
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

12-1-2004

Hydrologic and Geochemical Cycling within Karst
Versus Non-Karst Basins within the Interior Low
Plateau Province of South-Central Kentucky
David Ek
Western Kentucky University

Follow this and additional works at: http://digitalcommons.wku.edu/theses
Part of the Geology Commons, and the Hydrology Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Ek, David, "Hydrologic and Geochemical Cycling within Karst Versus Non-Karst Basins within the Interior Low Plateau Province of
South-Central Kentucky" (2004). Masters Theses & Specialist Projects. Paper 550.
http://digitalcommons.wku.edu/theses/550

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=digitalcommons.wku.edu%2Ftheses%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages


Hydrologic and Geochemical Cycling within

Karst versus Non-karst Basins

within the Interior Low Plateau Province of South-central Kentucky

A Thesis
Presented to

The Faculty of the Department of Geography and Geology
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
David A. Ek

December 2004



HYDROLOGIC AND GEOCHEMICAL CYCLING WITHIN KARST VERSUS NON-

KARST BASINS WITHIN THE INTERIOR LOW PLATEAUS PROVINCE OF

SOUTH-CENTRAL KENTUCKY

Date RecommerKjed S / 3

--5T/

Director of Thesis

J-//-O5
Dean'Graduate Studies a$d Research Date



ACKNOWLEDGEMENTS

I thank all the people, such as Daniel Hatcher, Melissa Thornton, Laura DeMott. Pat

Kambesis, Lee-Gray Boze, Mike Anderson and Weldon Hawkins, that assisted me with

completing this research project. I am especially appreciative of the extra time and

assistance provided by Mike Anderson and Weldon Hawkins. I am also greatly

appreciative of the water chemistry lab work provided by Katie Seadler and Mammoth

Cave National Park. I am also greatly appreciative of the funding assistance that I

received from the National Speleological Society, National Park Service, and Western

Kentucky University. Equipment loans or donations were received from the National

Park Service. I wish to extend a special thanks to Ronal Kerbo and Dr. Diana Northup

for lighting the spark that initiated my interest in pursuing a Master of Science degree in a

karst-related discipline, for Dr. Arthur Palmer and Dr. Northup in initially helping guide

me, and for Cynthia Orlando, a very understanding supervisor, who bent over backwards

to accommodate my new schedule requirements. Lastly, and most importantly, I wish to

thank my wife, Cristina Ek, my daughters, Dana Ek and Cedar Ek, and my son, Ethan Ek.

The extra work and inconveniences imposed upon them were numerable (it started before

Cedar and Ethan were even born) and my absences prolonged. In spite of these

difficulties, their support and understanding was wide and their enthusiasm deep. It is to

Cris, Dana, Cedar and Ethan that I dedicate this thesis.



TABLE OF CONTENTS

PART I INTRODUCTION Page 1

PART II GLOBAL PROCESSES

SUBPART A: RESERVOIRS Page 8

SUBPART B: KARST PROCESSES Page 21

PART III LITERATURE REVIEW
SUBPART A: STREAM CHEMISTRY Page 23

SUBPART B: STUDY AREA

BACKGROUND INFORMATION Page 51

PART IV STUDY AREA Page 56

PART V METHODOLOGY Page 75

PART VI RESULT Page 80

PART VII DISCUSSION Page 148

PART VIII REFERENCES CITED Page 154



LIST OF FIGURES

Figure 1 Study area location and extent of carbonate bedrock
Figure 2 Generalized hydrologic cycle
Figure 3 Major reservoirs and fluxes of the global carbon cycle
Figure 4 Bicarbonate dissolution curve
Figure 5 Study area location
Figure 6 Physiographic provinces of west-central Kentucky
Figure 7 Project site location relative to Mammoth Cave National Park
Figure 8 Dry Branch basin
Figure 9 First Creek basin
Figure 10 Photo of First Creek sampling station
Figure 11 Photo of Dry Branch sampling station in flooded condition
Figure 12 Cross-sectional stream profiles
Figure 13 Drawing depicting geology of First Creek and Dry Branch area
Figure 14 Basin-wide geologic profiles
Figure 15 Geologic area of Dry Branch
Figure 16 Geologic area of First Creek
Figure 17 Extent of carbonate rocks in Dry Branch
Figure 18 Extent of carbonate rocks in First Creek
Figure 19 Generalized geologic map- Dry Branch basin
Figure 20 Generalized geologic map- First Creek basin
Figure 21 Location of oil wells in Dry Branch basin
Figure 22 Daily precipitation for the Temple Hill station
Figure 23 Monthly precipitation for the Temple Hill station
Figure 24 Discharge rating curve for First Creek
Figure 25 Discharge rating curve for Dry Branch
Figure 26 Comparison of discharge rating curves for First Creek and Dry Branch
Figure 27 Discharge for the two study basins
Figure 28 Evaporation from Nolin River Lake
Figure 29 Stream temperature values obtained from in situ field collection
Figure 30 Specific conductance for both Dry Branch and First Creek
Figure 31 Stream pH values obtained from in situ field collection
Figure 32 Dissolved oxygen values obtained from in situ field collection
Figure 33 Calcium ion concentrations from First Creek and Dry Branch
Figure 34 Calcium ion concentrations from precipitation from Pig, Kentucky
Figure 35 Magnesium ion concentrations from First Creek and Dry Branch
Figure 36 Alkalinity from First Creek and Dry Branch
Figure 37 Acidity of precipitation from Pig, Kentucky
Figure 38 Sodium ion concentrations from First Creek and Dry Branch
Figure 39 Potassium ion concentrations from First Creek and Dry Branch
Figure 40 Chloride ion concentrations from First Creek and Dry Branch
Figure 41 Chloride ion concentrations from precipitation from Pig, Kentucky
Figure 42 Lithium ion concentrations from First Creek and Dry Branch
Figure 43 Bromide ion concentrations from First Creek and Dry Branch
Figure 44 Fluoride ion concentrations from First Creek and Dry Branch

IV



Figure 45 Sulfate ion concentrations from First Creek and Dry Branch
Figure 46 Sulfate ion concentrations from precipitation from Pig, Kentucky
Figure 47 Phosphate ion concentrations from First Creek and Dry Branch
Figure 48 Ammonium ion concentrations from First Creek and Dry Branch
Figure 49 Ammonium ion concentrations from precipitation from Pig, Kentucky
Figure 50 Nitrite ion concentrations from First Creek and Dry Branch
Figure 51 Nitrate ion concentrations from First Creek and Dry Branch
Figure 52 Nitrate ion concentrations from precipitation from Pig, Kentucky
Figure 53 Trace metal concentrations from Dry Branch
Figure 54 Trace metal concentrations from First Creek



LIST OF TABLES

Table 1 Mean composition of the atmosphere
Table 2 Average solute concentration of rainwater for inland U.S. sites
Table 3 Residence time of select atoms
Table 4 Average concentration of various elements of the Earth's crust
Table 5 Chemical composition of select rocks
Table 6 Average composition of igneous and other select rocks
Table 7 Net primary production values of the earth's major ecological regions
Table 8 Reservoirs of rocks
Table 9 Principal reservoirs and fluxes in the carbon cycle
Table 10 Atom fluxes within Hubbard Brook, NH
Table 11 Average evaporation losses within Kentucky's Central Division
Table 12 Average daily soil temperatures within Kentucky's Central Division
Table 13 Average temperature and precipitation for Mammoth Cave NP and

Bowling Green, KY
Table 14 Outcrop geology of Dry Branch and First Creek basins
Table 15 Surficial area of each geologic formations found exposed in the project

areas
Table 16 Instrument detection limits
Table 17 Precipitation values for the Mammoth Cave area
Table 18 Precipitation chemistry- total input from wet deposition
Table 19 Evapotranspiration output for the Dry Branch and First Creek basins
Table 20 Temperature values obtained from in situ field collection
Table 21 Specific conductance values obtained from in situ field collection
Table 22 pH values obtained from in situ field collection
Table 23 Dissolved oxygen values obtained from in situ field collection
Table 24 Net gain/loss of various ions within First Creek and Dry Branch basins
Table 25 Net gain/loss of various ions within the study areas compared to Hubbard

Brook, NH
Table 26 Net gain/loss of various ions within the study areas

VI
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This thesis summarizes my research in which I investigated differences and

characteristics in hydrologic, nutrient and geochemical cycling between karst versus non-

karst basins within the Interior Low Plateau Province. Field data including stream

discharge, evapotranspiration, and dissolved major ion concentrations were collected for

a period of one year for two basins within Mammoth Cave National Park. Twelve

percent carbonate rocks underlie one basin, while the other consists of 48 percent

carbonate rocks. The carbonate rock exposures within both basins exhibit karstification.

The hydrologic and geochemical differences between these basins were compared to

determine to what extent that cycles are modified or altered within karst terrains. The

characteristics of these cycles within both basins were also compared.

I found that there were noticeable hydro geochemical effects from the presence of

karst within a basin. These effects were either the result of the presence of carbonate

rocks within the basin or due to the presence of morphological karst features within the

carbonate rocks. The presence of karst serves as a buffer by moderating temperature

extremes, lessens the effect of acid precipitation, moderates discharges during storm

surges, moderates/lessens a basin's evaporative losses, and affects available moisture and

VII



nutrients to surface biological processes. These hydrologic effects in turn, also continue

to affect the basin's geochemistry in noticeable ways. Findings included that it only

takes a small percentage of carbonate rocks within a basin to produce an output stream

with a calcium/bicarbonate geochemical signature. In these situations, the quantity of

karst is perhaps not as important as spatial distribution. Therefore, the quantity of karst

within a basin may be more critical to accurately assess when conducting geochemical

modeling. Many global geochemical models do not factor in karst affects (Holmen,

1992). Considering the extent of carbonate rocks globally and their potential ability to

affect hydrogeochemical cycles, future model modifications may need to factor in karst

affects in order to more accurately represent actual real-world field conditions.
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PART I INTRODUCTION

Many articles have been written on basin and global-scale cycling of water and

dissolved chemical species within non-karst watersheds (Likens and Bonnann, 1995;

Butcher et al, 1992). Many other studies have focused upon specific and even

landscape-scale karst research (Ford and Williams, 1989; White, 1989). However, few

studies have linked the two, focusing upon how the degree and nature of karst

development within a basin impacts hydrologic and geochemical cycling. The purpose of

this research is to examine differences between hydrologic and chemical cycling within

otherwise similar karst and non-karst basins within the humid Temperate Interior Low

Plateau province of south-central Kentucky.

Karst is a German derivation of a name (Kras) for a relatively small region

located near the northern Adriatic coast in Slovenia (Jakucs, 1977 and ASAK, 2003).

Extensive sinkholes, sinking stream caves, and springs dominate the landscape within

this region. Through popular usage in or before the nineteenth century, Europeans seeing

similar landscapes in other regions began referring to the landscape type as 'karst.' This

terminology was based entirely upon the form of the landscape, not any process-oriented

functional basis. Eventually, the term 'karst' was applied to cave-bearing landscapes in

other regions.

The primary source of water for any basin is precipitation, whether in the form of

rain, ice, snow or fog drip. Typical outputs for water within a basin are the base-level

stream and loss to the atmosphere via evapotranspiration. On a watershed-level scale, the

principle agent for inorganic chemical species and nutrient loss is via the base-level



stream that flows out of the basin (Likens and Bormann, 1995; Butcher et ai, 1992). The

chemical constituents within streams result from the physical and biologic interactions

between the atmosphere and landscape, weathering of rocks in the basin and other

watershed-scale reactions (Stumm and Morgan, 1970). Therefore, the knowledge of

stream flow and evapotranspiration dynamics is key not only to understanding the

hydro logic cycle within a basin but also the entire range of biogeochemical cycling and

the ability to accurately model many natural processes.

Considering that over twelve percent of the earth's land surface is composed of

karst (Ford and Williams, 1989), the effects that karst could play in modifying global

processes could be significant. From a regional standpoint, the southeastern United

States has a significant percentage of the global karst resources. One of the more

dominant landscapes within the Interior Lowlands Province is karst. The Mammoth

Cave region, located within the Interior Lowlands Province, is one of the most extensive,

well known, and studied karst regions of the world.

As stated earlier, stream flow and evapotranspiration are the two primary means

within the hydrologic cycle in which water leaves a basin. Along the way within each of

these two final output mechanisms are a variety of other processes, as well as interactions

with temporary storage mechanisms. For instance, vegetation distribution is closely

related to soil type (Hem, 1989), which in turn is largely dependent upon geology and

climate. Vegetation can play a role in modifying microclimate and soil development.

Since karst affects the location and availability of water (Olsen and Franz, 1998), it is



possible that these differences could affect localized climate, vegetation and soil

development, which in turn are factors in hydrologic and chemical cycles.

In many settings, a significant amount of water leaves the basins via

evapotranspiration. In the Mammoth Cave region, evapotranspiration has been shown to

range from about 50 to 80 percent of the total precipitation input into the basin (from

precipitation values in Faller (1969) and evapotranspiration values in Hess and White

(1989)). Evapotranspiration is largely a factor of climate, vegetation and the availability

of water. Since the presence of karst can influence each of these three parameters, the

nature and degree of these effects upon the hydrologic and chemical cycles warrants

further investigation. Additionally, Likens and Bormann (1995) found that

evapotranspiration significantly regulates and balances chemical and nutrient loss within

a basin. This regulation and balancing is due to higher quantities of water loss via

evapotranspiration that result in a lower quantity of water available for stream flow,

which is the primary avenue for chemical and nutrient transport and subsequent loss from

a particular watershed. Conversely, low evapotranspiration levels allow higher stream

flows, which can transport larger amounts of nutrients and other dissolved substances

from the basin. Since evapotranspiration levels in the south-central Kentucky karst range

from approximately 50 to 80 percent of the annual total precipitation (Hess and White,

1989) factors that affect evapotranspiration could play a significant role in chemical and

nutrient cycling within watersheds.

An ideal project site for this study would include the following parameters:



• the existence of sufficiently detailed dye tracing and other basin delineation

investigations within the karst basin so that the basin's recharge area may be

accurately determined;

• no complicated cross-basin transport of water during different flow regimes;

• basin divides composed of mostly non-karstic rocks to reduce complications in basin

delineation;

• no significant water withdrawals or other human-related impacts;

• the two basins be of fairly equal size, elevation, slope and topography, aspect, and

proximity;

• the basins be large enough to sustain streams that flow during the majority of the

year, yet small enough to avoid the relatively complicated flow conditions that often

occur within large catchment areas;

• other relevant data sets, preferably in geo-referenced digital form, exist, such as

climate, precipitation, precipitation chemistry, geology, soils, and vegetation cover;

• the basins be of relatively easy access in order to allow frequent visits.

Based upon these considerations, two small watersheds located mostly within

Mammoth Cave National Park were chosen for this study. The 6.6 square kilometer First

Creek basin, located near Brownsville, Kentucky is underlain with the least amount of

carbonate rocks (12.2 percent) of the watersheds occurring wholly or in part within

Mammoth Cave National Park. The 6.9 square kilometer Dry Branch basin is located

nearby and has relatively similar elevation, aspect and slope, but is underlain by 47.7

percent carbonate rocks (Figure 1). The exposed carbonate rocks within both basins are



primarily the Mississippian Glen Dean and Haney Limestones. The non-karstic rocks

within the two study basins consist of the Pennsylvanian Caseyville Formation

(sandstone), the Mississippian Leitchfield Formation (shale), the Mississippian

sandstones of the Big Clifty Formation and the Hardinsburg Formation (Palmer, 1999).

The Dry Branch basin was chosen to represent the more highly developed karst (the

"karst" basin), while the First Branch ("non-karst") basin is almost totally developed in

non-carbonate rocks.

Lithology is one of the dominant controls on a hydrograph response curve (Ford

and Williams, 1989). Non-karstic rocks typically yield strongly peaked hydrographs due

to relatively small amounts of groundwater storage and rapid surface runoff. Conversely,

streams originating from karst aquifers typically yield flatter hydrographs with delayed

responses of transmitting the storm pulse and existing groundwater storage through the

myriad of conduits within a karstic system. Therefore, evapotranspiration, stream flow

and other hydrologic factors are critical components of a complex network of hydrologic

and biogeochemical cycles and that karst could potential affect these cycles and

relationships.



Dry Branch and First Creek Basins
Mammoth Cave National Park
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Figure 1. Study area location and extent of carbonate bedrock

Statement of the Problem

My research proposed to test a hypothesis that there is a distinct and predictable

difference in the hydrologic and chemical cycling between karst and non-karst basins.

Specifically, the research addressed the following:

• the degree of natural pH buffering of karst versus non-karst stream water;

• determination of statistical relations between various ions cycling through the basin

under different hydrologic conditions;



• determination if the total net losses, gains or net balances for the various ions found

by Likens and Bormann, (1995) in their non-karst basin study in New England are

similar to the non-karst basin in the Mammoth Cave area project site;

• determination of the differences between the total net losses, gains, or net balances of

the various ions and nutrients between karst and non-karst systems.



PART II GLOBAL PROCESSES

Subpart A: RESERVOIRS

The beginning point in a discussion of global processes is the basic hydrologic

cycle as depicted in Figure 2. The only water reservoirs depicted in figure 2 are the

atmosphere and the oceans; however, other water reservoirs commonly exist, including

groundwater, surface streams and lakes, biota, and soils. Movement of water between

reservoirs, such as evapotranspiration and precipitation, are fluxes. Most substances on

Earth cycle between their own reservoirs. Understanding global processes is largely an

understanding of these reservoirs, fluxes, the nature and conditions that cause substances

to move between reservoirs, and lastly the relationship and interaction between other

substances and processes. Therefore, this section will begin with a basic description of

each of the dominant water reservoirs.



Atmosphere

Evapotranspiration Land Precipitation Ocean Precipitation

Groundwater

Figure 2 Generalized hydro logic cycle.

ATMOSPHERE

The main ingredients of the atmosphere are nitrogen, oxygen, argon, carbon

dioxide and water, but also include numerous minor constituents (Table 1). The

atmosphere is not entirely homogeneous; therefore, the concentrations of some of the

individual species vary in time and space.
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Table 1. Mean Composition of the Atmosphere (Hem, 1989) [After Mirtov, 1961]

Gas Percentage by Volume Partial Pressure
N2 78.1 0.781
O2 20.9 0.209
Ar 0.93 0.0093
H2O 0.1-2.8 0.001-0.028
CO2 0.03 0.0003
Ne 1.8xlO'3 1.8xl0"5

He 5.2x10^ 5.2x10^
CH4 1.5X10-4 1.5xl0'6

Kr l.lxlO"4 1.1x10^
CO (0.006- \)x\0A (0.06-l)xl0~6

SO2 ixlO^1 lxlO"6

N2O 5x10"5

H2 -5x10"5 -5x10'7

O3 (O.l-l.O)xlO"5 (O.l-l.O)xlO"'
Xe 8.7 xlO"6 8.7 xlO"8

NO2 (O.OO5-2)xlO"6 (0.05-2)xl0"8

Rn 6x10"18 6x10"20

The concentration of solutes in rainfall often is different from the mean

concentration within the atmosphere. Junge and Werby (1958). as reported by Whitehead

and Feth (1964), show that the average U.S. solute concentration for rainfall for inland

sampling stations is depicted in Table 2.

Table 2 Average solute concentration of rainfall for inland U.S. sites

Ca 1.41 mg/L
Na 0.42 mg/L
SO4 2.14 mg/L
Cl 0.22 mg/L

When studying geochemical cycling between reservoirs, one also often needs to

consider the residence time within each respective reservoir. The atmosphere is no

exception. Table 3 (from Butcher et ah, 1992, as modified from Margulis and Lovelock,

1974) depicts residence time within the atmosphere.



Table 3 Residence time of selected atoms

Nitrogen 107 to 109
Oxygen thousands of years
Carbon dioxide approximately 100 years
Carbon monoxide a few months
Methane a few years
Nitrous oxide approximately 100 years
Ammonia a few days
NOX a few days
Hydrogen sulfide a few days
Hydrogen a few years

Precipitation is not only the principle source of water input into a particular

watersheds but also serves as an important transport mechanism for air-borne particles

via wet deposition (the other primary means is by dry deposition). Evaporation and

transpiration are common avenues for water molecules to move from land and water

surfaces into the atmosphere.

LITHOSPHERE

The surface and near surface geologic makeup of a particular watershed has a

very strong effect on the basin's weathering, stream chemistry and geochemical cycles.

Before the discussion of the study area's geology and geography, a broader perspective

will be presented by looking at the global perspective:

Area of continents 149 x 106 km2 (29.2 % of surface of earth);
Area of world oceans 361 x 106 km2 (E. Kossina, 1933, In: Weast & Astle, 1982)
Land area of earth 148.847 x 106 km2 (Weast and Astle, 1982)
Ocean area 361.254 x 106 km2 (Weast and Astle, 1982).
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The Average Amounts of the Elements are located in Earth's Crust (Weast and

Astle, 1982) are depicted in Table 4.

