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Feature selection is an effective technique in reducing the dimensionality of

features in many applications where datasets involve hundreds or thousands of features.

The objective of feature selection is to find an optimal subset of relevant features such

that the feature size is reduced and understandability of a learning process is improved

without significantly decreasing the overall accuracy and applicability. This thesis

focuses on the consistency measure where a feature subset is consistent if there exists a

set of instances of length more than two with the same feature values and the same class

labels. This thesis introduces a new consistency-based algorithm, Automatic Hybrid

Search (AHS) and reviews several existing feature selection algorithms (ES, PS and HS)

which are based on the consistency rate. After that, we conclude this work by conducting

an empirical study to a comparative analysis of different search algorithms.
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CHAPTER 1: INTRODUCTION

The chapter provides the definition of data mining with several typical examples and

gives a brief introduction to the four steps of the mining process: data preprocessing, data

mining, pattern evaluation and knowledge presentation. Two aspects of data mining

functionalities are described which are descriptive and predictive. The idea of feature

selection and the concept of evaluation criterion is introduced. At the end of the chapter,

we make a conclusion for the work done in this thesis and give a concise introduction to

the contents of the rest of this thesis.

1.1 WHAT IS DATA MINING

By definition, data mining is a process of discovering interesting knowledge from

large amounts of data stored in databases, data warehouses, or other information

repositories. Data as the target for data mining has skyrocketed dimensionally in the size

and category  each year. Large parts of those data are with inferior qualities such as

irrelevancy, redundancy and unreliability. Data mining implements various algorithms on

such data and tries to dig useful information by looking at a small fraction of a large

amount of data. For instance, the Midwest Grocery Chain once used the data mining

capacity of Oracle to analyze the local buying patterns. They discovered that when men

bought diapers on Thursdays and Saturdays, they also tended to buy beers. This buying

pattern could be used by the retailers. For example, beers could be displayed next to the

diapers and they could be sold at full price on Thursdays and Saturdays
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1.2 STEPS OF DATA MINING

According to [9], data mining consists of the following four steps:

1. Data preprocessing (where the data are prepared for mining);

2. Data mining (an essential process where intelligent methods are applied in order

to extract data patterns);

3. Pattern evaluation (to identify the truly interesting patterns or evaluate the data’s

merits);

4. Knowledge presentation (where visualization and knowledge representation

techniques are used to present the mined knowledge to the user).

Data preprocessing can be divided into four steps: data cleaning, data integration,

data selection and data transformation. Data cleaning is to remove noise and inconsistent

data. Data integration combines multiple data sources. Data selection retrieves those

data relevant to the analysis from database. Data transformations transform the data into

appropriate forms for mining. After data preprocessing, the data is clear to go through

data mining where a pattern may be discovered. In order to identify the pattern’s value,

some merit measurements are employed during pattern evaluation. Finally, the results

are visualized and presented to users.

1.3 DATA MINING TASKS

Data mining tasks are used to specify the kind of patterns to be found in data

mining [9]. It can be broadly unfolded into two aspects: descriptive and predictive.

Descriptive mining tries to summarize the general properties of data, whereas predictive
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mining tasks try to make prediction on current data’s changing patterns or trends. A data

mining system should be able to produce a general description of the characteristics of

the target class. For example, when executing a conditional selection query such that

selecting employees who’s monthly salary is above $7000, the data that meet the

condition should be collected by mining the data characteristics. The target class of

mining data can also be discriminated by a comparison between other features’

characteristics, or values. A prediction can then be made on the values of target based on

the data discrimination. For example, people working for the weather bureau can collect

data and analyze them in order to predict weather.

1.4 DATA REDUCTION

Data reduction as one of the data preprocessing techniques obtains a reduced

representation of a dataset that is much smaller than the original dataset and similar data

mining results can be obtained with the reduced dataset [10].

