -33,000 rarest plants in the world

(Walter and Gillett, 1998). In the IUCN Red List, there are five categories of extant

threatened plants: '(1) Extinct/Endangered = taxa that are suspected of having recently

become 'Extinct,' (2) Endangered = taxa in danger of extinction and whose survival is

unlikely if the causal factors continue operating, (3) Vulnerable = taxa believed likely to

move into the 'Endangered' category in the near future if the causal factors continue

operating, (4) Rare = taxa with a small world population that are not at present

'Endangered' or 'Vulnerable,' but are at risk, and (5) Indeterminate = taxa that are

known to be 'Endangered,' 'Vulnerable,' or 'Rare,' but where the information is

inadequate for determining which of the three categories is appropriate.' Mentha

gattefossei (Fig. 3a), an endemic species of the Atlas mountains of Morocco, is listed as

'vulnerable.' The other species, M. requienii (Fig. 3b), from Corsica, Sardinia, and

Monte Cristo Island is listed as 'rare.'

Value of Phylogeny

The establishment of a robust organismal phylogeny is important so that we can

understand 'how organisms, their traits, and interactions between species evolve' (Wiens,

2000). Phylogeny is also beneficial for plant breeders and breeding programs, molecular

geneticists, pest and pathogen management, endangered species studies, and studies of

systematics and biogeography. In the case of Mentha, knowledge of relationships may

help molecular geneticists and plant breeders to improve species and hybrids leading to

higher herbage and essential oil yields and quality (Khanuja 2000) as well as higher
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disease-resistance (Krasnyanski et al, 1998). Understanding of phylogenetic

relationships may lead to wild taxa that contain sources of novel genes and assist in

conservation of germplasm (Kellogg et al., 1996). For Mentha, phylogeny reconstruction

may help conservation efforts by identification of endangered Mentha species and closely

related taxa. Furthermore, some authors have developed algorithms to evaluate the

conservation priority of taxa using branch lengths of molecular phylogenies (Moritz,

1998). Topology of phylogeny can be used to estimate population trends (for example,

we expect an expanding population from a star-like phylogeny based on DNA

sequences).

Objectives

In this study, our objectives are to test the monophyly of Mentha, evaluate each

traditional classification system, assess the relationships of the Mentha species, test

hypotheses of reticulate ancestry for the putative stabilized allopolyploids (M spicata and

M. canadensis), and determine the ancestral base chromosome number using molecular

data.

Molecular Data

Molecular data are a powerful source of information in studies of plant phylogeny

and hybridization, especially in morphologically diverse groups (Baldwin et al., 1995).

Because individual gene trees may not reflect the true organismal relationships (Doyle,

1992; Kellogg et al., 1996), we will generate DNA sequences from two cellular genomes:

the chloroplast (cp) trnL-trnF region which is presumed to be maternally inherited

(Dowling et al., 1996) and the nuclear ribosomal (nr) internal transcribed spacer (ITS)

region which is biparentally inherited.
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The trnL-trnF region includes the trnL intron and trnL-trnF intergenic spacer,

both of which are noncoding (Fig. 4). This region is readily amplified using universal

primers developed by Taberlet et al. (1991). Sequence data from this region have shown

potential for investigating interspecific relationships in angiosperms (Harris and Ingram,

1991; Small et al., 1998). For example, Salvia (Lamiaceae) has been shown to be

paraphyletic or polyphyletic using cpDNA trnL-trnF and rbcL data (Walker et al., 2002).

For another example in Lamiaceae, Dicerandra may not be monophyletic based on trnL-

trnF, ITS, and matK data (Oliveira et al., 2002).

The nrDNA ITS region consists of two transcriptional regions (ITS-1 and ITS-2)

(Fig. 5) for which universal primers also exist (White et al., 1990). This region is part of

the ribosomal multigene family that includes hundreds to thousands of copies at one or

more chromosomal loci (Baldwin, 1992; Baldwin et al., 1995; Widmer and Baltisberger,

1999). Concerted evolution is an evolutionary process that maintains each copy of the

same repetitive DNA families to be identical; otherwise random mutation would later

increase differences among members of a family (Schopf, 1981). There are two main

mechanisms for the occurrence of concerted evolution: gene conversion, a

recombination process where one sequence of DNA acts like a template to convert

another without changing itself and unequal crossing over, a recombination process

between chromosomes that are not precisely paired, resulting in unequal length of

chromosomes (Krieber and Rose,1986; Elder and Turner, 1995; Li, 1997). ITS is the

most widely used nuclear DNA region in plant systematic studies (Baldwin et al., 1995)

and is phylogenetically informative at low taxonomic levels. In Lamiaceae, ITS data

strongly support the monophyly oiMonarda (Prather et al., 2002), but show polyphyly of
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Clerodendrum (Steane et al., 1999). In adddition, the combined analyses of ITS and cp

ndhF data showed monophyly of Trichostema (Huang et al., 2002). The ITS region has

also been shown to be highly useful in studies of hybridization (Campbell et al., 1997;

Alice and Campbell, 1999; Widmer and Baltisberger, 1999; Alice et al., 2001) and

provides more substantially phylogenetically informative characters than the trnL-trnF

region (Small et al., 1998; Oliveira et al, 2002; Smedmark and Eriksson, 2002).



MATERIALS AND METHODS

Plant Samples

Plant samples used in this study (Table 2) include 15 Mentha species representing all five

sections (Audibertia, Eriodontes, Mentha, Preslia, and Pulegium) and two named hybrids

(M xpiperita and M. x rotundifolia). Samples were received as cuttings from the United

States Department of Agriculture-Agricultural Research Service, National Clonal

Germplasm Repository (USDA-ARS, NCGR) in Corvallis, OR and established as plants

in the WKU Biology Department greenhouse. Morphological vouchers have been

deposited in the Western Kentucky University herbarium (WKU) (Holmgren et al,

1990).

DNA Isolation and Polymerase Chain Reaction (PCR)

Total cellular DNAs were isolated from fresh young leaves stored at -80°C using

a modified CTAB (hexadecyltrimethylammonium bromide) protocol (Doyle and Doyle,

1987). PCR amplification of trnL-trnF generally followed Taberlet et al. (1991). Target

DNA was directly amplified using 15 ul of genomic DNA diluted 1:100 in a total volume

of 25 ul, containing 0.4 uM of each oligonucleotide primer c and f, 200 uM of each

dNTP, 1.9 mM MgCl2 and 1 unit Taq DNA polymerase (Promega, Madison, WI). PCR

was performed in a MJ research PTC-100 thermal cycler (MJ Research, Watertown,

MA). After 40 cycles of amplification (1 min at 94°C, 1 min at 50°C, and 3 min at 72°C),

the reaction temperature was held at 72°C for 20 min and then maintained at room

temperature.

