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Trypanosoma cruzi, the etiologic agent of Chagas disease, infects a variety of 

wild mammals in the southern United States, but it has only recently been isolated from 

raccoons trapped in the state of Kentucky. The purpose of the present study was to use a 

molecular genotyping approach, followed by DNA sequencing to determine the 

genotypes (type I, or types IIa-IIe) of 15 of the Kentucky isolates. DNA samples were 

prepared from 15 T. cruzi- isolates using a Qiagen mini kit, and PCR amplification was 

performed using published primers for the 24S α rDNA sequence (D71 and D72), the 

non-transcribed spacer of the mini-exon genes (TC, TC1, and TC2), the 18S rDNA 

sequence (V1 and V2), and TCZ1 and TCZ2 primers that amplify a 188-base pair 

segment of the repetitive 195-bp nuclear DNA sequence of T. cruzi.  DNA sequencing 

(ABI 3130 Genetic Analyzer) was performed on all amplification products obtained from 

the PCR analysis of the RW2 and RB12 isolates (randomly selected to represent both 

Warren and Barren counties of Kentucky; the number started with an “R” which stood for 

raccoon, a “W” for Warren County or a “B” for Barren County, followed by a number 

which represented the order in which animal was trapped).  The resulting sequences were 

edited before analysis using the BLAST database of the National Center for 
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Biotechnology Information (NCBI) Genbank. All 15 isolates were positively confirmed 

as T. cruzi based upon PCR amplification of a 195 bp repetitive genomic DNA sequence, 

and all 15 isolates showed identical PCR amplification results with all 4 sets of T. cruzi-

specific primers. Two positive PCR samples were randomly selected for further DNA 

sequence analysis, and all samples were positively identified as the type IIa genotype of T. 

cruzi with max identities ranging from 94%-99%. The results of this study confirm that 

all hemoculture isolates obtained from raccoons trapped in Warren and Barren counties 

of Kentucky are T. cruzi.  Furthermore, all BLAST comparisons of amplicon DNA 

sequences showed high sequence identity to type IIa strains of T. cruzi.  The type IIa 

strain of T. cruzi is the most commonly reported genotype from raccoons trapped in the 

U.S.A. 
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INTRODUCTION 

Discovery of Chagas disease 

 Carlos Chagas, a Brazilian physician and scientist who worked at the Oswaldo 

Cruz Institute in Rio de Janeiro, discovered the protozoan parasite known as 

Trypanosoma cruzi (Chagas, 1909). At that time, Brazilians were trying to develop the 

Rio de Janeiro valley, however, malaria was prevalent and was an impediment to railroad 

construction.  Chagas was working on malaria treatment, but he noted that some of his 

patients displayed unusual symptoms that were not associated with any of the known 

diseases of the time. These symptoms, including ocular afflictions, glandular enlargement, 

and edema, are now known to be typical of the disease that came to be known as Chagas 

disease, or American trypanosomiasis.  Chagas investigated the living environment of the 

patients, and found that blood-sucking bugs (Hemiptera, family Reduviidae, subfamily 

Triatominae) commonly inhabited the sod walls and thatched roofs of rural homes in 

Latin America.  He examined the Triatomine bugs and found large numbers of flagellated 

protozoa in their digestive tracts.  Chagas allowed infected bugs to feed on marmosets 

and guinea pigs, and observed that the same flagellated parasites appeared in the blood of 

the animals within one month. He then investigated the prevalence of the parasite in 

blood samples obtained from humans and domestic animals.  Chagas discovered the 

parasite in the blood of a domestic cat and in a one-year-old child who also exhibited 

disease symptoms.  By 1916 Chagas described the complete life cycle of the parasite now 

known as Trypanosoma cruzi (Chagas, 1911, 1920, Prata, 1999).   
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Chagas disease 

Chagas disease causes approximately 13,000 deaths per year (WHO, 2002), and 

more than 28 million people are believed to currently be at risk of infection (Dias et al., 

2008).  In addition, the World Health Organization has estimated that Chagas disease is 

responsible for a burden of nearly 670,000 disability adjusted life years (WHO, 2002). 

The disease is endemic across the vast majority of Latin America, with the exception of 

the Caribbean nations (Schofield et al., 2006).  Chagas disease occurs in three stages: an 

acute phase, a latent phase, and a chronic phase. The acute phase occurs 4 to 8 weeks 

after the infection.  During the acute phase, the symptoms are generalized (fever, malaise, 

swollen lymph nodes) and the disease can be difficult to diagnose. The latent (or 

intermediate) phase can last 10 to 30 years. Patients exhibit few symptoms during the 

latent period, but remain seropositive.  The chronic manifestations of Chagas disease 

occur in approximately 10-30% of patients (Kirchhoff and Pearson, 2007). Cardiac 

abnormalities are most common in the chronic phase, and include conduction system 

abnormalities, ventricular arrhythmias, and congestive heart failure. Chronic 

gastrointestinal problems may also occur due to megaesophagus or megacolon (Kirchhoff 

and Pearson, 2007).  

Trypanosoma cruzi 

 Trypanosoma cruzi is a flagellated protozoan parasite in the order Kinetplastida, 

family, Trypanosomatidae. Trypanosoma cruzi displays several developmental stages in 

its complex life cycle, which occurs in vertebrate and invertebrate hosts. The parasite 

shows three major stages: amastigote, epimastigote, and trypomastigote (De Souza, 2002). 
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 Rounded amastigotes are the intracellular dividing stages of the parasite found in 

the tissues of the vertebrate host.  Within the cytoplasm of host cells, amastigote stages 

transform into trypomastigotes, or at the beginning of a new intracellular cycle, 

trypomastigotes transform into amastigotes.  Trypomastigotes are approximately 25 µm 

long and 2 µm in diameter. The trypomastigote forms are released from infected cells and 

then enter the blood stream, or re-infect other cells.  Moreover, trypomastigotes exist in 

the liquid phase of mammalian cell cultures and at the stationary phase of growth in 

axenic cultures. The trypomastigote stage is the infective stage of the parasite for the 

insect host, and is acquired when the insect takes a blood meal from an infected 

vertebrate host. Metacyclic trypomastigote stages also accumulate in the rectum of the 

insect host and are released in the feces of the bug.  The metacyclic trypomastigotes 

become the infective stage for the mammalian host when they cross the mucous 

membranes of the eyes, nose, or mouth, or enter the wound site created by the bug.  

Finally, the spindle-shaped epimastigote stages are approximately 20-40 µm long.  They 

are found in the intestine of the invertebrate host, where they undergo rapid division.  

Epimastigote stages are also observed at the logarithimic phase of growth in axenic 

cultures (De Souza, 2002). 

Cell Biology of Trypanosoma cruzi 

The cell surface of Trypanosoma cruzi is composed of two components, the 

plasma membrane and an underlying layer of subpellicular microtubules (De Souza, 

2002).  There is also a single flagellum that is used for general movement of the cell and 

attachment of the parasites to the surface of vertebrate host cells and to the 

perimicrovillar membranes that line the intestine of the invertebrate host (Hill, 2003; De 
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Souza, 1999).  The flagellum emerges from an invagination of the plasma membrane 

known as the flagellar pocket (De Souza, 2002). The flagellar pocket is located posterior 

to the nucleus in the trypomastigote, however, it is positioned anterior to the nucleus in 

the epimastigote stage (McConville et al., 2002).  As a member of the Trypanosomatidae 

family, T. cruzi possesses only one mitochondrion that extends throughout the cell body 

(De Souza, 2002). Within the mitochondrial matrix, situated close to the basal body, there 

is a specialized structure known as the kinetoplast. The kinetoplast contains mini-circle 

and maxi-circle DNA, and the kinetoplast DNA (K-DNA) represents approximately 30% 

of the total DNA of T. cruzi (De Souza, 2002; 2008). The kinetoplast contains circular 

DNA, histone-H1-like protein and other basic proteins (Souto-Padron & De Souza 1978, 

1979; De Souza et al., 2008). The kinetoplast is a diagnostic characteristic of protozoa in 

the order, Kinetoplastida (De Souza, 2002).  Kinetoplast DNA consists of two types of 

circular DNA (minicircles and maxicircles).  According to Rious and Delain (1969), there 

are 20,000-30,000 minicircles in the kinetoplast, and each of the minicircles has a length 

of approximately 0.45µm, corresponding to about 1440 base pairs. In contrast, there are 

only a few dozen maxicircles, and they range in size from 20-40kb (De Souza, 2009).  

Maxicircles appear to be similar to the mitochondrial DNA of higher eukaryotes. 

Maxicircle DNA encodes rRNAs and genes related to the respiratory pathway such as 

cytochrome-c-oxidase subunit II and III and ATPase subunit 6.  However, maxicircle 

coding DNA sequences contain many frameshifts, and guide RNAs (encoded by the 

minicircle DNA) must edit RNA transcripts in order for translation to occur (Stuart et al., 

1997; De Souza, 2009). This unique molecular process has been termed RNA editing.  

The morphology of the kinetoplast varies depending upon the stage of the parasite. The 
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K-DNA is highly condensed and organized (presenting a rod-like shape) in the 

amastigote and epimastigote stages.  The kinetoplast is situated anterior to the nucleus in 

the epimastigote stage.  In the trypomastigote stage, K-DNA is more loosely organized 

and is situated posterior to the nucleus (De Souza, 1999; 2002). It has been suggested by 

some investigators that K-DNA is capable of integrating into the host cell DNA of 

infected vertebrate animals (Teixeira et al., 2006).   

The structure of the nucleus of T. cruzi is analogous to that of other eukaryotic 

cells. It is approximately 2.5µm in diameter and consists of 43-50Mb of DNA (De Souza, 

2002). Interestingly, the chromosomes do not visibly condense during any stages of the 

life cycle (De Souza, 2002). The endoplasmic reticulum is visible throughout the cell, and 

Golgi complexes are positioned at the anterior end of the cell (De Souza, 2002). 

Hosts and Life Cycle 

The insect vectors of Trypanosoma cruzi are blood sucking triatomine bugs in the 

family Reduviidae (Schofield et al., 1999).  They are hemimetabolous and have a life 

span that ranges from 3 months to 2 years. Triatomines pass 5 instars from birth to adult 

and the molting process depends upon when they take a blood meal (Stern & Emlen, 

1999).  The vectors for T. cruzi are located in North America, Central America, and 

South America.  The bugs tend to bite people as they sleep during the night (Harder, 

2004). 

Triatomine bugs ingest trypomastigote stages when taking a blood meal from an 

infected vertebrate host (see Figure 1). The trypomastigotes transform into epimastigotes 

and some rounded forms in the midgut of the insect. Then epimastigotes replicate by 

binary fission in the midgut, and a subpopulation of the dividing epimastigotes transform 



8 

	  

into metacyclic trypomastigotes in the hindgut. The infective metacyclic trypomastigote 

stages are then passed in the feces, frequently during a blood meal. The metacyclic 

trypomastigotes then enter the bite wound or cross the mucous membranes of the eyes, 

nose or mouth (De Souza, 2002). 

When metacyclic trypomastigotes enter the vertebrate host body, they must 

quickly enter host cells in order to complete their intracellular cycle of replication. Inside 

the host cells, they transform into amastigotes and undergo multiple rounds of binary 

fission. The amastigotes (1 µm in length) then transform into trypomastigotes (20 µm in 

length) and burst out of the cells. Some trypomastigotes infect nearby tissue cells and 

others disperse to other tissues and organs by entering the bloodstream. The invertebrate 

host ingests blood-form trypomastigote stages during a blood meal, completing the 

parasite’s life cycle (De Souza, 2002; CDC, 2010). 

 

Figure 1.  Life cycle of Trypanosoma cruzi (CDC, 2010). 
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Vector facilitated transmission is thought to be the most common mode of transmission 

of T. cruzi, however, blood transfusions, organ transplantation, laboratory accidents, and 

accidental ingestion of triatomine bugs are all documented routes of infection (WHO, 

2002; Woodall, 2007). 

Sylvatic cycle of T. cruzi 

The sylvatic cycle of T. cruzi has been reported in many states in the U.S.A., 

including Alabama, California, Florida, Georgia, Louisiana, Maryland, Oklahoma, North 

Carolina, South Carolina, Tennessee, Texas and Virginia (McKeever et al., 1958; Olsen 

et al., 1964; John and Hoppe, 1986; Karsten et al., 1992; Yabsley & Noblet, 2002; Dorn 

et al, 2007; Hancock et al, 2005). Most recently, the sylvatic cyle of T. cruzi was 

documented in raccoons and opossums from the state of Kentucky (Groce, 2008). T. cruzi 

infection occurs in a wide variety of mammals in the U.S.A. including raccoons (Procyon 

lotor), opossums (Didelphis virginiana), gray foxes (Urocyon cineroargenteus), striped 

skunks (Mephitis mephitis), macaques (Macaca silenus), lemurs (Lemur catta), woodrats 

(Neatoma magister), armadillos (Dasypus novemcincthus), bats (Eptiscus fuscus), moles 

(Neurotrichus gibbsii), and dogs (Canis familiaris) (Yabsley et al, 2001; James et al, 

2002; Hall et al, 2007).  Despite the widespread occurrence of T. cruzi in mammals, 

especially in the southern region of the U.S.A., only 6 cases of autochthonous 

transmission to humans have been reported (Bern et al., 2007).  

Genotypes of T. cruzi 

T. cruzi has been divided into two highly divergent genotypic groups, designated 

type I and type II.  These strain designations are based upon the results of isoenzyme 

analysis, riboprinting analysis (restriction fragment length polymorphism analysis of 



10 

	  

polymerase chain reaction amplified ribosomal DNA), RNA promoter activity, and 

analysis of mini-exon gene sequences and microsatellite markers (Tibayrenc, 1995; Souto 

et al., 1996).  Intriguingly, the infectivity of T. cruzi strains has been reported to be 

dependent upon the host from which the strains are isolated, rather than the genotypes of 

the parasite strains (Bértoli et al., 2006). Strains of T. cruzi isolated from sylvatic hosts 

tend to show significantly higher infectivity in mice than strains isolated from humans 

and triatomine intermediate hosts (Bértoli et al., 2006). 

Kinetoplast DNA has been a frequent target for PCR-based detection and 

diagnosis of T. cruzi, due to its unique molecular characteristics.  The PCR amplification 

of conserved regions of mini-circle K-DNA has been shown by a number of investigators 

to be a more efficient and sensitive method to detect T. cruzi than microscopic analysis 

(Shikanai et al., 1996; Avila et al., 1993; Dorn, 1997; Kirchhoff et al., 1996). In addition, 

the primers designated TCZ1 and TCZ2, which are specific for an 188bp segment of a 

repetitive 195bp nuclear DNA sequence, have been shown to be highly sensitive and 

specific for the detection of T. cruzi (Lanar et al., 1981; Moser et al., 1989). PCR 

amplification with TCZ1 and TCZ2 allows for the detection of T.cruzi isolates from 

widely separated geographic regions, but importantly, does not detect mice or human 

DNA, or the DNA of closely related species such as Leishmania spp. or African 

trypanosomes (Moser et al., 1989).  

To better understand the complexity of pathogenic behavior, genetic diversity, 

and epidemiology of T. cruzi, many investigators have attempted to devise a 

straightforward scheme for genotyping parasite strains. Miles and coworkers (1978) 

analyzed a variety of isolates of T cruzi using multilocus enzyme electrophoresis (MLEE) 
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and described the presence of three zymodemes (Z1, Z2, Z3).  The Z1 and Z3 

zymodemes consisted of parasites in the sylvatic cycle and a few isolates from human 

acute cases.   The Z2 zymodeme consisted only of isolates from domestic cycles. 

Romanha (1982) and Carneiro and coworkers (1990) characterized T. cruzi strains 

isolated from chronic chagasic patients, and described four zymodemes (designated ZA, 

ZB, ZC and ZD). The zymodeme ZA was shown to be the same as the previously 

described zymodeme, Z2. Thus, a total of six different T.cruzi isoenzyme groups (Z1, Z2 

or ZA, Z3, ZB, ZC and ZD) were designated.  

A variety of investigators proposed independent and unrelated genotyping 

schemes subsequent to the study of Carneiro and co-workers in 1990.  However, 

Tibayrenc (1995) proposed a widely accepted genotyping system that divided T. cruzi 

into two primary phylogenetic lineages (type I and type II) based upon MLEE and 

random amplified polymorphic DNA analyses (RAPD). Similar conclusions were also 

drawn by other investigators based upon their analysis of the 24Sα rRNA genes and the 

non-transcribed spacer of mini-exon genes (Souto et al., 1996), the promoter region of 

rRNA and mini-exon genes (Nunes et al., 1997), and the 195bp repeated satellite DNA 

sequence of T. cruzi (Bastrenta et al., 1999). After MLEE and RAPD analysis of a larger 

set of T. cruzi isolates, Brisse and coworkers (2000) also found two primary lineages 

(type I and type II) with type II further subdivided into five lower subdivisions that were 

designated IIa, IIb, IIc, IId and IIe. The rRNA and mini-exon sequences of T. cruzi have 

been widely used in epidemiological and evolutionary studies, however, the 

correspondence between MLEE and RAPD classification and rRNA and mini-exon PCR 

analyses has not yet been determined.  
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Brisse and co-workers (2001) confirmed the existence of six type II lineages 

based upon a molecular typing scheme employing PCR analysis of a 24Sα rRNA gene 

sequence, an 18S rRNA gene sequence, and a non-transcribed spacer sequence of a mini-

exon gene from T. cruzi. Recently, Roellig and co-workers (2008) used Brisse’s 

molecular typing approach to genotype over 100 isolates of T. cruzi from the U.S.A.  

Only type I and type IIa strains of T. cruzi were observed.  The type I strain was the 

genotype that occurred most often in opossums, and to date, it is the only genotype that 

has been isolated from autochthonous human infections in the U.S.A. The type IIa 

genotype is the most common genotype that has been reported from domestic dogs, 

raccoons, ring-tailed lemurs, and skunks in the U.S.A. Both type I and type IIa genotypes 

of T. cruzi have been isolated from triatomine bugs collected in the U.S.A. (Roellig et al., 

2008).  

Previous investigations from our laboratory (Groce, 2008) documented the 

existence of the sylvatic cycle of T. cruzi in Kentucky (Groce, 2008).  A total of 17 

hemoculture isolates of T. cruzi were obtained from raccoon blood samples collected 

from Warren and Barren counties of Kentucky during the study. The purpose of the 

present study was to use the molecular typing approach described by Brisse (2001) and 

Roellig et al. (2008) followed by DNA sequencing and BLAST analysis to determine the 

genotypes (type I, or types IIa-‐IIe) of 15 of the 17 raccoon isolates obtained from south-

central Kentucky.  
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MATERIALS AND METHODS 

Parasite Cultures 

 Hemocultures of T. cruzi were initially established by inoculating one ml of 

whole blood from each raccoon into sterile liver infusion tryptose (LIT) medium 

containing 10% newborn calf serum (heat inactivated at 56°C for 30 minutes), penicillin 

G (100U/ml) and streptomycin (100µg/mL; complete LIT; Groce, 2008).  Flasks (T-25) 

were incubated at 28° C for up to three months and were checked weekly under an 

inverted light microscope at 200X magnification (Groce, 2008).  Positive cultures were 

expanded into 75cm2 tissue culture flasks, and culture forms in the log phase of growth 

were frozen in cryovials at -70C in a sterile freezing solution containing 10% DMSO and 

90% newborn calf serum (v/v).  Fifteen of the frozen stocks were thawed and inoculated 

immediately into complete LIT medium and maintained at 28oC to establish log phase 

cultures for use in the present study. 

CV-1 Cell Cultures 

 African green monkey kidney cells (CV-1) were grown under sterile conditions in 

RPMI-1640 medium supplemented with 10% newborn calf serum, penicillin G (100U/ml) 

and streptomycin (100µg/mL; complete RPMI).  Cells were maintained in 75 cm2 culture 

flasks and were incubated at 37°C and 5% CO2 under high humidity.  

Infection of CV-1 Cells with Trypanosoma cruzi isolates 

 Four raccoon isolates of T. cruzi, two from Barren County and two from Warren 

County (RB14, RB12, RW15, and RW10) were randomly selected for CV-1 cell 

infectivity assays.  A 5ml volume of LIT culture medium containing live epimastigote 

stage of T. cruzi in exponential growth phase was subjected to centrifugation at 1000 xg 
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for 10 min. After centrifugation, the supernatant was discarded and the pellet was 

resuspended in 1ml of complete RPMI medium.  A 0.5mL aliquot of each parasite 

suspension was inoculated into two separate T-75 flasks containing confluent CV-1 cells. 

Cells were cultured at 37°C in a 5% CO2 incubator under high humidity, and supernatants 

were removed and replaced with fresh complete RPMI medium after 48 hr.  Flasks were 

examined daily for evidence of motile trypomastigote stages under an inverted light 

microscope at 200X magnification. 

DNA Isolation 

Genomic DNA was extracted from each of the 15 culture isolates while they were 

in the logarithmic phase of growth in complete LIT culture medium. A 10ml volume of 

LIT culture medium containing live epimastigote stages of T. cruzi was subjected to 

centrifugation at 1000 xg for 15 min. After centrifugation, the supernatant was discarded 

and the pellet was resuspended in 200µl PBS. DNA was then isolated from each parasite 

isolate using a QIAamp DNA mini kit (Qiagen, Valencia, CA) according to 

manufacturer’s instruction. DNA yield was determined using a Thermo Nanodrop ND-

100 spectrophotometer. DNA samples were stored at -20 °C until use. 

Trypanosoma cruzi primers for PCR 

 Four different primer sets were used to amplify DNA samples. The first primer set 

was designed to amplify 188bp of a 195-bp repetitive nuclear sequence of T. cruzi 

(Moser et al., 1989) and consisted of the following primer sequences: 

TCZ1 (5’-CGA GCT CTT GCC CAC ACG GGT GCT 3’)  

TCZ2 (5’-CCT CCA AGC AGC GGA TAG TTC AGG 3’) 
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The second primer set was designed to target the D7 divergent domain of the 24Sα rDNA 

of T. cruzi (Brisse, 2001) and consisted of the following sequences: 

D71 (5’-AAG GTG CGT CGA CAG TGT GG 3’)   

D72 (5’-TTT TCA GAA TGG CCG AAC AGT 3’) 

The third primer set was designed to amplify the non-transcribed spacer of the mini-exon 

genes of T. cruzi (Brisse, 2001).  All three of the following primer sequences were used 

for PCR amplification: 

TC (5’-CCC CCC TCC CAG GCC ACA CTG 3’) 

TC1 (5’-GTG TCC GCC ACC TCC TTC GGG CC 3’) 

TC2 (5’-CCT GCA GGC ACA CGT GTG TGT G 3’) 

The fourth primer set was designed to amplify the size-variable domain of the 18S rDNA 

sequence of T. cruzi (Brisse et al., 2001) and consisted of the following primer sequences: 

V1 (5’-CAA GCG GCT GGG TGG TTA TTC CA 3’)  

V2 (5’-TTG AGG GAA GGC ATG ACA CAT GT 3’) 

PCR Setup 

 DNA samples were analyzed by PCR for the presence of T. cruzi DNA using each 

of the primer sets described above.  For each analysis, a 50µl reaction was set up 

containing 20µl 2.5X Master Mix (5 Prime, Gaithersburg, MD) (including 0.06 U/µl Taq 

DNA polymerase, 2.5x Taq reaction buffer with 125 mM KCl, 75 Tris-HCl pH 8.4, 4 

mM Mg2+, 0.25% Nondet-P40, 500 µM each of dNTP, stabilizers), 1 µl (4 µM) forward; 

1 µl (4 µM) reverse primer ; 50 ng template DNA; and sterile nanopure water to bring the 

total volume to 50 µl. A negative control containing sterile nanopure water in place of 

template DNA was included with each reaction set. Two positive controls using template 
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DNA prepared from T. cruzi type I and type IIa reference strains from Dr. Yabsley lab 

were also included with each reaction set.  Reaction mixtures were loaded into an 

automated DNA thermal cycler to undergo amplification according to the protocols 

outlined in Tables 1-4. 

Table 1.  Thermocycler program for PCR amplification using the TCZ1 and TCZ2 

primers. 

	   Temperature (oC)	   Time	   # of cycles	  

Denature	   94	   2 min	   1	  

Denature	   94	   1 min	  

Annealing	   64.5	   30 sec	  

Extension	   72	   15 sec	  

30	  

Final extension	   72	   5 min	   1	  

Hold	   4	   Indefinite	   1	  

PCR products were subjected to electrophoresis at 80V for 2 hr in 3% agarose gels with 

0.5 X TBE buffer (adapted from Moser, 1989). 
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Table 2. Thermocycler program for PCR amplification using D71 and D72 primers. 

	   Temperature (oC)	   Time	   # of cycles	  

Denature	   94	   2 min	   1	  

Denature	   94	   1 min	  

Annealing	   55	   1 min	  

Extension	   72	   1 min	  

30	  

Final extension	   72	   5 min	   1	  

Hold	   4	   Indefinite	   1	  

PCR products were subjected to electrophoresis at 80V for 2 hr in 3% agarose gels with 

0.5 X TBE buffer (adapted from Brisse et al., 2001). 

Table 3.  Thermocycler program for PCR amplification using the TC series primers. 

	   Temperature (oC)	   Time	   # of cycles	  

Denature	   94	   2 min	   1	  

Denature	   94	   1 min	  

Annealing	   55	   1 min	  

Extension	   72	   1 min	  

30	  

Final extension	   72	   5 min	   1	  

Hold	   4	   Indefinite	   1	  

PCR products were subjected to electrophoresis at 90V for 90 min in 1.5% agarose gels 

with 0.5 X TBE buffer (adapted from Brisse et al., 2001). 
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Table 4.  Thermocycler program for PCR amplification using the V1 and V2 primers. 

	   Temperature (oC)	   Time	   # of cycles	  

Denature	   94	   2 min	   1	  

Denature	   94	   1 min	  

Annealing	   50	   1 min	  

Extension	   72	   1 min	  

30	  

Final extension	   72	   5 min	   1	  

Hold	   4	   Indefinite	   1	  

PCR products were analyzed by electrophoresis at 80V for 2 hr in 3% agarose gels with 

0.5 X TBE buffer (adapted from Brisse et al., 2001). 

 

 In addition, to allow direct comparison of amplification products from control T. 

cruzi type I and type IIa DNA samples to representative isolates from Warren and Barren 

counties (RW2 and RB12), PCR products were analyzed side by side in the same gel by 

electrophoresis at 80V for 3h in 3% agarose gels with 0.5 X TBE buffer.  Following 

electrophoresis, agarose gels were stained with ethidium bromide and visualized under 

ultraviolet light. 

DNA sequencing of PCR amplicons 

 DNA sequencing was performed on all amplification products obtained from the 

PCR analysis of the RW2 and RB12 isolates (randomly selected to represent both Warren 

and Barren counties of Kentucky).  Each PCR sample was purified using an Ultraclean 

PCR purification kit (MOBIO).  A 10 µl Big Dye Terminator v3.1 (Applied Biosystems 
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Inc., Foster City, CA) reaction was set up as follows: 2 µl 5X sequencing buffer, 2 µl 

ready reaction mix, 5 pmol of forward or reverse primer, 30 ng DNA template, and sterile 

nanopure water to bring the total volume to 10 µl. The sequencing reaction conditions are 

shown in Table 5 below. 

Table 5.  DNA sequence reaction conditions. 

	   Temperature (oC)	   Time	   # of cycles	  

Initial Denature	   94	   2 min	   1	  

Denature	   94	   1 min	  

Annealing	   55	   1 min	  

Extension	   72	   1 min	  

25	  

Hold	   4	   Indefinite	   1	  

 

 Each sequencing reaction product was purified using a DyeEx 2.0 Spin kit 

(Qiagen), dried in a speedvac for15 min with no heat, and rehydrated with 20 µl of HiDi  

formamide buffer. Samples were then loaded onto an ABI 3130 Genetic Analyzer for 

sequencing. The sequences were edited before searching the BLAST database of the 

National Center for Biotechnology Information (NCBI) Genbank for sequence matches. 
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RESULTS 

Infection of CV-1 Cells with Trypanosoma cruzi isolates 

T. cruzi is an obligate intracellular parasite that must invade mammalian host cells 

in order to reproduce and complete its life cycle.  Four raccoon isolates of T. cruzi, two 

from Barren County and two from Warren County (RB14, RB12, RW5, RW10), were 

randomly selected from 15 isolates for testing in a CV-1 cell infectivity assay. All four 

isolates were highly infective for the CV-1 cells. The length of incubation time, between 

the inoculation of the cultures and the first appearance of trypomastigote stages in culture 

supernatants, ranged from four to five weeks.  Figure 2 shows the results of a 

representative assay in which CV-1 cells were heavily infected by the RB14 isolate of T. 

cruzi.   

 

Figure 2.  CV-1 cell monolayer heavily infected by the RB14 raccoon isolate of T. cruzi.  
The arrow indicates a CV-1 cell packed with trypomastigote stages that are ready to burst 
out of the cell. 
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DNA Isolation and PCR 

Genomic DNA was successfully isolated from all 15 T. cruzi isolates using a 

QIAamp DNA mini kit (Qiagen). DNA yields ranged from 17.2- 82.9 ng/µl. Four 

different T. cruzi-specific primer sets were then used to amplify each of the 15 genomic 

DNA samples. The first primer set, TCZ1 and TCZ2, was used to first verify that the 

isolates were T. cruzi, and not some other species of trypanosome. The TCZ primers, 

which amplify a 188-bp segment of a 195-bp repetitive nuclear sequence, have been 

shown to be highly sensitive and specific for T. cruzi (Moser et al., 1989). Optimization 

of the PCR reaction with the TCZ primer set and control T. cruzi genomic DNA resulted 

in a PCR product of 188bp. The 188 bp product was specifically amplified in all 15 of the 

raccoon isolates, confirming the presence of the T. cruzi parasite (see Figure 3). An 

unexpected low intensity amplicon of approximately 400 bp also showed in lanes 1-15.  

The 400bp band is not a contaminant since it is not present in the negative control lane, 

nor is it present in subsequent gels showing the results of PCR amplification with the 

three additional T. cruzi-specific primer sets.   

All 15 raccoon isolates showed identical PCR amplification results with the other 

three sets of T. cruzi-‐specific primers (see Figures 4-6). PCR amplification of the D7 

divergent domain of the 24Sa rDNA sequence of T. cruzi with the D71 and D72 primer 

pair resulted in an amplicon of 130 bp (see Figure 4, lanes 1-15). Amplification of the 

non-transcribed spacer of the mini-exon genes of T. cruzi (using TC1, TC2, and TC3 

primers) resulted in a PCR product of 400 bp (see Figure 5, lanes 1-15). PCR 

amplification of the size-variable domain of the 18S rDNA sequence of T. cruzi with the 
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V1 and V2 primer pair resulted in a PCR product of 155bp in all 15 isolates (see lanes 1-

15, Figure 6). 

 

Figure 3. PCR products obtained after amplification of a 188bp fragment from a 195bp 

repetitive nuclear sequence from T. cruzi with primers TCZ1 and TCZ2 followed by 

agarose gel electrophoresis (3% gel). M indicates the 50 bp DNA ladder (exACTGene, 

Fisher Scientific, Pittsburg, PA) lane. Cont indicates the no template control lane. Lanes 

1-15 show the PCR products amplified from genomic DNA from each of the 15 isolates. 
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Figure 4.  Agarose gel electrophoresis (3%) of PCR products (130bp) amplified using 

D71 and D72 primers, which recognize the D7 domain of the 24Sα rDNA of T. cruzi. M 

indicates the 10 bp DNA ladder (Invitrogen Corporation, Carlsbad, CA) lane. Cont 

indicates the no template control lane. Lanes 1-15 show the PCR products amplified from 

genomic DNA from each of the 15 isolates. 

 

Figure 5.  Agarose gel electrophoresis (1.5%) of PCR products (400bp) amplified using 

TC, TC1, and TC2 primers that recognize a sequence from the non-transcribed spacer of 

the mini-exon gene of T. cruzi. M indicates 100 bp DNA ladder (New England Biolabs, 

Ipswich, MA) lane. Cont indicates the no template control lane. Lanes 1-15 show the 

PCR products amplified from genomic DNA from each of the 15 isolates. 
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Figure 6. Agarose gel electrophoresis (3%) of PCR products (155bp) amplified using V1 

and V2 primers that recognize a sequence from the 18S rDNA gene of T. cruzi. M 

indicates 100 bp DNA ladder (New England Biolabs) lane. Cont indicates the no template 

control lane. Lanes 1-15 show the PCR products amplified from genomic DNA from 

each of the 15 isolates. 

 

To allow a direct comparison of amplification products from control type I and type 

IIa T. cruzi genomic DNA samples to representative raccoon isolates from Warren and 

Barren counties (RW2 and RB12), PCR products were analyzed side by side in the same 

agarose gel.  Figure 7 depicts the results of this electrophoretic analysis. With the 

D71/D72 primer set, PCR amplification of type I genomic DNA showed a 110 bp 

product, the type IIa genomic DNA sample showed a 130bp product and a 100 bp 

product, and all 15 raccoon isolates showed an amplicon size of 130bp.  With the TC 

series primers, the type I genomic DNA sample showed a 350bp product, the type IIa 

sample showed no amplification, but all 15 raccoon isolates showed a prominent 
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amplicon of approximately 400 bp. With the TCZ1 and TCZ2 primer set, all DNA 

samples showed an amplicon of 188bp, indicating that they are all T. cruzi. The type I 

genomic DNA samples and all 15 isolates also showed a faint band of 400bp which was 

not evident in the control lane. With the V1/V2 primer set, the type I genomic DNA 

sample showed a 170bp product and the type IIa DNA sample and all 15 raccoon isolates 

showed a 155bp product. 

DNA Sequencing Results 

Positive PCR samples (RW2 and RB12) were randomly selected for sequencing 

analysis. All samples, from all 4 PCR analyses, showed highest identity to type IIa strains 

of T. cruzi (9212210r, Can III, and STC10R), with identities ranging from 94%-99%. 

Figures 8 through 11 show representative sequence alignments following BLAST 

analysis of positive PCR samples from both Warren and Barren Counties.  
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Figure 7.  Agarose gel electrophoresis (3%) showing representative PCR products 

obtained from PCR amplification using all 4 sets of T. cruzi -specific primers (D71 and 

D712; TC series; TCZ1 and TCZ2; V1 and V2). PCR analyses were performed with one 

representative genomic DNA sample obtained from Warren County (RW2), one 

representative genomic DNA sample obtained from Barren County (RB12), and 2 

positive control (type I and type II) T. cruzi genomic DNA samples. M indicates the 50 

bp DNA ladder (Fisher Scientific) lane. Cont indicates the no template control lane.  
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Figure 8.  Representative sequence alignment for a TCZ PCR product amplified from 

RB12.  Lowercase letters within the query sequence represent a low complexity sequence 

that was filtered by BLAST to prevent any artificial hits between sequences that were not 

truly related. 

 

 

	  

 

Figure 9.  Representative sequence alignment for a D71/D72 PCR product amplified 

from RB12. Lower case letters within the query sequence represent a low complexity 

sequence that was filtered by BLAST to prevent any artificial hits between sequences that 

were not truly related. 
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Figure 10.  Representative sequence alignment for a TC series PCR product amplified 

from RW2. Lowercase letters within the query sequence represent a low complexity 

sequence that was filtered by BLAST to prevent any artificial hits between sequences that 

were not truly related. 
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Figure 11.   Representative sequence alignment for a V12 PCR product amplified from 

RB12.  Lowercase letters within the query sequence represent a low complexity sequence 

that was filtered by BLAST to prevent any artificial hits between sequences that were not 

truly related. 
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DISCUSSION 

Trypanosoma cruzi, the etiologic agent of Chagas disease, has been found in 

triatomine bugs, wild mammals, and domestic mammals throughout the southern United 

States. Although confirmed reports of autochthonous human cases have been rare, 

sylvatic infection has been documented in Alabama, California, Florida, Georgia, 

Louisiana, Maryland, Oklahoma, North Carolina, South Carolina, Tennessee, Texas, 

Virginia, and Kentucky (McKeever et al., 1958; Olsen et al., 1964; John and Hoppe, 1986; 

Karsten et al., 1992; Yabsley and Noblet, 2002; Dorn et al, 2007; Hancock et al, 2005; 

Groce, 2008). In addition, the number of human cases in the United States, Canada, and 

Europe among immigrants or tourists from Latin American countries has increased 

steadily in recent years (CDC, 2007). In response to the growing risk to our blood supply 

(Leiby et al., 2008), the US Food and Drug Administration began recommending a 

screening assay for blood donors to US blood banks in January 2007. Despite public 

health concerns about the potential for vector borne transmission of T. cruzi to humans 

and domestic animals in the United States, a systematic study of T. cruzi-infection in wild 

mammals, domestic animals, and triatomine bugs in the United States has not been 

conducted.   

Our research group documented the sylvatic cycle of T. cruzi-infection in 

Kentucky in 2008 (Groce, 2008). In this study, Groce trapped 44 raccoons in Warren and 

Barren counties of Kentucky between June 2007 and December 2008. A total of 17 

isolates of T. cruzi were successfully established by the in vitro culture of whole blood in 

complete liver infusion tryptose (LIT) medium. The purpose of the present study was to 

use the molecular typing approach described by Brisse et al. (2001) and Roellig et al. 
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(2008) followed by DNA sequencing and BLAST analysis to determine the genotypes 

(type I, or types IIa-‐IIe) of 15 of these 17 raccoon isolates. 

Many different strains of T.  cruzi have been subjected to extensive genotypic 

analysis, and it is evident that it is a highly heterogeneous species. However, only type I 

and type IIa genotypes of T. cruzi have been reported from triatomine and mammalian 

hosts in the United States.  Both type I and type IIa genotypes of T. cruzi have been 

isolated from triatomine bugs (CDC, 2008), and the type IIa genotype is the most 

common genotype that has been reported from domestic dogs, raccoons, ring-tailed 

lemurs, and skunks. In contrast, all of the characterized autochthonous human strains and 

the majority of opossum strains from the United States have been type I (Roellig et al., 

2008).  

In the present study, all 15 parasite isolates were first positively identified as T. 

cruzi based upon successful PCR amplification of a 195 bp repetitive nuclear DNA 

sequence with the primers designated TCZ1 and TCZ2.  This sequence has been shown 

to be particularly abundant in the genome of all strains of T. cruzi that have been 

analyzed, and it has been estimated that it represents approximately 9% of the total 

nuclear DNA (Moser et al. 1989).  The TCZ1 and TCZ2 primers are highly specific for T. 

cruzi and do not amplify DNA from related trypanosome species (Moser et al., 1989). A 

188 bp fragment was amplified in DNA samples from all 15 isolates from Kentucky (see 

Figure 3), and this amplicon size corresponds well to the published results of Moser et al 

(1989), the first group to develop and utilize the TCZ1 and TCZ2 primer pair for PCR.  

An additional low intensity amplicon of approximately 400 bp was also visible in all 

samples.  The 400 bp band is not a contaminant since it is not present in the control lane, 
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nor is it present in subsequent gels showing the results of PCR amplification with the 

three additional T. cruzi-specific primer sets.   

DNA samples from all 15 raccoon isolates also showed identical PCR 

amplification results with the other three sets of T. cruzi-‐specific primers (see Figures 4-

6).  The primers designated D71 and D72 recognize the D7 domain of the 24Sα rDNA of 

T. cruzi. A 130 bp fragment was amplified from all 15 parasite DNA samples, a result 

consistent with Brisse et al. (2001), who also reported a 130 bp PCR product for a North 

American type IIa strain of T. cruzi. In contrast, Roellig et al (2008) reported a 120 bp or 

110 bp product when DNA from type IIa strains were subjected to PCR using the D71 

and D72 primer pair.  

Amplification of the non-transcribed spacer of the mini-exon genes of T. cruzi 

(using TC, TC1, and TC2 primers) resulted in a PCR product of 400 bp (see Figure 5). 

Whereas Brisse et al. (2001) reported that type IIa and type IIc DNA samples show no 

amplification with the TC, TC1, TC2 primer series, other investigators have reported 

products of 350 bp or 400 bp with both type I and type IIa strains of T. cruzi (Yeo et al. 

2005; Roellig et al., 2008). 

Amplification of the 18S rDNA sequence with V1 and V2 primers reportedly 

results in consistent differences in PCR product size between genotypes of T. cruzi. 

Brisse et al. (2001) reported that PCR amplification of this sequence resulted in 

amplification products of 155 bp in all type IIa strains analyzed.  In contrast, T. cruzi 

lineages type IIb, IIc, and IId consistently showed an amplification product of 165 bp.  

Roellig et al. (2008) reported a 155 bp amplification product for North American type IIa 

strains, and a 175 bp amplification product for North American type I strains. 
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 To allow a direct comparison of amplification products from control type I and 

type IIa T. cruzi genomic DNA samples to representative raccoon isolates from Warren 

and Barren counties (RW2 and RB12), PCR products were analyzed side by side in the 

same agarose gel (see Figure 7).  The 15 raccoon isolates of Kentucky analyzed in the 

present study showed similar, but not identical PCR amplification results as the control 

type IIa T. cruzi genomic DNA sample generously donated to us by the Yabsley lab at the 

University of Georgia. When amplified with the TC series primers, the type I genomic 

DNA sample showed a 350bp product, all 15 raccoon isolates showed a prominent 

amplicon of approximately 400 bp, however, the control type IIa sample showed no 

evidence of amplification.   

 The type IIa strain of T. cruzi is the most commonly reported genotype reported 

from raccoons trapped in the United States.  In the present study, the combined results of 

PCR analysis using 4 different sets of T. cruzi-specfic primers also strongly suggested 

that the 15 raccoon isolates from Kentucky were also the type IIa genotype.  However, 

due to the lack of complete agreement between PCR results using the control type IIa 

genomic DNA sample and DNA from our 15 parasite isolates, we decided to sequence 

and perform a BLAST analysis on representative samples of PCR products from Warren 

and Barren Counties of Kentucky (RW2 and RB12). All samples, from all 4 DNA 

sequence from 4 PCR amplified DNA analyses, showed highest identities to type IIa 

strains of T. cruzi  (9212210r, Can III, and STC10R), with max identities ranging from 

94%-99%. The 9212210r is the Type IIa T. cruzi isolated from Raccoons in Georgia, 

USA (Lewis et al., 2009).  
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 Although DNA sequencing followed by BLAST analysis allowed us to confirm 

the genotype of our 15 isolates of T. cruzi, this approach would most likely not be 

practical for routine genotyping of new isolates.  One limitation of this approach is that 

matching sequences have to exist in the Genebank database. If the appropriate sequences 

have not been entered into Genebank, the BLAST will not yield useful results. In addition, 

sequencing analysis is not practical for a large cohort of isolates due to the amount of 

time necessary for the analysis.  

 One other limitation of the genotyping technique employed in the present study is 

that DNA ladders from different companies tend to yield different estimates of PCR 

fragment size in agarose gels.  Therefore, DNA estimates based only on comparisons to 

DNA markers should be regarded as only approximate values. Genomic DNA samples 

from confirmed genotypes of T. cruzi should be analyzed along with DNA samples from 

new isolates whenever possible. 

 Other approaches that have been used by investigators for the genotypic analysis 

of T. cruzi isolates include restriction fragment length polymorphism (RFLP), multilocus 

sequence typing (MLST), and multilocus microsatellite typing (MLMT). RFLP is a 

practical method and is relatively inexpensive. The techniques of MLST and MLMT 

allow for the discrimination of T. cruzi genotype, but they are complex and time-

consuming techniques and are not practical for analysis of a small number of samples 

(Lewis et al., 2009). Lewis et al. (2009) has recommended using a combination of PCR 

product size polymorphism of the 24Sα rDNA sequence, combined with a PCR-RFLP 

assay for the HSP60 and GPI proteins of T. cruzi (Lewis et al., 2009).  According to 

Lewis et al. (2009), this approach would involve minimal cost, minimal time, and low 
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quantities of sample material.  Lewis et al. (2009) further suggests that this approach 

would allow for reproducible results with high resolution.  

             T. cruzi is an obligate intracellular parasite that must invade mammalian host 

cells in order to reproduce and complete its life cycle.  In addition to the genotypic 

analyses performed in this study, cell infectivity assays were performed on four of the 

raccoon isolates, two from Barren County and two from Warren County (RB14, RB12, 

RW5, and RW10).  All four isolates were highly infective for the CV-1 mammalian cell 

line, providing further evidence that the parasite isolates are definitely T. cruzi, and not a 

related trypanosome such as T. rangeli that does not have an intracellular cycle of 

replication.  

 The 15 isolates of T. cruzi analyzed in the present study are the first strains to be 

reported from the state of Kentucky.  Future studies are urgently needed to determine if 

the sylvatic cycle of T. cruzi is endemic in the neighboring states of Missouri, Illinois, 

Indiana, Ohio, and West Virginia.  It will also be important to determine the prevalence 

of T. cruzi in triatomine vectors in the state of Kentucky, as well as in other wild 

mammals in the state such as skunks, opossums, wood rats, and coyotes.   
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