Data reduction includes:

· Feature selection, keeping only useful features and removing irrelevant and noisy

information, at the same time improving efficiency without significantly reducing the

accuracy of the classifier;

· Reducing the number of attribute values by grouping them into intervals or

grouping values in cluster;

· Reducing the number of records.
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1.5 FEATURE SELECTION

The raw data (data without proper data preprocessing) are usually with inferior

qualities such as irrelevancy and redundancy, unreliability. Mining raw data for a given

task has proved to be deteriorating in efficiency. There are many algorithms in data

mining which can be used in dealing with redundant, irrelevant, or missing data. Before

the mining process begins, those instances with missing value are considered

insignificant to the result and thus can be eliminated from the dataset. The most

challenging thing is to find out and eliminate redundant and irrelevant features. As part

of the data preprocessing procedure, feature selection uses certain algorithms to keep

only useful features and remove irrelevant and noisy information, at the same time

improving efficiency without significantly reducing the accuracy of the classifier.

Figure 1 shows the basic structure of feature selection.

Figure 1. Basic structure of feature selection

1.6 EVALUATION CRITERION

In order to select a subset of relevant features, an evaluation criterion must be

defined. Feature subset is selected using a search algorithm. After that, evaluation

criterion is used to measure the goodness of selected features. A merit value is calculated

for each selected feature subset. During the process of non-random searching feature
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selection, a threshold is usually setup at the beginning. After evaluation, the data with

merit less than the threshold is eliminated. Those selected features are combined with the

remaining features to form new patterns and undergoing another selection by evaluation

criterion where some of them will again be eliminated. This process repeats itself until

the desired candidate subsets (this is, several subsets with the same desired merit value)

are selected. For probabilistic searching algorithms, a run time is specified at the

beginning and feature subset is generated during each run time. The result obtained at the

first running time is set to be the best feature subset and if later another feature subset

with better merit value by evaluation criteria is obtained, the previous best feature subset

is replaced. The probabilistic searching stops when it reaches a specified run time.

1.7 FEATURE SELECTION MODELS

Feature selection algorithms designed with different evaluation criteria generally

fall into three categories: filter model, wrapper model and hybrid model [3]. The filter

model evaluates feature subsets based on general characteristics of data without involving

any algorithm. The wrapper model requires evaluation criterion with a predetermined

learning algorithm. The hybrid model is a combination exploiting advantages from both

filter and wrapper model. The model for the new algorithm presented in this thesis is

classified as a hybrid model since it not only employs consistency measure as an

evaluation criterion which evaluates each subset by its general characteristics but also

involves a learning process.
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1.8 OVERVIEW

In this thesis, we review an evaluation criterion called the consistency measure.

Using the consistency measure, feature selection is formalized as finding the small set of

features that can distinguish classes as if with the full set [1]. Three exiting algorithms

(Exhaustive Search (ES), Heuristic Search (HS) and Probabilistic Search (PS)) are

depicted, examined and implemented and a new algorithm is proposed based on them.

The Exhaustive Search (ES) or Heuristic Search (HS) such as and ܯݏݑܿ݋ܨ [1] ݎ݁ݒ݋ܥݐ݁ܵ

starts either from an empty feature subset or a full set. New subsets are selected by either

adding or deleting one feature at a time. Other search strategies such as probabilistic or

random search begin the searching process with an arbitrary feature set – an example is

and is (ܵܪܣ) The new searching algorithm is named Automatic Hybrid Search .[1] ܨܸܮ

implemented. In Chapter 3, we give more details about the consistency rate evaluation.

We introduce an important property of the consistency rate: monotonic property. We

describe step by step how to compute the consistency rate and give its formula. In

Chapter 4, we elaborate on the three most typical feature selection search algorithms

which are ܵܧ, and ,ܵܪ ܲܵ. In Chapter 5, a new search algorithm named is ܵܪܣ

introduced and explained in detail. In Chapter 6, we record our empirical results for the

new algorithm and other aforementioned algorithms and give a comparative analysis for

their performances. In the conclusion, we summarize our work done for this thesis, and

make a blueprint for further researc
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CHAPTER 2: FEATURE SELECTION

2.1 FEATURE SELECTION PROCESS

Feature selection is to find a subset of features according to the given evaluation

criterion. Each feature subset is a feature combination. By evaluating each selected subset,

we can reduce the number of possible feature combinations by eliminating the irrelative

features and thus simplifying the classifier. Many existing evaluation criteria are accurate

only for discrete data. A preprocessing step is taken to discretize data values before

applying these criteria. In this thesis we use discretized data.