PCR amplification of ITS generally follows Baldwin (1992) using 11 ul of

genomic DNA in a total volume of 25 ul, containing 12.5 ul 2x PCR master mix

13
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(Promega, Madison, WI) and 0.3 uM of each oligonucleotide primer ITS5 and ITS4.

After 40 cycles of amplification (1 min at 97°C, 1 min at 48°C, and 45 s + 4 s per cycle at

72°C), the reaction temperature was held at 72 °C for 7 min and then maintained at room

temperature.

Agarose Gel Electrophoresis and Purification

PCR products were electrophoresed in 0.8% agarose gels (Fisher Scientific, Fair

Lawn, NJ). Fragments corresponding in size to the target DNA were excised and purified

using a QIAquick gel extraction kit (Qiagen, Inc., Valencia, CA) following the

manufacturer's instructions. Some PCR amplified ITS products were cloned (see below).

Cloning of ITS

In species that showed nucleotide site polymorphism in direct sequences (Mentha

arvensis, M. canadensis and M. spicata), the ITS region was cloned. Fresh PCR products

were ligated into a pCR II-TOPO vector using a TOPO-TA cloning kit (Invitrogen,

Carlsbad, CA). Potentially recombinant plasmids were chemically transformed into

competent E. coli cells (20 min ice, 42°C for 30 s, and 2 min ice) and were then incubated

in SOC medium for 1 hour at 37°C on a rotary shaker. After that they were plated onto

LB agar with ampicillin containing 32 ul of 50 mg/ml X-gal and 40 ul of 0.1M IPTG and

incubated overnight at 37°C. White colonies were selected for overnight growth in LB

broth with 5 (al of 50 ug/ml ampicillin at 37°C. Plasmid DNAs were isolated using a

QIAprep Spin Miniprep Kit (Qiagen, Inc., Valencia, CA). Potentially recombinant

plasmids were restriction digested with £coRI in a reaction volume of 10 ul, containing 1

ul of EcoRl 10X buffer, 10 units enzyme (New England Biolabs, Inc., Beverly, MA), and
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2.0 ul plasmid DNA and incubated for 2-6 hours at 37°C. Digested DNA was

electrophoresed in an 1.0% agarose gel to determine if the ITS insert was present.

DNA Sequencing

Target DNAs were sequenced using primers c, d, e, and f for the trnL-trnF region

(Taberlet et al , 1991), primers ITS2, ITS3, ITS4, and ITS5 for the ITS region (Baldwin,

1992), and universal primers SP6 and T7 in clones with an ABI PRISM™ Big Dye

Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) and then

electrophoresed in an ABI 310 Genetic Analyzer following the manufacturer's protocol

(Applied Biosystems, Foster City, CA). The Advantage GC cDNA PCR kit (BD

Biosciences, Palo Alto, CA) was applied for some species that were difficult to sequence

(Greenwell et al., in manuscript).

Editing and Alignment of Sequences

DNA sequences were manually edited and aligned visually using the computer

program Sequencher 4.1 (Gene Codes Cooperation, Ann Arbor, MI). Boundaries of ITS-

1, 5.8S, ITS-2, trnL intron, and trnL-trnF spacer in Mentha were determined by

comparison with other Euasterid sequences (Baldwin, 1992; Steane et al., 1999; McDade

and Schwarzbach, 2002; Beardsley and Olmstead, 2002; Ronsted et al., 2002; Zimmer et

al., 2002).

Outgroup Selection

We did preliminary phylogenetic analyses using sequences provided by Dr. Javier

Francisco-Ortega (Florida International University). For the trnL-trnF data, we included

15 Mentha species, 2 named hybrids, and 30 Lamiaceae taxa. Preliminary results

indicated that four Mentheae genera {Acinos, Micromeria, Satureja, and Thymus) are
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closely related to Mentha. As a result, we selected these four genera for outgroups in the

final analysis. For the ITS data, we included 12 Mentha species, four clones of M.

canadensis, two clones of M. arvensis, two clones of M. spicata, and 29 Lamiaceae taxa.

Preliminary results showed paraphyly of Mentha. Consequently, 13 Mentheae genera

were included, and Satureja was selected as the outgroup in the final analysis.

Phylogenetic Analyses

The trnL-trnF and ITS sequence data of Mentha species were evaluated for

length, GC content, pairwise sequence divergence, nucleotide site variation, and

parsimony-informative sites. The trnL-trnF and ITS sequence data were analyzed

separately using PAUP* 4.0b 10 (Swofford, 1998). Gaps were coded as binary characters

and included in the analysis. For the trnL-trnF data, a Branch-and-Bound search was

performed for 21 total taxa. For the ITS data, a HEURISTIC search was executed for a

total of 36 taxa using RANDOM (1,000 replicates) stepwise addition of taxa followed by

TBR (tree bisection-reconnection) branch swapping. For each data set, a bootstrap

analysis was performed with 500 replicates to assess support for each clade, and a decay

analysis was also performed using AutoDecay 4.0 (Eriksson, 1998). Sets of equally

parsimonious trees were summarized using strict consensus. Tree length, Consistency

Index (CI), and Retention Index (RJ), were also calculated (in PAUP) excluding

uninformative characters.



RESULTS

Length. GC Content, Sequence Divergence, Nucleotide Site Variation and Gaps in

Mentha

cp trnL-trnF region

Length of the trnL intron varies from 477 (M aquatica) to 490 (M gattefossei)

bp, and length of the trnL-trnF spacer ranges from 280 (M. spicatd) to 291 (M aquatica)

bp in Mentha. Mean GC content in the trnL intron and trnL-trnF spacer is 32.7% and

37.4%, respectively. Mean pairwise divergence of sequences in the trnL intron and trnL-

trnF spacer are 0.4% and 0.9%, respectively. Total number of aligned characters for the

entire trnL-trnF region is 843, of which 502 are in the trnL intron, 50 are in the trnL

3 'exon, and 291 are in the trnL-trnF spacer. Nucleotide site variability is 1.7% in the

trnL intron and 4.1 % in the trnL-trnF spacer. Of the 843 characters in the trnL-trnF data

set, 2.0% are variable and 1.0% are parsimony-informative. One 4-bp deletion in the

trnL-trnF spacer distinguishes Mentha from the outgroups. In Mentha, there are two

parsimony-informative indels in the trnL-trnF region: a 1-bp insertion at position 252 in

the trnL intron, and a 4-bp insertion at positions 146-149 in the trnL-trnF spacer(Fig. 6).

