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Abs t r ac t 
Expander graphs are a family of graphs that are highly connected. Finding 

explicit examples of expander graphs which are also sparse is a difficult problem. 
The best type of expander graph in a. certain sense is a Ramanujan graph. Families 
of graphs that have separator theorems fail to be Ramanujan if the vertex set gets 
sufficiently large. Using separator theorems to get an estimate on the expanding 
constant of graphs, we get bounds 011 the number of vertices for such fc-regular 
graphs in order for them to be Ramanujan. 



CHAPTER 1 

I n t r o d u c t i o n 

Expander graphs are one of the deepest tools of theoretical computer science 

and one of the main objects of stud)- in discrete mathematices, showing up in many 

contexts since their introduction in the 1970s by Bassalygo and Pinsker, see [2], 

Expander graphs are families of graphs that are highly connected. In computer 

science, expanders are useful when dealing with communications networks. Finding 

explicit examples of expander graphs which are also sparse is a difficult problem. 

Ramanujan graphs are the best expanders, for reasons that will be discussed later. 

One can determine if an individual graph is Ramanujan. 

An interesting property of some graph families are separator theorems. This is 

the ability to separate graphs into parts making them easily disconnectable. Graphs 

with separator theorems are generally not expanders. We use the notion of separator 

theorems to get an explicit bound on the number of vertices of Ramanujan graphs. 
3 
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In doing this we help narrow the search for finding explicit examples of expander 

graphs. 

A graph consists of a set of points, called vertices, and line segments, called 

edges, connecting some of the vertices. Let V(G) denote the set of vertices and 

E(G) the set of edges. So a graph G is characterized by the pair (V(G), E(G)). 

A path in G is a sequence t>i, i>2, •••Vk of vertices where v, is adjacent to vi+\. A 

graph G is connected if every two vertices can be joined by a path. The vertices 

at ends of an edge are said to be incident with the edge. Two vertices which are 

incident with a common edge are adjacent, as are two edges which are incident with 

a common vertex. An edge incident with a single vertex is called a loop and an edge 

with distinct ends is a link. If a graph has no loops and no two of its links join the 

same pair of vertices then we call the graph simple. 

1.1. Introduction To Graphs 

F I G U R E 1. 3-regular graph on 6 vertices 
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A graph is finite if both its vertex set and edge set are finite. The degree of 

a vertex v is the number of edges incident with v. G is k-regular if every vertex is 

exact ly of degree k. 

F I G U R E 2 . 4-regular graph on 6 vertices 

A bipartite graph is one whose vertex set can be partitioned into two subsets 

I ' (C) = AUB, so that each edge has one end in A and one end in B. A graph H is a 

subgraph of G (written H C G) if V(H) C V{G) and E(H) C E(G). Two graphs 

Gi and G> arc isomorphic if there is a one-to-one correspondence between the 

vertices of G\ and those of G2 with the property that the number of edges joining 

any two vertices of G\ is equal to the number of edges joining the corresponding 

vertices of G->. A graph H is called a minor of the graph G if H is isomorphic 

to a graph that can be obtained by zero or more edge contractions 011 a subgraph 

of G. Edge contraction is the process of removing an edge and identifying its two 

endpoints. A complete graph is defined by requiring every vertex to be connected 

to every other vertex. A cycle is a simple closed path, with no repeated vertices 

other then the starting and ending vertices. A cycle graph is a graph that consists 

of a single cycle. 



CHAPTER 2 

P l a n a r G r a p h s and Sepa ra to r T h e o r e m s 

2.1. Planar Graphs 

F I G U R E 1. A Planar Graph 

F I G U R E 2. A Nonplanar Graph 

A graph is said to be planar if it can be drawn in the plane so that its edges 

intersect only at their endpoints. Planar graphs have two key properties. The first, 

is the following theorem. 

T H E O R E M 1. If G is k-regular and planar, then k=2.J.4 or 5. 
6 
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PROOF. Let G be a planar k-regular graph with v vertices. Embed G in the plane 

so that 110 two edges intersect and an edge intersects vertices only at endpoints. Let 

V be the number of vertices, E be the number of edges, and F be the number of 

faces (regions bounded by edges) of the graph. If all the faces were triangles, then 

as there are k faces per vertex and 3 vertices per face we have F = -y. As any face 

has at least 3 vertices per face then we have F < ^ in general. To get the number 

of edges consider that every vertex is of kth degree, so every vertex has k edges, so 

by counting every edge on every vertex we get a total of nk edges. But we end up 

counting every edge twice since every edge is shared by two vertices, so there are ^ 

edges. 

We have V — n and by Euler's formula V — E + F — 2. 

So F - 2 - V + E = 2 - // + f . 

Thus as F < f - we get 2 - n + < f and 

this gives k < 6(1 - f ) so k < 6. • 

2.2. Separator Theorems 

The second key property is the fact that one can partition the vertices of planar 

graphs into three components, two of which are relatively large and have no adjacent 

vertices, and we may have edges between the small and large components. Figure 3 

illustrates this Planar Separator Theorem. 

Originally due to Lipton and Tarjan [8], it was later improved by Alon, Seymour, 

and Thoniasrl]. 
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F I G U R E 3 . 

T H E O R E M 2. [1] [Planar Separator Theorem] Let G be a planar graph with n > 0 

fcrt/cc.s. Then there is a partition (A,B.C) ofV(G) such that \A\, \B\ < §n, \C\ < 

2\/2n. and no vertex in A is adjacent to any vertex in B. 

For our purposes, we want sets A and B to be no larger than This can be 

achieved if the value of |C| is allowed to be larger. However. \C\ can still be on the 

order of \ fn . The following is a corollary from Lipton and Tarjan [8]. 

COROLLARY 1. [1] /Planar Separator Corollary] Let G be a planar graph with 

n > 0 vertices. Then there is a partition (A,B,C) of V(G) such that |A|, |J3| < 

TJ, |C| < --- yfn.. and no eertex in A is adjacent to any vertex in B. 

There are other separator theorems that apply to other classes of graphs. The 

following proposition is a version of the above corollary for a more general class of 

separator theorems. 

P R O P O S I T I O N 1. [3] Let 0 < N < 1 andc > 0. LetQa{c) be a family of graphs so 

that for G 6 Qn{c) mth |Vr(G)| — n there exists a vertex partition V(G) — AVJBUC 

where |.4|. \B\ < 4^-. |C| < cna. and no vertex in A is adjacent to a vertex in B. 

Suppose further that if G £ Gn(c) then every subgraph of G is in Qa(c). Then 

any G G Gn(c) can be partitioned I ' ( G ) = A' U B' U C' where ^ 'L . \B ' \ < F. \G'\ < 

V„ na. and no vertex in A' is adjacent to a vertex in B'. 
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The following is a separator theorem for simple graphs with no AVminors, where 

h'h is refering to the complete graph with h vertices. 

COROLLARY 2. [3] Let G be a simple graph with n vertices and no K^-minor. 

Then there crisis a vertex partition V{G) = A U B U C where \A\, \B\ < F, |C| < 

— = n1/->, and no vertex zn A is adjacent to a vertex in B. 

The genus of a graph is the minimum number of handles (see [7]) that must 

be added to the sphere to embed the graph without any crossings. 

COROLLARY 3. [3] Let G be a graph with n vertices and genus less than or equal 

to g. Then there exists a vertex partition V(G) = AU BUG where \A\. \B\ < 

\C\ < < and no vertex in A is adjacent to a vertex m B. 



CHAPTER 3 

E x p a n d e r G r a p h s , Es t ima t i ng T h e E x p a n d e r C o n s t a n t , and 
R a m a n u j a n G r a p h s 

3.1. Expander Graphs 

For A' C I '(G). the boundary dX is the set of edges connecting A" to V(G) — X. 

D E F I N I T I O N 1. The expanding constant of G is 

" ( G ) = i n f { m i n ^ M T O ) ^ * £ V ( G ) - ° < < - } 

Note that,, if G is finite on n vertices, this can be rephrased as 

h(G) = nun : K V(G). 0 < |X| < 

The expanding constant measures the connectivity of a graph. If we view G 

as a network transmitting information, then h(G) measures the "quality" of G as 

a communications network. That is. if h(G) is large then information propagates 

well because the graph is well connected. If h(G) is small then information does not 

propagate well. Consider the following (extreme) examples. 

1) Consider Km , the complete graph on m vertices, with m > 2. 

P R O P O S I T I O N 2. h{Km) = [^IR^]. the greatest integer function of . 

PROOF. Let A" C I<w with |A| = ( < f . 
10 
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F I G U R E 1. The complete graph on 5 vertices. 

Note that removing the edges dX from Km decomposes Km into two smaller 

complete graphs, I\f and K m - f . 

As \E{Km)] = Q then |<« | = - Q - ( m " <) = rn( -

So = hi — t. Since t < ™ this is minimized 

for ( = -/ with m even and ( = with in odd. • 

( 7Tl\ 

Note that h(I\m) oo as m —> oo. But also note that Km has ( j edges 

since every pair of vertices are adjacent. Thus as a communications network, Km 

would be well connected but very expensive, as there are a lot of edges in K m . 

F I G U R E 2 . The cycle graph on 6 vertices. 

2) Consider C'n, the cycle graph on n vertices. If A" is half of the cycle, then 

|(AY| = 2. so h(C'n) < pr ~ - ; in particular h(Cn) —> 0 for n —> oc. 
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From these two examples, we see that the highly connected complete graph has 

a large1 expanding constant that grows proportionately with the number of vertices. 

On the other hand, the minimally connected cycle graph has a small expanding 

constant that decreases to zero as the number of vertices grows. In this sense, h{G) 

does indeed provide a measure1 of the "quality", or connectivity, of G as a network. 

Informally, an expander graph is a graph G in which every subset X of vertices 

c.rpcmds quickly, in the sense that it is connected to many vertices in the set V — X of 

complementary vertices. When we refer to expander graphs we are actually referring 

to a family of graphs. 

DE FINITION 2. Let (Gm)m>i be a family of graphs indexed by m, 6 N. Such 

a family (Gm)m>i of finite, connected, k-regular graphs is a family of expanders if 

| V(Gm) | —> oc for rn —» oc. and if there exists e > 0. such that h(Gm) > e for• every 

m > 1. 

It is an interesting and difficult problem to find explicit examples of families of 

expanders. The following are some examples of families of exanders. 

1) This family of graphs Gm lies on a grid. Let the vertex set be Vm = Z m x Z m . 

The degree is k = 4 and the edges are described as follows: 

Vertex (,r, y) has edges to (x + y,y),(x — y,y),(x,y + x) and (x,x — y) (where all 

operations are done modulo m). 

Margulis showed that this is an expander family, see [10]. 

Gaber and Galil showed that this is an expander family, see [5:. 
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Remark: This is interesting because it is well-known that usual grid graphs 

are not expanders! In fact, grid graphs are planar graphs so we can apply the Planar 

Separator Theorem. Usual grid graphs are of degree 4 and the edges are described 

as follows: 

Yertex(.r. y) has edges to (x + 1,2/), (x - 1, y), (x, y + 1), and y - 1). 

2) This family has graphs of size p (for all prime p). Here Vp — and k = 3. 

Each vertex x is connected to its neighbors and its inverse (i.e. ;r + l,x — 1 and ;r_1). 

This was shown to be an e-expander family by Lubostsky, Philips and Sarnak, see 

Computing the expanding constant for a graph is not easy to do. Consider 

that for a large graph G, calculating the ratio for every subset |F | of vertices 

containing no more than half the vertices in the graph. Doing this would be a time-

consuming task (an NP-problem), since if there are n vertices in the graph then 

there are exponentially many such subsets F. Finding an estimate for h(G) is much 

easier and often suffices for specific situations. In particular, finding an upper bound 

for h(G) is generally much simpler than finding a lower bound. Fortunately, there 

is a relationship between the expanding constant and another number related to the 

graph that allows one to estimate h(G) indirectly. This is the first eigenvalue of the 

adjacency matrix of the graph. 

3.2. Est imating The Expanding Constant 
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The adjacency matrix A(G) — (Axy) of graph G with n vertices is an n x n 

matrix where the entries are indexed by pairs of vertices x, y of G. and is the 

number of edges between vertices x and y. 

Consider the 4-regular graph on 6 vertices. 

F I G U R E 3 

The adjacency matrix of this graph is the following, 

/ 0 1 1 0 1 1 \ 
I 0 1 1 1 0 
I I 0 1 0 1 
0 1 1 0 1 1 
1 1 0 1 0 1 

\ 1 0 1 1 1 0 / 

I'sing Mathematica, we get that the eigenvalues are 4, -2 with multiplicity 2, 

and 0 with multiplicity 3. 

Notice that the matrix is symmetric because each entry is the number of edges 

between two vertices, .r and y. So if there is an edge from x to y then there is an 

edge from y to x. Further the eigenvalues are real numbers, 4 is an eigenvalue, and 

the other eigenvalues are in [—4,4], These are examples of more general theorems. 

T H E O R E M 3. If A is an n-by-n real symmetric matrix, then all of the eigenvalues 

of A are real. 
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P R O O F . This follows from the real spectral theorem, see [11], • 

Therefore the adjacency matrix A(G) of a graph with n vertices has n real 

eigenvalues, repeated according to multiplicities that we list in decreasing order: 

Ho > Mi > ••• > Hn-\-

The collection of eigenvalues of A(G) is called the spectrum of the graph G. So the 

spectrum of the 1-regular graph on 6 vertices, given by Figure 3, is {-2.0.4}. 

The following theorem demonstrates the connection between the spectrum of a 

A-regular graph and its properties: 

T H E O R E M 1. [4] Let G be a k-regular simple graph on n vertices and {h>o, •••• Hn-i} 

be the spectrum of G. Then the following hold: 

•Ho ^ A' 

• The graph is connected if and only if Ho > H\ 

• The graph is bipartite if and only if Ho — ~Hn-1 

Again from the spectrum of Figure 3 we see these facts to be true since ji0 = 4 

and we had a 4-regular graph, and fi0 = 4 > fii = 3 and the graph was connected. 

\ o t e that since -4 is not an eigenvalue, the graph is not bipartite. 

We focus on the second eigenvalue because it is related to the expanding constant 

of the graph. This relationship is given by the following theorem. 

T H E O R E M 5. [4] Let G be a simple, finite, connected, k-regular graph. Then 

^ ^ < h(G) < ^2k(k-H0-
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The theorem actually proves that k — fii, also known as the spectral gap, can 

give a good estimate on the expanding constant of a graph. Since h(G) > —f1. 

as the spectral gap becomes large so does h(G). It follows that the graph G is 

well connected. Moreover, for A'-regular families of graphs, a graph is an expander 

(h(G) > e for all G in the family) if the spectral gap is bounded (k — fi,i > / ) . This 

is because h(G) > —f1 > ^ so there exists some e = y such that h(G) > e, for all 

graphs G in the family which means the graphs are expanders. 

3.3. Ramanujan Graphs 

The spectral gap has an asymptotic lower and upper bound. 

T H E O R E M 6. [4] Let ( G „ , ) M > I be a family of connected, k-regular, finite graphs, 

with | l m | —>• oc as rn —> oc. Then, limm_.3c inf H\(Gm) > 2\/k — 1. 

The girth of a connected graph G is the length of the shortest cycle in G. For 

a finite, connected, /i-regular graph, let p(G) be the smallest eigenvalue of G with 

|/,(G)j ^ k. 

T H E O R E M 7. [4] Let (Gm)m>I be a family of connected, k-regular, finite graphs, 

with the girth of Gm —> oc as rn —> oc. Then, l i m , ^ ^ sup fi(Gm) < —2y/k — 1. 

Ramanujan graphs are a specific type of expander graphs that have essentially 

have the largest possible spectral gap. The definition of Ramanujan graphs is a result 

of the previous two theorems. 
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D E F I N I T I O N 3. .4 finite, connected, k-regular graph G is Ramanujan if for 

every eigenvalue ji of A(G) with \ji\ ^ k. we have \f.i\ < 2y/k — 1. 

Because of the way Ramanujan graphs are defined they make the best expander 

graphs. Note that we have included the property of regularity in the definition of 

Ramanujan graphs. This is done for simplicity. There is a more general definition of 

Ramanujan graphs that includes non-regular graphs. 



CHAPTER 4 

B o u n d s On ^-regular R a m a n u j a n G r a p h s 

4.1. Bounds On Planar A'-regular Ramanujan Graphs 

For a planar finite A> regular graph G. we want to find a lower bound on the 

number of vertices needed to guarantee a graph not to be Ramanujan. To do this 

we estimate h(G) using the separator theorems, and then relate that estimate to the 

eigenvalues to show that G is not a Ramanujan graph. 

Let G be a finite connected A'-regular, planar graph with n > 0 vertices. 

Since G is planar with ?? > 0 vertices, there exists a partition ( A , B . C ) such 

/ / 3 
that |.1|, \B\ < —, |C| < ius/Ti. where m = p - , and no vertex in A is adjacent 

2 2(1 - y f ) 
to any in B. From the (Planar Separator Corollary). 

We will cut the edges in G to disconnect the graph. Then we use the number 

of these edges and the cardinality of the smaller component to estimate h(G). 

LEMMA 1. Let G be a k-regular planar graph, with k > 3 . Then the number of 

edges cut is not more than C(k)m^n edges, where C(3) = 1 and C(4) = C(5) = 2. 

C(A') is the most number of edges cut from a vertice of kth degree. 

P R O O F . Let G be a A:-regular planar graph, with n vertices. Applying the Planar 

Separator Corollary we partition V(G) — A U B U C as in the Corollary. Note that 

any vertex in G connects to A, B, or C. We choose to disconnect vertices in C. 
18 
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This thou disconnects the graph G. We do this by considering the cases k = 3 .4 ,5 

individually. 

Consider k = 3. 

If G is 3-regular then for any vertex v in C we have 4 cases. 

Cast1 1: The vertex r has no edges connecting to A and it has 3 edges going to 

B or C. So we remove no edges to disconnect A from B. 

Ca.se 2: The vertex v has 1 edge connecting to A and it has 2 edges going to B 

or C. We remove the single edge connecting to A we disconnect A from B. 

Case 3: The vertex r has 2 edges connecting to A and it has 1 edge going to B 

or C. We remove the single edge connecting to B or C we disconnect A from B. 

Case 4: The vertex v has 3 edges connecting to A and it has no edges going to 

B or C. We remove no edges to disconnect A from B. 

So in the worst case we remove 1 edge from every vertex in C and this disconnects 

.1 from B. Since there are nis/n vertices in C, we remove at most rriy/n edges. 

If C! is 4-regular then for any vertex v in C we have 5 cases. 

Case 1: The vertex r has no edges connecting to A and it has 4 edges going to 

B or C. We remove no edges to disconnect A from B. 

Case 2: The vertex v has 1 edge connecting to A and it has 3 edges connecting 

to B or C. We remove the single edge connecting to A we disconnect A from B. 
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Case 3: Tlu; vertex v has 2 edges connecting to A and it has 2 edges connecting 

to B or C. We remove the 2 edges connecting to A or the 2 edges connecting to B 

or C we disconnect A from B. 

Case 1: The vertex v has 3 edges connecting to A and it has 1 edge connecting 

to B. We remove the single edge connecting to B or C we disconnect A from B. 

Case 5: The vertex v has 4 edges connecting to A and it has no edges going to 

B or C. We remove no edges to disconnect A from B. 

So in the worst case we remove 2 edges from ever}' vertex in C and this dis-

connects A from B. Since there are rn^fn vertices in C, we remove at most 2niy/n-

edges. 

If G is 5-regular then for any vertex v in C we have 6 cases. 

Case 1: The vertex v has no edges connecting to A and it has 5 edges going to 

B or C. We remove no edges to disconnect A from B. 

Case 2: The vortex v has 1 edge connecting to A and it has 4 edges connecting 

to B or C. We remove the single edge connecting to A we disconnect A from B. 

Case 3: The vertex c has 2 edges connecting to A and it has 3 edges connecting 

to B or C. We remove the 2 edges connecting to A we disconnect A from B and C. 

Case 4: The vertex v has 3 edges connecting to A and it has 2 edges connecting 

to B or C. We remove the 2 edges connecting to B or C we disconnect A from B. 
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Case O: The vertex v has 4 edges connecting to A and it has 1 edge connecting 

to 13 or C. We remove the single edge connecting to B or C we disconnect .4 from 

B. 

Case 6: The vertex v has 5 edges connecting to A and it has no edges going to 

B or C. We remove no edges to disconnect A from B. 

So in the worst, ca.se we remove 2 edges from every vertex in C and this dis-

connects .4 from B. Since there are m^/n vertices in C, we remove at most 2rriy/n 

edges. • 

To find the lower bound we need the following lemma. 

fc 

L E M M A 2. Let G be a k-regular graph. If h(G) < — — \/k — 1 then G is not 

Ramanujan. 

PROOF. Let G be a finite, connected fc-regular graph. Then 

< h(G) < y ^ 

If h(G) < ~ — \/k — 1 then this gives us — < ~ — \fk — 1. Therefore we 

compute that 

k - //J < k - '2\Jk - 1 

- / / i < - 2 Vk - 1 

//1 > 2\/k ~ 1 

Therefore1 G is not Ramanujan. • 



2 2 

The expanding constant will be the ratio of the number of edges cut in C and 

the number of vertices in the smaller of the two pieces. 

LEMMA 3. Let G be a k-regular planar graph, with n vertices. Applying the 

Planar Separator Corollary we get a vertex partition V{G) = A U C U B where 

.4j.\B\ < ^ and |C| < ms/Ti. Then \A\, |B| > | - rriy/n. 

PROOF. Let G be A'-regular planar graph, with n vertices. Applying the Planar 

Separator Corollary we get a vertex partition V(G) — A\JC U B, where \B\ < ^ 

and |C| < m \ / n . 

71 

Assume that |/1| < — — ntsjn. 

Then \A\ + \B\ + \C\ < ^ - vriy/n + " + vi^/n = n 

But n = |G| = \A U B U C\ < \A\ + \B\ + |G| < n. This gives a contradiction! 
O ' . " r-So 1.41 > m J n . i - 2 v 

n 
Similarly, it can be shown that 151 > mJn. • i i _ 2 v 

From Lemma 1 and Lemma 3 we can estimate the expander constant to be: 

/7(g) < C(k)n,^h 2C (k)m^n _ 2C{k)m 
- nts/Ti n — 2rri\/r). >JTi — 2m 

2C(k)m 
So from the Lemma 2. if —= < § — \Jk — 1 then G is not Ramanujan. 

\/n — 2rn 

2C(k)m , n f r o m —-= < % — v k — 1 we get 
'n — 2 rn 

•2C(k)m 

h P 
2C(k)ni 

< y/n - 2in. Note that sjn - 2m > 0 as is § - \Jk - 1. 

+ 2 rn < J n 



2 3 

n > . + 2m 
k - 2y/k=l 

n > 4 n r (- + l)2 

A: — 2 
2 C(k) 

So if ri > -1 nr( - = + l)2 then G is not Ramanujan. 
k — 2 v k — 1 

Applying this to k = 3, 4, 5-regular graphs we use Lemma 1 to get the following 

explicit estimate's: 

A- = 3 then n > 4/7?2( + l)2 « 85631.93 
3 — 2\ /3 -^T 

k = 1 then // > 4?/?2( + l)2 w 38295.34 

A' = 5 then n > 4m2( + l)2 w 13363.62 

Which gives us the following theorem. 

T H E O R E M 8. Let G be a finite connected k-regular, planar graph with n > 0 

cert ices. Then G is not Ramanujan for 

k = 3 if n> 8 5 6 3 2 

k = 4 if n > 3 8 2 9 6 

k = 5 if n > 13364 

4.2. Bounds On Other Classes Of Graphs 

The following is a more general result. 
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T H E O R E M 9. Let Q1 be a family of graphs satisfying the assumptions of Proposi-

4C~ 2C(k) 
t/ion 1. with, a = I. If G £ Gi(c) is k-regular and n > ( - j = + l)2 

2 (!_ l y k - 2 ^ k - \ 

then G is not Ramanujan. 

P R O O F . Let G e Q with | V ( G ) | = n and for any subgraph H C G , H e Q. Let 

C be a A'-regular graph. Let there exist a vertex partition V(G) = A U B U G where 

\A\.\B\ < |G| < cy/n. 

From Proposition 1 then there exists a vertex partition V(G) — AUBUG where 

j.-11. \B\ < —. |C| < -^y/n , and no vertex in A is adjacent to a vertex in B. 

We will cut the edges in G to disconnect the graph. 

The expansion constant will be estimated by the ratio of the number of edges 

cut in G and the number of vertices in the smaller of the two pieces. 

LEMMA 1. Let G E Gi(c) f)e a> k-regular graph, where Qi(c) satisfies the as-

sumptions of Proposition 1 with n vertices. Applying Proposition 1 we get a eerier 

n c 
partition V{G) = AUBUG. With \A\,\B\ < - and |G| < F V / n - T h e n 

2 i - \ / i 
a .\B > t 

1 i - y j l 

P R O O F . Lot G £E <3l(c) be A'-regular graph, where Q\(c) satisfies the assumptions 

of Proposition 1 with n vertices. Applying Proposition 1 we get a vertex partition 

1 '(G) = - . 4 u r u S . where j.4|, B\ < - and |G| < 

!) C 
Assume that j.4| < — —j=zy/n. 

•ri e n c 
Then \A\ + \B\ + \C\ < + = n 

2 1 - a A 2 1 - A A V 3 V 3 
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But II - |G| = \A U B U C\ < \A\ + \B\ + \C\ < n. This gives a contradiction! 

SO \A\ > ^ C-=y/ji. 
2 i - ^ / i 

Tl C 
Similarly, it can be shown that \B\ > — • 

Z i / 2 

We get the estimate of the expander constant to be: 

c(k-y 
KG) < ^ n 

, where C(k) is the number of edges cut. 

KG) < 
C(k) 1-1 
V/n c_ 
2 i / 

C(k): 

So from the Lemma 2 if 3 ^ k < § — \Jk — 1 then G is not Ramanujan. 

C(k) 
From 

1-1 
\/n < | - \/k - 1 we get 

C(k)-
< 

C AT V" - , Note that — 
R 2 

> 0 as is | — \Jk — 1. 
1 -

2C(fc): 4 c v n 
r ^ ^ + p < " V 

l _ R 2 

/) > 
2c 

+ 
A- - 2^/k^l 1 

n > ( + 
2c 

A' - 1 _ 

4c2 

n > 
2G(/c) 

_ /p^ ^ — 2y/k — 1 
+ 1)5 

, 2C(fc) lV? , So if n > p=r— (- /? + 1) then G is not Ramanujan. 
(1 1 \ 2 A' - - 1 

• 
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An application of Theorem 9 and Corollary 2 gives us the following. 

COROLLARY 4 . Let G be a simple graph with n vertices and no Kh-minor. If 

4 h3 2C(k) 
G is k-regular and n > pr—( -== + l)2 then G is not Ramanujan. 

(1 _ J2y k - 2 \ f k - l 

An application of Theorem 9 and Corollary 3 gives us the following. 

COROLLARY 5. Let G be a graph with n vertices and genus less than or equal 

4(6v^ + 2\/2 + l)2 2C(k) 
to g. I j G is k-regular and n > -= ( +1)" then G is not 

Ramanujan. 



CHAPTER 5 

Appl ica t ions of E x p a n d e r G r a p h s 

Hero are some applications for expanders graphs. 

• Constructing good error-correcting codes [6]: An error correcting code is a 

set of words in {0, l}n . Its distance is the minimal Hamming distance between two 

codewords. Therefore, if we1 transmit a codeword through a noisy channel that flips 

some of the bits, then we can correct errors, as long as the number of bits flipped is 

bounded by half the distance. There is a trade-off between the size of the code and 

the number of errors it can correct. Expanders can be used to build error correcting 

codes that have large size and distance. These codes are alse efficiently decodable. 

• Ampl/fiij/rig the success probability of random algorithms [6]: Let L be some 

language in RP, randomized polynomial time, and assume that A is a randomized 

algorithm that decides whether x G L with a one sided error. Assume that A tosses 

m coins and has an error probability of (3. Build an expander graph such that 

= {0. l} m ; i.e. the vertex set of the graph is the probability domain of A'a coin 

tosses. Fix some input, .v and let B be all the coin tosses for which ,4(.r) is wrong. 

_\ow let .4' be the following algorithm: 

1. pick a vertex v0 E V uniformly and at random. 

2. perform a random walk of length t resulting with the set of vertices .... vt). 

2 7 
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,3. return U'=o 

The error probability is reduced exponentially while the number of random bits 

is only m +t log d ~ m + 0(t). The same trick can be used to amplify t he success of 

the probability of a two-sided error algorithm. 

• Designing computer networks: An ideal computer network is both well con-

nected and inexpensive. For a network to be well connected you want enough con-

nections to ensure a large proportion of systems on the network can communicate 

if some1 systems on the network fail. For a network to be inexpensive you want as 

few direct connections as possible. Consider a network in a metropolitan area. If 

every computer had a direct line to every other computer in that area it would be 

extremely expensive. Finding a good balance between connectivity and expense can 

be very hard to do but with the introduction of expander graphs it has become easier 

because expander graphs are well connected and sparse. A network designed by using 

an expander graph is well connected and inexpensive. 
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