Table 4 Average concentration of the various components of the Earth's crust

Element
0
Si
Al
Fe
Ca
Na
K
Mg
Ti
H
P
Mn
S

c
Cl
Rb
F
Sr
Br
Zr
Cr
V
Zn
Ni
Cu
W
Li
N

ppm
466,000
277,200

81,300
50,000
36,300
28,300
25,900
20,900
4,400
1,180
1,180
1,000

520
320
314
310
300
300
250
220
200
150
132
80
70
69
65
46

Chemical composition of rocks (reprinted from "Sedimentary Rocks" (Weast and

Astle, 1982) are depicted in Table 5:
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Table 5

Element

SiO2

TiO2

A12O3

Fe2O3

FeO
MgO
CaO
Na2O
K2O
H2O
P2O5
CO2

SO3

BaO
C

Total

Chemical composition of selected

Average Average
Igneous Rock Shale

59.14
1.05

15.34
3.08
3.80
3.49
5.08
3.84
3.13
1.15
0.30
0.10

0.06

99.56

58.10
0.65

15.40
4.02
2.45
2.44
3.11
1.30
3.24
5.00
0.17
2.63
0.64
0.05
0.80

100.00

Average
Sandstone

78.33
0.25
4.77
1.07
0.30
1.16
5.50
0.45
1.31
1.63
0.08
5.03
0.07
0.05

100.00

rocks

Average
Limestone

5.19
0.06
0.81
0.54

0.89
42.57

0.05
0.33
0.77
0.04

41.54
0.05

99.84

Average
Sediment

57.95
0.57

13.39
3.47
2.08
2.65
5.89
1.13
2.86
3.23
0.13
5.38
0.54

0.66

99.93

Average composition, in parts per million, of igneous rocks and some types of

sedimentary rocks (Hem, 1989) [In: Horn and Adams (1966)] are depicted in Table 6.

Table 6 Average composition of igneous and other selected rocks.

Element
Si
Al
Fe
Ca
Na
K
Mg
Ti
P
Mn
F
Ba

Igneous Rocks
285,000
79,500
42,200
36,200
28,100
25,700
17,600
4,830
1,100
937
715
595

Sandstone
359,000
32,100
18,600
22,400
3,870
13,200
8,100
1,950
539
392
220
193

Shale
260,000
80,100
38,800
22,500
4,850
24,900
16,400
4,440
733
575
560
250

Carbonates
34
8,970
8,190
272,000
393
2,390
45,300
377
281
842
112
30
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s
Sr
C
Cl
Cr
Rb
Zr
V
Ce
Cu
Ni
Zn
Nd
La
N
Y
Li
Co
Nb
Ga
Pr
Pb
Sm
Sc
Th
Gd
Dy
B
Yb
Cs
Hf
Be
Er
U
Sn
Ho
Br
Eu
Ta
Tb
As
W
Ge
Mo
Lu

410
368
320
305
198
166
160
149
130
97
94
80
56
48
46
41
32
23
20
18
17
16
16
15
11
9.9
9.8
7.5
4.8
4.3
3.9
3.6
3.6
2.8
2.5
2.4
2.4
2.3
2.0
1.8
1.8
1.4
1.4
1.2
1.1

945
28
13,800
15
120
197
204
20
55
15
2.6
16
24
19

16
15
0.33
0.096
5.9
7.0
14
6.6
0.73
3.9
4.4
3.1
90
1.6
2.2
3.0
0.26
0.88
1.0
0.12
1.1
1.0
0.94
0.10
0.74
1.0
1.6
0.88
0.50
0.30

1,850
290
15,300
170
423
243
142
101
45
45
29
130
18
28
600
20
46
8.1
20
23
5.5
80
5.0
10
13
4.1
4.2
194
1.6
6.2
3.1
2.1
1.8
4.5
4.1
0.82
4.3
1.1
3.5
0.54
9.0
1.9
1.3
4.2
0.28

4,550
617
113,500
305
7.1
46
18
13
11
4.4
13
16
8.0
9.4

15
5.2
0.12
0.44
2.7
1.3
16
1.1
0.68
0.20
0.77
0.53
16
0.20
0.77
0.23
0.18
0.45
2.2
0.17
0.18
6.6
0.19
0.10
0.14
1.8
0.56
0.036
0.75
0.11
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Tl
Tm
Sb
I
Hg
Cd
In
Ag
Se
Au

1.1
0.94
0.51
0.45
0.33
0.19
0.19
0.15
0.050
0.0036

1.5
0.30
0.014
4.4
0.057
0.020
0.13
0.12
0.52
0.0046

1.6
0.29
0.81
3.8
0.27
0.18
0.22
0.27
0.60
0.0034

0.065
0.075
0.20
1.6
0.046
0.048
0.068
0.19
0.32
0.0018

The type of exposed rocks within a basin is important due to its effect upon

weathering and other chemical reactions that occur as a result of the basin's geologic and

the hydrologic system. For example, sources of solutes in natural water are largely the

net effect of a series of antecedent chemical reactions that have dissolved material from

another phase, altered previously dissolved material, or eliminated them from solution by

precipitation or other processes (Hem, 1989).

Weathering

Weathering is the chemical and/or physical breakdown of substances such as

rocks within a particular watershed. In general, chemical weathering becomes more

dominant in warm, moist regions, while physical weathering dominates in cold and dry

regions. Similarly, chemical weathering dominates in regions with much vegetation,

while physical weathering dominates in steep terrain (Butcher et al. 1992). Weathering is

an important process that allows substances held in the lithosphere reservoir to move to

other reservoirs or partake in local, regional or global processes.
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While all minerals can weather, some are much more susceptible than others to

both the physical and chemical forms of weathering. The products of weathering may be

smaller-sized particles (associated with physical) or dissolved species (associated with

chemical). In many situations, some of the more easily dissolved elements of bedrock

may go into solution, thereby changing the material and leaving the least soluble particles

to remain in the stream bed or on slopes.

The processes of rock weathering are strongly influenced by temperature and the

amount and distribution of precipitation (Hem, 1989). Climatic patterns tend to produce

characteristic plant communities and soil types, and the composition of water draining

these systems could be thought of as a product of the ecological balance (Hem. 1989).

Bicarbonate tends to predominate in water in areas where vegetation grows

profusely (Hem, 1989). Some metals are accumulated by vegetation and may reach peak

concentrations when plant-decay cycles cause extra amounts of these metals to enter the

circulating water (Hem, 1989).

Low temperature inhibits weathering reaction rates (Hem, 1989). The ultimate

sources of most dissolved ions are near-surface rocks (Hem, 1989); however, the nature

of the rocks, for instance the purity and crystal size, rock texture and porosity, regional

structure, degree of fissuring, and exposure time also have an effect.
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Chemical weathering involves the alteration of bedrock, largely by solution. The

products are determined by the mineral present in the bedrock, water pH, bonding

strength of the ions, and the movement and redox potential of the solvent (Butcher et al.

1992). Weakly bonded ions are removed by solution, while the strongly bonded ions

precipitate out of solution thereby they are preferentially retained within the basin.

Within the last 100 years, increases in carbon dioxide and other anthropomorphic

changes in the atmosphere have affected weathering rates and types (Butcher et al.,

1992).

The less soluble components of rocks are either flushed out of a basin via water or

wind action, or are retained, even temporarily, within the basin. These retained and

accumulated non-soluble particles contribute to soil development. Even soluble rocks

such as limestone generally contain at least a small fraction of insoluble products that

contribute to and influence soil development.

PEDOSPHERE

Although not requiring the presence of biota, such as vegetation, soil development

is significantly accelerated by the presence of organic material. Well-developed soil

retains nutrients and moisture better than less developed soils; therefore one would

typically find a greater loss of chemical elements from a basin in less well-developed

soils.
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An average temperate soil contains approximately 40 percent inorganic solid

material, 10 percent organic solid material, 15 to 35 percent liquid (mostly water), and 15

to 35 percent gas (Jackson, 1964). The inorganic component is dominated by oxygen,

silicon, aluminum, iron, magnesium, calcium, sodium, and potassium (Jackson, 1964).

These chemical elements are similar to the constituents of the igneous rocks that

dominate the Earth's crust.

Soils in temperate deciduous forests tend to be rich in nitrogen, but poor in lignin

(Butcher et al., 1992). In these forest soils humic acid/fulvic acid ratios tend to be low in

the higher soil horizons. The lower soil horizons are dominated by carbonic acid

weathering reactions, with some minor organic acid reactions (Butcher et al., 1992).

There are several important factors for the type and concentrations of ions in

stream water. These factors often overwhelm the influence of the local soil and its

constituents. Therefore, the type of soil often has little relation to the soluble products

found in nearby streams. The soil profile/layer with which the water is in contact has the

greater bearing upon water chemistry. The chemistry of the upper layers of a soil varies

from soil type to soil type, whereas the lower layers are fairly similar; therefore, streams

in contact with these similar lower layers will often have relatively similar water

chemistry, even when separated for some distance. Similarly, streams in contact with the

upper soil layers of soil may have dramatically different water chemistry, even in

relatively close proximity to each other (Butcher et al., 1992).



19

BIOSPHERE

As the lithosphere and hydrosphere affect the pedosphere, the pedosphere and

hydrosphere affect the biosphere. One may consider a basin's vegetation to be a

reflection of the many geochemical processes occurring within the basin.

Net Primary Production is defined as total photosynthesis minus respiration. The

Net Primary Production values of the Earth's major ecological regions (after Rodin et at.,

1975) are summarized in Table 7 [The study area is a small part of the Temperate

ecological zone].

Table 7 Net primary production values of the Earth's major ecological regions

Zone Area Mass of Plants Primary Production

Polar
Coniferous forests
Temperate
Subtropical
Tropical
Total land
Glaciers
Lakes and rivers
Total continents
Oceans
Earth's total

(106 km2)
8.1

23.2
22.5
24.3
55.9

133.9
13.9
2.0

149.3
361.0
510.3

(106 tonnes)
13.8

439.1
278.7
323.9

1347.1
2402.5

0.0
0.04

2402.5
0.2

2402.7

(106 tonnes C)
1.3

15.2
18.0
34.6

102.5
171.5

0.0
1.0

172.5
60.0

232.5

HYDROSPHERE

In many ways the hydrosphere ties and links the earth processes occurring in the

atmosphere, lithosphere, pedosphere, and biosphere together. As I had earlier, the

hydrosphere discussion will begin with a global perspective. The oceans are by far the



20

most dominant reservoir for water on the Earth's surface accounting for 99.9 percent of

the total (Table 8).

Table 8 Reservoirs of water (from Butcher et al., 1992), units are 1018 g
H2O (burdens) and 1018 g H2O/year (fluxes)

Oceans =
Ocean Evaporation =
Ocean Precipitation =
Land Precipitation =
Evapo transpiration =
Runoff
Atmosphere =

1,370,000
383
347

99
63
36
13

Total 1,370,941

Solute

Water forms a very important solvent for many chemical species. Water has even

been called "the universal solvent." Water's ability to serve as a highly effective solvent

is due largely to the fact that water molecules are large and dipolar and have an ability to

form hydrogen bonds (Butcher et al., 1992).

Transport

An important characteristic of water is its ability to function as a transport

mechanism for soluble and non-soluble material. Commonly the by-products of erosion

and weathering are eventually transported to the ocean reservoir via surface streams. The

hydrosphere's significant role in transporting weathering products cannot be

underestimated.
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Evapotranspiration

The evaporation of water is the largest transfer of energy from the surface of the

Earth to the atmosphere (Butcher el a/., 1992); therefore, its role in hydrogeochemical

cycles cannot be understated. One common means of measuring evaporation is with the

National Oceanic and Atmospheric Administration (NOAA) evaporation pan. However,

evaporation pan measurements typically overestimate lake evaporation (Lee and

Swancar, 1996), and a correction factor is commonly used. The energy-budget and mass-

transfer methods are two theoretically based techniques used to estimate evaporation.

SubpartB: KARST PROCESSES

Various authors, including Ford and Williams (1989), reported that the majority

of carbonate dissolution within karst terrains occurs within the epikarst (surface and near

surface) zone. This information coupled with an understanding of carbonate dissociation

and acid creation depicted above might lead a person to believe that karst dissolution only

lowers, on a continuing basis, the carbonate landscape surface. With this information

alone, dissolution type caves within karst would not exist. Such caves however are the

most common type of cave; therefore, there is more to the story. Many, if not most,

carbonate rocks contain either large or minute cracks, joints, fissures, fractures, bedding

planes, and faults. These structures provide an avenue for corrosive (acid) water to

penetrate and dissolve limestone beyond the surface and epikarst zones. Furthermore, as

dissolution occurs along one of these features, the feature becomes larger and thus allows

more water to penetrate. In addition, once one of these growing karst conduits becomes

large enough (approximately 1 cm in diameter (White, 1988)) turbulent flow commences.
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Turbulent flow may or may not aid in the dissolution process, but it does aid in

mechanical weathering and sediment transport. Although the majority of dissolution

occurs in the epikarst, as karst waters become closer to saturation with respect to calcite,

there is still enough aggressiveness to the water to create and enlarge these karst conduits,

which eventually become known as caves. One factor contributing to extensive

dissolution-type cave development is for the cave conduit to grow at a sufficiently fast

rate in comparison to the rate of surface lowering. Rapid surface lowering and surface

erosion may dissolve and remove slow developing proto cave passages before the cave

becomes extensive. For that reason many caves are located below non-carbonate

caprock. In these situations, the surface non-carbonate rocks (in the case of the

Mammoth Cave region, it is sandstone, shale and conglomerate) provide partial

protection to the underlying carbonate rock which continues to have its conduits enlarge

from the discrete water entry points through the surface caprock material.



PART III LITERATURE REVIEW

Subpart A: STREAM CHEMISTRY

Like Likens and Bormann (1995), I am assuming that the streams contain a

mixture of both surface water and groundwater sources. Stream water chemistry is also a

reflection of these two sources of water. Stream water chemistry varies depending upon

a variety of factors such as geology, precipitation, and season. Likens and Bormann

(1995), while studying streams in New Hampshire, found that stream water chemistry

was fairly constant, independent of stream water discharge. Johnson and Swank (1973)

found similar results in their North Carolina study. Liken and Bormann (1995)

maintained that this is caused by stream water chemistry being largely established in the

soil zones within eastern deciduous forests containing granitic bedrock. In these

situations, chemical equilibrium is reached quickly in the soil zone, based upon the

ecological conditions of the watershed. Therefore, the chemistry of a headwater-type

stream is the product of the natural ecosystem. Although the chemistry may be altered by

disturbances, the natural condition of the ecosystem forms the basis of stream water

chemistry in eastern deciduous forests containing granitic rocks. While the streams in

this study are within eastern deciduous forests, they are dominated by sedimentary rocks,

and not igneous. Additionally Stumm and Morgan (1970) have demonstrated that high

rates of dissolution of carbonate rocks, compared with granitic rocks, produces a much

more varied stream water chemistry regime and one that is much more influenced by

discharge (Ford and Williams, 1989). Before discussing these similarities and

differences further, we should first look at the individual ions commonly found in

23



24

streams. The nature and characteristics of dissolved components within streams that are

relevant to this study are discussed below:

Carbon

In spite of carbonate rocks, including carbonate karst terrains, being globally the

largest reservoir of carbon, this reservoir is commonly not included in global carbon

cycle models due to the assumption that the fluxes to and from this reservoir are

insignificant given the time frame that most of these models utilize (Holmen, 1992).

However, karst terrain is largely a factor, through carbonate dissolution, of the release of

carbon from these reservoirs into streams and groundwater which then becomes available

to participate in global processes. Since twelve percent of the Earth's ice-free land

surface contains karst (Ford and Williams, 1989), perhaps through karst processes,

carbon within this large carbonate reservoir plays a larger role in global processes than

what many of these models account for.

There are four main reservoirs of carbon: the atmosphere, biosphere, lithosphere

and the ocean. These reservoirs and the common fluxes between them are depicted in

Figure 3. The largest source of carbon within the lithosphere reservoir is contained

within terrestrial carbonates, such as CaCC>3 (calcite/aragonite) and CaMg(CO3)2

(dolomite) (Butcher et al, 1992).
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Atmosphere

Biosphere

Ocean Lithosphere

Figure 3 Major reservoirs and fluxes of the global carbon cycle (modified and adapted
from Butcher et al, 1992)

Carbon is the key element of life on Earth (Butcher et al, 1992). Although it is

an abundant element on Earth, elementary carbon (consisting of three forms- amorphous

carbon, diamond and graphite) is rare. Carbon can exist in oxidation states ranging from

+4 to -4; however, the most common is +4. The carbon found in CO2 and carbonate

rocks is in the +4 oxidation state. Methane (CH4), formed by the reduction of carbon, is

in the -4 oxidation state.

Although there are seven isotopes of carbon, only two (I2C and 13C) are of

significance to the carbon cycle. 12C is by far the most common carbon isotope,

accounting for 99 percent of the total carbon in nature (Butcher, Charlson, Orians, and

Wolfe, 1992). The other five isotopes are radioactive and unstable within natural
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systems. In addition, the half-life of these elements is much shorter than the turnover

time of carbonate rock carbon reservoirs (Table 9); therefore, carbonate rocks typically

contain no radioactive carbon isotopes.

Carbon dioxide fixation consists of the conversion of CO2 to organic material.

This fixation process is conducted by photosynthetic organisms (i.e., plants, algae,

bacteria), and chemoautotrophic organisms (i.e., nitrifying bacteria, some sulfur

oxidizers, iron oxidizers, and hydrogen oxidizers) (Butcher et al., 1992).

Aerobic respiration consists of the conversion of organic material and O2 to CO2

and H2O. This process is conducted by plants, animals and strictly aerobic microbes

(Butcher et ah, 1992). Organic decomposition consists of the conversion of organic

carbon and O2 to inorganic forms. This process is conducted by microorganisms,

especially fungi and bacteria (Butcher et al., 1992).

Methane is produced by the conversion of CO2 and H2 (or simple organic

compounds such as acetate) to CH4 and H2O. This process is conducted by methane

producing bacteria (Butcher et al., 1992). The energy is derived from the oxidation of

simple organic compounds.



27

Table 9 Principal reservoirs and fluxes in the carbon cycle. Units are 1015 g C
(burdens) and 101:>gC/year (fluxes). From Bolin (1986), In: Butcher et
al, 1992.

Reservoirs
Fossil Fuels 5,000 to 10,000
Intermediate and Deep Ocean

Dissolved inorganic 36,700
Dissolved organic 975
Annual increase -2.5

Soil 1,300 to 1,400
Atmosphere 725

Annual increase -3
Surface water (fresh)

Dissolved inorganic 700
Dissolved organic 25
Annual increase -0.3

Long-lived terrestrial biota -450
Annual decrease -1

Peat -160
Short-lived terrestrial biota -110
Litter -60
Surface oceanic biota 3

Fluxes
Atmosphere to land -120
Atmosphere to ocean surface - 93
Ocean surface to atmosphere - 90
Ocean surface to intermediate and deep ocean ~ 38
Ocean surface to ocean surface biota (primary production) - 40
Ocean surface biota to ocean surface

(respiration & decomposition) - 36
Ocean surface biota to intermediate and deep ocean

(detritus) - 4
Intermediate and deep ocean to ocean surface - 40
Fossil fuels to atmosphere 5

- Short-lived terrestrial biota to atmosphere - 60
Short-lived terrestrial biota to ocean surface - 1
Short-lived terrestrial biota to long-lived terrestrial biota ~ 15
Short-lived terrestrial biota to litter - 40
Long-lived terrestrial biota to atmosphere (deforestation) ~ 1
Long-lived terrestrial biota to litter ~ 15

Litter to atmosphere (detritus decomposition) 54-50
Litter to peat <1
Litter to soil 2-5
Peat to atmosphere <1
Soil to atmosphere 2-5

Water in equilibrium with atmospheric CO2 at 25 degrees C has a pH of 5.65

(Butcher et al, 1992). The partial pressure of CO2 within soil varies dramatically and
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may be from 10 to 400 times greater than in the atmosphere (Holland, 1978). If the soil

CO2 partial pressure is ten times atmospheric levels, soil water pH would be 5.15. If the

soil CO2 partial pressure is 100 times atmospheric levels, soil water pH would be

expected to be 5.15 and 4.65, respectively (Butcher et al, 1992). The addition of other

acids, such as organic acids, can also complicate these relationships. Therefore, one

could see how dramatically the degree of acidification, and thereby its ability to dissolve

rocks, is affected by the quantity of CO2 derived from the soil. Complicating these

relationships, the partial pressure of soil CO2 varies greatly temporally and spatially. In

addition, the partial pressure of soil CO2 is difficult to measure accurately.

Sources of carbon include biota, the weathering of rocks, and the atmosphere.

Carbon in the atmosphere exists primarily as CO2. Biologic uptake and storage of carbon

is accomplished via photosynthesis. Through this process, atmospheric CO2 is reduced

by photosynthetic organisms and converted to a wide variety of organic substances that

are stored in the plant tissues. This process is represented by the following equation:

respiration assimilation

CO2 + H2O < ^ —1 D > (CH2O),7 +O 2 (1)

When plants die or drop their leaves, this material is incorporated into the soil and

becomes part of the pedosphere. Soil organic matter is primarily carbon, oxygen and

hydrogen (Butcher et al, 1992). Soil organic material near the surface generally contains

an abundance of microorganisms. The metabolism of these organisms consumes soil
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oxygen and produces carbon dioxide. As a consequence, the carbon dioxide partial

pressure may be 10 to 100 times greater than the atmosphere (Holland, 1978). Water

passing through the soil picks up this additional carbon dioxide, thus increasing its

acidity.