nrlTS region

In the ITS region, length of ITS-1 ranges from 225 (M. canadensis) to 227 (M

australis) bp, and length of the ITS-2 ranges from 215 (M cervina) to 232 (M

canadensis) bp. Length of the 5.8S region is constant (164 bp). Mean GC content in

ITS-1, 5.8S, and ITS-2 are 68.0%, 55.1%, and 67.9%, respectively. Mean pairwise

divergence of sequences in Mentha is 7.2% in ITS-1 and 6.4% in ITS-2. Aligned

sequences of the ITS region yield 634 characters, of which 234 are in ITS-1, 164 are in

17
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the 5.8S gene, and 236 are in ITS-2. Nucleotide site variability is 21.7% in ITS-1 and

19.3% in ITS-2. Nucleotide site variability in the 5.8S gene is 4.3%. In total, the ITS

region contains 15.9% variable nucleotide sites and 9.7% parsimony-informative

characters.

In Mentha, there are three parsimony-informative indels in ITS-1: two 1-bp

insertions at positions 111 and 183 and a 1-bp deletion at position 112 (Fig. 7). In ITS-2,

there are three parsimony-informative indels: two 1-bp deletions at positions 15 and 191,

and a 1 -bp insertion at position 151.

Phvlogenetic Relationships of Mentha

cp trnL-trnF region

Parsimony analysis recovers 25 equally parsimonious trees of length 59 (strict

consensus in Fig. 8). Excluding uninformative sites, the consistency index (CI) is 0.810

and the retention index (RI) is 0.917. All trees based on trnL-trnF data place the Mentha

species and its named hybrids in the same clade with strong bootstrap (96%) and decay

(4) support.

Within Mentha, there are six clades resolved in the trnL-trnF strict consensus tree.

Four of the five species of sect. Eriodontes, (M. australis, M. diemenica, M. satiireoides,

andM. cunninghamii) form a well-supported clade (89% bootstrap and 2 decay) with M.

cunninghamii sister to the others. However, the fifth member, M. japonica, nests within

another clade with species from three other sections {Mentha, Preslia, and Pulegium).

Four species (M. japonica, M. aquatica, M. arvensis, and M. canadensis) in this clade

share a 4-bp insertion although this insertion cannot resolve these species as a clade.

Another clade includes sect. Mentha taxa only (M. longifolia, M. spicata, M. x
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rotundifolia, and M. xpiperita). There is a close relationship between M. pulegium (sect.

Pulegium) and M. requienii (sect. Audibertia) supported by an 86% bootstrap value and

decay of 2.

nrlTS region

Parsimony analysis of the ITS region yields 582 equally parsimonious trees of

length 627 (strict consensus in Fig. 9) representing 13 different islands. Of the 582 trees

found, 97.4% belong to a single island. Excluding uninformative sites, the CI is 0.451

and the RI is 0.638. All trees based on ITS data divide the Mentha species into two

subclades (labeled A and B for purpose of discussion, Fig. 9) that are part of a large clade

with 82% bootstrap support and decay of 4. Within this clade, 11 Mentheae genera are

interspersed between the Mentha subclades, indicating that Mentha may not be

monophyletic.

Within Mentha clade A, four (M. australis, M. diemenica, M. satureoides, and M.

cunninghamii) of the five species of sect. Eriodontes form a clade (82% bootstrap value

and decay of 2) that also includes M. aquatica of sect. Mentha. Mentha japonica, the

fifth member of sect. Eriodontes, is one of the lineages of a trichotomy that also includes

the other sect. Eriodontes species, and M. arvensis and two M. canadensis clones. Eight

Mentheae genera are largely unresolved in a weakly supported clade that includes

Mentha clade A. Three additional Mentheae genera {Bystropogon, Acinos, and

Ziziphora) form a clade sister to Mentha clade B, again with little support. Mentha clade

B contains species representing four of the Mentha sections. Four species of sect.

Mentha (M. suaveolens, M. spicata, M. longifolia, and M. canadensis) in Mentha clade B
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form a strongly supported subclade (100% bootstrap and decay of 9) referred to herein as

the "spicata" clade.

Cloned ITS Region Sequences of M. spicata and M. canadensis

Based on our ITS phylogeny (Fig. 9), clones of M. spicata are included in the

"spicata" clade with both of its hypothesized parents (M. longifolia and M. arvensis),

plus two clones of M. canadensis. Comparisons of variable nucleotide sites in ITS-1,

5.8S, and ITS-2 for M. longifolia, M. suaveolens, M. arvensis, M. spicata clones, and M.

canadensis clones are presented in Table 4. Mentha spicata is polymorphic at 13

nucleotide sites (positions 21, 54, 79, 83, 181, 196, 357, 363, 416, 449, 558, 572, and

606) based on the direct sequences. The sequences of M. spicata clones 1 and 9 are

identical to each other and to M. suaveolens and M. longifolia except for two (positions

50 and 430) and five (positions 21, 50, 83, 363, and 416) sites, respectively. The

sequences of M longifolia and M. suaveolens differ at only six positions. At these six

different nucleotide sites, M. spicata is polymorphic at only four (positions 21, 83, 363,

and 416).

Based on the ITS phylogeny, divergent clones of M. canadensis occur in two

distinct clades. Clones 7 and 15 group with M. arvensis (85% bootstrap and decay of 1)

within Mentha clade A, and clones 8 and 25 strongly nest in the "spicata" clade within

Mentha clade B. Nucleotide site polymorphisms found in the consensus sequence of M

canadensis are shown in Fig. 10. The sequences of M. canadensis clones 7 and 15 are

identical to each other and to M. arvensis except for three sites (positions 49, 50, and

356) that are polymorphic in M. arvensis. The sequences of M. canadensis clones 8 and

25 differ at only two sites. Mentha canadensis clone 25 is identical to M. spicata clones
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1 and 9, M. suaveolens, and M. longifolia except for one (position 558), three (positions

50, 430, and 558), and six (positions 21, 50, 83, 363, 416, and 558) sites, respectively.

Mentha canadensis clone 8 is most similar to sequences of M. spicata clones 1 and 9,

differing only at three sites (positions 558, 572, and 606). Three clones of M. canadensis

(1, 5, and 16) not included in our analysis are chimeric (i.e., showing a mixture of

nucleotides from their hypothesized parents).

Ancestral Base Chromosome Number

Based on the trnL-trnF region strict consensus phylogeny, the ancestral base

chromosome number for Mentha appears to be x = 12. However, ITS data are less clear

and imply that either x = 9 or x = 10 may be ancestral.