Figure 2. Traditional feature selection process

Traditionally, feature selection consists of four parts [1] (Figure 2): a subset

generation procedure, an evaluation function or criterion, a stopping criterion and a

validation procedure.  Subset generation procedure usually uses certain searching strategy

to produce candidate feature subset. Each selected subset is evaluated by a criterion for

its merit and is compared with the previous best result. If the new selected subset has

better merit than the previous best result, the previous best subset is replace by the new

subset. The process of subset generation and evaluation is repeated until a stopping
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criterion is met. In the end, the validation procedure tests the validity of the selected

subset. In general, we need a search algorithm sweeping through the feature sets’ and an

evaluation function selecting qualified features. Given a feature subset S for a data set D,

the evaluation function F generates the goodness G of that subset. The equation (1) is the

relation between search algorithms and evaluation functions.

Evaluation function: ܩ ← (1)                            (ܵ)ܨ

2.2 SEARCH PROCESS

The search process usually focuses on three aspects: where to start, how to

produce the next candidate subset and when to stop. Based on these three aspects, the

search strategies can be categorized as: complete, sequential and random search [3].  A

complete search is also called an exhaustive or naïve search and generates every possible

combination of subsets. A complete search is accurate thus can produce an optimal result

at the cost of computation expenses. Some examples are ,ܯݏܿݑ݋ܨ Sequential   .[1] ܤܤܣ

search adds or deletes one or n features at a time where n is less than the number of

features in the dataset. The sequential search does not check every possible combination

of subsets and risks losing an optimal subset. They are preferable in applications where

efficiency is an important matter. Some examples are or ݎ݁ݒ݋ܥݐ݁ܵ ܤܤܳ [1].  Random

search randomly selects the subset. The selected subset combined with the previous best

subset in order to produce better results. The use of randomness helps to escape local

optimal in the search space, and optimality of the selected subset depends on the

resources available [3].
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2.3 EVALUATION

Evaluation criterions are focused on selecting relevant features and eliminating

irrelevancy and redundancy. As described in [4], the definitions of feature relevance are

classified into three categories: strongly relevant, weakly relevant and irrelevant. If a

feature is strongly relevant, it indicates that the feature is to determine an optimal subset.

Removing it will affect the class distribution. Weak relevant features are not always

needed to obtain optimal subset. Irrelevant features should not be considered and are

removed by evaluation criteria. In this thesis, we focus on a popular evaluation criterion

called the consistency measure.
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CHAPTER 3: EVALUATION CRITERION

3.1 INCONSISTENCY RATE

To be consistent and concise, we denote ,as the consistent count ܱܰܥܥ as ܥܰܫ

the inconsistent count, ,as the consistency rate ܴܱܰܥܥ .as the inconsistency rate ܴܥܰܫ

The goal of feature selection is to find as minimum as possible a number of

feature subsets that can consistently discriminate classifier as if using the full set of

features. The consistency measure as an evaluation criterion is used to determine which

feature should be eliminated and thus reducing the size of the feature set. As depicted in

[1], the consistency rate is defined by the an inconsistency rate where two instances are

considered inconsistent if they have the same feature values but different class labels. To

compute the inconsistency rate, first we have to compute inconsistency count. Assuming

that the target feature has three different values (labels): ܶ1, ܶ2, ܶ3. For a feature subset

ܵ with number of instances, there are ܯ h number of patterns such that …2ܲ+1ܲ = ܯ +

ܲh.  A pattern ܲi (1  ≤ i  ≤ h ) appears in totally N instances out of which N1 number of

instances are labeled ܶ1, ܰ2 labeled ܶ2 and ܰ3 labeled ܶ3 where ܰ = ܰ1+ܰ2+ܰ3. If ܰ1

is the largest among the three, the inconsistency count for the pattern ܲi is iܥܰܫ =

 ܰ –  ܰ1. The inconsistency rate is the summation of all the inconsistent counts over all

patterns divided by total number of instances in the dataset. The inconsistency rate

.can be expressed as (1) ܴܥܰܫ

=  ܴܥܰܫ ∑ ூே஼௜೓
೔సభ

ெ
                                                       (2)
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In earlier works such as [1] and [2], the inconsistency rate is applied into the search

algorithms. A threshold R is usually defined at the beginning. For each feature subset ܨ

selected by the search algorithm, the inconsistency rate is calculated. If the result ܴܥܰܫ

meets the condition ܴܥܰܫ ≤ ܴ, then the subset is considered to be consistent. The ܨ

original threshold ܴ is updated by better results. Otherwise, the subset is eliminated along

with its features.