To some degree all rocks and minerals can be dissolved (Jakucs, 1977), given

either a strong enough acid or else by allowing sufficient time for a weak acid to proceed

slowly. As regards rocks specifically, dissolution is a degenerative process that erodes

the landscape and carries material to the ocean; therefore, in order for dissolution to be an

important process on the landscape, there must be some rock types or environmental

conditions in which the solution process outpaces not only rock-forming processes but

also other rock degenerative processes.

If a particular rock or mineral type dissolves too slowly under natural conditions

then it is unlikely that the solution process would play a significant role in natural

geomorphic processes since other geomorphic processes would overwhelm and mask the

minor contribution from dissolution. For instance, the majority of rocks on the earth's

surface are silica-based. With a few exceptions, at the pH (acidity) of most natural

waters, most silica-based rocks dissolve too slowly to be a significant factor in

geomorphic processes.

On the opposite extreme, there are limiting factors if a particular rock or mineral

type dissolves too quickly under natural conditions. For instance, sodium chloride
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(halite) dissolves rapidly under natural conditions- too rapidly for it to play a dominant

role in surface geomorphic processes except for a few extremely arid locations. If a

buried layer of salt is exposed to degenerative processes on the earth's surface, in humid

conditions the exposed salt dissolves so rapidly that its presence on the surface is so

transitory that its influence upon the landscape is negligible, except under extreme

conditions. Under very dry surface environments can one possibly find surface

exposures of salt. In these extremely dry environments, one can find salt caves and karst

features within the salt. There are salt caves in Israel, the former USSR, Rumania, Spain,

Algeria, Hungary, and Chile (Frumkin, nd). However, there are no known natural

surficial salt caves in the United States.

Within the dissolution continuum between silica on one extreme and evaporates

on the other, there are particular rocks types that dissolve fast enough to outpace other

degenerative processes while at the same time dissolve slowly enough that they are

retained long enough on the surface that they may interact and affect other surface

geomorphic processes. Limestone, composed mostly of the mineral calcite, is perhaps

the most ideal rock type along this dissolution continuum. Limestone's frequency of

occurrence coupled with its position along the dissolution continuum makes it a

particularly ideal rock type for speleogenesis.

Limestone is not very soluble in pure water (Ford and Williams, 1989). However,

limestone is highly soluble in even weak acids. The most abundant acid in natural water

is carbonic acid (White, 1988). A weak carbonic acid solution is formed by placing
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water in contact with carbon dioxide. Since carbon dioxide is a constituent of the

atmosphere, and is respired by living organisms, as well as carbon being contained in

many rocks and minerals, it is perhaps easy to see why carbonic acid is the most

abundant acid in natural water (White, 1988). Therefore, limestone solution rates are

closely related to the availability of carbon dioxide to coming in contact with water to

form carbonic acid.

Within any natural karst system, carbon dioxide can be dissolved by water

causing the water to become more acidic, or carbon dioxide may be released from the

water, making it less acidic. There are many factors affecting the degree and rate of

carbon dioxide gains and losses as water passes through a karst system. The term utilized

to describe these carbon gains and losses within a given area is carbon flux. Since

carbonic acid is the primary solvent of limestone, knowledge and an understanding of

mechanisms that affect carbon flux within a karst system is important in any study of

limestone solution and the evolution, growth and development of cave and karst systems.

Weak acids such as carbonic acid are abundant in the natural environment. Water

on the earth's surface, groundwater and atmospheric water are in almost constant contact

with atmospheric carbon dioxide (the principal 'greenhouse' gas, believed to be

responsible for global-warming). Carbon dioxide (CO2) is absorbed by water to form

carbonic acid (H2CO3). Carbonic acid, although a relatively weak acid under

environmental conditions, is very effective in dissolving limestone. It is primarily a

three-step chemical process. The first step involves the absorption of carbon dioxide to
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form positively and negatively charged ions in solution. The chemical equation for this

process is as follows:

H2O + CO2 ,=> H2CO3* (2)

[water + carbon dioxide <=$ carbonic acid]

Where H2CO3 is the sum of aqueous CO2. Carbonic acid in turn, can dissociate to form
separate ions, as depicted below in the second step:

H2CO3* c=> HCO3" + H+ (3)

[carbonic acid <=$ bicarbonate ion + hydrogen ion]

The hydrogen ion makes the solution acidic, and in fact, pH is a measurement of

the amount of hydrogen ions in solution. Ionic hydrogen is the primary factor that

dissolves limestone. The final step in this process is listed below:

CaCO3 + H2O + CO2 i=> Ca+2 + 2HCO3~ (4)

The above equation illustrates carbonate dissociation reactions involving

limestone dissolution. A similar chemical process is also involved in the dissolution of

dolostone (dolomite), however it differs due to the presence of a magnesium

(CaMg(CO3)2) atom within the mineral structure.

In these chemical processes, hydrogen ions (which make the solution acidic)

combine with bicarbonate ions, thereby raising the pH, and making the solution more

basic. Eventually the solution becomes saturated with respect to calcite.
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Calcium

Calcium is the fifth most abundance element in the earth's crust (Weast and Astle,

1982). It is essential for many biologic processes, being needed for many leaves, bones,

teeth and shells (Weast and Astle, 1982). Calcium ions typically are derived from

carbonate rocks (Hem, 1989), but also may originate from amphiboles, feldspar, olivine,

pyroxenes, and clays (Pagenkopf, 1978). The solution of calcite follows the following

chemical equation depicted in equation 5 (Stumm and Morgan, 1970).

CaCO3 + CO2 + H2O O Ca2+ + 2HCO3' (5)

It is important to realize that along with this dominant calcite dissolution reaction,

there are other dissolution reaction products involving chemical species such as H2CO3,

CO}2', and CO2 (aq) that are also occurring simultaneously, in varying degrees of

importance under natural environmental conditions. Sources of calcium include the

atmosphere and the weathering of rocks, particularly carbonate rocks.

Bicarbonate

One of the most important constituents of carbonate dissolution is bicarbonate

(HCO3"). The actual dissolution process is discussed earlier. The presence of high

concentrations of bicarbonate is one of the signatures of the dissolution process and a

"karst water" (White, 1988). Alkalinity is defined as the sum of bicarbonate, carbonate,

and hydroxide ion concentrations minus the hydrogen ion concentration. My study
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measured bicarbonate ion concentration by the determination of alkalinity, expressed as

CaCO3.

Magnesium

Magnesium (Mg2+) is the eighth most abundant element in the earth's crust (Weast

and Astle, 1982). It is not found in nature uncombined, but rather occurs within

dolostone or magnesite (Weast and Astle, 1982). Magnesium typically is derived from

carbonate rocks, usually dolostone (Hem, 1989).

Hydrogen

In natural waters the hydrogen ion (H+) is responsible for water's acidity. The

sources of the hydrogen ion include volcanic gases, the combustion of fossil fuels, natural

oxidation processes (such as the oxidation of the ferrous ion to the ferric ion) (Hem,

1989).

Silicon

Silicon is the second most abundant element in the Earth's crust. The silica ion

(Si4+) bonds well with oxygen; therefore, it is very stable and does not readily occur in

ionized forms in natural waters (Hem, 1989). Silica in natural waters most readily exists

in the non-ionized form SiC>2, U4S1O4 or Si(OH)4, however, convention often refers to

these three forms as just SiO2 (Hem, 1989).
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Silicon is a common component of quartz and many sandstones. The dissolution

rate for silicon is typically low. Therefore, silica concentrations in natural waters

typically range from 1 to 30 mg/L; but may be higher in some groundwaters (Hem,

1989). Silica is not analyzed as part of this study.

Nitrogen

Nitrogen is the most abundant element in the Earth's atmosphere. It is also an

essential nutrient to plant life. Nitrogen exists in the Earth's crustal, terrestrial, oceanic

and atmospheric systems. On a global average, four percent of the Earth's nitrogen exists

as organic terrestrial nitrogen and 6.5 percent as inorganic terrestrial nitrogen (Butcher et

ah, 1992). Dissolved N2 is the primary form of oceanic nitrogen. Nitrogen gas (N2) is

the primary form of atmospheric nitrogen.

Nitrogen can exist in oxidation states ranging from +5 to -3. A significant

percentage of the total reduced nitrogen contained in the atmosphere exists as the

ammonium ion. Nitrogen also exists in nature in the form of proteins. Proteins are

polymers of amino acids. The dominant forms of nitrogen discussed in this report are N>,

NO2", and NO3", N2O, NH3
+, and N H / .

Nitrogen fixation consists of converting N2 to the organic amino group. This

Nitrogen fixation is conducted by free-living prokaryotes: Azotobacter spp., some

Clostridium spp., some Cyanobacteria, and photosynthetic bacteria (Butcher et al, 1992)

in a process represented by the following equation:



36

N2 + 6/8H+ i=0 2NH3/2NH4+ (6)

Nitrogen that has been fixed has two primary outcomes: it can be oxidized to

NO2", or NO3 \ or it can be assimilated into an organism (Butcher et al., 1992). In each

situation, these dissolved forms of nitrogen either may be stored in the basin or be flushed

from watershed via streams.

Nitrification consists of converting NH3 to NO2" and NO2" to NO3", as depicted in

the following two equations:

N H / 3/202 = £ NO2- + H2O + 2H+ (7)

NO2" + I/2O2 c=> NO 3 . (8)

Nitrification is conducted by chemoautotrophic nitrifying bacteria (Butcher et al.,

1992). The energy source is the oxidation of inorganic nitrogen compounds such as

nitrite and ammonia.

McGarity and Rajaratnam (1973), referencing Arefyeva and Kolesnikof (1964),

demonstrated that the freezing and thawing of soils promotes nitrification and the

mobilization of nitrate into streams. This seasonal increase in nitrate mobilization is one

reason that nitrate concentrations in streams typically reach a maximum in late winter

(Likens and Bormann, 1995).

Dissimilatory denitrification (the reduction of nitrate to amino acids to be

incorporated into proteins) converts NO3" to N2 and N2O. This process can be conducted
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primarily by anaerobic respiring bacteria (Butcher et ah, 1992). Energy is derived from

the oxidation of anaerobic organic compounds. Ammonification is the conversion of

organic nitrogen to NH3. Many microbes, especially bacteria, can conduct

ammonification (Butcher et al., 1992).

From an analytical standpoint, nitrogen can be in four forms: ammonium (NH4
+),

nitrate (NO3"), nitrite (NO2~), and inorganic nitrogen (Allen and Kramer, 1972).

Kjeldahl nitrogen is the sum of all ammonia and organic nitrogen (Allen and Kramer,

1972).

Most nitrogen loss from soil via leaching is in the form of nitrate (99 percent).

Almost one percent that is lost is in the form of ammonium, and just a trace is in the form

of nitrite (Pierre et ah, 1966). The reason for these differences is that ammonium is

absorbed and retained by vegetation and the initial nitrite concentrations are typically

quite low.

Nitrate (NCV) generally exists in natural surface waters in trace amounts,

however concentrations may be high in some groundwater (American Public Health

Association, 1995). It tends to be very stable and easily transported by water (Hem,

1989). Conversely, nitrite (NO2") and ammonium (NH/) are less stable and thereby less

common in natural waters (Hem, 1989). Ammonium concentrations in groundwater tend

to be low due to the molecule's ability to be readily absorbed by clay, sediment and soils

(American Public Health Association, 1995). Nitrite and ammonium are more closely
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associated with polluted waters since the primary sources involve industrial, wastewater,

agricultural and other anthropomorphic operations. The USGS (1999) specifically lists

karst as one of the risk factors for landscapes in which there is a greater potential for

nitrate to enter groundwater. Anthropomorphic activities such as clear cutting forests,

agricultural fertilization, and draining of wetlands can also produce high NO3.

The presence of karst may influence a stream's velocity, and thus the residence

time, within the basin, of an individual parcel of water. Kolpin and Kalkhoff (1991) and

Hill (1988) found that biologic processes such as assimilation, denitrification and

periphyton (Duff ef ah, 1984) that remove nitrogen from a stream are affected by

residence time. Therefore, the presence of karst that may reduce the stream's velocity

which may ultimately cause a reduction in the stream's dissolved nitrogen concentrations

(Kalkhoff, 1995). Only nitrate, nitrite and ammonium are analyzed as part of this study.

Chloride

Although chloride ion can exist in various oxidation states ranging from Cl" to

Cl7+, the Cl" form known as chloride is by far the most abundant in natural waters (Hem,

1989). Some igneous rocks contain chlorine however it is usually more abundant within

sedimentary rocks, particularly evaporites such as gypsum (Hem, 1989). Shale and other

sedimentary rocks also contain small quantities of chlorine molecules.

Salt spray in the proximity of the ocean can be a significant source of chloride

ions in natural water, however the concentrations decrease rapidly as one moves inland



39

(Hem, 1989). Gambel and Fisher (1966) and Fisher (1968) found concentrations of

chloride ions in North Carolina streams much higher than could be attributed to

atmospheric sources alone. They attributed this increased chloride concentrations on

either the weathering of crystalline rocks or from human sources such as pollution or

highway de-icing. Similar higher concentrations of chloride ions in waters in the western

United States above and beyond expected atmospheric sources were found by Van

Denburgh and Feth (1965) and Junge and Werby (1958). These additional sources were

also attributed to the weathering of sedimentary rocks and from human sources.

Industrial operations and wastewater can also be a significant source of chloride in

natural waters (American Public Health Association, 1995).

Bromide

Bromide can occur in rainwater and snow (Hem, 1989), but sea-spray and

seawater intrusions are the dominate sources of bromide (American Public Health

Association, 1995). Beyond close proximity to ocean water and salt spray, the main

source of the bromide ion in the atmosphere appears to be from anthropomorphic sources

(Hem, 1989). Oil field brines are also a potential source of bromine (American Public

Health Association, 1995). There are operational oil fields within the Dry Branch basin.

Fluoride

Low quantities of fluoride are found in a variety of rock types. Fluoride atoms

within these rocks do not readily dissolve in the presence of water under typical

environmental conditions (Hem, 1989). Therefore, fluoride typically is a minor
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constituent of natural stream water. Brown and Roberson (1977) found that waters

containing high calcium concentrations have lower concentrations of fluoride as a result

of equilibrium and complexing effects.

Sodium

Sodium occurs in natural waters in the Na+ oxidation state. The sodium ion is

quite stable; therefore in the environment surrounding the project sites, it usually does not

reprecipitate or form other mineral complexes (Hem, 1989). Sodium is contained in a

variety of minerals, including feldspar (Pagenkopf, 1978); as a consequence, it is a

typical constituent of natural stream water. However salts from winter de-icing and salts

used in certain oil well operations can also be sources of sodium (Hem, 1989).

Potassium

Like sodium, potassium is a rather common constituent of a variety of minerals,

such as some feldspars and clays (Pagenkopf, 1978). In waters in contact with certain

rocks such as sandstone, quartzite and dolostone, potassium concentrations may exceed

that of sodium; however, potassium's abundance in natural stream water is usually less

than sodium, due to potassium's tendency to be reincorporated into insoluble products,

particularly clays. Additionally, potassium is an essential nutrient for most forms of

vegetation. Therefore, generally there is more storage of potassium within biota than

sodium (Hem, 1989), thereby lowering potassium's concentration in stream water relative

to sodium.
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Iron

Although iron is abundant within the Earth's crust, it is a minor ion within natural

waters (Hem, 1989). Where it does exist within natural waters, the Fe2+ ferrous ion is

much more common than the Fe3+ ferric ion (Hem, 1989). Ferrous ions are more

common within natural waters due to the fact that when ferric ions are exposed to

oxygenated water with pH near 7.0 the ferric ion hydrolyzes, causing iron to precipitate

as ferric oxide (Pagenkopf, 1978).

Under reducing conditions, iron exists in the ferrous state (American Public

Health Association, 1995). The ferric ion is not very soluble (American Public Health

Association, 1995). On exposure to air or oxygen rich waters, the ferrous ion is oxidized

to the ferric state.

Many rocks and minerals contain iron. When in contact with water, iron can

reprecipitate within other minerals such as hematite (Fe2C>3), siderite (FeCCh) and

goethite (FeOOH) (Hem, 1989). Lantzy and Mackenzie (1979) found that

anthropogenic/natural ratio of iron released into the atmosphere was 0.39, meaning that

anthropogenic sources are relatively minor when compared with natural sources.

The typical ionic forms of the ferric ion are Fe3+, FeOH2+, or Fe(OH)2\ while the

typical form of the ferrous ion is Fe2+ (Hem, 1989). Higher concentrations of iron are

usually found in groundwater in comparison with surface waters (American Public
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Health Association, 1995); therefore, it could be a potential indicator of the source of the

water (e.g., direct surface runoff versus groundwater).

Manganese

Manganese occurs as a minor component of many rock types, including basalt,

amphibole, limestone, and dolostone (Hem, 1989). Like iron, manganese commonly

reprecipitates to form other minerals or clays. However it tends to be a little more stable,

and is sometimes more common in natural waters than iron (Hem, 1989).

Manganese is typically a minor constituent of natural waters (Hem, 1989).

Although the magnesium ion can exists in oxidation states ranging from Mn2+ to Mn4+,

the Mn2+ form is by far the most abundant in natural waters (Hem, 1989).

Domestic wastewater, industrial effluent (American Public Health Association,

1995) and certain mining operations (Hem, 1989) are also sources of manganese.

However, Lantzy and Mackenzie (1979) found that anthropogenic/natural ratio of

manganese on release into the atmosphere was 0.52, meaning that anthropogenic sources

are nearly half as important as natural sources.

Aluminum

Although aluminum is abundant within the Earth's crust (the third most abundant

element in the Earth's crust), it is a minor ion within natural waters (Hem, 1989). Similar

to iron, the pH of natural waters is typically too high for aluminum to exist in
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concentrations much greater than a few tenths of a mg/liter (Hem, 1989). Feth and others

(1964) found the maximum aluminum concentrations in runoff from granite surfaces to

be only a few hundredths of a milligram per liter.

Many rock types, especially igneous rocks, contain aluminum. These include the

feldspars, granites, mica, and amphiboles (Hem, 1989). During the weathering of rock, at

the pH range most typical of natural waters, aluminum does not go into solution, but

rather precipitates and forms other solid minerals or forms or bonds with clays and other

sediments (Hem, 1989). Aluminum may also form complexes with fluoride (A1F2+),

phosphate (A1PO4) and sulfate (A1SO4
+). Lantzy and Mackenzie (1979) found that

anthropogenic/natural ratio of aluminum release into the atmosphere was 0.15, meaning

that anthropogenic sources are relatively minor when compared with natural sources.

Aluminum is not analyzed as part of this study.

Lithium

Several minerals contain lithium. It can also be substituted for magnesium within

individual minerals (Hem, 1989). The common-ion exchange minerals typically found in

soils absorb lithium to a lesser degree than other common elements (Hem, 1989).

Therefore, lithium tends to stay in solution longer than other common ions.

Phosphorus

Phosphorus is generally thought to be limiting for the majority of vegetative

biomass. Some phosphorus originates from the weathering of bedrock, especially
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sedimentary rocks. However, this trend or relationship can be masked or overwhelmed

by anthropomorphic sources, principally from agricultural areas. Additionally, airborne

particulate phosphorus sources may be significant in some areas, particularly from

industrial regions. Often, these anthropomorphic sources are so high that it is often

meaningless to predict the geologic sources of stream water phosphorus except for very

isolated and uninhabited regions (Gibson, 1997).

From an analytical standpoint, there are three forms of phosphorus: soluble

orthophosphate, inorganic phosphate, and total phosphorus (Allen and Kramer, 1972).

Total phosphorus consists of both soluble orthophosphate and inorganic phosphate (Allen

and Kramer, 1972).

Phosphorus is an essential element for the growth of most plant life forms, and it

has been found to be a leading factor in limiting primary production within many

ecosystems (Schindler, 1977; Smith et al, 1986). The largest natural source of

phosphorus within a watershed is the weathering of rocks. Direct anthropogenic sources

such as livestock wastes, detergents, fertilizers and other industrial applications can affect

localized and regional phosphorus concentrations within surface and groundwaters

(Butcher et al, 1992). Walker (1933) found that the available phosphorus content of the

soils within Mammoth Cave National Park, while all low, were higher for the soils

overlying carbonate rocks.
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Phosphorus never is found free in nature, although it is widely distributed in a

variety of minerals (Weast and Astle, 1982), including igneous and carbonate rocks

(Butcher et al., 1992). The atmosphere plays a minor role in the transport and storage of

phosphorus, due to the limited gaseous forms of phosphorus (Butcher et al., 1992).

Within the biosphere, phosphorus consists primarily of inorganic or organic

phosphate (Butcher et ah, 1992). Being nonvolatile, phosphorus is not readily

transported to the atmosphere, but instead is transported to other reservoirs by soil

processes and water (Butcher et al., 1992). "Microorganisms are able to store phosphate

as a polymer inside their cells" (Butcher et al., 1992). Phosphorus usually exists in

natural water in the form of phosphate (PO43"). Only the phosphate form (PCV'jis

analyzed as part of this study.

Sulfur

Sulfur is an abundant element on Earth and essential to numerous organic and

inorganic processes. Sulfur can exist in oxidation states ranging from -2 to +6. The most

oxidized state, SC>42' is the most abundant anion in rivers, next to the bicarbonate (HCO3")

ion and the most abundant anion in the ocean next to Cl". The SO4 " ion is also one of the

primary causes of acidity in natural waters (Butcher et al., 1992).