DISCUSSION

Phylogenetie Information of the trnL-tmF and ITS Sequences

In Mentha, the length of the trnL-tmF region is slightly shorter than those of

previously reported Lamiales sequences, e.g., Acanthaceae (McDade and Moody, 1999;

McDade et al., 2000), Phrymaceae (Beardsley and Olmstead, 2002), Plantaginaceae

(Ronsted et. al., 2002), and Gesneriaceae (Zimmer et al. 2002) whereas the length of ITS-

1 and ITS-2 are similar to other angiosperm sequences (Baldwin et al., 1995), and those

of Lamiales, including Clerodendrum and Monarda (Lamiaceae) (Steane et al., 1999;

Prather et al., 2002).

ITS region sequences in many angiosperms have a high GC content, normally

ranging from -50% in several groups to 75% in Poaceae (Baldwin et al., 1995). Mean

GC content of ITS in Mentha is 63.7% which is within the range mentioned above and

close to plants in Acanthaceae (McDade et al., 2000). Mean GC content in ITS-1 and

ITS-2 is even higher (68%). This high GC content may cause difficulties in ITS region

sequencing due to the formation of ITS secondary structures (Baldwin et al., 1995;

McDade et al., 2000). Although all four primers (ITS2, ITS3, ITS4, and ITS5) were used

in sequencing, some Mentha species could not be completely sequenced initially for both

strands. However, Greenwell et al. (in manuscript) resolved this problem using an

Advantage-GC Genomic PCR kit from BD Biosciences Company (Palo Alto, CA). This

kit contains a proprietary GC Melt reagent that helps in sequencing through regions with

high GC content. Although the mean GC content in the trnL intron and trnL-trnF spacer

is lower (35.1%) than in ITS, we also had to use four primers (c, d, e, and f) in

sequencing due to the longer length of the trnL-tmF region.

22
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In Mentha, the trnL-trnF spacer has more variable nucleotide sites and more

parsimony-informative characters than the tmL intron (Table 3) and is similar to plants in

Acanthaceae (McDade and Moody, 1999). The trnL-trnF spacer is less conserved than

the trnL intron due to stronger functional constraints on introns (Gielly and Taberlet,

1996; Gielly et al, 1996; McDade and Moody, 1999). However, compared to the ITS

region sequences, the trnL-trnF region sequences are substantially less variable. Variable

nucleotide positions and parsimony-informative sites of ITS-1 and ITS-2 in Mentha are

slightly higher than in Monarda. The outcome that ITS-2 is less variable than ITS-1 in

Mentha is consistent with results in other Lamiales (McDade et. al., 2000; Prather et al.,

2002), Gentianales (Gielly et al., 1996) studies and angiosperms in general (Baldwin et

al., 1995; Hershkovitz and Zimmer, 1996). The ITS data (CI = 0.451) show much higher

levels of homoplasy than the trnL-trnF data (CI = 0.810). This trend is similar to data

from Phrymaceae and Acanthaceae (McDade and Moody, 1999; McDade et al., 2000;

Beardsley and Olmstead, 2002), and might be responsible for the overall lack of

resolution and low support values in the ITS phylogeny.

Monophvlv of Mentha and Sister Groups

The trnL-trnF data are useful in assessing relationships among Mentheae genera

and for resolution of some Mentha lineages (Fig. 8). Based on these data, monophyly of

Mentha is well supported and is therefore consistent with the classification of Harley and

Brighton (1977). Conversely, this result conflicts with the classifications of both Briquet

(1897) and Tucker (in manuscript). However, paraphyly of Mentha based on ITS data

shows disagreement with all traditional classifications. Briquet (1897) treated Mentha

cervina as Preslia cervina, but in our study there is no support for placing M. cervina in a



24

separate genus. According to Tucker's analysis (in manuscript) based on morphology,

base chromosome number, and major essential oil components, M. cunninghamii was not

included in the clade with other Mentha species. However, only one outgroup

(Micromeria brownie var. pilosiuscula A. Gray) was used. Moreover, there are no

support values; thus, support for the monophyly of Mentha is not known. In contrast,

both of our data sets indicate that M. cunninghamii is strongly nested in a clade along

with other Mentha sect. Eriodontes species, thus demonstrating that M. cunninghamii is

closely related to the Australasian species and appropriately included in Mentha.

Based on our trnL-trnF phylogeny, the sister group of Mentha appears to be

Acinos, Micromeria and/or Thymus. Based on our ITS phylogeny, two of the Mentheae

genera (Thymus and Ziziphora) are closely related to Mentha. This result is consistent

with ITS data from Prather et al. (2002). In a study by Wagstaff et al. (1995) using

cpDNA restriction site variation, they found that Thymbra is the sister group of Mentha.

These different outcomes may be due to sampling differences.

Traditional Classification and Phylogenetic Relationships among Mentha Species

In considering the interspecific relationships within Mentha, none of the sections

with more than one species sampled form monophyletic groups based on either trnL-trnF

or ITS region sequences (Figs. 8, 9), and is therefore inconsistent with existing traditional

classification schemes. Some parts of our trnL-trnF and ITS phylogenies lack resolution,

yet several clades have good support. The lack of resolution may be due to insufficient

information in the trnL-trnF region sequences and possibly too much variation in ITS

region sequences. Each section based on the classification of Harley and Brighton (1977)

is discussed below.
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Section Eriodontes

In our trnL-trnF and ITS phylogenies, four species (M australis, M. diemenica,

M. satureioides, and M. cunninghamii) of sect. Eriodontes from Australia, Tasmania,

and New Zealand group together with strong bootstrap and decay support. This result is

consistent with a biogeographic pattern for the Australasian species. In the trnL-trnF

phylogeny, the last member (M japonica) groups with other species in other sections. In

the ITS phylogeny, although M. japonica forms a lineage next to other sect. Eriodontes

species, 82% bootstrap and 2 decay values exclude it from this group. This outcome

suggests that M. japonica should not be included in sect. Eriodontes.

Section Mentha

Although sect. Mentha is not monophyletic based on our trnL-trnF phylogeny,

this result has only 51% bootstrap support. The cultivated hybrids are closely related to

their hypothesized parents as expected; M. xpiperita close to M. spicata and M. x

rotundifolia close to M. longifolia. Based on the ITS phylogeny, members of sect.

Mentha are separated into two distinct clades, and M. aquatica seems to be more closely

related to species in sect. Eriodontes rather than species in sect. Mentha. Taxonomic

revision of this section should be considered.

Section Audibertia, Preslia, and Puiegium,

From the trnL-trnF tree, Mentha puiegium appears more closely related to M.

requienii from sect. Audibertia rather than M.gattefossei from sect. Puiegium. However,

M.gattefossei appears closely related to M. cervina from sect. Preslia based on the ITS

tree. This result supports the suggestion of Harley and Brighton (1977) of a possible

close relationship between M.gattefossei and M. cervina based on morphological and
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ecological similarity of these two species. Moreover, Chambers and Hummer (1994)

found that M.gattefossei had an intermediate morphology between M. pulegium and M.

cervina. Sampling the last member (M. micrantha) in sect. Pulegium may provide more

information regarding these relationships.

Putative Allopolyploid Origin of M. spicata and M. canadensis

Based on our trnL-trnF phylogeny (Fig. 8), M. spicata forms a clade with M.

longifolia. Because the trnL-trnF region is presumably maternally inherited (Dowling et

al., 1996), M. longifolia may be the maternal parent of M. spicata. Based on the ITS

phylogeny (Fig. 9), clones of M. spicata form a clade with both of its hypothesized

parents, M. longifolia and M. suaveolens, and some clones of M. canadensis in the

"spicata" clade. The ITS region sequence comparison of all Mentha species sampled

indicates that the sequences of M. spicata clones are similar to both of its hypothesized

parents. The sequence of M. longifolia is identical to M. suaveolens except for only six

sites. Therefore, our result is consistent with the suggestion of Harley and Brighton

(1977) that "M spicata arose by chromosome doubling of hybrids between the two

closely related and interfertile diploids M. longifolia and M. suaveolens." However, in

considering the polymorphism found in M. spicata, only four of 13 polymorphic sites

(positions 21, 83, 363, and 416) support that M. spicata is a hybrid between M. longifolia

and M. suaveolens. The other nine polymorphic sties may have originated by

independent mutation or possibly Taq error during PCR and sequencing. Another

possibility is due to the single M. longifolia accession that we sampled. Mentha

longifolia has considerable morphological diversity, and consequently is divided into

multiple subspecies (Harley and Brighton, 1977; Tucker, in manuscript). Therefore, our
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sample of M. longifolia may not adequately represent the within-species variation present

in this species. Sampling more clones of M. spicata and more individuals of M. spicata

as well as M. longifolia would help to clarify this problem.

According to Tucker and Chambers (in manuscript), M. canadensis is an ancient

stabilized allopolyploid between M. longifolia and M. arvensis. Based on our trnL-trnF

phylogeny (Fig. 8), M. canadensis groups in the same clade with one hypothesized parent

(M arvensis) along with four other species. Therefore, M. arvensis may be the maternal

parent of M. canadensis. However, greater resolution is needed in the cpDNA phylogeny

to increase confidence of this result. The outcome based on the trnL-trnF phylogeny is

consistent with the ITS result (Fig. 9) where two clones of M. canadensis (clones 7 and

15) form a clade with M. arvensis. Moreover, according to ITS sequence comparison

(Table 4), the sequences of M. canadensis clones 7 and 15 are identical to M. arvensis

except for one site that is unique in M. arvensis. Thus, it seems quite probable that M.

arvensis may be a parent of M. canadensis. Based on our ITS phylogeny, the other

parent of M. canadensis is likely one of the three species in the "spicata" clade because

the other two clones of M. canadensis (clones 8 and 25) form the "spicata" clade along

with M. longifolia, M. suaveolens, and M. spicata. However, sequence comparison

among all Mentha species sampled suggests that either M. suaveolens or M. spicata,

which has a M. suaveolens allele, has the highest possibility to be the other parent of M.

canadensis rather than M. longifolia as proposed by Tucker and Chambers (in

manuscript) because the sequence of M. canadensis clone 25 is identical to M. spicata

clones 1 and 9 and M. suaveolens except for one and three sites, respectively.
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Some clones of M. canadensis show chimeric ITS repeats, a mixture of

nucleotides from its hypothesized parents. Theses chimeric patterns may be the result of

PCR-mediated recombination (Cronn et al., 2002), or alternatively could represent

transitional stages in the concerted evolution process (Campbell et al., 1997; Alice et al.,

2001)

Ancestral Base Chromosome Number in Mentha

Based on our trnL-trnF phylogeny, the ancestral base chromosome number in

Mentha may be x = 12. Assuming Mentha is monophyletic as implied, the suggestion is

that there have been at least three chromosome losses. For example, in M. pulegium and

M. requienii, two losses from x = 12 to either x = 10 or x = 9. A third loss must have

occurred in the ancestor(s) of M gattefossei and M. japonica. However, based on our

ITS phylogeny, either x = 9 in Mentha clade A or x = 10 in Mentha clade B may be the

ancestral base chromosome number in Mentha — thereby suggesting that there have been

at least three chromosome gains. For example, a gain of two chromosomes from x = 10

to x = 12 in the "spicata" clade, a one-chromosome gain from x = 9 tox= lOinM

japonica, and a three-chromosome gain from x = 9 t o x = 1 2 i n M australis.

Determination of ancestral base chromosome number in Mentha is complicated because

base chromosome number is extremely variable both within and among Mentheae genera.

For example, Satureja includes species with base chromosome numbers of x = 9, 10, 11,

and 15. Increased taxon sampling of Mentheae and greater resolution of relationships

would substantially aid in assessing patterns of chromosome evolution in Mentha and

Mentheae.
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Table 1. Traditional classification schemes of Mentha species.

Briquet (1897)

Genus Mentha L.

Subgenus Pulegium (Mill.)
Lamk. Et DC.

Sect. Eupulegia Briq.
M. pulegium L.

Sect. Audibertiae Briq.
M. requienii Benth.

Subgenus Menthastrum Coss.
Sect. Verticillatae L.

Eriodontes Benth.
M. cunninghamii Benth.
M. satureioides Br.
M. repens (Hook.) Briq.
M. serpyllifolia Benth.

Tubulosae Briq.
M. diemenica Spreng.
M. australis Benth.

Grandiflorae Briq.
M. grandiflora Benth.

Laxiflorae Briq.
M. laxiflora Benth.

Arvensis Benth.
M. arvensis L.

Sect. Capitatae L.
M. aquatic a L.

Sect. Spicatae L.
Silvestres Malinv.

M. viridis L.
M. longifolia Huds.

Rotundifoliae Malinv.
M. microphylla C. Koch
M. rotundifolia L.

Genus Preslia Opiz
P. cervina (L.) Fres.

Harley & Brighton (1977)

Genus Mentha

Sect. Audibertia (Benth.)
Briq.

M. requienii Benth.

Sect. Eriodontes Benth.
M. cunninghamii Benth.
M. satureioides R.Br.

Sect. Mentha
M. aquatica L.
M. arvensis L.
M. longifolia (L.) Huds.
M. microphylla C. Koch
M. spicata L.
M. suaveolens Ehrh.

Sect. Preslia (Opiz) Harley
M. cervina L.

Sect. Pulegium (Miller) DC.
M. gattefossei Maire
M. pulegium L.
M. micrantha (Benth.)

Schost-Desjat.

Tucker (in manuscript)

Genus Mentha

Sect. Pulegium (Mill.)
Lam. & DC.

M. australis R.Br.
M. cervina L.
M. diemenica Spreng.
M. gattefossei Maire
M. grandiflora Benth.
M. requienii Benth.
M. pulegium L.
M. repens (Hook, f.) Briq.

Sect. Mentha
M. aquatica L.
M. arvensis L.
M. canadensis L.
M dahurica Fisch. ex Benth
M. japonica (Miq.) Makino
M. laxiflora Benth.
M. longifolia (L.) L.
M. satereioides R.Br.
M. spicata L.
M. suaveolens Ehrh.



Table 2. Mentha accessions and outgroups used in this study. Classification of Mentha follows Harley and Brighton (1997).
Source = United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository.
Chromosome counts from Chambers and Hummer (1994), Tucker (in manuscript), Index to Plant Chromosome Numbers (IPCN)
from Missouri Botanical Garden (www.mobot.org/W3T/Search/ipcn.html). Morphological vouchers have been deposited in the
Western Kentucky University herbarium (WKU) (Holmgren et al., 1990). Outgroup sequences provided by Dr. Javier Francisco-
Ortega. All sequences generated in this study will be deposited in GenBank (National Center for Biotechnology Information,
National Library of Medicine, National Institutes of Health).

Taxon
Section Audibertia

M. requienii
Section Eriodontes

M. australis
M. cunninghamii
M. diemenica
M. japonica
M. satureioides

Section Mentha
M. aquatica
M. arvensis
M. canadensis
M. longifolia
M. spicata
M. suaveolens

Section Pulegium
M. gattefossei
M. pulegium

Section Preslia
M. cei~vina

2n (x) =

18(9)

72(12)
72(12)

120(12)
50(10)

144(12)

96(12)
72/96(12)

96(12)
24/48 (12)
36/48 (12)

24(12)

40(10)
20(10)

36(12/18)

Origin

England

Australia
New Zealand
Australia
Japan
Australia

Germany
Europe
Brazil
Europe
unknown
France

Morocco
OR-U.S.A.

Southern Europe

Source

PI 557781

PI 617498
PI 617481
PI 617482
PI 617475
PI 617500

PI 557572
PI 557918
PI 277803
PI 557755
PI 557885
PI 557911

PI 557639
PI 557771

PI 557634

Voucher

Bunsawat 2002-20

Bunsawat 2002-43
Bunsawat 2002-19
Bunsawat 2002-23

-
-

Bunsawat 2002-57
Bunsawat 2002-25
Bunsawat 2002-58
Bunsawat 2002-38
Bunsawat 2002-40
Bunsawat 2002-49

Bunsawat 2002-45
Bunsawat 2002-36

Bunsawat 2002-05



Taxon
Named Hybrids

M. x piperita cv. 'Todd Mitcham'
M. x rotundifolia

Lamiaceae Genera
Acinos
Agastache
Blephilia
Bystropogon odo
Bystropogon punctata
Calamintha
Cedronella
Conradina
Cuminia
Dicerandra
Dracocephalum
Hesperozygis
Horminum
Hyptis
Hyssopus
Lallemantia
Lamium
Lavandula
Lepechinia
Lycopus
Micromeria
Minthostachys
Monarda
Monardella

2n(x)

36/42/72/120
24 (12)

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Origin

DC-USA
France

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Source

PI 557973
PI 557638

Voucher

Bunsawat 2002-55
Bunsawat 2002-39



Taxon
Nepeta
Origanum
Orthosiphon
Perovskia
Piloblephis
Plectranth
Prunella
Pycnanthemun
Rosmarinus
Salvia
Satureja
Thymus

2n(x)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Origin
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Source Voucher



Table 3. ITS and trnL-trnF region sequence characteristics in Mentha.

Length (in base pairs)

% Mean GC content

% Mean sequence divergence

Variable nucleotide sites (%)

Parsimony-informative sites (%)

trnL intron

477 - 490

32.7 ±0.0

0.4

9(1.7)

4 (0.8)

trnL-trnF spacer

280-291

37.4 ±0.0

0.9

12(4.1)

6 (2.0)

ITS-1

225 - 227

68.0 ±0.01

7.2

51 (21.7)

31(13.2)

5.8S

164

55.1 ±0.0

1.0

7 (4.3)

3(1.8)

ITS-2

215-232

67.9 ±0.01

6.4

47(19.3)

30(12.3)



Table 4. Variable ITS region nucleotide sites for the "spicata" clade species (M. longifolia, M. suaveolens, and M. spicata) and M.
arvensis. Nucleotides found in "spicata" clade species are in uppercase and bold, and nucleotides present in M. arvensis are in
lowercase. Corresponding states in the putative hybrids, M. canadensis and M. spicata, are similarly indicated. The lowercase "c"
indicates a clone.

Taxon
M. longifolia
M. suaveolens
M. spicata cl,
M. spicata clO
M. spicata c20
M. spicata c5
M. canadensis
M. canadensis
M. canadensis
M. canadensis
M. canadensis
M. canadensis
M. arvensis

c9

c25
c8
cl

cl6
c5

c7,cl5

2
1

C
T
T
T
C
C
T
T
T
c
c
c
c

2
8
A
A
A
A
A
A
A
A
A
t
t
t
t

3
4

T
T
T
T
T
T
T
T
T
c
c
c
c

3
9
T
T
T
T
T
T
T
T
T

g
g
g
g

4
7
C
C

c
c
c
c
c
c
c
g
g
g
g

4
9
A
A
A
A
A
A
A
A
A
A
A
A

i-i

5
0
T
A
C
C
C
C
C
C
C
C
C
C

y

5
4
A
A
A
G
G
G
A
A
A
A
A
A
a

5
5
A
A
A
A
A
A
A
A
A
c
c
c
c

6
0
G
G
G
A
G
G
G
G
G
G
G
G

g

6
1

C
C

c
c
c
c
c
c
c
a
a
a
a

6
8
T
T
T
T
T
T
T
T
T
c
c
c
c

7
4
T
T
T
T
T
T
T
T
T
c
c
c
c

ITS-1

7
5
G
G
G
G
G
G
G
G
G
a
a
a
a

7
9
T
T
T
C
C
C
T
T
T
c
c
c
c

8
3
T
C
C
T
T
T
C
C
C
t
t
t
t

8
6
C
C

c
c
c
c
c
c
c
t
t
t
t

9
3

G
G
G
G
G
G
G
G
G
t
t
t
t

9
6
T
T
T
T
T
T
T
T
T
c
c
c
c

1
0
6
T
T
T
T
T
T
T
T
T

g
g
g
g

1
0
7
-
-
-
-
-
-
-
-
-

g
g
g
g

1
1
2
T
T
T
T
T
T
T
T
T
c
c
c
c

1
4
2

T
T
T
T
T
C
T
T
T
c
c
c
c

1
8
1

C
C

c
T
T
T
C
C
C
t
t
t
t

1
9
3
A
A
A
A
A
A
A
A
A
A

g
g
g

1
9
6
G
G
G
T
T
T
G
G
G
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F i g u r e 1. P h o t o g r a p h s o f p u t a t i v e h y b r i d , Mentha spicata ( b ) a n d i t s h y p o t h e s i z e d p a r e n t s , M. hmgifolia ( a ) a n d M. suaveolens ( c ) .

U)



Figure 2. Photographs of putative hybrid, Mentha canadensis (b) and its hypothesized parents, M. longifolia (a) and M. arvensis (c).

t



Figure 3. Photographs of species of global conservation interest, Mentha gattefossei (a) and M. requienii (b).
-u
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intron

3'exon
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f

100 bp

Figure 4. Organization of trnL-trnF region modified from Taberlet et al. (1991). Coding regions are shown as the

boxes. Arrows represent orientation and position of primers (c, d, e, and f).
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Figure 5. Organization of ITS region modified from Baldwin (1992). Coding regions are shown as the boxes. Arrows

represent orientation and position of primers (ITS2, ITS3, ITS4, and ITS5).



trnL intron

M.
M.
M.
M.
M.
M.
M.
M.

aquatica
arvensis
australis
cervina
gattefossei
japonica
longifolia
suaveolens

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0

ATGGAAACTT ACTAAGTGAT AACTTTCAAA TTCAGAGAAA CCCCGGAATT AATAAAAATG GGCAATCCTG AGCCAAATCC

M.
M.
M.
M.
M.
M.
M.
M.

aquatica
arvensis
australis
cervina
gattefossei
japonica
longifolia
suaveolens

1 1 1 1 1 1 1
9 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

TGTTTTCCCA AAACAAAGGT TTCAAAAAAC GAAAAAAA-- GGATAG GTGCAGAGAC TCAATGGAAG CTGTTCTAAC

A. .A- .
.AA AAAA.
.AA .

.A- .

.AA .

1 1 1 2 2 2 2 2
7 8 9 0 1 2 3 4
0 0 0 0 0 0 0 0

M. aquatica AAATGGAGTT GACTGCGTCG GTAGAGGAAT CTTTCCATGG AAACTTTATT TTATAAAGGA TGAAAGATAA ACGCATCTAT
M. arvensis
M. australis
M. cervina
M. gattefossei
M. japonica
M. longi folia C. . . .
M. suaveolens

Figure 6. Aligned sequences of the trnL intron and trnL-trnF spacer in eight Mentha species illustrating parsimony-infomiative
indels. Dots represent the same nucleotide present in M. aquatica and dashes represent gaps.



2 2 2 2 2 3 3 3
5 6 7 8 9 0 1 2
0 0 0 0 0 0 0 0

M. aquatics TGAATACTAT A-TCAAATGA TTAATGTTGG CCCGAATCTA TTTTTTTAAT ATGAAAATGA AAAAATGGAA AAATCGGTGT
M. arvensis -
M. australis -
M. cervina A
M. gattefossei A
M. japonica -
M. longi folia -
M. suaveolens -

3 3 3 3 3 3 3 4
3 4 5 6 7 8 9 0
0 0 0 0 0 0 0 0

M. aquatica GAATTTTTTT CACGTTGAAG AAAAAATAGA ATATTCATCA ACTCATTCAC TCCGTAGTCC GATAGATCTT TT AAA
M. arvensis . . .
M. australis . . .
M. cervina . . .
M. gattefossei A ATTTT. . .
M. japonica . . .
M. longi folia . . .
M. suaveolens . . .

4 4 4 4 4 4 4 4
1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0

M. aquatica GAACTTATT- AATCGG ACGAGAATAA AGATAGAGTC CCATTCTACA TGCTACATAT CAATACCGGC AACAATGAAA
M. arvensis
M. australis
M. cervina
M. gattefossei T TATT
M. japonica
M. longi folia
M. suaveolens

Figure 6. continued
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9
0

M. aquatica TTTATAGTAA GAGG
M. arvensis
M. australis
M. cervina
M. gattefossei
M. japonica
M. longifolia
M. suaveolens

trnL-trnF spacer
1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0

M. aquatica AAAAGCCTAT TTGACCCCTA AAATATTTAC CCTATCCCCC TTCTTTTTCG TTAGCGGTTC CAAATTCCCT TATCCTTCTG
M. arvensis
M. australis
M. cervina A
M. gattefossei
M. japonica
M. longi folia C
M. suaveolens

1 1 1 1 1 1 1
9 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

M. aquatica ATTCTTTGAC AAACGTATTT GGGCATAAAT GACTTTCTCT TATCACATGT GATATAGAAT ACACACACAT TCCAAATGAA
M. arvensis G
M. australis C G
M. cervina
M. gattefossei G
M. japonica G
M. longi folia G
M. suaveolens G

Figure 6. continued



1 1 1 2 2 2 2 2
7 8 9 0 1 2 3 4
0 0 0 0 0 0 0 0

M. aquatica GCAATGAATG CCGATATGAA TGAATAGCAT TGAAATTACA GGACTCGGAG AAAACTTTGT AATCCCCCGC CTTTAATTGA
M. arvensis
M. australis T
M. cervina
M. gattefossei
M. japonica
M. longifolia T
M. suaveolens C T

2 2 2 2 2
5 6 7 8 9
0 0 0 0 0

M. aquatica CATCGACTCC AGTCATCTAA TAAAATGAGG GTGGGATGCT ACATTGGAAA T
M. arvensis
M. australis A
M. cervina
M. gattefossei
M. japonica
M. longifolia
M. suaveolens

Figure 6. continued



ITS-1
1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

M. australis TCGAAACCTG CAAAGCAGAC CGCGAACTCG TAACTAACGC CGCGGGGCGC GGCACGGGGG AG ACCCC CT-GCMGCGT
M. arvensis A - . .C. .A.
M. cervina . . . . G A A A C. T - . C . . .
M. gattefossei . . . . T A C . . . A T C.A. . . . G T C . A T T . . . G . . . C . . .
M. longi folia A T . . . . T C.A A C. T . - . . C . T . .
M. pulegium A T . . . . A C C. - . .C . . . .
M. requienii A A C G C. - . . C . . . G

1 1 1 1 1 1 1
9 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

M. australis CCCGTCTCCT GCCGGCGTGC CCCCTCGGGG GCACGCCGTG CGGGCTAACT AA-CCCCGGC GCGGAACGCG CCAAGGAAAA
M. arvensis T . . . T G . . -
M. cervina . . . . C . . . . C T T - . G C G . . -
M. gattefossei C T T T - . . . .T. .C G . . -
M. longifolia . .T C T T T - . . . .T G . . - T
M. pulegium A C T.CT. T A . - . . . T G . . A T
M. requienii C T. T C . - . . .T G . . - T

1 1 1 2 2 2 2
7 8 9 0 1 2 3
0 0 0 0 0 0 0

M. australis CCAAA-CGTA GCGTCCGCCC CC-GGCATCC CGTTCGCGGG GCGTGCCGTG GGATCGGGCG TCTATCAAAA TGTC
M. arvensis - . . A T - - . . . .
M. cervina A - . G . . . . C C T C . . . . C - . . . .
M. gattefossei . A . . . - . . G GCT. . .C A C. . . . C . . . C - . . . .
M. longifolia - . . A - . . . . C A C . . .C - . . . .
M. pulegium - . . A - . . . .C T C C - . . . .
M. requienii - . . A - A T..C - . . . .

Figure 7. Aligned sequences of ITS-1 and ITS-2 in seven Mentha species illustrating parsimony-informative indels. Dots
represent the same nucleotide present in Mentha australis and dashes represent gaps.
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ITS-2
1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

M. australis ATCGCGTCGC CCCC-A-TCC CCGCGCACAT CGC-CGGGCG GTCGGGGG-C GGACACTGGC CTCCCGTGCG CCTCGGCGTG
M. arvensis C . - C G - T -
M. cervina T . . . . C . - C G . . C T . . - T G. . . . G C C .
M. gattefossei - . - T . . A A. .C . . . .T . . . T - . . . . G . T GT
M. longifolia C - G . . C A . . - T - . . . . G . T T.C.
M. pulegium C.A A - G -T . . . G . T C.
M. reguienii C . - C G - T -

1 1 1 1 1 1 1
9 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

M. australis CGGCCGGCCC AAATGGGATC CCCGGGCGAC TGGCGTCGCG ACAAGTGGTG GTTGAACGTC TCAATCTCTC -TCGTGGTCG
M. arvensis A A -
M. cervina A.C T A A C. . .C
M. gattefossei C T A A.A C. . .C
M. longifolia C A A C...CA.C.
M. pulegium C T A A C. . . CA. . . .
M. requienii A A -

M.
M.
M.
M.
M.
M.
M.

australis
arvensis
cervina
gattefossei
longifolia
pulegium
requienii

1 1 1 2 2 2 2
7 8 9 0 1 2 3
0 0 0 0 0 0 0

TGCCRCCGTG TCGTCCCGTA CGGGAATCGA -AAATGACCC AACGGTGCTC GGCGCGAATA GCGTCTCACC TTCGA
....G -. . .C A C
. . . .G. . . .A C A. G A. CG. .A T.T
....G....A C C. A C. CG T-- - GC. ...C
....G C. C...C A. . T
. ...G C..- C G A . . . C G. .C GCG
. . . .G - A . . . C A C

Figure 7. continued
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Figure 8. Strict consensus phylogeny of 25 equally parsimonious trees based on
chloroplast trnL-trnF sequences. CI = 0.810 and RI = 0.917. Mentha taxa are shown
in lowercase and outgroups are shown in uppercase. Numbers above and below
branches are bootstrap and decay values, respectively.
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canadensis and M. spicata are highlight in bold.
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Figure 10. Mentha canadensis consensus sequence. Boundaries for ITS-1, 5.8S gene,
and ITS-2 were determined from Baldwin (1992). Fifty-seven nucleotide site
polymorphisms in M. canadensis are bolded and underlined. (R = A/G, Y = C/T, K =
G/T, M = A/C, S = G/C, and W = All) The "*" at site 526 represents a gap/thymine
polymorphism and the "+" at sites 537 and 575 represents a gap/cytosine polymorphism.

1 TCGAAACCTG CAAAGCAGAC YGCGAACWCG TAAYTAACKC CGCGGGSCAC GGCAMGGGGG

61 MGACCCCYTG CCGYRTCCYG TCYCCYGCCG GCKTGYTCCC TCGGGKGCAC GYCGTGCGGG

121 CTAACGAACC CCGGCGCGGA AYGCGCCAAG GAAAACCAAA CGAAGCGTCC GCCCCCGGCR
5.8S_

181 YCCCGTTCGC GGRGCGTGCY GTGGGAYCGG SiCGTCTATCA AATGTCAAAA CGACTCTCGG

241 CAACGGATAT CTCGGCTCTC GCATCGATGA AGAACGTAGC GAAATGCGAT ACTTGGTGTG

301 AATTGCAGAA TCCCGTGAAC CATCGAGTCT TTGAACGCAA GTTGCGCCCG AAGCCAYTAG
ITS-2

361 GCYGARGGCA CGYCTGCCTG GGCRTCACGC ATCGCGTCGC CCCCCAYCCC CGCGCRCAYM

421 GCCGGGCRGT TGGGGGCGGA SAYTGGCCTC CCGTGCGCCT CGGYGYGCGG CCGGCCCAAA

481 TGMGATCCCY GGGCGRCTGG CGTCRCGACA AGTGGTGGTT GAACAj^CTCA ATCTCT+CTC

541 GYRGYCGTGC CGCCKTGYCG TCCCGTACGG GMAT+CRMAA ACGACCCAAC GGTGCM4GKC

601 GCGAACAGCG TCTCACCTTC GA
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Figure 11. Character optimization of base chromosome number based on our tniL-trnF
strict consensus phylogeny. See Fig. 8 caption for details.
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Figure 12. Character optimization of base chromosome number based on our ITS
strict consensus phylogeny. See Fig. 9 caption for details.
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