3.2 CONSISTENCY RATE

           In this work, we use the consistency rate instead of inconsistency rate. The

consistency rate is similar to inconsistency rate except that consistent count is ܱܰܥܥ

computed. Instead of subtracting ܰ1 from ܰ to get we consider ,ܥܰܫ ܰ1 as consistent

count (ܱܰܥܥ). Thus the consistency rate can be expressed as (2):

=      ܴܱܰܥܥ ∑ ஼஼ைே௜೓
೔సభ

ெ
                                                           (3)

The purpose of using the consistency rate is to reduce the computation overhead. By

comparison between (2) and (3) above, the consistency rate has one step less to compute

than that of inconsistency rate and yet both of them are able to evaluate the merits of a

feature subset.

3.3 MONOTONIC PROPERTY

          Consistency rate has the monotonic property. An evaluation criterion is monotonic

if for a data there exists feature sets ,ܯ and a measure ܦ ܵi and ܵj where ܵi ⊆ ܵj, then

iܵ)ܯ , ≥ (ܦ jܵ)ܯ  The monotonic property of consistency rate can be used in .(ܦ ,
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feature selection. For example, at the beginning, we consider full feature set as the

optimal feature set and calculate consistency rate for it. According to the monotonic ߜ

property, no feature subset can have a larger consistency rate than the full feature set. For

each generated feature subset, if the corresponding is equal to ܴܱܰܥܥ ߜ and the size of

the feature subset is smaller; we say that this feature subset can be used for classification

as if using the full feature set.

 The property gave us the following facts:

· The full feature set has the highest consistency rate ߜ, that is, the consistency rate

of any feature subset is less than or equal to ߜ.

· The superset of a consistent feature subset is also consistent.

· If ,iܵ )ܴܥ ≥ ( ܦ ,jܵ )ܴܥ  then ,( ܦ ∩ iܵ )ܴܥ  ݂, ≥  ( ܦ ∩ jܵ )ܴܥ   ݂, where ( ܦ ݂ is

a single feature.
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CHAPTER 4: SEARCH METHODOLOGIES

Search techniques are very important. A good search strategy can reduce the

computational cost while improving the accuracy at the same time. According to different

searching nature, search strategies include exhaustive search (ES), heuristic search (HS),

probabilistic search (PS) and hybrids of the above three.

The relation between searching techniques and evaluation measures can be illustrated in

Figure 3.

Figure 3. Search algorithm

4.1 EXHAUSTIVE SEARCH (ES)

The exhaustive search uses the algorithm to generate every possible combination

of feature subset and compute consistency rate for each of them. A threshold is set up at

the beginning according to the consistency rate calculated for the first selected feature

subset which is also set to be the current best subset. As the algorithm proceeds, the

current best subset may be replaced by the one with higher consistency rate and smaller

size of feature set in which case the threshold is also replaced. The exhaustive search can
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start with either a set with one feature and carry out by adding features into set or with a

full feature set and subtract features from it.

It is evident that exhaustive search is time consuming and computational

expensive as it calculates every combination many of which may be redundant and could

be avoided if a learning process is involved. The efficiency is deteriorating fast with the

size of the search space. For example, if a testing data has n features, the number of

combinations is å
=

n

i

i
nC

1
which means that there will be å

=

n

i

i
nC

1
times of calculation for

consistency rate. In conclusion, the exhaustive search is inefficient and costly for a high

feature size. An example for the exhaustive search is ݏݑܿ݋ܨ, or ܯݏݑܿ݋ܨ.

Below is the exhaustive search algorithm where is a function to ()݈ܽܥ݊݋ܥ

calculate the consistency rate for a given dataset ܦ.  ܵ is the full feature set for the ܦ.

Figure 4. Exhaustive search algorithm (ES)

Algorithm: Exhaustive Search

Input: Data ܦ, Feature set ܵ

Output: Consistent Feature Subset

1. ∅ = ݐ݁ܵݐݏ݁ܤ
2. ∞− = ݁ݐܴܽݕܿ݊݁ݐݏ݅ݏ݊݋ܥݐݏ݁ܤ
3. = ݅ ݎ݋ܨ ݋ݐ 1 |ܵ|
4. ