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Intestinal bile acid 7a-dehydroxylating bacteria have recently been implicated in 

cholesterol gallstone disease. Eubacterium sp. V.P.I. 12708, a bile acid 7oc-dehydroxylating 

bacterium, contains multiple bile acid inducible (bai) genes which encode the enzymes 

responsible for bile acid 7a-dehydroxylation. The baiE gene encodes a bile acid dehydratase 

activity in Eubacterium sp.V.P.I. 12708. Using the polymerase chain reaction assay we 

determined the presence or absence of baiE-like genes in five clostridial bile-acid 7a-

dehydroxylating strains: Clostridium sp. TO-931, Clostridium sp. HD-17, Clostridium sp. 

TN-271, Clostridium bifermentans 1-55, and Clostridium sordellii ATCC 9714. Results 

from all the strains tested showed amplification at the predicted DNA fragment size. Partial 

DNA sequence analysis of the amplified baiE-like genes revealed 88-95% homology with 

the baiE gene of Eubacterium sp.V.P.I. 12708. These data suggest that baiE-like genes are 

present in the five bile acid 7a-dehydroxylating strains studied. 
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CHAPTER I 

INTRODUCTION 

The primary bile acids, cholic acid and chenodeoxycholic acid, are steroids 

synthesized from cholesterol in the liver and conjugated to either taurine or glycine. The 

conjugated bile acids are secreted into the bile, stored in the gallbladder, and secreted into 

small intestine after ingestion of a meal (25). In the small intestine bile acids aid in the 

absorption of dietary lipids and lipid-soluble vitamins (25). Bile acids are absorbed by the 

ileum and returned to the liver by portal blood. The circulation between the liver and small 

intestine is referred to as the enterohepatic circulation. During this process approximately 

5% of bile acids escape ileal absorption and enter the large intestine (25), where bile acids 

are exposed to no less than 400 species of the resident colonic microorganisms (8). 

The intestinal microflora produces at least 15-20 different bile acid metabolites from 

the primary bile acids (17,18,25). In humans, the quantitatively most significant bacterial 

bile acid biotransformation is the rapid 7a-dehydroxylation of primary bile acids to yield 

secondary bile acids. Humans synthesize the primary bile acids cholic acid and 

chenodeoxycholic acid which are 7a-dehydroxylated by some species of colonic bacteria to 

form the secondary bile acids deoxycholic acid and lithocholic acid, respectively (17,18,25). 

Approximately 30% of the secondary bile acids are passively absorbed through the colon 

wall, return to the liver by portal blood, and accumulate in the circulating bile acid pool (25). 

1 
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However, under steady-state conditions, humans excrete 400-600 mg of bile acids in the 

feces per day. Deoxycholic acid normally comprises approximately 20-25% of the biliary 

acid pool of man; however this varies from 10-60% (25). 

Compared to primary bile acids, secondary bile acids are more hydrophobic (25) and 

potent suppressors of hepatic cholesterol 7a-hydroxylase and HMG-CoA reductase which 

are the rate limiting enzymes in bile acid and cholesterol biosynthesis, respectively (9,14,22). 

Thus, in a normal healthy state, intestinal 7a-dehydroxylating bacteria may indirectly 

regulate host physiology. 

Studies show that high levels of deoxycholic acid in bile are correlated with an 

increased risk of gallstone disease (21,23), but until recently studies implicating bile acid 

7a-dehydroxylating bacteria were lacking. Berr et al. (2) report that fecal levels of bile acid 

7a-dehydroxylating bacteria are approximately 1000-fold higher in recurrent cholesterol 

gallstone patients than control patients. The recurrent cholesterol gallstone patients also 

exhibit increased levels of serum deoxycholic acid compared to patients without recurrent 

gallstone disease. Feces from recurrent cholesterol gallstone patients exhibit increased bile 

acid 7a-dehydroxylation activity. When patients with recurrent cholesterol gallstone disease 

were treated with ampicillin, levels of 7a-dehydroxylating bacteria, bile acid 7a-

dehydroxylation activity, and the biliary cholesterol saturation index all decreased to normal 

levels. The cholesterol saturation index is a ratio of cholesterol to the maximal cholesterol 

micellar-holding capacity of the bile. It has been reported that the biliary cholesterol 

saturation index is positively correlated with the amount of deoxycholate in the bile (23). 

These data suggest that increased levels of colonic 7a-dehydroxylating bacteria increase 
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levels of biliary deoxycholic acid and possibly increase the risk of cholesterol gallstone disease. 

Intestinal bacterial species that catalyze bile acid 7a-dehydroxylation are some 

members of the genera Clostridium and Eubacterium (4,10,12,13,15,24). These genera are 

anaerobic, Gram-positive rod shaped Bacteria. The mechanism of bile acid 7a-

dehydroxylation has been rigorously studied in Eubacterium sp. V.P.I. 12708 (3,5,19,20). In 

this strain 7a-dehydroxylation activity is induced by cholic acid and active towards 

chenodeoxycholic as well as cholic acid. 

Eubacterium sp. V.P.I. 12708 exhibits a multi-step bile acid 7a-dehydroxylation 

pathway in which bile acids are first linked to CoenzymeA upon entering the cell (Fig. 1) 

(11,27). The bile acid undergoes two oxidation reactions yielding 7a,12a-dihydroxy-3-oxo-

4-cholenoic acid. This intermediate is then dehydrated by removal of the 7a-hydroxyl group 

forming 12a-hydroxy-3-oxo-4,6-choldienoic acid followed by three reduction steps. The 

final step is the separation of CoenzymeA and formation of deoxycholic acid. Most of the 

required enzymes for this pathway are encoded in a lOkb poly-cisteronic operon called the 

bai (bile acid inducible) operon (Fig. 2) (3,19,20). Detailed studies concerning the 

physiology and genetics of other bile acid 7a-dehydroxylating intestinal bacteria have not 

been reported. The development of DNA probes for detection and quantification of fecal 7a-

dehydroxylating bacteria would be useful in studying the role of these bacteria in cholesterol 

gallstone disease. The purpose of the current study was to determine the presence of baiE-

like genes in selected bile acid 7a-dehydroxylating bacterial strains. 
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Figure 1. Pathway of 7-dehydroxylation of cholic acid to deoxycholic acid in Eubacterium 

sp.V.P.I. 12708. CoA: CoenzymeA; A: Cholic acid; B: 7a,12a-dihydroxy-3-oxo-5P-

cholanoic acid; C: 7a,12a-dihydroxy-3-oxo-4-cholenoic acid; D: 12a-hydroxy-3-oxo-4,6-

choldienoic acid; E:12a-hydroxy-3-oxo-4-cholenoic acid; F: 12a-hydroxy-3-oxo-5P-

cholanoic acid; G: 3ocl2a-dihydroxy-5P-cholanoic acid (Redrawn from reference 6) 
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Figure 2. Partial restriction map and locations of open reading frames in the bai operon from 

Eubacterium sp.V.P.I. 12708 (Redrawn from reference 7). Enzymatic functions of the gene 

products are indicated in the boxes. 



CHAPTER II 

MATERIALS AND METHODS 

Bacterial strains and culture conditions: 

Eubacterium sp. V.P.I. 12708 was originally isolated from feces of a colon cancer 

patient by R.Hammann (Institute fur Medizinische Microbiologie und Immunologie der 

Universitat, Bonn, Germany). Clostridium sordellii ATCC 9714 was obtained from the 

American Type Culture Collection (Rockville, Md.). Clostridium sp. TO-931, Clostridium 

sp. HD-17, Clostridium sp. TN-271, and Clostridium bifermentans 1-55 were gifted to our 

laboratory by F. Takamine (Laboratory of Microbiology, School of Health Sciences, Faculty 

of Medicine, University of Ryukyus, Okinawa, Japan). 

Bile acid 7a-dehydroxylating bacterial strains were grown anaerobically at 37°C in 

tryptic soy broth (Difco Laboratories, Detroit, MI) or brain heart infusion (Difco 

Laboratories, Detroit, MI) supplemented with 2 g fructose per liter. Anaerobic medium was 

prepared as previously described (16). In order to maintain anaerobic conditions, medium 

was boiled, flushed with nitrogen gas and reducing agent cysteine-HCl (1 gram per liter) was 

added. The pH of the medium was adjusted to 7.1, tubed anaerobically. and autoclaved at 

121°C, 15 psi (pounds per square inch) for no less than 20 minutes. 

E.coli INVaF' cells were grown in Luria-Bertaini (LB) medium, pH 7.5 (10 g Bacto-

tryptone, 5 g Bacto-yeast extract, and 5 g NaCl per liter) at 37°C with moderate shaking. LB 

6 
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medium was autoclaved as described above. When required ampicillin was added to a final 

concentration of 50 ng/ml to the sterilized medium. LB plates were prepared by adding 15 

g of agar per liter to LB medium. Prior to inoculation, 40 jj.1 of 40 mg/ml 5-bromo-4-chloro-

3-indolyl-P-d-galactoside (X-gal) was added on to each plate. 

Polymerase Chain Reaction (PCR) amplification of baiE-like gene: 

Samples to be amplified were prepared as previously described (26). Cultures were 

centrifuged at 9000 x g, washed twice with phosphate-buffered saline (PBS), and once with 

water by centrifugation at room temperature at 9000 x g for 3 minutes (min). Pellets were 

resuspended in distilled water and diluted 1/100 (vol/vol) in 1% Triton X-100, boiled for 5 

min, and immediately cooled in ice water. Primers targeting Eubacterium sp.V.P.I. 12708 

baiE gene were designed by using Mac Vector software package (Oxford Molecular Group 

PLC). These primers allow amplification of a 483 base pair region of the baiE gene. The 

primers were 3599F (5'-GACATTAGAAGAGAGAGT TG-3') and 4081R (5-ATCGTGA 

TATGGATCTTTGG-3'). To ensure that the primers were complementary with the target 

gene but not with other known DNA sequences the GeneBank program BLAST was used. 

Bacterial cells from each strain (10//1) were directly added to 90 u\ of PCR mixture 

containing at a final concentration of 20 jjM. each primer, 1.25 mM each deoxynucleoside 

triphosphate (dATP, dTTP, dCTP, and dGTP), lx PCR buffer (Perkin Elmer, Branchburg, 

New Jersey), and 0.5 U of Taq polymerase. The PCR was conducted in Perkin Elmer 

GeneAmp PCR System 2400 (Foster City, CA.). The amplification conditions were one 

cycle of 94°C for 2 min, 35 cycles of 94°C for 30 seconds (s), 50°C for 30 s and 74°C for 35 

s, and finally one cycle of 74°C for 2 min and 45°C for 2 s. Samples were then maintained 
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to 4°C. PCR products (25 fA) were separated by 2% agarose gel electrophoresis at 100 V, 

and visualized by ethidium bromide staining (1). 

Cloning baiE-like genes: 

Following amplification and agarose gel electrophoresis analysis DNA fragments of 

the predicted size were excised from the gel and extracted with the Gene Clean reagents (Bio 

101 Inc., Vista, CA.) as described by the manufacturer. The purified DNA fragment was 

ligated into the 3.9 kb pCR 2.1 vector (Invitrogen Corp., Carlsbad, CA). The ligation 

reaction was performed by adding 1 [A PCR (25 ng) product to 9 [A ligation reaction mixture 

that contained 1 x ligation buffer (6 mM Tris-HCl, 6 mM MgCl2, 5 mM NaCl, 0.1 mg/ml 

bovine serum albumin, 7 mM P-mercaptoethanol, 0.1 mM ATP, 2 mM dithiothreitol, and 

1 mM spermidine) supplied by the manufacturer, T4 DNA ligase (4.0 Weiss units/|al), and 

pCR 2.1 vector and incubated overnight at 14°C. The inserted DNA fragment is flanked on 

each side by EcoRI sites. The ligation mixture was used to transform competent E. coli 

INVccF' cells as described by the manufacturer. To select clones for further screening 

transformed E. coli INVaF' cells were plated on LB plates containing ampicillin (50 ;ug/ml) 

and X-Gal (40 Lil of 40 mg/ml) and incubated at 37°C overnight. White colonies were picked 

for re-streaking for isolation. White colonies were selected because any DNA insert will 

distrupt lacZ gene present in the vector, which will prevent B-galactosidase expression, and 

the cleavage of X-Gal. If the DNA insert is not present, 13-galactosidase will be expressed 

by lacZ gene, and cleave X-Gal and colonies will appear blue. 
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Purification of the plasmid containing the baiE-like gene fragment: 

For purification of plasmid, E.coli INVaF' cells containing the pCR 2.1 vector were 

used to inoculate 5 ml of LB broth containing ampicillin (50 yug/ml). Cells were grown with 

shaking at 37°C overnight. Cultures were harvested by centrifugation for two min at 12,000 

x g and plasmid DNA was extracted and purified according to the instructions of the supplier 

(Qiagen Inc., Valencia, CA). After harvesting and resuspension, bacterial cells were lysed 

in NaOH/SDS (sodium dodecyl sulfate) in the presence of RNase A. The lysate was 

neutralized, adjusted to high-salt binding conditions by addition of the buffer supplied by the 

manufacturer and centrifuged at 12000 x g. Supernatants were applied to the QIAprep 

column and centrifuged for 30 seconds. Columns were washed twice with the appropriate 

buffers supplied by the manufacturer, and DNA was eluted by adding 50 |j.l of double 

distilled H20, and centrifuged for one minute. Purified plasmids were digested with EcoWl, 

analyzed by gel electrophoresis using 2% agarose in lx TAE buffer (Tris-acetate-

ethylenediamine tetraacetic acid [EDTA], 40 mM Tris acetate, 2 mM EDTA), and visualized 

by ethidium bromide staining to determine the presence of the cloned inserts. 

DNA sequencing and sequence analysis: 

DNA sequence determination was performed at the University of Kentucky, 

Macromolecular Structure Analysis Facility (Lexington, KY), using a Perkin-Elmer, Applied 

Biosystems 377 DNA Sequencer (Foster City, CA) utilizing dye-labeled ddNTP's from the 

dRhodamine Terminator Cycle Sequencing Ready Reaction with Amplitaq DNA 

polymerase, FS kit (Perkin-Elmer Corp., Foster City, CA). Ml3 reverse and T7 promoters 

were used as priming sites for sequencing both strands for Clostridium bifermentans 1-55 and 
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Clostridium sordellii ATCC 9714. For sequencing one strand of DNA from Clostridium sp. 

TO-931, Clostridium sp. TN-271, and Clostridium sp. HD-17 only T7 promoter primer was 

used. The nucleotide sequences were analyzed by computer by comparing to the baiE gene 

from Eubacterium sp. V.P.I. 12708 as well as all other DNA sequences in the public domain 

DNA sequence databases using the GeneBank program BLAST. 

Southern blot analysis of baiE-like gene: 

Chromosomal DNA was extracted from overnight cultures of each bile acid 7a-

dehydroxylating bacterial culture using the Qiagen genomic-tip columns (Qiagen, 

Chatsworth, CA.), and 2 ug of DNA was digested with EcoRI and Pstl at 37°C overnight in 

the appropriate buffer. Penicillin-G (0.1 mg/ml) was added to cultures 4 hours prior to 

extraction of DNA. Lysozyme was used to hydrolyze the cell wall at a final concentration 

of 100 mg/ml during the extraction of genomic DNA. DNA fragments were separated 

electrophoretically using 1% agarose in 1 X TAE buffer. Gels were treated with 0.25N HC1 

for 10 minutes to fragment the DNA. To denature the DNA, gels were equilibriated in 1.0 

M NaCl/0.5 NaOH twice for 20 minutes, then neutralized in 0.5 M Tris-HCl pH 7.5/1,5M 

NaCl twice for 20 minutes. Gels were equilibriated in 10 X SSC (1.5 M NaCl, 0.15 M 

Na3citrate.2H20, pH 7.0) and blotted overnight as previously described except 10 X SSC 

was used for the transfer solution (1). DNA fragments were transferred onto MagnaNT 

nylon membranes (Micron Separations, Inc., Westborough, MA) via capillary action and 

baked for 1 h at 80°C (1). Cloned baiE genes from the bacterial strains encoding dehydratase 

activity required for the dehydratation step in the bile acid 7a-dehydroxylation were used as 

molecular probes. Hybridization using nick-translated probes were performed in 
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hybridization solution consisting of 4 X SSC, 50% formamide, 5 X Denhardt's solution (1% 

ficoll, 1% polyvinyl pyrrolidone, and 1% bovine serum albumin), 1% SDS, and 0.1 mg/ml 

denatured salmon sperm DNA (Sigma Chem. Co, St. Louis, MO). Membranes were 

incubated for at least 2 hours in a heat sealable bag at 42°C, prior to addition of the probe. 

DNA probes were radio-labeled with 32P-dCTP using a commercially available nick-

translation kit (Gibco BRL, Gaithersburg, MD). After labeling, unincorporated nucleotides 

were removed using gel filtration. Briefly, the bottom of a 1 ml syringe was closed with 

glass wool and placed into 15 ml disposable glass test tube. The syringe was filled with 

swollen Sephadex G-50 which was equilibrated in STE (10 mM Tris.Cl, pH 7.5, 10 mM 

NaCl, and 1 mM EDTA) buffer and centrifuged in clinical centrifuge at high speed. Probe 

labeling mixture was loaded on top of the column and centrifuged for 4 minutes, and the 

probe was collected in a microfuge tube. Nick-translated probe was boiled for 5 minutes and 

rapidly cooled on ice prior to addition to the hybridization solution. Hybridization was 

allowed to take place overnight with shaking at 42°C. Membranes were washed at room 

temperature with 2 X SSC (5 min), 2 X SSC with 0.1% SDS (30 min), 0.1 X SSC with 0.1% 

SDS (30 min), then 0.1 X SSC (30 min). Membranes were air dried and exposed to x-ray 

film at room temperature for seven days. Films were developed in 1 X Kodak GBX 

developer for 5 minutes, washed in water for 30 seconds and fixed in 1 X Kodak GBX fixer 

for 4 minutes (Eastman Kodak Company, Rochester, New York). 



CHAPTER III 

RESULTS 

PCR amplification of baiE-like genes: 

The amplified baiE-like genes were analyzed in 2% agarose gel electrophoresis 

following PCR for the six bacterial strains tested (Fig. 3). All the strains tested yielded a 

DNA product at the predicted size of 483 bp including the positive control, Eubacterium sp. 

V.P.I. 12708. Clostridium sp. TN-271 exhibited two amplification products, 483 bp and 450 

bp. The negative control which was Eubacterium sp. V.P.I. 12708 cells with only the 3599F 

primer did not show amplification. 

Cloning and screening of the baiE-like gene fragment: 

The results of the transformations when 50 p.1 and 200 |_il aliquots of transformation 

mixtures (E.coli INVaF' cells containing the insert) were inoculated to LB plates in the 

presence of ampicillin (50 |ig/ml) are shown in Table 1. LB plates that had the 50 |il of 

transformation mixture had 3 blue and 2 white colonies for Clostridium sp. HD-17 clone, 1 

blue and 1 white colony for Clostridium sp. TO-931 clone, 4 blue and 2 white colonies for 

Clostridium bifermentans 1-55 clone, 1 blue and 4 white colonies for Clostridium sordellii 

ATCC 9714 clone, and 2 blue and 3 white colonies for Clostridium sp. TN-271 clone. LB 

plates that had the 200 p.1 of transformation mixture had 8 blue and 3 white colonies for 

Clostridium sp. HD-17 clone, 6 blue and 6 white colonies for Clostridium sp. TO-931 clone, 

12 
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1 2 3 4 5 6 7 8 9 

Figure 3. PCR amplification of baiE-Mke genes from various bile acid 7-dehydroxylating 

bacteria. Lane 1 and 9, molecular weight standards; lane 2 PCR reaction Eubacterium sp. 

V.P.I. 12708 with one primer (negative control); lane 3, Eubacterium sp. V.P.I. 12708; lane 

4, Clostridium sp. HD-17; lane 5, Clostridium sp. TO-931; lane 6, Clostridium bifermentans 

1-55; lane 7, Clostridium sp. TN-271; lane 8, Clostridium sordellii ATCC 9714. This primer 

pair is predicted to amplify a 483 bp fragment from Eubacterium sp. V.P.I. 12708. 



Table 1. Number of transformants when transformation mixtures were plated onto LB 

medium containing ampicillin (50 ng/ml). 

Transformation mixtures * Plate 1 (50 ja.1 inoculum) 

Blue colonies White colonies 

Plate 2 (200 |al inoculum) 

Blue colonies White colonies 

Clostridium sp. HD-17 3 2 8 3 

Clostridium sp. TO-931 1 1 6 6 

Clostridium bifermentans 

1-55 

4 2 4 1 

Clostridium sordellii 

ATCC 9714 

1 4 3 5 

Clostridium sp. TN-271 2 3 3 3 

* Transformation mixture contains E.coli INVaF' transformed with the ligation mixtures 

of the baiE gene fragments and pCR 2.1 vector. 
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4 blue and 1 white colonies for Clostridium bifermentans 1-55 clone, 3 blue and 5 white 

colonies for Clostridium sordellii ATCC 9714 clone, and 3 blue and 3 white colonies for 

Clostridium sp. TN-271 clone. From each transformation plate a single colony was picked 

for plasmid preparation. Plasmids were digested with EcoRI and the products were visualized 

using agarose gel electrophoresis and ethidium bromide staining. Transformants exhibited 

a DNA fragment at 3.9 kb that indicates the plasmid. Also for all the clones studied a DNA 

fragment at the predicted size was observed, except for one clone of Clostridium 

bifermentans 1-55. For this Clostridium bifermentans 1-55 transformant a DNA fragment at 

3.0 kb was observed and the insert was not determined. Results for the restriction digest 

reactions are shown in Figure 4. 

Southern blot analysis of bile acid 7-dehvdroxylating bacterial chromosomes: 

For control purposes it was determined whether the cloned baiE gene fragments are 

present in the chromosome of the strain from which the gene fragment was cloned. For this 

experiment, we employed the Southern blot technique. 

Figure 5 shows the Southern blotting results from Clostridium sordellii ATCC 9714, 

Clostridium sp. TO-931, and Eubacterium sp. V.P.I. 12708 probed with the baiE gene 

fragment of Clostridium sordellii ATCC 9714. Eubacterium sp. V.P.I. 12708 chromosome, 

that was digested with EcoRI exhibited hybridization to the probe; however, the probe did 

not hybridize to any Clostridium sordellii ATCC 9714 chromosomal fragment. No cross 

hybridization has been determined between the probe and Clostridium sp. TO-931 

chromosomal fragments. 
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Figure 4. Restriction digest of cloned baiE-Mke genes with EcoRI. Lane 1 and 12, molecular 

weight standards; lane 2 and 3, Clostridium sp. HD-17; lane 4 and 5, Clostridium sp. TO-

931; lane 6 and 7, Clostridium bifermentans 1-55; lane 8 and 9, Clostridium sp. TN-271; lane 

10 and 11 Clostridium sordellii ATCC 9714. 
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Figure 5. Autoradiogram of selected bacterial chromosomes probed with baiE gene 

fragment cloned from Clostridium sordellii ATCC 9714. Equivalent quantities (2 |ag) of 

chromosomal DNA from each strain were digested with EcoRI or Pstl. Lane 1, molecular 

weight standard, lane 2, Eubacterium sp. V.P.I. 12708 digested with EcoRI; lane 3, 

Eubacterium sp. V.P.I. 12708 digested with Pstl, lane 4, C. sordellii ATCC 9714 digested 

with EcoRI; lane 5, C. sordellii ATCC 9714 digested with Pstl; lane 6, C. sp. TO-931 

digested with EcoRI; lane 7, C.sp. TO-931 digested with Pstl. 
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Figure 6 shows the results when chromosomal DNA of the Eubacterium sp. V.P.I. 

12708, Clostridium sp. HD-17, Clostridium sp. TN-271, Clostridium sp. TO-931, 

Clostridium bifermentans 1-55, and Clostridium sordellii ATCC 9714 were probed with the 

baiE gene fragment of Clostridium sp. HD-17. The baiE-like gene hybridized to 

Eubacterium sp. V.P.I. 12708 and Clostridium sp. TN-271 chromosomal fragments, but did 

not hybridize to Clostridium sp. HD-17, Clostridium bifermentans 1-55, Clostridium sp. TO-

931, or to Clostridium sordellii ATCC 9714 chromosomal fragments. 

Figure 7 shows the data from chromosomal DNA of Eubacterium sp. V.P.I. 12708, 

Clostridium bifermentans 1-55, Clostridium sp. TO-931, Clostridium sp. HD-17, Clostridium 

sp. TN-271, and Clostridium sordellii ATCC 9714 probed with the baiE gene fragment from 

Clostridium bifermentans 1-55. The probe hybridized to Eubacterium sp. V.P.I. 12708 and 

Clostridium sp. TN-271 chromosome fragments. The baiE gene fragment did not hybridize 

to Clostridium bifermentans 1-55, Clostridium sordellii ATCC 9714, Clostridium sp. HD-17, 

or to Clostridium sp. TO-931 chromosomal fragments. 

Figure 8 shows the results from chromosomal DNA of Eubacterium sp. V.P.I. 12708, 

Clostridium sp. TN-271, Clostridium bifermentans 1-55, Clostridium sp. TO-931, 

Clostridium sordellii ATCC 9714, and Clostridium sp. HD-17 probed with the baiE gene 

fragment of Clostridium sp. TN-271. Both Eubacterium sp. V.P.I. 12708 and Clostridium 

sp. TN-271 chromosomal fragments hybridized to the probe. The baiE gene fragment did 

not hybridize to chromosomal DNA fragments from Clostridium bifermentans 1-55, 

Clostridium sp. TO-931, Clostridium sp. HD-17, and Clostridium sordellii ATCC 9714. 
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Figure 6. Autoradiogram of selected bacterial chromosomes probed with the baiE gene 

fragment cloned from Clostridium sp. HD-17. Equivalent quantities (2 |ig) of chromosomal 

DNA from each strain were double digested with EcoRI and Pstl. Lane 1. molecular weight 

standard: lane 2, Eubacterium sp. V.P.I. 12708; lane 3, C. sp. TN-271; lane 4, C. 

bifermentans 1-55; lane 5, C. sp. HD-17; lane 6. C. sp. TO-931; lane 7, C. sordellii ATCC 

9714. 
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Figure 7. Autoradiogram of selected bacterial chromosomes probed with the baiE gene 

fragment cloned from Clostridium bifermentans 1-55. Equivalent quantities (2 fig) of 

chromosomal DNA from each strain were double digested with EcoRI and Pstl. Lane 1, 

molecular weight standard; lane 2, Eubacterium sp. V.P.I. 12708; lane 3, C. sp. TN-271; lane 

4, C. bifermentans 1-55; lane 5, C. sp. HD-17; lane 6, C. sp. TO-931; lane 7, C. sordellii 

ATCC 9714. 
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Figure 8. Autoradiogram of selected bacterial strains studied probed with the baiE gene 

fragment cloned from Clostridium sp. TN-271. Equivalent quantities (2 |ag) of chromosomal 

DNA from each strain were double digested with EcoRI and Pst\. Lane 1, molecular weight 

standard; lane 2, Eubacterium sp. V.P.I. 12708; lane 3, C. sp. TN-271; lane 4, C. 

bifermentans 1-55; lane 5, C. sp. HD-17; lane 6, C. sp. TO-931, lane 7, C. sordellii ATCC 

9714. 
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Figure 9 shows the results when chromosomal DNA from Clostridium sordellii 

ATCC 9714 and Clostridium sp. TO-931 were probed with baiE gene fragment of 

Clostridium sp. TO-931. Only one Eubacterium sp. Y.P.I. 12708 chromosomal fragment 

exhibited hybridization with the probe. No cross-hybridization was detected between the 

probe and the chromosomal DNA from Clostridium sordellii ATCC 9714 or Clostridium sp. 

TO-931. 

DNA sequence analysis: 

The sequence analysis of one strand of Clostridium sordellii ATCC 9714 showed 

90% identity to Eubacterium sp. V.P.I. 12708 sequence when the T7 promoter was used as 

a primer. The sequencing result of the complementary strand of Clostridium sordellii ATCC 

9714 when the Ml3 Reverse was used as a primer exhibited the same sequence that was 

derived from T7 promoter. Both 3599F and 4081R primers were identified in the DNA 

sequence obtained from both Ml3 Reverse and T7 promoter sequence reactions. 

The results of sequencing reaction for Clostridium bifermentans 1-55 from one strand 

of DNA derived by T7 promoter showed 91% identity to Eubacterium sp. V.P.I. 12708 

sequence. The complementary strand sequence result derived by Ml3 Reverse primer 

exhibited the same sequence which was derived by T7 promoter, and exhibited 95% identity 

to Eubacterium sp. V.P.I. 12708. Both 3599F and 4081R primers were identified in the 

DNA sequence obtained from both Ml3 Reverse and T7 promoter sequence reactions. 

Clostridium sp. TN-271 sequencing results from one strand of DNA derived by T7 

promoter showed 90% identity to Eubacterium sp. V.P.I. 12708 sequence. 
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Figure 9 Autoradiogram of selected bacterial chromosomes probed with baiE gene fragment 

cloned from Clostridium sp. TO-931. Equivalent quantities (2 fig) of chromosomal DNA 

from each strain were digested with EcoRI or Pstl. Lane 1. molecular weight standard, lane 

2, Eubacterium sp. V.P.I. 12708 digested with EcoRI', lane 3, Eubacterium sp. V.P.I. 12708 

digested with Pstl; lane 4, C. sordellii ATCC 9714 digested with EcoRI; lane 5, C. sordellii 

ATCC 9714 digested with Pstl; lane 6, C. sp. TO-931 digested with EcoRI; lane 7, C. sp. 

TOdigested with Pstl. 
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Clostridium sp. HD-17 sequence results from one strand of DNA derived by T7 

promoter showed 88% identity to Eubacterium sp. V.P.I. 12708 sequence. 

The data from sequencing reaction of Clostridium sp. TO-931 from one strand of 

DNA derived by T7 promoter exhibited 92% identity to Eubacterium sp. V.P.I. 12708 

sequence. 

Table 2 shows the summary of the results of the number of bases compared to 

Eubacterium sp. V.P.I. 12708 sequence and the % identities. 
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Table 2. Results of the sequence comparisons of the cloned inserts from the stated bacterial 

strains to Eubacterium sp. V.P.I. 12708 baiE sequence. 

Clone T7 Promoter Ml3 Reverse Clone 

# bases % identity with 
5' end of baiE* 

# bases % identity with 
5' end of baiE 

Clostridium sp. 
HD-17 204 88 

-

Clostridium sp. 
TO-931 269 92 

- -

Clostridium sp. 
TN-271 265 90 

- -

Clostridium 
bifermentans 
1-55 

All 91 469 95 

Clostridium 
sordellii 
ATCC 9714 

444 90 550 95 

* Percent identity of 5' end of the baiE gene from Eubacterium sp. V.P.I. 12708 

9 Indicates the sequence data was not obtained. 



CHAPTER IV 

DISCUSSION 

Bile acid 7a-dehydroxylation has been studied for many years. Bacterial strains that 

exhibit bile acid 7a-dehydroxylation activity are the members of the genera Clostridium and 

Eubacterium (4,10,12,13,15,24). Most studies have focused on Eubacterium sp. V.P.I. 

12708 but not with the other intestinal bile acid 7a-dehydroxylating bacteria. The purpose 

of this study was to determine the presence or absence of baiE-like gene that encodes the bile 

acid 7a-dehydratase enzyme in selected bile acid 7a-dehydroxylating bacterial strains. 

PCR primers were designed targeting Eubacterium sp. V.P.I. 12708 baiE gene. For 

these experiments to be successful, the nucleotide sequence of the baiE-like genes in the five 

bacterial strains tested must be similar enough to Eubacterium sp. V.P.I. 12708 baiE gene 

sequence to allow amplification. The PCR results for all the strains tested, including 

Eubacterium sp. V.P.I. 12708, showed an amplification at the predicted size. This data 

suggested that the baiE-like gene is present in all the bacterial strains tested. 

Following PCR amplification, Clostridium sp. TN-271 exhibited two DNA 

fragments, 483 bp and 450 bp. This result could be because the primer pair is amplifying at 

different locations on the chromosome. This other amplification site might be further down 

the baiE gene. In addition, other genes in the bai operon are known to be homologous to the 

baiE gene, thus sequences flanking the target gene could also contain priming sites. 

The transformation assay yielded few white colonies; however only one colony was 

necessary to prepare plasmids. Thus, in our tests we picked one colony from each 

transformation plate. 

26 
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To date one sequencing reaction per clone of Clostridium sp. TO-931, Clostridium 

sp. HD-17, and Clostridium sp. TN-271 revealed 88-94% homology with the baiE gene of 

Eubacterium sp. V.P.I. 12708, suggesting that the baiEASke genes exist in the these bacterial 

strains. The sequencing reaction from the other direction for these bacterial strains did not 

work. There might be several reasons for this problem. First, the plasmid yield may have 

been too low to provide sufficient DNA for the sequencing reaction. Second, water used in 

the plasmid isolation was not double distilled; contaminants in the water may have affected 

the reaction. Third, the DNA may have degraded or become contaminated during shipment 

to the University of Kentucky sequencing laboratory. 

The sequencing results from Clostridium bifermentans 1-55 and Clostridium sordellii 

ATCC 9714 exhibited the same DNA sequence on both the 5' and 3' ends of the clones 

which is troubling. These confusing data might be due to having a mixed culture while 

preparing the plasmid preparations from isolated colonies of the transformants. Two 

different colonies of the same transformant might have appeared as one colony, and this 

colony might have been picked for plasmid preparations. Since the PCR product can ligate 

into the vector in either direction, the two colonies may have had sequences ligated in 

opposite directions. In preparing plasmids for the forward sequencing reaction, one colony 

may have predominated, while in the other preparation for the reverse reaction, the other 

colony may have predominated. These problems could be prevented by re-streaking the 

colonies from the transformation reactions to ensure the colony was a single isolate. 

In the Southern blot reactions Clostridium sp. TN-271 hybridized to Clostridium sp. 

TN-271 chromosome and Eubacterium sp. V.P.I. 12708 chromosome suggesting the 

presence of the gene. The hybridization of Clostridium sp. TN-271 to its own chromosome 

weakly, but to Eubacterium sp. V.P.I. 12708, strongly could be because there might be more 
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DNA for Eubacterium sp. V.P.I. 12708 than Clostridium sp. TN-271. In addition, in 

Eubacterium sp. V.P.I. 12708 there might be more than one baiE gene that is located at 

another place than the bai operon. Therefore, in this case the hybridization to Eubacterium 

sp. V.P.I. 12708 will be stronger. 

Clostridiumsp. TO-931, Clostridium bifermentans 1-55, Clostridium sp. HD-17, and 

Clostridium sordellii ATCC 9714 baiE gene fragments not hybridizing to their own 

chromosomes but to Eubacterium sp. V.P.I. 12708 could be because these strains might not 

have enough DNA loaded on the gel, or there could be sub-optimal hybridization conditions. 

Taken together, sequencing, and Southern blotting results indicate the presence of 

baiE-like gene in Clostridium sp. TN-271 although in a previous study it has been shown that 

this strain does not have the baiE gene (7). In the previous study the entire Eubacterium sp. 

V.P.I. 12708 baiE gene fragment was used as a probe. Although Clostridium sp. TN-271 

shows high sequence identity to Eubacterium sp. V.P.I. 12708, few mismatches could 

prevent hybridization of full length baiE gene probe to the bacterial chromosome tested. In 

this study I did not use the entire gene as a probe, but rather amplified the gene using two, 

20 nucleotides long PCR primers. This approach was successful. This result suggests the 

baiE gene is truely present in Clostridium sp. TN-271. 

Although Clostridium bifermentans 1-55. Clostridium sordellii ATCC 9714, 

Clostridium sp. HD-17, and Clostridium TO-931 all showed a sequence similarity to 

Eubacterium sp. V.P.I. 12708 in southern blot reactions the respective probes did not show 

hybridizations to their own chromosomes possibly because of sub-optimal hybridization 

conditions or the baiE gene does not exist in these bacterial strains. 

For future studies, having Clostridium sp. TN-271 baiE-like gene sequenced from 

both directions may be helpful in showing the gene does exist in that strain. 



APPENDIX 

GACATTAGAAGAGAGAGTTGAAGCATTAGAAAAAAGAATTGCAGGA 46 

GATGAAGGATATTGAGGCAATCAAGGAAACTGAAAGGAAAGTATTT 92 

CCGCTGCCTGGACGGAAANATGTGGGATGAGCTGGAGACCACCCTG 138 

TCACCAAATATCGTAACCTCTTATTCCAACGGGAAACTGGTATTCC 184 

NTAGCCCGAAGGAATTACCGATTACTTAAAGAGCTCGATGCC AAAA 23 0 

NAATAAATCNGCATGCATATGGGCCCCCCGCCGGANATC 

Figure 1A. Nucleic acid sequence of Clostridium sp. TO-931 when T7 promoter was 

used. The sequence in bold is the 3599F PCR primer. 
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ATCGTGATATGGATCTTTGGGATCACGCATGAAAATGTTCTTCATA 46 

GAATTCGTACATAGCCTGTTTNCAANGGAATGTTACCACTGGGCCT 92 

TCTAATTTTCCTCGTAATTGGTCTGTATAAGAAACGCCGCCCGCCG 138 

GTTAAATCCCCACATCTTTGTTACTTGCCCGTCCGTAAAAGATCAG 184 

TTTTATCTTCC AGAATACCATCTGCCCGTAGCCGTAGTCTCGCTGT 23 0 

CAATGGTGATCTCCGGCGTGTGGCCCATATGCATGCTGATCTCTTC 276 

TTTTGGCATTGTGCTCTTTAAAGTAATCGGTAACTTCCTTCGGGGCT 322 

ATGGAAATACCAGTTTACCGTTGGGAATAAGAAGTTACGAATATTT 368 

GGTGACAGAATGGTCTCC AGTTC ATCCC ACATCTTTCCGTCC AAGC 414 

AGCGGGAAATACTTCCCTTTCAGTTCTTTGATCGCCTCGANATCCT 460 

TCATCTTCTGCAGTTCTTTTNCNAAATGCTCCACTCTCACTTCTAA 506 

TGTN 

Figure IB. Nucleic acid sequence of Clostridium bifermentans 1-55 when T7 promoter was 

used. The sequence in bold is the 4081R PCR primer. The underlined sequence is the 

3599F PCR primer. 
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GACATTAGAAAGAGAGAGTTGAAGCATTAGAAAAAGAACTGCAGAA 46 

AGATGAAGGATATCGAGGCGATCAAAGAAACTGAAAGGAAAGTATT 92 

TCCGCTGCCTGGACGGAAAAGATGTGGGATGAACTGGAGACCACTC 13 8 

TGTCACCAAATATCGTAACCTCTTATTCCAACGGTAAACTGGTATT 184 

CCATAGCCCGAAGGAAGTTACCGATTACTTAAAGAGCACAATGCCA 230 

AAAGAANAGATCAGCATGCATATGGGCCACACGCC 

Figure 1C. Nucleic acid sequence of Clostridium sp. TN-271 when T7 promoter was 

used. The sequence in bold is the 3599F PCR primer. 
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ATCGTGATATGGANGGGTGGATCACGCATGANAATGTNCTTCATAG 46 

AATTCGTACATAGCCNGTNTCANGGATGTACCACTGGCCTTCTATT 92 

TTCTCGTATTTGTCTGTATAGAAACGCGCCGCCGTTAATCCCC AC A 13 8 

TCTTTGTACTTGCCGTCCGTAAAGATCAGTTTATCTTCCAGATACC 184 

ATCTGCCCGTAGCCGTAGTCTCGCTGTC AATGGTGATCTCCGGCGT 23 0 

GTGGCCCATATGCATGCTGATCTCCGGCGTGTGGCCCATATGCATG 276 

CTGATCTCTTCTTTNGGCATGGTGCTCTTTAAGTAATCGGTAACTT 322 

CCTTCGGGCTATGGAATACCAGTTTACCGTNGGAATANGAGGTACN 368 

ATATTGGGTGAC AGANTGGTCTCC AGTTC ATCCC ACATCTTCCGTC 414 

CAGCACGGAAATACTTCCTTCCAGTTCTTTGATCGCCTCGAATATC 460 

CTTCCATCTTCTGCAGTTCCTTTNCCTAATGCCTCAACTCTCTCCTT 506 

CTAATGTC 

Figure ID. Nucleic acid sequence of Clostridium sordellii ATCC 9714 when T7 

promoter was used. The sequence in bold is the 4081R PCR primer. The underlined 

sequence is the 3599F PCR primer. 
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GACATTAGAAGAGAGAGTTCAAGCATTAGAAAANGANTTGCAGGAT 46 

ATGANTGATNTTGAGGCCNTCNNGGAACTGAAAGGANNGTATTTCC 92 

NCTGCCTGGACAGATANATGTGGGATGAGCTGGAGACCTCCCTGTC 13 8 

ACCAAATANCNTANCCTCTTATTCCANCTGGGAAACTGGTATTCCN 184 

TACCCCGAAGGAATTTACCG 

Figure IE. Nucleic acid sequence of Clostridium sp. HD-17 when T7 promoter was 

used. The sequence in bold is the 3599F PCR primer. 
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ATCGTGATATGGATCTTTGGATCACGCATGAAATGTTCTTCATAGA 46 

TTCGTACATAGCCTGTTTCAAGGATGTACCACTGGCCTTCTATTTT 92 

CTCGTATTTGTCTGTATAGAACGCGCCGCCGTTAATCCCC AC ATCT 13 8 

TTGTACTTGCCGTCCGTAAAGATCAGTTTATCTTCCAGATACCATC 184 

TGCCCGTAGCCGTAGTCTCGCTGTCAATGGTGATCTCCGGCGTGTG 230 

GCCCATATGCATGCTGATCTCTTCTTTTGGCATTGTGCTCTTTAAG 276 

TAATCGGTAACTTCCTTCGGGCTATGGAATACCAGTTTACCGTTGG 322 

AATAAGAGGTTACGATATTTGGTGACAGAGTGGTCTCCAGTTCATC 368 

CCACATCTTTCCGTCC AGGCAGCGGAAATACTTTCCTTTC AGTTCT 414 

TTGATCGCCTCGATATCCTTCATCTTCTGCAGTTCTTTTTCTAATG 460 

CTTCAACTCTCTCTTCTAATGT 

Figure IF. Nucleic acid sequence of Clostridium bifermentans 1-55 when Ml 3 Reverse 

primer was used. The sequence in bold is the 4081R PCR primer. The underlined 

sequence is the 3599F PCR primer. 
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ATCGTGATATGGATCTTTGGATCACGCATGAAATGTTCTTCATAGA 46 

TTCGTACATAGCCTGTTTCAAGGATGTACCACTGGCCTTCTATTTT 92 

CTCG TATTTGTCTGTATAGAACGCGCCGCCGTTAATCCCCACATCT 138 

TTGTACTTGCCGTCCGTAAAGATCAGTTTATCTTCCAGATACCATC 184 

TGCCCGTAGCCGTAGTCTCGCTGTCAATGGTGATCTCCGGCGTGTG 230 

GCCCATATGCATGCTGATCTCTTCTTTTGGCATTGTGCTCTTTAAG 276 

TAATCGGTAACTTCCTTCGGGCTATGGAATACCAGTTTACCGTTGG 322 

AAT AAG AGGTTACGATATTTGGTGAC AGAGTGGTCTCC AGTTC ATC 368 

CC ACATCTTTCCGACCAGGC AGCGGAAATACTTTCCTTTCAAGTTC 414 

TTTGATCGCCTCGATATCCTTCATCTTCTGCAGTTCTTTTTCTAAT 460 

GCTTCAACTCTCTTCTAATGTCAAGCCGAATTCTGCANATATCCAT 506 

CACACTGGCGGNCGCTCGAACATGCATCTAGAGGGCCCAATTCG 

Figure 1G. Nucleic acid sequence of Clostridium sordellii ATCC 9714 when Ml 3 

Reverse primer was used. The sequence in bold is the 4081R PCR primer. The 

underlined sequence is the 3599F PCR primer. 
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