Sulfur oxidation consists of the conversion of H2S to S, S to S2O3 " and S2O3 " to

SO4
2". Sulfur oxidation is conducted by purple and green sulfur photo synthetic bacteria,

and some cyanobacteria (Butcher et al., 1992).
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Dissimilatory sulfate (the reduction of sulfate to the sulfhydryl level where it is

incorporated into the sulfur amino acids of proteins) is the conversion of SO4
2" to H2S.

This process is conducted by sulfate reducing bacteria (Butcher et al., 1992). Dimethyl

sulfide production is the conversion of SO4
2" to (CH3)2S. This process is conducted in the

oceans by certain marine algae (Butcher et al., 1992). Sulfate concentrations typically

reach a minimum within late winter (Likens and Bormann, 1995).

The largest sulfur reservoir is the lithosphere; however since this residence time is

quite long, the hydrosphere, atmosphere and biosphere are where most sulfur transfer

occurs (Butcher et al., 1992). The burning of sulfur-containing fossil fuels causes sulfur

to oxidize thus forming SOT gas. Due to the nature of the kinetics of this reaction and the

frequency of precipitation, the residence time for this gas in the atmosphere is on the

order of days. Therefore, the concentration and distribution of the SO2 gas in the

atmosphere is largely local and regional in effect (Butcher et al., 1992).

Sulfur is widespread in many rock types, particularly igneous and sedimentary

rocks (Hem, 1989). However, sulfur in its reduced forms are fairly insoluble. When

rocks containing reduced forms of sulfur weather and oxidize as a result of being exposed

to oxygenated water, then these oxidized sulfur forms readily dissolve and go into

solution. The mineral pyrite is commonly a source. A major source of sulfate in natural

waters is from the atmosphere as a result of human's combustion of fossil fuels. Only the

sulfate form (SO42")is analyzed as part of this study.
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Bicarbonate

Alkalinity is defined as water's ability to neutralize acid. In most natural waters,

alkalinity is largely a function of the combined carbonate and bicarbonate species (Hem,

1989). These species may be differentiated by calculation, based upon the water's

temperature and pH; however within the pH range normally encountered in natural

waters, the dominant species accounting for alkalinity is the bicarbonate ion (Hem, 1989)

(Figure 4).

The primary source of bicarbonate ion is the atmosphere, carbon enriched soils

and carbonate rocks. However, other sources include outgas from the Earth's mantle and

the decarboxylation of acetate and other short-chain aliphatic acids within and near oil

and gas fields (Hem, 1989).

Perc«itta*e of dissolved earba» dlaxlde species aettvi*l«s wt 1 at»n»s»herc
rravtiBr* and at 2S rivgrccs C [adapted trim Mom, I

Figure 4 CO2 species distribution diagram
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Copper

Copper occur in water in either the cuprous ion (Ci/) or the cupric ion (Cu2+)

oxidation states; however its ability to disproportionate (2Cu+ => Cu° + Cu2+) thereby

favors the more oxidized state (Cu2+) (Hem, 1989). Copper concentrations in waters

greater than a few hundreds of a milligram per liter are potentially harmful to many fish

species (Hem, 1989).

The atmospheric source of copper ions is largely from solid particulate matter

resulting from fossil fuel burning and certain smelting operations (Butcher et al., 1992).

These airborne particulates are mostly in the form of copper carbonates, sulfate

hydroxides and oxides. Of these particulates, approximately 50 percent have been found

to be soluble, depending upon the pH of rainwater. Since the quantity of particulate

matter able to dissolve is dependent upon the pH of the precipitation, the concentrations

of copper ions in precipitation can vary widely, especially locally (Butcher et al., 1992).

The cupric ion is among the most strongly sorbing of the heavy metals; thus it

sorbs onto both organic and inorganic solids such as oxides and clays (Butcher et al.,

1992). Natural complexing agents can bind Cu2+ so strongly that nearly all copper

remains bonded to organic matter. Therefore, the Cu2+ sorbs only under conditions in

which organics sorbs (Butcher et al., 1992). One could therefore infer that if Cu2+ is

present in natural waters that some organic acids may also exist.
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Lantzy and Mackenzie (1979) found that anthropogenic/natural ratio of copper release

into the atmosphere was 13.6, meaning that anthropogenic sources are greater than

natural sources.

Nickel

Nickel primarily exists in the Ni2+ oxidation state (Hem, 1989). Nickel exists as a

minor constituent of minerals; since it is used in a variety of industrial applications, it

exists in wastewater and other byproducts. Lantzy and Mackenzie (1979) found that

anthropogenic/natural ratio of nickel release into the atmosphere was 3.5, meaning that

anthropogenic sources are greater than natural sources.

Zinc

Sources of zinc in natural waters are largely from industrial operations and

contamination (American Public Health Association, 1995). Lantzy and Mackenzie

(1979) found that anthropogenic/natural ratio of zinc released into the atmosphere was

23.5, meaning that anthropogenic sources are greater than natural sources. Of the ions

analyzed as part of this study, zinc has the highest anthropogenic/natural ratio, thereby

indicating the dominance of the anthropogenic sources.

Cobalt

Cobalt can occur in either 2+ or 3+ oxidation states. Co precipitation or

adsorption of cobalt by oxides of manganese and iron appear to be important in
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determining the concentration of dissolved cobalt in natural waters (Hem, 1989). Cobalt

is only a minor constituent of carbonate rocks (Graf, 1962).

Natural waters contaminated with wastewater may contain high concentrations of

cobalt (American Public Health Association, 1995). Lantzy and Mackenzie (1979) found

that anthropogenic/natural ratio of cobalt released into the atmosphere was 0.63, meaning

that anthropogenic sources are slightly more than half as important as natural sources.

Cadmium

Cadmium is commonly found in low concentrations in the natural environment.

It can enter the atmosphere because of certain industrial processes and by the combustion

of fossil fuels (Hem, 1989), or via industrial discharges (American Public Health

Association, 1995).

Lantzy and Mackenzie (1979) found that anthropogenic/natural ratio of cadmium

release into the atmosphere was 19.0, meaning that anthropogenic sources are greater

than natural sources. Of the ions analyzed as part of this study, only zinc had a higher

anthropogenic/natural ratio. The indication is that anthropogenic sources dominate in

comparison to natural sources of cadmium.
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Subpart B: STUDY AREA BACKGROUND INFORMATION

The Mammoth Cave karst is one of the most heavily investigated karst systems in

the world. Modern karst research within the Mammoth Cave region began with Davis

(1930), Swinnerton (1932) and Bretz (1942). These researchers were primarily

concerned with explaining the theory of cave origin. Modern hydro logic research really

began with the set of geologic maps and other water resource investigations produced in

the 1960s and 1970s (e.g., Brown and Lambert, 1963; Cushman et al., 1965; Brown,

1966; and Lambert, 1976). Additionally, Thrailkill (Thrailkill, 1968; Thrailkill, 1972;

and Thrailkill and Robl, 1981) conducted a variety of karst hydrologic research for the

Mammoth Cave and Central Kentucky karst region, some focusing upon

evapotranspiration.

Perhaps the most extensive dye-tracing project in the world was conducted by

Quinlan and Ray (1989) within the Mammoth Cave region during the 1970s and 1980s.

These dye traces and others are depicted on the hydrologic maps produced by Ray and

Currens (1998). However, the majority of this research focused on the Mammoth Cave

system. There are many small-to-large watersheds basins within the Mammoth Cave

region that are not part of the Mammoth Cave hydrologic system. Additionally,

extensive dye tracing has occurred in many of the basins within Mammoth Cave National

Park located north of the Green River (Meiman and Ryan, 1990-94).

Palmer (1981, 1999) provided some of the most detailed mapping of the

stratigraphy of the various geologic units within Mammoth Cave National Park.
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A few researchers, such as Hess (1974) and Hess and White (1988), have

investigated karst geochemical effects as a function of spatial and temporal changes.

Shuster and White (1971), for example, investigated the seasonal fluctuations of the

geochemistry of a karst aquifer in Pennsylvania.

Hem (1989) found that although weathering of rocks within a basin is an

important aspect of the resulting chemical composition of surface waters, a direct

relationship is complicated by various factors, including the many independent variables

that are at play within a basin. Although clear relationships often cannot be made

between the rock types within a basin and the dissolved minerals in surface streams,

some generalizations can be made (Hem, 1989). For example, Horn and Adams (1966)

found that the average composition of silisiclastic sandstone includes 35.9 percent silica

versus only 0.0034 percent within carbonate rocks. Similarly, silisiclastic sandstone

contained on average 0.387 percent sodium, while carbonate rocks contained 0.0393

percent. Conversely, carbonates contained on average 4.53 percent of magnesium

compared with 0.81 percent for silisiclastic sandstone. Additionally, Weller (1927)

detailed mineral compositions of the various rock units that exist within the study area

during his geologic reconnaissance of Edmonson County, Kentucky.

Likens and Bormann in 1963 initiated a long-term watershed-scale

biogeochemical flux study in Hubbard Brook Ecosystem Study in the White Mountains

of New Hampshire (Likens and Bormann, 1995). This project quantified the mineral and
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nutrient inputs into, and output from, a non-karstic basin and investigated the long-term

trends in the cycling and total fluxes of these constituents (Table 10). They arrived at

several important conclusions. Among these are:

• precipitation provides an important source of mineral inputs into the basin;

• forests acted as a filter for atmospheric pollutants, especially H, N, S and P;

• evapotranspiration was relatively constant over a wide range of precipitation and

environmental conditions, and served to regulate certain aspects of the hydro logic

cycle;

• stream-water chemistry was highly predictable, based upon given environmental

conditions. Although it was recognized in this study that fixed-time series type of

monitoring schedules do not accurately represent actual conditions for highly variable

parameters, it was found that while stream-water chemistry did vary with the seasons,

the short-term fluctuations were so small that bi-weekly or even monthly sampling

was sufficient to characterize the chemistry of that (non-karst) system;

• the output of most individual nutrients can be closely predicted from the annual

output of water alone;

• many of the minerals and nutrients within the basin, when comparing the total input

(such as from precipitation or the weathering of rocks) into the basin's streams versus

the total dissolved output being removed from the basin by the basin's streams,

experienced some form of net gain or loss;

• Dissolved species experiencing net losses include Si, Ca, Na, Al, Mg, and K. Net

gains were found for C, N, S, P and Cl;
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the input/output budgets for many (non-karst) vegetated watersheds throughout the

world show many similar patterns as those of Hubbard Brook.

Table 10 Annual biogeochemical fluxes within Hubbard Brook, NH

Calcium:
Input
Output
Net

Magnesium:
Input
Output
Net

Potassium:
Input
Output
Net

Sodium:
Input
Output
Net

Aluminum:
Input
Output
Net

Ammonium:
Input
Output
Net

Hydrogen:
Input
Output
Net

Sulfete:
Input
Output
Net

Nitrate:
Input
Output
Net

Chloride:
Input
Output
Net

Phosphate:
Input
Output
Net

Bicarbonate:
Input
Output
Net

Dissolved silica
(SiO2):

Input
Output
Net

Hubbard Brook, NH
(Likens & Bormann, 1995)-
Annual mean kg/ha

2.2
13.7
-11.5

0.6
3.1
-2.5

0.9
1.9
-1.0

1.6
7.2
-5.6

Trace
2.0
-2.0

2.9
0.34
2.6

0.96
0.10
0.86

38.0
52.8
-14.8

19.0
16.1
2.9

6.2
4.6
1.6

0.11
0.020
0.09

Trace
7.7
-7.7

Trace
37.7
-37.7
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Although Likens and Bormann (1995) found that the stream chemistry of

Hubbard Brook did not greatly vary except with the seasons, so that the streams could be

accurately characterized by even a once a month sampling schedule, this same approach

does not appear to be the case for many karst systems. Since slightly acidic waters found

in the natural environment can readily dissolve carbonate rocks, hydrologic conditions

can rapidly cause noticeable chemical fluctuations within karst stream waters (White,

1988; Worthington, 1991; Groves and Meiman, 2000, 2001).

No hydrologic study has taken place in the First Creek basin. Studies conducted

within Dry Branch have been related to either dye tracing (Ray and Currens, 1998) or

hydrogeologic inventory and assessments of the potential threat posed by oil wells

located within the basin adjacent to the park (Ek et al., 1999 and 2000).



PART IV STUDY AREA

The study area consists of two small watersheds located mostly within Mammoth

Cave National Park: the 6.6 square kilometer First Creek basin and the 6.9 square

kilometer Dry Branch basin. Both of these basins are located in South-central Kentucky

(Figure 5) entirely within the Interior Low Plateau Province (Figure 6).

300

Figure 5 Study area location
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Physiographic Provinces-West-central Kentucky

CENTRAL LOWLAND
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M

Figure 6 Physiographic provinces of west-central Kentucky
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Figure 10 Photo of First Creek sampling station
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Figure 11 Photo of Dry Branch sampling station in flooded condition
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TEMPERATURE/HUMIDITY

Mean annual relative humidity of Kentucky is approximately 70 percent (Hill,

1976).

The relative humidity of Kentucky typically experiences a daily cycle. The highest

relative humidity (90 percent in the spring and summer) corresponds with the lowest

temperatures of the day, therefore immediately before sunrise (Hill, 1976). The lowest

daytime relative humidity during the year (approximately 60 percent) is typically in the

winter (Hill, 1976).

there are climatic factors affecting evaporation, chiefly solar energy (Hill, 1976).

Climatic conditions most favorable toward evaporation are high temperature, low relative

humidity, minimum cloud cover, and strong winds (Hill, 1976).

Within Kentucky, evaporation is greatest in the western and central portions of

the state (Hill, 1976). The average evaporation losses within Kentucky's Central Division

are depicted within Table 11 and the average daily soil temperatures are depicted in Table

12 (Hill, 1976).

Table 11 Average evaporation losses within Kentucky's Central Division.

April
143.8mm

May
168.4mm

June
177.3mm

July
191.5mm

August
165.4mm

September
117.1mm

October
96.3mm

Total
1059.7mm
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Table 12

Average daily soil temperature (degrees C) within the Central Division of Kentucky.

January
4

February
4

March
6

April
12

May
17

June
22

July
24

August
26

September
23

October
20

November
11

December
6

A summary of the average temperature and precipitation for Mammoth Cave

National Park and Bowling Green, Kentucky is depicted in Table 13 (Hill, 1976).

Table 13 Average temperature and precipitation for Mammoth Cave National Park
and Bowling Green, KY [Kentucky Climate Center]

Month

January
February
March
April
May
June
July
August
September
October
November
December
TOTAL

Mean
Monthly
Temperature
(deg. F) for
Bowling
Green, KY
35.6
38.4
46.3
57.8
66.7
75.0
78.1
76.9
70.3
59.1
46.4
37.7
57.4

Mean Monthly
Temperature (deg.
F) for Mammoth
Cave National Park

35.1
37.8
46.0
57.8
65.3
72.7
75.6
74.6
68.7
58.4
46.1
37.5
56.3

Mean Monthly
Precipitation
(inches) for
Bowling
Green, KY

4.52
4.25
5.23
4.15
4.00
4.35
3.86
3.27
2.83
2.47
3.68
4.38
46.99

Mean Monthly
Precipitation
(inches) for
Mammoth
Cave National
Park
4.90
4.40
5.45
4.28
4.17
4.68
4.19
4.02
3.39
2.55
4.22
4.35
50.60

Mean Monthly
Snowfall
(inches) for
Bowling
Green, KY

3.8
2.4
2.5
0.1

0.5
1.8
11.0

Approximately 85 to 90 percent of the total annual evaporation occurs during the

months of April through October (Hill, 1976). The greatest is in July, where evaporation

can be as much as 5.1 to 7.6 mm (0.2 to 0.3 inches) per day (Hill, 1976). When

comparing methods of determining evaporation rates, it has been shown that water loss
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from natural lake surfaces was approximately 75 percent of the losses from standard

evaporation pans (Hill, 1976).

The rate of evaporation from bare soil that is moist on the surface is

approximately the same as the rate of evaporation from a lake surface (Pierre et a!.,

1966). As vegetation begins to grow on bare soil, the vegetation shades the soil, thus

reducing the rate of evaporation from the soil surface. However, water loss begins to

occur via transpiration from the vegetation. It has been demonstrated that amount of

water loss via evaporation that is saved due to vegetation cover is approximately

balanced by the water loss from transpiration (Pierre et ai, 1966). Therefore, according

to this source, the evaporation rate from a water surface is comparable to the water loss

via a combined evaporation and transpiration (ET). However, it appears that other

studies may disagree.

AREA/TOPOGRAPHY/ASPECT

The Dry Branch watershed encompasses 6,890,730 square meters compared to the

First Creek watershed's 6,593,177 square meters. Therefore, First Creek's watershed is

four percent smaller. The sampling stations were located at the terminus of each

respective watershed. The Dry Branch sampling station was located at the same

elevation as the First Creek station; however it was located 2,670 meters south-southwest.

Dry Branch drains directly into the Green River, while First Creek drains into the Nolin

River, which in turn drains into the Green River a short distance downstream of the Dry

Branch confluence.
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Both sampling stations are located at an approximate elevation of 130 meters

above mean sea level (msl). The highest point in the Dry Branch basin is Brooks Knob at

260 meters above msl. The highest point in the First Creek basin is the survey station site

name "Ollie Station" at 270 meters above msl.

Because First Creek is on the north side of the Green River and Dry Branch on the

south, each basin has nearly a mirror-image aspect. Dry Branch faces largely west-

northwest, while First Creek faces west-southwest. There is a small difference in each

basin's total length. Measured in a straight line from the highest divide above each

respective creek to the mouth. Dry Branch is 3,884 meters long versus First Creek's 4.219

meters; therefore the length of Dry Branch is 92 percent shorter than the length for First

Creek.

In summary, the two basins are similar in area, topography and aspect. They do

have a different stream profile (Figure 12). The First Creek watershed is slightly smaller

in area, but is slightly longer and narrower than Dry Branch's watershed. They are at

nearly the same elevation and both face west (however Dry Branch faces northwest

versus First Creek's southwest). They are both located only 2.67 km apart on nearly the

same longitude on the western edge of Mammoth Cave National Park.
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Figure 12 Cross-sectional stream profiles (vertical scale is exaggerated by 15 times)

GEOLOGY

Although these two basins are similar in area, topography and aspect, they differ

significantly in geology. Both field sites are located in the dissected Mammoth Cave

Plateau within the Mississippian Section of the Interior Low Plateaus.

Six of the eight geologic formations found exposed within the project areas are

depicted in Figure 13. The entire eight formations are listed in Table 14 (USGS National

Geologic Map Database, Geolex Database, 2002) and in Figure 14.
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Table 14 Outcrop stratigraphy of Dry Branch and First Creek basins

Caseyville Formation
Leitchfield Formation
Glen Dean Limestone
Hardinsburg Formation
Haney Limestone
Big Clifty Formation
Girkin Limestone
Alluvium

Conglomerate
Shale
Limestone
Sandstone
Limestone
Sandstone
Limestone
Unconsolidated Sediment

Early Pennsylvanian
Late Mississippian
Late Mississippian
Late Mississippian
Late Mississippian
Late Mississippian
Late Mississippian
Recent/Quaternary

Using computerized Geologic Information System (GIS) technology, the

approximate surficial area of each of these formations is listed in Table 15 and

graphically represented in Figures 15 and 16.

Table 15 Surficial area of each of the geologic formations exposed in the project
areas

Geologic Unit

Caseyville Formation
Leitchfield Formation
Glen Dean Limestone
Hardinsburg
Formation
Haney Limestone
Big Clifty Formation
Girkin Limestone
Alluvium
Water
TOTAL

First Creek
Watershed (area-
square meters)
4,574,980

0
330,021
454,407

410,659
570,411

66,592
185,957

150
6,593,177

Dry Branch
Watershed (area-
square meters)

872,646
512,272

2,704,423
1,586,978

415,528
493,646
163,369
141,779

88
6,890,729

The Leitchfield Formation is known to be largely absent from the general area of

the two project sites, having been removed by pre-Pennsylvanian erosion (Weller, 1927).
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Figure 13 Drawing depicting typical stratigraphy within the First Creek and
Dry Branch basins (drawing by Joe Meiman, used by permission)
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Figure 14 Basin-wide stratigraphic columns- (compiled from geologic and
topographic maps) following along creek/valley bottom, beginning at the
sampling station(s). [Note: there is an unconformity in the First Creek
basin between the Caseyville Formation and the Glen Dean Formation].
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Figure 15 Surficial area of the various stratigraphic units within Dry Branch
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Figure 16 Surficial area of the various stratigraphic units within First Creek
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The Dry Branch watershed is underlain by 47.7 percent carbonate rocks (Figure

17), while the First Creek watershed is underlain with only 12.2 percent carbonate rocks

(Figure 18).

Dry Branch Geology

Alluvium
2%

Non-rarbonate Rocks Hflfl ' . *

\

Carbonate Rocks

w
Figure 17 Extent of exposed carbonate rocks in Dry Branch

First Creek Geology

Non-carbonate Rochs
85%

Figure 18 Extent of exposed carbonate rocks in First Creek
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Generalized Geologic Map- Dry Branch Basin
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Figure 19 Generalized geologic map- Dry Branch basin

Generalized Geologic Map- First Creek Basin

Stratified Rocks
^ j Alluvium
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Figure 20 Generalized geologic map- First Creek basin
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HYDROLOGY

The Dry Branch sampling site was located near the confluence with the Green

River. Conversely, the First Creek site was located near the confluence with the Nolin

River. As a consequence, the hydrology of these sites are affected not solely by streams

in the basins (e.g., Dry Branch and First Creek) but also by the adjacent river systems.

One area of effect includes occasional back-flooding from the river systems, up to and

beyond the sampling site. Therefore, a brief discussion of the basic hydrologic

conditions of these two river systems is warranted.

The nearby Nolin Reservoir was impounded in 1963. This multilevel release dam

was constructed by the US Army Corps of Engineers. Nolin River rises in Hardin

County, Kentucky and flows approximately 196 kilometers to its mouth in Edmonston

County, Kentucky. The drainage area is approximately 1,883 square kilometers, 62 of

which are below the Nolin Dam. The drainage area above the dam is a combination of

karstic and non-karstic terrain. Upland soils mostly Westmoreland and Muskingum

associates derived from acidic siltstones, sandstones and shales (Carter, 1968). The

Tailwater Soil is located in the western Coalfield Physiographic Province, overlying

mostly sandstone and shale (U.S. Department of Interior, 1960- as presented in Carter,

1968). Downstream of the Nolin River Dam, the river's gradient averages 0.38 meters

per kilometer. The Nolin River's flow is influenced by backwater resulting from Green

River's Lock and Dam Number 6, located on the Green River 3.2 kilmeters downstream

of the confluence with Nolin River (Carter, 1968).
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DISTURBANCES

First Creek basin contains no buildings, homes, or any form of significant

development. However, Dry Branch basin lies partly outside of Mammoth Cave National

Park and is partly developed. Besides several home sites and roads, there are also

approximately 44 oil wells (Figure 21).

Besides the storm events that are mentioned in other parts of this paper, the only

other known disturbance of note within the project areas during the durations of the study

was on April 23, 2002 (day number 203) when a 30-acre controlled burn (fire) was lit by

National Park Service staff within the First Creek basin. The author had no previous

knowledge of this control burn being planned; therefore no special monitoring activities

were planned to precisely assess what, if any, effect this fire may have had upon basin-

wide hydrologic or geochemical cycling.
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Approximate Location of Oil Wells within Dry Branch Basin
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Figure 21 Location of oil wells in Dry Branch basin



PART V METHODOLOGY

A thorough karst inventory was conducted for both basins. A geographic

information system (GIS) dataset will be compiled and developed. Geology maps will be

field checked for accuracy, primarily the location and distribution of carbonate rocks.

Two main dataloggers were deployed, one for each of the two basins. Each

datalogger was connected to temperature, pH and conductivity probes and a pressure

transducer. The dataloggers and probes were placed at the downstream end of each

respective basin. A Marsh-McBirney current meter was utilized to develop a rating

curve (relation between stage and discharge) for the flow for these particular streams.

The monitoring schedule consisted of three distinct components: 1) synoptic

sampling; 2) storm event sampling; and 3) a detailed time-series analysis of one storm

event in each season. The synoptic sampling was on a regular biweekly schedule.

Likens and Bormann (1995) found that although in general sampling schedules based

upon regular time-series sampling have proven to either over or under predict the actual

values in highly variable systems, in the case of their detailed work on Hubbard Brook

they have shown that the geochemical factors did not vary significantly. Therefore, their

data indicate that biweekly or even monthly sampling would suffice for synoptic

sampling of the non-karst basin. The synoptic sampling in this study was conducted on a

bi-weekly schedule.

75
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Although a biweekly time series sampling schedule for low-variability parameters

such as stream water chemistry in non-karst basins appears to be sufficient (Likens and

Bormann, 1995), as mentioned earlier, this approach may not be sufficient in the more

highly variable environment of karst streams. Therefore, some form of adjustments to the

sampling scheme will need to be made in order to accommodate these differences.

Besides the biweekly chemical analysis, two-minute resolution readings of temperature,

pH and conductivity were obtained from the dataloggers. From the datalogger readings

coupled with results obtained from the water lab, statistical relations were developed

between flow and conductivity values and concentrations of each of the ions. If these

relations indicate reliable and predictable relationships, then calculated ion concentrations

were utilized along with the actual concentrations obtained from the lab as part of the

synoptic sampling.

Several storm events occurring during different seasons throughout the year were

analyzed. All samples were analyzed for Ca2+, Mg2+, Na2+, K+, Li+, Cl", F", Br", NO3",

NO2", SO4
2\ NH4"1", H+, HCO3", and PO4

3". These ions were chosen based upon the

geology within the study area basins, as well as being similar ions investigated as part of

the extensive Hubbard Brook study (Likens and Bormann, 1995). Charge balancing was

conducted to serve as an accuracy check, as well as a means of determining if other

untested ions were present in significant concentrations. National Park Service and

Western Kentucky University lab technicians within the Mammoth Cave National Park

water lab determine ion concentrations (for Ca2+, Mg2+, Na2+, K+, Li+, Cl", F", Br", NO3",

NO2", SO4
2", NH4+, and PO4

3") using their Dionex ion chromatograph (IC). The detection
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limit for this lab equipment varied with the ion and during the course of the study (Table

16).

Table 16 Instrument (IC) detection limit during the course of this study

Ion

F"

Li+

NO3"

C r , Br"

SO/"

NO2"

Na2+

PO4
J '

Mg i + , NH4+

Caz+, K+

Instrument Detection Limits (mg/L)
[values changed through course of study]

0.012,0.200

0.025, 0.050

0.059, 0.991

0.060, 0.996

0.060, 1.000

0.061, 1.015

0.1000,0.200

0.1200, 1.998

0.1250,0.250

0.2500, 0.500

In situ pH was measured utilizing a portable pH meter, calibrated prior to each sampling

event. HCO3" concentrations were also measured in the field using a digital titrator.

The rain gage near the Mammoth Cave visitor center was utilized for rainfall, as

well as an additional rain gage deployed in or near the study basins. This rain gage was

an automated tipping type rain bucket connected to a datalogger. Precipitation chemistry
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data for all the eleven ions discussed earlier is routinely collected by the National Park

Service at the Mammoth Cave weather station.

One evaporation pan was deployed at the Mammoth Cave visitor center's weather

station. This evaporation pan was placed out in the open, and served as the "standard" for

the Mammoth Cave region. Evapotranspiration was calculated by subtracting stream

discharge leaving the basin from the total input because of precipitation.

Data obtained from continuous-reading probes attached to dataloggers drift over

time. To account for this drift, probes must be occasionally cleaned and recalibrated and

the data recorded on the datalogger must be adjusted accordingly. To account for the

drift in the various data, I assumed that the drift was linear. Site visits and probe

calibration and cleaning were conducted on average every two weeks. Data obtained

from the datalogger between each of these two week segments was adjusted separately.

For every data segment (approximately on a two-week average), I determined what the

datalogger read at the beginning point (DL0) and at the end point (DLi), and what the

actual reading was according to the calibrated field probes brought on site (Po for the

beginning point of each line segment, and Pi for each line segment ending point). The

line segments span a given time increment. The time of the beginning point of each line

segment is represented by Xo, and the end point is Xi. Therefore, each line segment is Xi

- Xo time interval long. Each data point, at time X, was adjusted using the formula listed

in equation 9.
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y = [[(DLo - Po) - (DL, P,)]/(X, - Xo)] * (X - Xo) + (Po - DL0) (9)

The "y" in the above equation is the amount to add to the respective DL reading to correct
the datalogger values in order to correct and better represent the actual/true values.

This equation was applied to all the data obtained from the datalogger in order to

adjust the data to the proper field calibration data and to account for normal linear drift of

the pH and specific conductance probes.



PART VI RESULTS

Morphology

As mentioned earlier (Figure 12), the two study basins have different stream profiles.

The profile of the Dry Branch basin is less concave than First Creek basin's profile. I

conclude that the greater concavity of the First Creek basin is a direct result of surface

erosion operating preferentially within the First Creek basin compared with the Dry

Branch basin. Water flowing on the surface within a non-carbonate karst watershed

causes erosion and the lowering of the basin, which in turn would create a more concave

stream profile. Conversely, water flowing in subsurface karst conduits would not lower

the basin's surface as much as enlarge the subsurface conduits. Under this scenario, one

would expect to have the surface stream profiles of non-karst basins more concave than

the surface stream profile of a similar karst basin. This conclusion is reinforced by

similar observations and measurements that I have conducted in within different basins

within the United States and Canada (not associated with this study). Therefore, the

difference in stream profiles between these two basins is a karst phenomenon.

Precipitation and Precipitation Chemistry

Precipitation data were obtained from Bowling Green, Kentucky (maintained by

Western Kentucky University and the Kentucky Climate Center), Nolin Reservoir

(maintained by the United States Corps of Engineers, Mammoth Cave National Park

(maintained by the National Park Service), and the authors' automated rain gage located

at the Temple Hill Cemetery (Figures 22 and 23) in the First Creek Basin. During the

course of this one-year study, each of these stations experienced appreciable differences

80
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(Table 17). Therefore, during many hydro logic studies within the region, the use of non-

site specific precipitation data may be inappropriate. However, it was found that if data

are averaged from stations located in different directions/sides from the study area, then

close approximations of the actual site-specific averages may be obtained.

Table 17 Precipitation values for the Mammoth Cave area [Sources: Kentucky Climate
Center for the Mammoth Cave data, while the Temple Hill data is from my
study]

Mammoth
Cave Normal
Precipitation
(mm)

Mammoth
Cave
Precipitation
10/01-9/02
(mm)
Temple Hill
Precipitation
10/01-9/02
(mm)
Temple Hill
Storm Events
( > 25.4 mm
(1 inch)/day)
Temple Hill
# Days of
Precipitation

Oct

124

98

107

1

7

Nov

112

110

162

2

9

Dec

138

115

101

1

11

Jan

109

78

86

0

12

Feb

106

36

30

0

10

Mar

119

176

184

2

14

Apr

106

107

114

2

13

May

102

119

57

1

14

Jun

86

83

96

1

11

Jul

65

90

127

2

10

Aug

107

86

109

0

14

Sep

110

225

225

2

11

Total

1284

X=107
(mm/mn.)

1323

x=no.3
(mm/mn.)

1398

X= 116.5
(mm/mn.)
14

X=1.17
(events/mn.)
136
(37.3% of
the vear)

As the above table indicates, Temple Hill (First Creek) received more

precipitation than the Mammoth Cave Station. This table also shows that the period from

October 1, 2001 to September 30, 2002 did not closely match the average annual

precipitation values. Precipitation within the study basins in Autumn began and ended

drier than average, but the study basins were wetter than average within the Winter and

Spring. Precipitation within the study basins in March was wetter than average as it was
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in July. In addition, there was an atypical storm the very last part of the study period (the

end of September 2002) that produced the highest amount of precipitation (129 mm in a

period of two days) for the study year. The annual precipitation graph for the average

year appears to be much flatter than what occurred in the 2001-2002 hydrologic year.
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70

s.
c
o

I 40
a.

a. 30

k
45

Temple Hill Precipitiation

1 u
135 180 225

Days (from 10/01/01)

270 315 360

Figure 20 Daily precipitation for the Temple Hill station

There were three distinct and noticeable precipitation peaks: one in November, one in

March, and the last in September. Troughs in the precipitation graph existed in late

January and May. Overall, precipitation at Mammoth Cave (for an average year and this

particular year) does not experience dramatic seasonal trends.
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Figure 23 Monthly precipitation for the Temple Hill station

The region's precipitation chemistry was obtained from the nearby Mammoth

Cave National Park wet deposition monitoring station located adjacent to the southwest

portion of the park near Pig, Kentucky. These values were utilized along with the area of

the two study basins to estimate the total annual chemical input into these basins from

precipitation (Table 18).
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Table 18 Precipitation chemistry- total input from wet deposition

Ammonium

Calcium

Chloride

Magnesium

Nitrate

Potassium

Sodium

Sulfate

Dry Branch (grams)

2,508,927.7

1,707,599.3

2,786,144.5

745,895.6

8,109,554.3

113,227.0

619,096.1

11,930,045.8

First Creek (grams)

2,400,588.1

1,633,862.3

2,665,834.2

713,686.6

7,759,370.5

108,337.7

592,362.5

11,414,886.9

Discharge

Discharge values were obtained by using a stream gage during several different

stream levels (stage). From this information, I used power functions to develop stream

rating curves (Figures 24, 25 and 26). I then applied the stream rating curves to the stage

data recorded on the automated dataloggers (Figure 27). The discharge rating curve for

Dry Branch fit well for all data points gathered; however a power function for the First

Creek data fit well for only the lower and moderate flow values. The two higher flow

data points ranged well above the rating curve. The meaning is that for the higher flows

within First Creek, the data represented in this report is slightly underrepresented.
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Figure 27 Discharge for the two study basins (since the two basins are not identical
in size, for comparison purposes, the discharged data for Dry Branch were
normalized)
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For a graphical comparison of the discharge between these two basins (Figure

27), the two data sets need to be adjusted (normalized) so that the actual trends within the

two basins may be accurately compared. Since the Dry Branch basin is larger than the

First Creek basin and discharge is related to basin size, the Dry Branch discharge data

was normalized in Figure 27 by adjusting all data points down by the equivalent amount

(the percent that the Dry Branch basin is larger than the First Creek basin- or four percent

smaller).

Evapotranspiration

Likens and Bormann (1995) found that evapotranspiration significantly regulates

and balances chemical and nutrient loss within a basin. This control is due to higher

quantities of water loss via evapotranspiration that can result in a lower quantity of water

available for stream flow, which is the primary avenue for chemical and nutrient transport

and subsequent loss from a particular watershed. Conversely, low evapotranspiration

levels allow higher stream flows, which can in turn transport larger amounts of nutrients

and other dissolved substances out of the basin. Therefore, evapotranspiration plays a

significant role in geochemical and nutrient dynamics. Furthermore, where evaporation

is highest during the hot and sunny summer months (Figure 28) coincides with when

transpiration is highest (attributed in part to higher temperatures and a full compliment of

foliage on vegetation). Although the Mammoth Cave region does not experience a

dramatic seasonal trend in precipitation, the available water within a basin may be more

prominently pronounced due to the very seasonal nature of evapotranspiration.



As stated earlier, evapotranspiration is a dominant component of the hydro logic

cycle. However, evapotranspiration is difficult to accurately measure. For this study,

total evapotranspiration was estimated by subtracting the total annual stream discharge

(the only other significant output) from the total annual precipitation (input). To partition

evapotranspiration, the author placed an evaporation pan at the Mammoth Cave weather

station. The placement of a pressure transducer and a datalogger would enable the

evaporation component to be subtracted from the evapotranspiration sum, thereby leaving

only the estimated transpiration total. However, Mammoth Cave National Park staff had

problems with the transducer and datalogger that was planned to be deployed; therefore,

it was never used. The author recorded evaporation from this pan manually. The

infrequent nature of the site visits prevented obtaining enough usable data to make

accurate determinations for evaporation for the different months and seasons throughout

the year. Therefore, the author calculated an evaporation formula (Figure 29) using

evaporation data from nearby Nolin River Lake (near the First Creek project site).

However, not having equivalent transpiration values for this same time period makes the

use of any evapotranspiration values for any increment less than an annual total

unattainable.
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Figure 28 Evaporation from Nolin River Lake (measured by the U.S. Army Corps of
Engineers)

The evaporation pan that was deployed at the Mammoth Cave National Park

weather station evaporated a total of 1,049mm from a total of 1,323mm of precipitation.

Thus, according to these manual readings of this one evaporation pan, the total

evaporation for the study period was 79 percent of the precipitation total. Evaporation

values obtained from evaporation pans typically overestimate the actual evaporation
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experienced within a natural forest system; therefore correction factors are often

employed.

Usually, a more reliable estimate for the actual evapotranspiration may be

obtained using mass balance calculations (Table 19).

Table 19 Evapotranspiration output for the Dry Branch and First Creek basins

Dry
Branch
First Creek

Precipitation
(input)
9,628,100 mJ

9,212,343 mJ

Stream Discharge
(output)
3,487,406 mJ

3,344,448 mJ

Evapotranspiration
(output)
6,140,694 mJ

5,867,895 mJ

Therefore using streamflow calculations, evapotranspiration for the First Creek

and Dry Branch basins during the study period were equal to 64 percent of the total

precipitation input.

Thornthwaite (1948) found that his evaporation calculations from evaporation

pans and obtained from mass balance calculations differed by 23 percent. In this study,

the difference between the calculated combined evaporation and transpiration values

obtained from mass balance calculations and the evaporation values obtained from the

evaporation pan is 19 percent. Using the evaporation values from Nolin River Reservoir,

the estimate evaporation is 63 percent of the total precipitation. However, this value only

includes evaporation from April through October. Although evaporation during the

months November through March is significantly less, the inclusion of these months
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would likely reduce the annual evaporation estimate to some value less than the stated 63

percent. It is also important to note that the Nolin River Reservoir estimate and the

evaporation pan estimate are for evaporation only. Transpiration values are only

included in the mass balance approach. For to this reason and due to the fact that the

mass balance approach is generally more reliable, the estimated evapotranspiration

annual total of 64 percent of the total precipitation will be used for the remainder of this

study.

Water Temperature

Stream temperature was recorded upon each site visit (Table 20 and Figure 29) as

well as every ten minutes via the datalogger.

The water temperature data (Figure 29) shows a noticeable seasonal relationship

and a difference in basins. Water temperature values within First Creek were slightly, but

consistently, lower during the fall and winter compared with water temperature values for

Dry Branch during this same time period. Stream temperature values within both basins

during spring were nearly identical. There was a distinctive difference between the water

temperature values within the two basins in the summer months. The difference in the

water temperatures within these two basins is believed to be the result of the greater

concentration of subsurface flow within Dry Branch, attributable to its higher quantity of

karst. Water flowing in subsurface karst conduits would be moderated compared to its

surface counterparts. Subsurface water would likely get less cool in the winter and less

warm in the summer. This trend would be more noticeable in the summer, due to the
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Table 20 Temperature values obtained from in situ field collection (10/01/01 - 09/30/02)

Month

October

November

December

January

February

March

April

May

June

July

August

September

By Month
First Creek
Mean= 15.2
sd —
min. = 11.7
max. = 18.7
N = 2

Mean= 11.5
sd =
min. = 10.0
max. = 12.9
N = 2
Mean = 8.1
sd =
min. = 7.1
max. = 9.1
N = 2
Mean = 4.9
sd =
min. = 4.9
max. = 4.9
N = 1
Mean = 9.5
sd = 2.9513
min. = 7.6
max. = 12.9
N = 3
Mean = 9.2
sd = 4.8176
min. = 2.1
max. = 12.7
N = 4
Mean= 14.8
sd =
min. = 14.8
max. = 14.8
N = l ,
Mean =17.3
sd =
min. = 15.1
max. = 19.4
N = 2
Mean = 27.2
sd = 2.5803
min. =23.7
max. = 30.2
N = 5
Mean = 27.8
sd =
min. = 27.0
max. = 28.6
N = 2
Mean = 27.9
sd =
min. = 24.9
max. = 30.9
N = 2
Mean = 22.3
sd = 4.9834
min. = 17.7
max. = 31.7
N = 6

Dry Branch
Mean= 14.8
sd =
min. = 13.9
max. = 15.7
N = 2
Mean = 12.3
sd =
min. = 11.7
max. = 12.8
N = 2
Mean =10.8
s d = 1.5840
min. = 8.6
max. = 12.0
N = 4
Mean = 8.9
sd =
min. = 8.9
max. = 8.9
N = 1
Mean = 9.4
sd =
min. = 8.5
max. = 10.3
N = 2
Mean = 9.2
sd = 3.5341
min.= 3.9
max. = 11.5
N = 4
Mean= 14.8
sd =
min. = 14.8
max. = 14.8
N = 1
Mean =15.0
sd =
min. = 13.4
max. = 16.6
N = 2
Mean = 20.2
s d = 1.9591
min. = 18.0
max. = 22.3
N = 5
Mean= 18.9
sd =
min. = 17.8
max. = 19.9
N = 2
Mean= 18.3
sd =
min. = 17.0
max. = 19.5
N = 2
Mean= 18.7
sd = 2.2373
min. = 16.2
max. = 22.1
N = 7

Temperature
Season

First Creek

Fall
Mean= 11.6
sd = 4.0291
Error = 1.6449
95% = 4.2283
99% = 6.6324
mm. = 7.1
max. = 18.7
N = 6

Winter
Mean = 8.8
sd = 3.8628
Error = 1.3657
95% = 3.2295
99% = 4 7797
min. =2.1
max. = 12.9
N = 8

Spring
Mean = 23.1
sd = 6.0429
Error = 2.1365
95% = 5.0521
99% = 7.4773
mm. = 14.8
max. = 30.2
N = 8

Summer
Mean = 24.5
sd = 4 9248
Error = 1.5573
95% = 3.5230
99% = 5.0616
min. = 17.7
max. = 31.7
N = 10

Drv Branch

Fall
Mean= 12.2
sd = 2.1173
Error = 0.7486
95%= 1.7701
99% = 2.6198
min. = 8.6
max. = 15.7
N = 8

Winter
Mean = 9 2
sd = 2 5583
Error = 0.9669
95% = 2.3661
99%= 3.5851
min. = 3.9
max. = 11.5
N = 7

Spring
Mean= 18.3
sd = 3.2360
Error = 1 1441
95%= 2.7054
99% = 4.0041
min. = 13.4

max. = 22.3
N = 8

Summer
Mean= 18.7
s d = 1.8922
Error = 0.5705
95%= 1.2712
9 9 % = 1.8083
min. = 16.2

max. = 22.1
N = 11

Annual
First Creek

Mean= 17.8
sd = 8.4586
Error = 1 4953
95% =3.0497
99%= 4.1034
mm. = 2.1
max. = 31.7
N = 32

Dry Branch

Mean= 15.1
sd = 4.6492
Error = 0 7973
95% = 1 6222
99% = 2.1795
min. = 3 9
max = 22.3
N = 34
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Figure 29 Stream temperature values obtained from in-person field collection

greater difference between summer daytime high temperatures and typical subsurface

temperatures. This temperature difference has a moderating/buffering effect upon

streams flowing through karst versus streams dominated by surface drainage. The

presence of First Creek Lake within the First Creek basin may have affected the observed

water temperature values because of the increased surface area thereby lowering water

temperatures in the winter and increasing them in the summer.
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As one would expect, water temperatures were higher in summer and lower in

winter. Water temperatures in the spring were generally higher than in the fall. These

differences are believed to be the result of air temperature changes due to solar radiation.

Water temperatures were unseasonably warm in June within Dry Branch. The month of

June contained the highest water temperatures within Dry Branch, while the peak for

First Creek was in August. January contained the lowest water temperatures for both

basins. Overall, First Creek experienced higher temperatures than Dry Branch in

summer, but was slight cooler in fall and winter. These differences are believed to be

caused by the moderating effect of the presence of karst.

Specific Conductance

Specific conductance was generally higher within the basin containing the greater

concentration of carbonate rock (Dry Branch). The relationship between the two basins

(Figure 31) remains fairly consistent, with only a little seasonal effect. There is a slight

increase within the Dry Branch basin within the summer months, compared with the First

Creek basin (Table 21). This summer increase may be caused by the lower water

volumes and slower water velocities within the summer months. Slow and near stagnant

water in contact with soluble rocks provides a greater opportunity for the water to

become further saturated. Conversely, a stream during a storm event is dominated just as

much, or more, by direct and fast surface runoff that may or may not have been in contact

with carbonate rock; therefore its opportunity to dissolve carbonate rocks is reduced,

compared with low velocity and low volume groundwater moving slowly across a

carbonate rock interface. Since specific conductance is a measure of the total amount of

i i i r i i
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dissolved matter in solution, one would expect slightly elevated specific conductance

during summer low-flow conditions.

There was a noticeable elevated spike in specific conductance for both basins as

the very end of the sampling period (Figure 30). This spike occurred during a storm

event that occurred at the end of the sampling period. Although it may seem contrary to

the above statements of having higher specific conductance values during low-flow

conditions, this elevated spike in specific conductance during a storm event in late

autumn may have been caused by the flushing of karst water that had been sitting in

groundwater storage. It was the first big storm/flushing event following the summer low

flow conditions. During this storm event, four separate in situ datapoints were obtained

for each basin within only a few hours of each other, thereby explaining why the last four

specific conductance datapoints are almost stacked on top of one another. These four

datapoints in quick secession were obtained during different phases of the storm pulse.

The first was at the initial stages of the storm pulse. The second and third reading was

near the maximum height of the storm pulse, and the last datapoint was obtained after the

water began to subside.
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Table 21 Specific conductance values obtained from in situ field collection
(10/01/2001-09/30/2002)

Month
By Month

First Creek Dry Branch

Specific Coadiictance (SpC)
Season

First Creek Dry Branch
Annual

First Creek Dry Branch
October

November

December

January

February

March

April

May

June

July

August

September

Mean = 176.7
sd =
min.
max.
N = 2

172.6
180.7

Mean = 278.0
sd =
min. = 237.0
max. = 319.0
N = 2

Mean
sd =
min. =
max. =
N = 2

208.3

166.6
250.0

Mean =191.1
sd =
min
max.
N = 3

118.9
244.3

Mean =159.9
sd =
min. =
max. =
N = l

159.9
159 9

Mean =160.3
sd =
min. =
max.

156.5
162.5

Mean =148.0
sd = 23.8525
min. = 128.5
max. = 182.7
N = 4
Mean = 81.5
sd =
min. = 81.5
max. = 81.5
N = l
Mean =158.3
sd =
min. = 145.9
max. = 170.6
N = 2
Mean = 221.5
sd = 53.9583
min. = 148.5
max. = 271.0
N = 5
Mean =170.1
sd =
min. = 160.8
max. = 179.4
N = 2
Mean = 205.0
sd =
min. = 167.0
max. = 243.0
N = 2
Mean = 211.9
sd= 101.0834
min. = 115.8
max. = 386.0
N = 6

Mean = 252.5
sd =
min. = 170 9
max. = 334 0
N = 2
Mean = 256 0
sd = 24.9933
min. =220.0
max. = 267 0
N = 4

Fall
Mean= 191.9
sd = 46.3968
Error = 17 5364
95% = 42.9108
99% = 65.0194
min = 118.9
max. = 250.0

Fall
Mean = 260.6
sd = 52.5898
Error = 18.5933
95% = 43.9671
99% = 65.0727
min. = 170 9
max. = 334.0
N = 8

Mean = 295.0
sd =
min. = 295.0
max. = 295.0
N = l
Mean = 251.0
sd =
min. = 248.0
max. = 254.0
N = 2
Mean = 242.9
sd = 89.9679
mm. = 145.4
max. = 361.0
N = 4

Winter
Mean= 154.1
sd= 17.0132
Error = 6 0151
95%= 14 2237
99% = 21.0515
min. = 128.5
max. = 182 7
N = 8

Winter
Mean = 252.6
sd = 66.4377
Error = 251111
95% = 61 4458
99% = 93.1042
min. = 145 4
max. = 361.0
N = 7

Mean= 124.6
sd =
min. = 124.6
max. = 124.6
N= 1
Mean = 221.3
sd =
min. = 176.6
max. = 266.0
N = 2
Mean = 342.2
sd = 39.5373
min. =296.0
max. = 400.0
N = 5

Spring
Mean= 188.2
sd = 66.1971
Error = 23.4042
95% = 55.3434
99% = 81.9098
mm. = 81.5
max. = 271.0
N = 8

Spring
Mean = 284.8
sd = 92.9296
Error = 32 8556
95%= 77.6928
99% =
114 9876
min. = 124.6
max. = 400 0
N = 8

Mean = 395.5
sd =
min. = 386.0
max. = 405.0
N = 2
Mean = 324.0
sd =
min. = 319.0
max. = 329.0
N = 2
Mean = 484.4
sd= 138.5182
min. = 340.0
max. = 683.0
N = 7

Summer
Mean = 202.1
sd = 79.4337
Error = 25.1191
95% = 56.8247
99%= 81.6405
mm. = 115.8
max. = 386.0
N= 10

Summer
Mean = 439.1
sd= 126.5049
Error = 38 1427
95%= 84.9890
99% =
120.8953
min. = 319.0
max. = 683.0
N= 11

Mean =184.9
sd = 59.5305
Error = 10.3629
95% = 21.1090
99% = 28 3808
min. = 81.5
max. = 386.0
N = 33

Mean = 322.4
sd= 122.1099
Error = 20.9417
95% = 42 6070
99%= 57.2436
min. = 124 6
max. = 683.0
N = 34
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Figure 30 Specific conductance for both Dry Branch and First Creek

For both First Creek and Dry Branch, specific conductance was higher in summer

and lower in winter. Specific conductance was higher in the spring than fall for Dry

Branch but for First Creek it was higher in the fall than in the spring. The highest specific

conductance values for First Creek occurred in June, while for Dry Branch in was in

September. The lowest specific conductance values were in April for both basins.

Specific conductance in the spring was highly variable for both basins. This variability in

the spring is believed to be caused by the sporadic rainfall events that occurred

simultaneously. Although specific conductance within Dry Branch was consistently

higher in Dry Branch than in First Creek, the annual pattern within the two basins
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remained generally the same. There may possibly be a little more of a flattened nature in

First Creek in the winter compared to Dry Branch however the opposite may be true in

the summer. The higher specific conductance values within Dry Branch may be

attributed to the fairly consistent precipitation in the winter in the strictly surface waters

of First Creek that reflect the specific conductance of rainwater, while in Dry Branch,

during low rainfall periods, the higher specific conductance represents water with a

higher ionic strength as a result of the dissolution of carbonate rocks.

Dissolved Stream Chemistry

Hydrogen

The annual H+ ion total for the First Creek basin was 0.515 grams. This value

converts to 7.81 x 10"7 kg/ha. In the Dry Branch basin the annual H+ ion total was 0.279

grams (4.04 x 10~7 kg/ha). While these values are low in comparison to many of the other

ions monitored as part of this study (e.g. Ca2+ at 114.09 kg/Ha, Na+ at 6.01 kg/Ha, or

even Br" at 0.56 kg/Ha), the FT" ion may at times play an important hydrogeochemical

role.

The highest recorded pH values for Dry Branch occurred in the winter, while the

highest recorded pH values for First Creek was in spring (Table 22). The lowest recorded

pH values were recorded in the summer for both Dry Branch and First Creek. In general,

pH values were highly variable during the winter; however for both basins the highest

average pH value of any single month occurred in the winter (Figure 31). The lowest pH

average value for any single month was in September for Dry Branch and in March for
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First Creek. It is believed that these changes and patterns are largely influenced by

rainfall/precipitation events. Overall, pH values are slightly higher in First Creek than

those recorded in Dry Branch, but the difference is slight. The most noticeable

differences occurred in late winter, where Dry Branch appears graphically to be higher

and flatter and not so peaked (trough) as the graph for First Creek. This affect is believed

to be the result of the buffering affect of karst, which is more prevalent within the Dry

Branch basin.
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Table 22 pH values obtained from in situ field collection (10/01 /2001 - 09/30/2002)

Month

October

November

December

January

February

March

April

May

June

July

August

September

By Month

First Creek
Mean = 6.86
sd =
min. = 6.60
max. = 7.11
N = 2
Mean = 6.95
sd =
min. = 6.95
max. = 6.95
N = 1
Mean = 6.85
sd = 0.2255
min. = 6.62
max. = 7.07
N = 3
Mean = 7.66
sd =
min. = 7.66
max. = 7.66
N = l
Mean = 7.02
sd =
min. = 7.02
max. = 7.02
N = l
Mean = 6.63
sd = 0.0971
min. = 6.55
max. = 6.74
N = 3
Mean = 6.85
sd =
min. = 6.85
max. = 6.85
N = l

Mean = 7.15
sd =
min. = 6.91
max. = 7.38
N = 2
Mean = 7.20
sd = 0.1370
min. = 7.05
max. = 7.35
N = 4
Mean = 7.02
sd =
min. = 6.94
max. = 7.09
N = 2
Mean = 7.10
sd =
min. = 7.01
max. = 7.19
N = 2
Mean = 6.70
sd = 0.5002
min. = 6.21
max. = 7.50
N = 6

Dry Branch
Mean = 6.96
sd =
min. = 6.90
max. = 7.01
N = 2
Mean = 7.20
sd =
min. = 7.00
max. = 7.39
N = 2
Mean = 7.11
sd = 0.1706
min. = 6.91
max. = 7.16
N = 4
Mean = 7.72
sd =
min = 7.72
max. = 7.72
N = l
Mean = 7.07
sd =
min. = 7.07
max. = 7.07
N = l
Mean = 6.99
sd = 0.0819
min. = 6.90
max. = 7.06
N = 3
Mean = 7.27
sd =
min. = 7.27
max. = 7.27
N = l

Mean = 7.30
sd =
min. = 7.01
max. = 7.58
N = 2
Mean = 7.05
sd = 0.3187
min. = 6.72
max. = 7.39
N = 4
Mean = 6.96
sd =
min. = 6.82
max. = 7.10
N = 2
Mean = 7.41
sd =
min. = 7.21
max. = 7.60
N = 2
Mean = 6.89
sd = 0.3087
min. = 6.60
max. = 7.39
N = 7

pH
Season

First Creek

Fall
Mean = 6.88
sd = 0.2020
Error = 0.0764
95% = 0.1868
99% = 0.2831
mm. =6.60
max. = 7.11
N = 7

Winter
Mean = 6.92
sd = 0.4536
Error = 0.2028
95% = 0.5632
99% = 0.9337
min. = 6.55
max. = 7.66
N = 5

Spring
Mean = 7.14
sd = 0 2107
Error = 0.0796
95% = 0.1949
99% = 0.2953
min. = 6.85
max. = 7.38
N = 7

Summer
Mean = 6.84
sd = 0.4218
Error = 0.1334
95% = 0.3017
99% = 0.4335
min. = 6.21
max. = 7.50
N=10

Dry Branch

Fall
Mean = 7.09
sd = O.18O8
Error = 0.0639
95% = 0.1511
99% = 0.2237
min. = 6.90
max. = 7.39
N = 8

Winter
Mean = 7 15
sd = 0.3246
Error = 0.1452
95% = 0 4030
99% = 0.6682
min. = 6.90
max. = 7.72
N = 5

Spring
Mean = 7.15
sd = 0.3070
Error = 0.1160
95% = 0.2840
99% = 0.4303
min. = 6 72
max. = 7.58
N = 7

Summer
Mean = 7.00
sd = 0.3321
Error = 0.1001
95% = 0.2231
99% = 0.3173
min. = 6.60
max. = 7.60
N= 11

Annual

First Creek

Mean = 6.93
sd = 0.3448
Error = 0 0640
95%= 0.1312
99% = 0.1770
mm. = 6.21
max. = 7.66
N = 29

Dry Branch

Mean = 7.08
sd = 0.2862
Error = 0.0514
95% = 0.1050
99% = 0.1448
min. = 6.60
max =7 72
N = 31
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Figure 31 Stream pH values obtained from in situ field collection

Dissolved Oxygen

Dissolved oxygen is an important parameter for aquatic biology, and the

differences and similarities in dissolved oxygen between karst and non-karst basins

warrant its discussion. Dissolved oxygen values for the two basins (Table 23 and Figure

32) were highly variable throughout the year, but were similar enough to each other to
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Table 23 Dissolved oxygen values obtained from in situ field collection (10/01/2001 -
09/30/2002

Month

October

November

December

January

February

March

April

May

June

July

August

September

Dissolved Oxygen (DO)
By Month

First Creek
Mean = 5.10
sd =
min. = 5.10
max. = 5.10
N= 1
Mean = 6.75
sd =
min. = 6.75
max. = 6.75
N= 1
Mean = 6.40
sd= ,
min = 6.40
max. = 6.40
N = l
Mean =11.04
sd =
min. = 11.04
max. = 11.04
N = l
Mean =
sd =
min. =
max. =
N = 0
Mean = 7.71
sd =
min. = 7.71
max. = 7.71
N = l
Mean =
sd =
min. =
max. =
N = 0
Mean = 8.99
sd =
min. = 8.99
max. = 8.99
N = l
Mean =
sd =
min. =
max. =
N = 0
Mean =
sd =
min. =
max. =
N = 0
Mean = 6.065
sd =
min. = 4.78
max. = 7.35
N = 2
Mean = 6.815
sd= 1.2195
min. =5.99
max. = 8.61
N = 4

Dry Branch
Mean = 5.90
sd =
min. = 5.90
max. = 5.90
N= 1
Mean = 6.27
sd =
min. = 6.27
max. = 6.27
N= 1
Mean = 7.27
sd =
min. = 7.22
max. = 7.32
N = 2
Mean= 11.51
sd =
min. = 11.51
max. = 11.51
N= 1
Mean =
sd =
min. =
max. =
N = 0
Mean = 7.03
sd =
min. = 7.03
max. = 7.03
N= 1
Mean =
sd =
min. =
max. =
N = 0
Mean = 91.6
sd =
min. = 91.6
max. = 91.6
N = 1
Mean =
sd =
min. =
max. =
N = 0
Mean =
sd =
min. =
max. =
N = 0
Mean = 8.66
sd =
min. = 6.60
max. = 10.72
N = 2
Mean = 7.67
sd = 2.2062
min. = 6.24
max. = 10.96
N = 4

Season
First Creek

Fall
Mean = 6.0833
sd. = 0.8694
Error = 0.5019
95% = 2.1552
99% = 4.9094
min. = 5.10
max. = 6.75
N = 3

Winter
Mean = 9.375
sd =
Error =
95% =
99% =
min. = 7 71
max. = U .04
N = 2

Spring
Mean = 8.99
sd =
Error =
95% =
99% =
min. = 8.99
max. = 8.99
N = l

Summer
Mean = 6.565
sd= 1.3049
Error = 0.527
95%= 1.3694
99% = 2.1480
min. =4.78
max. = 8.61
N = 6

Dry Branch

Fall
Mean = 6.68
sd = 0.7018
Error = 0.3509
95%= 1.1165
99% = 2.0461
mm. = 5.90
max = 7 32
N = 4

Winter
Mean = 9.27
sd =
Error =
95% =
99% =
min. = 7.03
max. = 11.51
N = 2

Spring
Mean = 9.16
sd =
Error =
95% =
99% =
min. = 9.16
max. = 9.16
N= 1

Summer
Mean = 7.43
sd= 1.8701
Error = 0.7635
95%= 1.9626
99% = 3.0785
min. = 5.99
max. = 10. 72
N = 6

Annual
First Creek

Mean = 7.115
sd= 1.7661
Error = 0.5098
95%= 1.1221
99%= 1 5835
min. =4.78
max. = 11.04
N = 12

Dry Branch

Mean = 7.6146
sd= 1.8391
Error = 0 5101
95%= 1.1114
99%= 1.5582
mm. = 5.9
max. = 11.51
N = 13

i i i r i T
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Figure 32 Dissolved oxygen values obtained from in situ field collection

conclude that if the presence of carbonate karst had any effect upon dissolved oxygen, it

was too subtle to observe.

Calcium

Calcium shows similar trends within the two basins, except for the higher

concentrations within the Dry Branch basin (Figure 33). The cause of this difference is
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believed to be the higher quantity of exposed carbonate rocks within the Dry Branch

basin.

There does not appear to be a noticeable seasonal trend, beyond a higher range of

variability during the summer.
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Figure 33 Calcium ion concentrations from First Creek and Dry Branch
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Figure 34 Calcium concentrations from precipitation at Pig, Kentucky

Magnesium

The magnesium concentrations trends for the two basins are nearly identical,

except for generally higher values for the Dry Branch basin (Figure 35). The explanation

may be the higher quantity of exposed carbonate rocks within the Dry Branch basin, the

primary source of both calcium and magnesium in this setting. An interesting trend is

that the differences between the magnesium concentrations within the two basins appear

to be more pronounced in the peaks rather than the troughs. These may be affected by

storm events versus the more common base-flow conditions.
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Figure 35 Magnesium ion concentrations from First Creek and Dry Branch

Bicarbonate

For the purposes of this study, the concentration of bicarbonate is assumed to be

equal to alkalinity. The alkalinity values for Dry Branch were consistently higher than

those within First Creek (Figure 36). The general pattern remained the same, with fall

and summer highs and late winter/early spring lows. The alkalinity values are probably

the result of carbonate dissolution. The winter/spring lows may be attributed to the

increased rainfall and discharge during this period. It is believed that the high discharge
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Figure 36 Alkalinity from First Creek and Dry Branch

values contain a higher percentage of overland flow with short residence times, thus

lowering the relative concentration of dissolved carbonate species such as bicarbonate.

During lower base-flow conditions, the relative concentration of carbonate dissolution

would be higher.

The atmospheric monitoring station located in Pig, Kentucky was not equipped to

record alkalinity of the precipitation. Therefore, direct comparisons cannot be made.
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The Pig Station did record precipitation acidity (Figure 37). The study of the

precipitation acidity data did not indicate a seasonal trend as significant as that of

alkalinity of the streamwater, presumably due to the lack of contact with carbonate rocks.

Acidity (as CaCO,) of Precipitation from Pig, KY

180

Days (since 10/01/01)

360

Figure 37 Acidity of precipitation from Pig, Kentucky

Sodium

The fairly sporadic concentrations of sodium within both the First Creek and Dry

Branch basins generally match each other. The main exception was that the sodium

concentration within Dry Branch was consistently higher than the corresponding sodium

concentrations within First Creek (Figure 38). These trends and the nature of sodium

within natural waters leads me to the assumption that the dominate source of sodium
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within these two basins is the product of weathering of non-carbonate bedrock such as

shale or sandstone (Hem, 1989). Anthropomorphic sources, such as road salt used in the

winter for de-icing or during certain oil well operations (Hem, 1989), may also be an

occasional factor within the Dry Branch basin, but the author does not believe that they

were a significant factor during this study, because most of the observed peaks and

troughs, to varying degrees, occurred within both basins simultaneously. Since there are

no significant roads or human habitation within the First Creek basin, one would not

expect anthropomorphic perturbations that may occur within Dry Branch to be

represented within the First Creek basin, unless the perturbations were from the

atmosphere. The atmosphere generally is not a significant source of sodium (Hem,

1989).
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Figure 38 Sodium ion concentrations from First Creek and Dry Branch

Potassium

Potassium concentrations within the First Creek and Dry Branch basins appear to

behave in many of the same ways as do the sodium concentrations. However, there

appears to be a difference in the seasonal trend (Figure 39). Unlike the trend in sodium

concentrations for the First Creek and Dry Branch basins, which shows a slight increase

during the spring and summer months, graphically the trend for potassium appears to

experience a trough, a seasonal low, in winter.
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Potassium concentrations in the two basins are similar, except for a slight

depression of potassium concentrations in the First Creek Basin during the spring and

summer. However, this trend is not consistent, whereas the trough and spike in late

spring and early summer are nearly identical. I infer that the primary sources of

potassium within the First Creek and Dry Branch basins are a combination of the

atmosphere and the weathering of surface bedrock such as shale and sandstone.
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Chloride

Chloride concentrations follow similar patterns within both the First Creek and

Dry Branch basins; however, concentrations are consistently higher within Dry Branch

(Figure 40). The reason for this difference is possibly the result of weathering

byproducts of a geological formation (such as a sandstone) containing more chlorine

within Dry Branch basin than in the First Creek basin. Since chloride is not readily

adsorbed and often not reactive with other chemicals and compounds (Hem, 1989), it

would therefore suggest that the differences are either due to geological differences

within the two basins or different atmospheric deposition characteristics.
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Figure 40 Chloride ion concentrations in First Creek and Dry Branch

Anthropomorphic causes, such as the winter application of salt on roadways for

de-icing, are also a potential source of chloride in stream water as are brines and other

associated products from oil well operations. Comparison with chloride concentrations

found in rainwater from the nearby atmospheric monitoring station in Pig, Kentucky

(Figure 41) indicates that the noticeable spike in chloride concentrations found in Dry

Branch on approximately day 20 is derived from an atmospheric source. The cause of

this spike may have been a localized storm that did not significantly affect the First Creek
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basin. There appeared to be no other clearly observed correlation between the stream

water concentrations and the concentrations recorded from precipitation.

Chloride Concentrations in Precipitation from Pig, KY

180

Days (since 10/01/01)

270

Figure 41 Chloride concentrations from precipitation from Pig, Kentucky

Lithium

Dry Branch experienced more dynamic lithium concentrations than First Creek

(Figure 42). Dry Branch was the only site that experienced two dramatic peaks (relative

to the majority of the values throughout the year), one in early fall and the other in early

spring. Besides these two noticeable dramatic peaks, there were five other peaks: both

basins experienced a moderate peak in early summer, the Dry Branch basin had another
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moderate peak in late summer, while First Creek's other moderate peaks (in early spring

and early fall) corresponded with both of Dry Branch's large peaks. The lithium peak in

Dry Branch in late summer was the only peak that was not represented at all in the First

Creek basin. It is important to note that while graphically these peaks are dramatic; they

still represent small quantities of lithium concentrations.
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Figure 42 Lithium ion concentrations within Dry Branch and First Creek

Shales are known to contain a moderate amount of lithium (Horn and Adams,

1966). The Dry Branch basin contains more shale than does First Creek. Therefore the

source of the lithium for these two basins may be the various shales. However, the
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several peaks separated by zero lithium concentrations do not appear to be consistent

with typical weathering patterns. It is notable that bromide concentrations experienced a

similar pattern; however not all the bromide peaks corresponded with the lithium peaks.

It is important to remember that although the lithium spikes depicted in Figure 42 are

quite noticeable they still represent very small concentrations.

Bromide

Due to the nearly identical trends and concentration levels between the two basins

(Figure 43), it is assumed that the bromide source is precipitation. However, since the

nearby atmospheric monitoring station located in Pig, Kentucky was not set up to record

bromide concentrations, I was unable to confirm this assumption. An atmospheric source

appears consistent with other studies (Hem, 1989). The two spikes in the graph, above a

zero background level, occurred in mid-winter and late summer.
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Figure 43 Bromide ion concentrations within Dry Branch and First Creek

Fluoride

Although the fluoride concentrations from the two basins (Figure 44) are low, the

primary seasonal trend demonstrated on the graph indicates a slight increase in fluoride

concentrations during the summer months.

Hem (1989) indicates that sedimentary rocks are a primary source of dissolved

fluoride in streams. However, since the geology of the two basins is different and

presumably the atmospheric inputs similar, everything else being equal, it is logical to
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conclude that if the fluoride concentrations in the two basins are similar, they would be

due to atmospheric inputs. The atmospheric monitoring station located in Pig, Kentucky

was not set up to record fluoride concentrations during this time period; therefore I am

unable to confirm this assumption. However, nothing was found in the literature to

conclude that the atmosphere can be a greater source of fluoride than the weathering of

bedrock; therefore, I conclude that the primary source of fluoride ions within Dry Branch

and First Creek is from bedrock weathering and that the differences in geology between

the two basins are insignificant with respect to being a source for fluoride.
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Sulfate

Likens and Bormann (1995) found that sulfate concentrations reached their annual

low in late winter within the Hubbard Brook basin in New England. However, these

trends are nearly opposite from the observed values within both the First Creek and Dry

Branch basins. Late fall and early winter was the annual peak for sulfate for both the Dry

Branch and First Creek basins (Figure 45). Sulfate concentrations within Dry Branch

experienced many peaks and troughs, but generally remained fairly consistent throughout

the year (at approximately 12 mg/L).
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Sulfate concentrations for the First Creek basin matched closely the trends

observed in the Dry Branch basin during the fall and winter, but declined and showed

different individual trends throughout most of the spring and summer. The timing of

these differences corresponds well with the timing of the basin's biologic activities. If

these differences are the result of biologic processes, then karst's influences on sulfate

would be similar to its influence upon both nitrate and phosphate- all three being

important biologic nutrients.

Sulfate Concentrations in Precipitation from Pig, KY

\

90 180

Days (since 10/01/01)

270

Figure 46 Sulfate ion concentrations from precipitation at Pig, Kentucky

While the presence and/or absence of karst within a basin may affect the relative

concentration of dissolved sulfate concentration within streams, the sulfate concentrations
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within precipitation (Figure 46) indicates that atmospheric sources highly affect and/or

drive the general patterns of sulfate input into the two study basins.

Phosphate

With the exception of small detections in the Dry Branch basin within the fall,

phosphate concentrations within both basins were zero (Figure 47). The spikes (still very

low concentrations) in phosphate within the Dry Branch basin for the fall are either the

result of natural processes or due to anthropomorphic sources. Since phosphorus is a

minor but widespread constituent of several rock types within these basins (and therefore

a byproduct of weathering) and is an important but limited nutrient for plant growth, the

absence of phosphate in both basins through most of the year may be explained by

biologic retention and utilization within the basins. Natural causes of the fall spikes

could be perhaps due to the bypassing of the surface vegetation by the filling and routing

of early season water through subsurface karst conduits (also discussed under the nitrate

section). There is a small population of people living within the Dry Branch basin.

Although human sewage can be a source of phosphorus (Hem, 1989), if it were the

source of the phosphate concentration observed within Dry Branch during the autumn, it

is logical to conclude that this sewage leakage would occur throughout the year.

Comparison with other non-populated karst basins in the region would be helpful in

deciphering the observed phosphate concentrations in the Dry Branch basin. Since there

were only two detected phosphate values, and that these two values still represents very

low concentrations, there is possibility that these two points are in error.
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Figure 47 Phosphate ion concentrations from First Creek and Dry Branch

Ammonium

With two exceptions, the ammonium concentrations within the First Creek and

Dry Branch basins are similar (Figure 48), leading the author to assume that the dominant

source is atmospheric deposition. There does appear to be a slight increase in ammonium

concentrations in the spring and summer. There are two noticeable spikes in the

ammonium concentrations in the First Creek basin, one occurring in early fall and
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Figure 48 Ammonium ion concentrations from First Creek and Dry Branch

the other in early spring. It is possible that these spikes were the result of an unnatural

pollution event that occurred in the First Creek basin; however the nature and source of

this potential pollution event is unknown.

The atmosphere is a typical source of ammonium, often as a result of human-

induced pollution or disturbances (Hem, 1989). Atmospheric sources often enter

watersheds via precipitation (Figure 49). Other potential anthropomorphic sources of

ammonium include artificial fertilizers from home, yards and gardens.
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Ammonium Concentrations in Precipitation from Pig, KY
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Figure 49 Ammonium ion concentrations within precipitation at Pig, Kentucky

Atmospheric sources may explain the similar trends observed throughout the year,

but it does not adequately explain both peaks in the First Creek ammonium

concentrations. The noticeable ammonium spike that occurred within the precipitation

near day 180 corresponds well with the noticeable ammonium concentration spike within

the First Creek water samples. However the even higher spike in ammonium

concentration within precipitation that occurred near day 90 is nearly unnoticeable within

either the First Creek or Dry Branch water samples. In addition, the noticeable water

chemistry spike in ammonium that occurred at the very start of the sampling period

(approximately day ten) does not correlate well with an atmospheric source, as indicated

from the precipitation samples obtained from Pig, Kentucky. It is interesting to note that
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timing of the spikes and troughs within the ammonium stream chemistry data matched

very well. It is also important to note that although the First Creek spikes in Figure 48

appear dramatic relative to the rest of the data, the concentrations that these spikes

represent are still relatively low concentrations and the spikes may be nothing more than

random fluctuations.

Nitrite

Nitrite concentrations within Dry Branch basin were zero through the period of

the study. During most of this period the nitrite concentrations were zero for the First

Creek basin as well. However, during the summer there were three noticeable spikes of

nitrite concentrations (Figure 50) that do not correspond well with any other measured

parameter or observed trend. The presence of nitrite in streams is often associated with

wastewater or pollution sources. However, the First Creek basin is entirely within the

boundaries of Mammoth Cave National Park and is undeveloped and has no human

occupation. Therefore, the causes or sources of these summer spikes are unknown. The

presence of the summer spikes of nitrite within First Creek may be due to redox

processes caused by microbiologic activity within First Creek Lake, located directly

upstream of the sampling site. It is important to note that while these summer spikes are

noticeable compared with the rest of the dataset, the concentrations represented are

considered low.
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Figure 50 Nitrite ion concentrations from First Creek and Dry Branch

Nitrate

The nitrate concentrations within the First Creek and Dry Branch basins showed

some interesting trends (Figure 51). With the exception of one storm event in later

summer, winter was the only time that concentrations within the two basins were similar.

Throughout the rest of the year, nitrate concentrations were consistently higher in the Dry

Branch basin. The higher values within Dry Branch may be the result of the individual



127

geologic characteristics of the basin, or it may be due to the presence of a few homesites,

oil wells and roads within the basin thereby increasing the potential for anthropomorphic

Nitrate (NO ")
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Figure 51 Nitrate ion concentrations from First Creek and Dry Branch

sources of nitrate. Although the values of nitrate are higher in the Dry Branch basin, the

general trend in concentrations within the two basins was similar during the spring and

summer. However, during the fall the Dry Branch basin experienced a nitrate peak while

nitrate concentrations within the First Creek basin showed a trough (nearly a record low

for the year). Likens and Bormann (1995) and Hutchinson (1957) found nitrate

concentrations in New England peaking in the winter when biologic activity decreases
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and nitrification processes at their peak. However, the opposite trends appear to be

operating within the Dry Branch basin. The higher nitrate concentrations in the spring

and summer within the Dry Branch basins may be due to potentially higher nitrate

availability for vegetation/biologic processes within the First Creek basin compared with

the Dry Branch basin. Since a higher percentage of water within the Dry Branch basin

flows through subsurface karst conduits, compared with the First Creek basin, then this

water presumably is less available for uptake by surface vegetation. If true, then nitrate

ions within this water would be used and stored preferentially within the First Creek

basin. Therefore, a higher percentage of nitrate ions within the Dry Branch basin would

be flushed out of the basin within the stream while a higher percentage of nitrate ions

within the First Creek basin would be retained within biologic reservoirs. If this is the

case, then this difference would be negligible within the winter when biologic activities

and processes are dormant. This trend was indeed observed within the First Creek and

Dry Branch basins. It could also partly explain the reason for the early fall reversal (a

peak in the Dry Branch nitrate levels and a trough in the First Creek nitrate levels).

The first fall rains after a summer dry period often bring in an increase in nitrate

levels from precipitation (Likens and Bormann, 1995). The nitrate levels within this

precipitation (Figure 50) would be quickly adsorbed by the surface vegetation and soils

within the First Creek basin (the soils and surface biomass is a large reservoir of nitrogen

(Likens and Bormann, 1995). However, these first rains within the Dry Branch basin

flush some stored nitrate in the soils, but quickly pass through the dry open subsurface
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Nitrate Concentrations in Precipitation from Pig, KY
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Figure 52 Nitrate concentrations from precipitation from Pig, Kentucky

karst conduits, thus bypassing much of the basin's surface vegetation. Further rains

saturate and fill these small karst conduits sufficiently, whereas further precipitation runs

off through both surface and subsurface flow route. However, this scenario would only

partly explain the observed values.

There does not appear to be any clear and direct relationship between the nitrate

concentrations observed in precipitation (Figure 52) to that of nitrate concentrations in

either First Creek or Dry Branch (Figure 51).



130

It is also interesting to note that with the exception of winter, the timing of many

of the peaks in nitrate concentrations within Dry Branch corresponds with troughs within

First Creek, and vice versa. Since the precipitation inputs do not appear to be driving this

pattern, and nitrate levels are often heavily influenced by biologic affects, it leads the

author to conclude that these seasonal patterns and variations may be the result of within

basin biologic processes. The similarities between the two basins during the winter low

point would also support this conclusion, since it coincides with the biologic dormant

period.

The increased concentrations of nitrate within Dry Branch during the spring could

also be the result of anthropomorphic sources, such as fertilizer run off. Allen and

Kramer (1972) demonstrated that there is a significant increase in nitrate concentrations

as a result of runoff from forest clearcuts, crops and agricultural lands. However, if

anthropomorphic sources were the significant cause of the increased nitrate levels within

Dry Branch, it appears more likely that these higher values would be tied to precipitation

and storm events, rather than occurring predominately in the spring. Therefore, although

currently unknown, the most likely cause is natural biologic or physical processes. In

addition, the apparent opposing trend between the two basins (peaks in one basin

corresponding with troughs in the other, etc.) is also unknown. However I also conclude

that the opposing nature of these peaks and troughs may also be primarily caused by a

combination of basin morphology and biologic processes. Biologic processes affecting

this trend would likely involve vegetation, soil and aquatic biota within First Creek Lake.
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Morphology, such as the presence of karstic subsurface hydro logic pathways, is another

potential factor.

In order to better explain the increase in nitrate concentration within Dry Branch,

the following potential scenarios are listed and individually discussed:

Scenario 1 - Summer decrease of nitrate within First Creek
la- Denitrogenization
lb- Nitrogen sink in basin

lbl- First Creek Lake
Ib2- Pedosphere/bio sphere

Scenario 2- Summer increase of nitrate within Dry Branch
2a- Atmospheric inputs
2b- Localized anthropomorphic inputs

2bl- Oil wells
2b2- Septic systems
2b3- Homes
2b4- Agriculture
2b5- Roads

2c- Biosphere production
2b- Release from basin reservoirs

2bl- Biosphere release
2b2- Bedrock weathering

Scenario la, denitrogenization, occurs primarily within anaerobic conditions, such as in

some wetland soils or within certain lake bottoms. However, First Creek Lake was so

shallow and reduced within the summer that significant anaerobic conditions seem

unlikely. Similarly, ammonification (scenario lbl) within First Creek Lake also seems

unlikely, for some of the same reasons, but also due to ammonification converts nitrate

into ammonium. Water samples taken both upstream and downstream of First Creek

Lake on May 11, 2002 indicated that ammonium concentrations actually went down as a
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result of the presence of First Creek Lake (went from 0.1617 mg/L and 2.2019 mg/L

upstream of First Creek Lake to 0.0 mg/L downstream of the Lake). Scenario Ib2,

biological causes, does at first seem like a likely cause of the summer increase in nitrate

concentrations within Dry Branch relative to First Creek. As indicated earlier, Likens

and Bormann (1995) and Hutchinson (1957) found nitrate concentrations in New

England peaked in the winter when biologic activity decreases and nitrification processes

are at their peak. However, the opposite trends appear to be operating within the Dry

Branch basin. Water samples taken on May 11, 2002 both upstream and downstream of

First Creek Lake indicated that the Lake may have indeed caused a decrease in nitrate

concentrations in First Creek. Nitrate concentrations on this date for the two streams

entering First Creek Lake were 0.6701 mg/L and 0.9828 mg/L. Nitrate concentration in

First Creek downstream of the Lake was 0.1396 mg/L. While nitrate concentrations may

have been reduced due to biologic activity within First Creek Lake, this alone cannot

explain the elevated nitrate concentrations found in Dry Branch, since on this same date

nitrate concentration within Dry Branch was 4.7364 mg/L. It appears that other factors

other than the presence of First Creek Lake are the dominant causes of the summer

increases in nitrate. Under this scenario, the increased biologic activity within the

summer decreases the nitrate concentrations within First Creek; however, since much of

Dry Branch is flowing in the subsurface, karst conduits, the nitrate ions within Dry

Branch would be less accessible for biologic uptake and flushed out of the basin within

the stream. If this was the sole cause of the summer increase in nitrate concentrations,

then one would expect a similar trend in the other ions that form essential plant nutrients,

such as phosphorus and potassium. There is a similar summer increase within Dry
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Branch for these nutrients. However, there is also a similar summer increase in many of

the other ions studied as part of this research project, including ions such as sodium

which is not often absorbed by vegetation. I therefore conclude that the principal cause

must be other than biologic.

Instead of a decrease in nitrate concentrations within First Creek, the second

scenario (2) involves an increase in nitrate concentrations within Dry Branch. Scenario

2a involves atmospheric inputs. Looking at precipitation chemistry data from Pig,

Kentucky (Figure 50) it does not appear that scenario 2a is a viable cause of the summer

increase in nitrate concentrations within Dry Branch. Scenarios 2bl would necessitate an

oil spill or other episodic event. While there have been oil spills within the Dry Branch

basin before, there is no indication of spills during the course of this study. In addition,

many other ions not commonly associated with oil wells also were observed to have

similar summer increases in concentration. Spills from oil wells would likely contribute

additional sodium, chloride and sulfide ions (May, 2004). Similarly, if the source of

nitrate were from chronic oil well spills, then nitrate concentrations would more likely be

linked closely to precipitation, which it is not.

The same precipitation event correlation would also apply to scenario 2b3, 2b4

and 2b5. If the source of nitrate were from septic tanks/leach fields, then the data would

likely show an increase in the concentration of phosphate ions, which it does not.

Scenario 2b4, agriculture, would also be likely correlated closely with precipitation

events, and would likely be confined to nutrients commonly found in fertilizer (such as
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phosphate), not the wide variety of ions, such as sodium, potassium, magnesium,

calcium, chloride, nitrate and sulfate, which exhibit summer increases in concentration.

Scenario 2b5, roads, would more likely be confined to sodium and chloride within the

winter months as a road de-icer.

If the source of nitrate was as described by scenario 2c, biosphere production,

again, one would expect it to be limited to the various nitrogen species and other ions

typically produced by biologic processes, not the wide variety of ions depicted by the

data. Similarly, if the nitrate source was as described by scenario 2b 1, biological release

(such as in a fire or other disturbance to the vegetation), then the trend would likely be

confined to the ions typically found in organic matter, not the wide variety of ions

depicted by the data. In addition, no major disturbance such as fire occurred within the

Dry Branch basin during the course of this study. As indicated earlier, this increase in

ion concentration during the summer occurred with the majority of the ions studied as

part of this research. The nitrate source must be broad-based as possible, and not limited

to single episodic events or to any one ionic reservoir. The nitrate source would likely

involve the source of most of the ions in solution.

This leaves the last scenario, 2b2 (bedrock weathering) as the most likely source

of nitrate. If an explanation for an increase in weathering within the Dry Branch basin,

compared with the First Creek basin, could be found then this scenario would match the

data, since all the ions within this observed trend are weathering byproducts. However,

the only situation that was observed that would increase the relative weathering within
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Dry Branch compared to First Creek is stream discharge. Stream discharge was generally

higher in Dry Branch than in First Creek. The increase in discharge within Dry Branch

was quite noticeable in the summer, when the flow within First Creek was reduced to a

mere trickle. Conversely, summer discharge in Dry Branch remained consistent and

steady. Under this situation, the greatly reduced flow within First Creek probably

severely hampered its ability to transport high quantities of ions in solution out of the

basin in comparison to Dry Branch. Under this scenario, although the slow moving water

had prolonged contact with carbonate rocks and therefore probably contained a higher

concentration of ions, the highly reduced stream discharge severely limited the ability of

the stream to transport ions out of the basin. An extreme example would be a series of

isolated stagnant pools of water that may actually be totally saturated with respect to

calcium, but without any flow, these ions would not leave the basin.

As discussed in the evaporation section (Part VI- Evaporation), the higher

summer flow within Dry Branch is largely a karst phenomena. However, the reason that

the summer increase in vegetation growth does not severely suppress the nitrate and other

nutrients within Dry Branch may be due to a partial bypassing of surface biologic

processes via subsurface karst conduits.

Therefore, it appears as if the dominant nitrate concentration difference during the

summer months involved the increased discharge of Dry Branch, compared with First

Creek, which in turn allowed Dry Branch to more efficiently transport weathering

byproducts out of the basin. While this dominant process was going on within the
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summer, biologic processes were also occurring on the surface and within First Creek

Lake that also complicated the process. Lastly, the presence of karst appears to have

played a role in affecting the process and partly accounting for the observed trends.

Trace Metals

Ions of the following metals were also analyzed as part of this study: iron (III), iron (II),

copper, nickel, zinc, cobalt, cadmium and manganese. Of these trace metals, only

cadmium and manganese were not detected in either basin at least once during the course

of this study. Minor quantities of zinc were detected only within First Creek. Minor

concentrations of ferric, ferrous, cobalt, and nickel ions were detected within both basins

during the course of this study (Figures 53 and 54). Although trace metals were detected

within both basins, complications with the lab analysis resulted in all the trace metal data

to be determined unreliable. Therefore, figures 53 and 54 are presented for general

interest only. Furthermore, I incorporated no trace metal data into any subsequent

analysis or discussion.
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Relative Abundance

So far in the discussion, the sources of the various parameters were discussed

along with potential explanations for trends, similarities and differences. However, it is

important to look at the relative abundance of each ion compared to each other. The

following table (Table 24) lists the total calculated quantity of the various ions by both

weight (grams) and charge (equivalents- abbreviated as "eq"). Dry Branch basin is

abbreviated "DB", while the First Creek basin is listed "FC."

Table 24 Net gain/loss of various ions within the First Creek (FC) and Dry Branch (DB)

Ion

Ca

HCO3

Mg

SO4

Cl

Na

NO3

K

NH4

F

Br

Li

PO4

H

NO2

Grams (DB)

121997943

349142823

12138329

41817525

15069322

8654493

6608075

4138791

483358

124104

386042

17138

34697

0.279

0

560,612,640

Grams (FC)

75222216

216085130

8720083

36576445

4900633

3964268

4199857

2287286

1067198

83977

370833

988

0

0.515

399

353,479,313

eq(DB)

6088026

5722983

998834

870622

425054

376450

106573

105856

26796

6532

4831

2469

1096

0.277

0

14,736,122

eq (FC) DB

3753791

3541965

717555

761505

138230

172436

67734

58501

59162

4420

4641
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0

0.511

9

9,280,091

%(g) FC

21.76

62.28

2.17

7.46

2.69

1.54

1.18

0.74

0.09

0.02

0.07

0.00

0.01

0.00

0.00

% (g) DB

21.28

61.13

2.47

10.35

1.39

1.12

1.19

0.65

0.30

0.02

0.10

0.00

0.00

0.00

0.00

% (eq) FC

41.31

38.84

6.78

5.91

2.88

2.55

0.72

0.72

0.18

0.04

0.03

0.02

0.01

0.00

0.00

% (eq)

40.45

38.17

7.73

8.21

1.49

1.86

0.73

0.63

0.64

0.05

0.05

0.00

0.00

0.00

0.00

By grams, the relative abundance within the Dry Branch basin (in decreasing

rank) is as follows:

HCOs", Ca2+, Mg2+, S(V, Cr, Na+, NO3\ K2+, NH/, Br\ F , PO4
3\ Li+, H2+, and NO2 .
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The relative abundance (in descending order) of these ions are slightly different

for the First Creek basin (a swap between Mg and Cl; H and NO2j as well asPO4 dropping

to the bottom of he list), which is as follows:

HCO3", Ca2+, SCV, Mg2+, Cl\ Na+, N(V, K+, NH4+, Br\ F , Li+, NO2-, it, and PO4
3".

However, comparing the relative abundance by weight is misleading, since the

atomic masses of the ions differ. A more appropriate comparison may be made by

looking at equivalents, which factor out ionic mass. The relative abundance by mass (in

descending order) of the ions within Dry Branch is as follows:

Ca2+, HCO3",Mg2+, SO4",C1", Na+, NO3", K+, NH,+. F , Br\ Li+, PO4
3\ H+ and NO2\

The relative abundance of these ions is slightly different from the equivalent

values for the First Creek basin (the primary differences were in the increase importance

of NH4+ and the switching of Mg2+ and SO4"). The relative abundance (in descending

order) of the ions within First Creek is as follows:

Ca2+, HCO3",SO4-,Mg2+,Na+, Cl\ NO3 \ NH4* K+, F", Br', Li+, PO4
3", H+ and NO2\

Another way to look at comparing one basin with the other is by converting the

total annual mass flux into output per unit area (in this case kilograms per hectare- kg/ha).

The following tables (Table 25 and 26) summarizes the annual mean kg/ha for both the

Dry Branch and First Creek basins and compares these values with the similar values

observed by Likens and Bormann (1995) for their Hubbard Brook (New Hampshire)
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study. The quantity of output was higher within the Dry Branch basin for calcium,

magnesium, potassium, sodium, nitrate, chloride, phosphate, bicarbonate, lithium, and

fluoride. The only ion that had higher concentrations within First Creek basin, compared

with Dry Branch, was ammonium. Bromide, hydrogen, sulfate and nitrite concentrations

(by mass per unit area) were nearly the same for both basins. Tri-linear plots would be an

additional means of observing many of these same relationships mentioned in the

preceding sections, however these relationships were represented well in the preceding

time-series charts and tables depicted in this study.

With the possible exception of sulfate, there were very few similarities between

mass per unit area of outputs between First Creek and Dry Branch with that of Hubbard

Brook in New Hampshire. Therefore, many of the mass balance findings between these

two regions are not comparable.
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Table 25 Net gain/loss of various ions within the study areas compared to
Hubbard Brook, NH [note: the Hubbard Brook data is shown on this table
for comparison purposes only, and are not factored in any of the
calculations in the rest of the table]

Calcium: Input
Output
Net

Magnesium: Input
Output
Net

Potassium: Input
Output
Net

Sodium: Input
Output
Net

Aluminum: Input
Output
Net

Ammonium: Input
Output
Net

Hydrogen: Input
Output
Net

Sulfete: Input
Output
Net

Nitrate: Input
Output
Net

Nitrite: Input
Output
Net

Chloride: Input
Output
Net

Phosphate: Input
Output
Net

Bicarbonate: Input
Output
Net

Dissolved silica Input
(SiO2) Output

Net
Lithium: Input

Output
Net

Fluoride: Input
Output
Net

Bromide: Input
Output
Net

TOTAL: Input
Output
Net

Hubbard Brook, NH
(Likens & Bormann, 1995)-
Annual mean kg/ha

2.2
13.7
-11.5
0.6
3.1
-2.5
0.9
1.9
-1.0
1.6
7.2
-5.6

Trace
2.0
-2.0
2.9
0.3
2.6
0.96
0.10
0.86
38.0
52.8
-14.8
19.0
16.1
2.9

Not Analyzed

6.2
4.6
1.6

0.11
0.020
0.09
Trace
7.7
-7.7

Trace
37.7
-37.7

Not Analyzed

Not Analyzed

Not Analyzed

72.5
147.3
-74.8

Dry Branch, KY
Annual mean kg/ha
('karst' basin)

2.5
177.1
-174.6

1.1
17.6
-16.5
0.2
6.0
-5.8
0.9
12.6
-11.7

Not Analyzed

3.6
0.7
2.9

8.23 x 10"*
4.23 x 10'7

8.229 x W
17.3
60.7
A3A
11.8
9.6
2.2

0.0

4.0
21.9
-17.9

0.05

506.7

Not Analyzed

0.02

0.18

0.56

813.7

First Creek, KY
Annual mean kg/ha
('non-karst' basin)

2.5
114.1
-111.6

1.1
13.2

-12.1
0.2
3.5
-3.3
0.9
6.0
-5.1

Not Analyzed

3.6
1.6
2.0

8.23 x \0"
7.81xlO7

8.225 x 10J

17.3
55.5
-38.2
11.8
6.4
5.4

0.0

4.0
7.4
-3.4

0.00

327.7

Not Analyzed

0.00

0.13

0.56

536.1

Difference Between
Karst vs. Non-karst
Basins (kg/ha)

-63.0

^ . 4

-2.5

-6.6

Not Analyzed

0.9

4.0 x 10'7

-5.2

-3.2

0.0

-14.5

0.05

-179.0

Not Analyzed

0.02

0.05

0.00

-277.6
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Table 26 Net gain/loss of various ions within the study areas

Total output
difference between
karst vs. non-karst
ranked by
percentages

Ammonium (+56%)

Hydrogen (+48%)

Bromide (0%)

Sul&te (-12%)

Magnesium (-27%)

Fluoride (-28%)

Nitrate (-33%)

Calcium (-36%)

Potassium (^t3%)

Bicarbonate (-51%)

Sodium (-56%)

Chloride (-81%)

Lithium (-100%)

Phosphate (-100%)

Ion source/sink of
both basins relative
to total output
compared to input

SINK

SINK

?

Source

Source

?, presumed source

SINK

Source

Source

?, presumed source

Source

Source

?

?, presumed SINK

Ion source/sink of output in karst relative to non-karst basin

More of a SINK in karst vs. non-karst basin

More of a SINK in karst vs. non-karst

Whether the basins are sources or sinks for bromide, it appears as if the presence of
karst makes no difference, therefore it is a transmitter

More of a source in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

If the basins are a SINK for fluoride, then karst is less of a SINK than non-karst. If
basins are a Source of fluoride, then karst is more of a source than non-karst

Less of a SINK in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

More of a source in karst vs. non-karst basin

If the basins are a SINK for lithium, then karst is less of a SINK than non-karst. If
basins are a Source of lithium, then karst is more of a source than non-karst

If presumption correct, Less of a SINK in karst vs. non-karst basin

In summary, both basins acted as a sink for ammonium, hydrogen, nitrate and

possibly phosphate ions and a source for calcium, magnesium, potassium, sodium,

bicarbonate, chloride and sulfate. It is unknown if the basins are a source or a sink for

fluoride, lithium and bromide. For the ions that the basins served as a sink, the karst

basin (Dry Branch) acted like more of a sink for ammonium and hydrogen compared to

the non-karst basin (First Creek), while the karst basin acted as less of a sink for nitrate



143

and phosphate. For all the ions that the basins served as a source, the karst basin was

more of a source than the non-karst basin.

From the preceding tables, one can see that for both basins there was a net loss

(more output from the basin within the stream than inputs to the basin from precipitation)

leaving the basins of calcium, magnesium, potassium, sodium, chloride, and sulfate, with

the Dry Branch basin consistently experiencing the greatest loss. These losses appear to

be the result of weathering processes occurring within the basins. The loss of calcium,

bicarbonate and magnesium are the easiest to explain, since the principle products of

limestone dissolution are calcium and bicarbonate, with lesser amounts of magnesium.

Therefore, clearly calcium, bicarbonate and magnesium would be specifically affected by

the quantity of carbonate mineral outcrop within a basin. However, are the increases in

weathering rates for potassium, sodium, chloride and sulfate affected by the presence of

karst or karst processes or do they only represent weathering of non-karst rocks while the

karst remained inert?

There were two constituents that experienced a net gain: ammonium and nitrate.

The gain of ammonium was greatest in the Dry Branch basin, while the First Branch

basin experienced the greatest gain in nitrate. In tables 25 and 26 there appears to be a

net gain to the basins in hydrogen, however this is deceptive. These hydrogen ion

concentrations are based upon pH, and indeed free hydrogen ions, as represented by pH,

did have greater inputs than outputs. However, these hydrogen ions reacted with the

carbonate and other minerals in the basins and formed other compounds, such as
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bicarbonate (HCO3"). Therefore, the quantity of hydrogen atoms leaving the basins

would be much higher than the data would indicate. There was a net loss in both basins

for calcium, magnesium, potassium, sodium, sulfate, and chloride.

Comparability with Hubbard Brook Findings

Likens and Bormann (1995) found in their Hubbard Brook study:

1) precipitation provides an important source of mineral inputs into the basin;

2) forests acted as a filter for atmospheric pollutants, especially H, N, S and P;

3) evapotranspiration was relatively constant over a wide range of precipitation and

environmental conditions, and served to regulate certain aspects of the hydrologic

cycle;

4) stream water chemistry was highly predictable, based upon given environmental

conditions. Although it was recognized in this study that fixed time series

monitoring schedules often do not accurately represent actual conditions for

highly variable parameters, it was found that while stream water chemistry did

vary with the seasons, the short-term fluctuations were so small that bi-weekly or

even monthly sampling was sufficient to characterize the chemistry of that (non-

karst) system;

5) the output of most individual nutrients can be closely predicted from the annual

output of water alone;

6) many of the minerals and nutrients within the basin, when comparing the total

input (such as from precipitation or the weathering of rocks) into the basin's
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streams versus the total dissolved output being removed from the basin by the

basin's streams, experienced some form of net gain or loss;

7) dissolved species experiencing net losses include Si, Ca, Na, Al, Mg, and K. Net

gains were found for C, N, S, P and Cl;

8) the input/output budgets for many (non-karst) vegetated watersheds throughout

the world show many similar patterns as those of Hubbard Brook.

Comparing these finding for Hubbard Brook with the findings for First Creek and

Dry Branch, I found that:

1) while precipitation provided an important source of minerals into both Dry

Branch and First Creek basins, the annual and seasonal trends appear to

dominated by bedrock weathering, while precipitation inputs acted more as

episodic events;

2) Dry Branch and First Creek basins acted as a filter for hydrogen, nitrogen and

phosphorus, but not for sulfate;

3) evapotranspiration did regulate aspects of the hydrologic cycle, however the

differences between the evapotranspiration rates were different for the two basins

so it affected the hydrologic cycle differently, which in turn affected geochemical

cycles;

4) I need more than one year data set to make predictions; however, I assume that

within the more dynamic karst systems, predictions would be unreliable;

5) the outputs of nutrients cannot be predicted from the annual output of water;
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6) minerals, nutrients and other dissolved inorganic species within the Dry Branch

and First Creek basins experienced some form of net gain or loss;

7) net losses were indeed found to occur for calcium, magnesium, sodium and

potassium, and net gains were found to occur for nitrogen and phosphorus;

however, net gains were not found for carbon, sulfate, and chloride.

8) while there are some similarities between the annual net gain and loss values and

hydrogeochemical cycles and trends between the two study basins and that of

Hubbard Brook, there are distinct differences as well.

Overall, the individual ion concentration values obtained from Dry Branch and

First Creek do not compare well with those obtained from Hubbard Brook, nor do many

of the annual and seasonal trends. Therefore, future research within basins containing

karst within the Interior Low Plateau Province of South-central Kentucky may find the

Hubbard Brook data set useful; however, it is not comparable.

Potential Correlations

One aspect of this study was to determine if any correlations existed between

particular dissolved species with that of more easily obtained parameters. The

determination of particular ionic concentrations usually requires costly lab analysis. The

determination of ion concentrations also involves a certain degree of time lag between

sample collection and lab result. Conversely, many parameters such as temperature, pH,

specific conductance, and stage are often easily obtained in real-time while in the field.

If it were found that reliable correlations existed between a particular ionic concentration
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to that of the more easily obtained field parameters, then a mathematical prediction of the

ionic concentration could be made that would aid researchers conducting water

chemistry-related projects. However, in this study no reliable correlations were found

between any of the measured ionic concentrations with any of the more easily obtained

field data.



PART VII DISCUSSION

The preceding data indicate that there is very little difference between the

dissolved components of a stream originating from basins comprising different

percentages of carbonate karst. Of more importance is the presence of karst in the basin

rather than any specific percentage of exposed carbonate rocks within the basin. This

relationship may be explained by the rapid dissolution processes of carbonate rock. Upon

contact with carbonate rock, water approaches saturation with respect to calcite.

Therefore, further contact with additional carbonate rock has only minimal effect upon

the generalized stream chemistry. These systems may operate differently during periods

of dramatic storm events. During these storm events, perhaps insoluble particulate

erosion plays a significant role in weathering. This aspect of geochemical flux was not

considered in this research.

There are two aspects to consider when comparing the effect carbonate karst has

upon hydrogeochemical cycling, geochemical and morphological. The geochemical

component pertains to effects resulting from the chemical products of carbonate

dissolution and how these products alter the geochemical environment. The

morphological component pertains to the physical landforms and features that this

carbonate dissolution process creates, such as subsurface conduits, surface sinkholes, etc.

Each of these components individually or in combination may have an effect upon the

environment.

148
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This study reinforced and strengthened the understanding of karst acting as a

buffer. There are numerous ways that karst may serve the role of an environmental

buffer. Some examples include:

1) karst moderates temperature extremes in surface water;

2) karst lessens the affect of acid precipitation on stream pH;

3) karst moderates discharge (stream flow) during storm pulses;

4) karst moderates/lessens a basin's evaporative loss;

5) and karst moderates surface erosion and stream/channel incision.

Karst can also influence hydrology and geochemistry in that its presence reduces

the following:

1) available moisture to surface vegetation and biologic processes;

2) available nutrients to surface vegetation and biologic processes.

Furthermore, these hydro logical effects continue to affect the stream's

geochemistry. Karst may also increase some geochemical species relative to non-karst,

such as, the ionic strength content. These effects may be largely geochemical as the

result of the presence of carbonate rocks, or they may be due to the physical features of

karst (such as the moderation of temperature extremes), or they may be due to a

combination of both.

Since karst may impact certain processes, it is in essence acting as a source, while

non-karst basins act more as a sink. A sink is defined as a situation in which a higher
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quantity of a particular ion enters the non-karst basin than is exiting; therefore, the ion is

being added to a reservoir within the non-kart basin. Conversely, in the karst basin, water

and nutrients are being retained in the basin to a lesser degree; therefore more readily

flushes these materials out of the basin along with other weathering products. Sources

are basins that that produce and transmit out of the basin more weathering products than

inputs that they retain from precipitation.

Other studies have confirmed the validity of the concept of a karst

(calcium/magnesium-bicarbonate) water. By this, it is meant that a typical carbonate

karst water contains a certain geochemical signature, particularly a certain range of

calcium, magnesium and bicarbonate concentrations, as well as a similar range in pH and

specific conductance. In the study of the two basins, one dominated by carbonate karst

and the other having carbonate karst as only a minor component, it was found that both

basins contained "calcium/magnesium-bicarbonate water." It is believed that the

presence of calcium/magnesium-bicarbonate water is more a function of the spatial

distribution of the karst within the basin than the actual quantity of carbonate karst within

the basin. To demonstrate this spatial relationship, the following three scenarios are

provided:

1) A stream passes over and through a small quantity of carbonate rock

high in the basin then runs over non-carbonate bedrock for the

remainder of its course through the basin. In this scenario, since

carbonate rock is relatively quick to dissolve under normal pH ranges,

the water passing through the carbonate bedrock quickly becomes a
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"karst water." However, as the water proceeds down gradient within the

basin, there is much mixing with water that fell on and passed through

non-carbonate bedrock (the majority of the basin), so that the karst water

component becomes diluted to such a degree by the mixing of non-karst

waters, that it becomes less and less of a "karst water". In this situation,

the only portion of the basin that would be containing karst

hydrogeochemical processes is the portion of the basin containing

carbonate karst bedrock.

2) Conversely, if the same quantity of carbonate karst is located near the

lower reaches of the basin, the majority of water from the basin passes

over and through the carbonate karst and quickly becomes a "karst

water." In this situation, the entire surface area of the basin should be

classified as a karst basin, because the karst is affecting the water

originating from the entire basin, not just the portion falling on the

actual carbonate bedrock.

3) A basin containing mostly carbonate karst will produce a stream that

would be classified as a "karst water." Due to the quantity of carbonate

material, the water will likely contain higher concentrations of calcium

and bicarbonate. However, due to the rapidity of carbonate dissolution

and the diminishing rate of carbonate mineral dissolution as it

approaches saturation, there is little room for a dramatic change in the

"karst water" geochemical signature between a basin containing some

karst versus one containing an abundance of karst.
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This "calcium/magnesium-bicarbonate water" effect may be more relevant for the

geochemical effect of karst. However, as stated earlier, besides the chemical aspects, the

other categories of hydrogeochemical effects that karst may play within a basin is due to

the morphological aspects of the karst. In these situations, everything else being equal, a

basin containing mostly carbonate bedrock will likely contain more developed physical

karst features, such as sinkholes and underground conduits, etc. In these situations, a

basin containing well-developed karst will likely affect the basin's hydrogeochemical

flux much greater than a similar basin contain less developed karst features.

The importance of the spatial distribution of the carbonate rocks is significant for

not only the geochemical effects, but the physical as well. It appears as if the

geochemical effects, such as the chemical signature of a calcium/magnesium-bicarbonate

water may last for a significant distance downstream of the presence of the carbonate

rocks. However, the physical effects may be more transitory. For example, a stream

flowing in a subsurface karst conduit has been shown to be buffered from the temperature

extremes found in equivalent surface water. However, if this karst conduit is located high

in a watershed and then the stream flows on the surface the rest of the way, the

moderating effects of the karst may have been lost by the time the stream leaves the

basin. Conversely, if the karst conduit were present in the location where a surface

stream would experience the greatest degree of surface warming, then the temperature

buffering effects of the karst stream would have been optimized. Therefore, two basins

with identical percentage of karst versus non-karst geology, however spatially arranged
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differently, will likely contain different hydrogeochemical relationships and trends. If

true, then the hydrogeochemical flux within a karst basin depends on a complex array of

climatic, geologic, biologic, topographic, spatial, and temporal factors. These results

indicate that with the right mix of these factors, karst can affect the basin's

hydrogeochemical flux in a manner that is usually not factored in typical global-scale

geochemical budgets and models. Considering the quantity of surface and near surface

carbonate bedrock in certain locations, regions and globally, such karst effects may need

to be factored in these models in order to be a more accurate representation of processes

occurring in the real world.
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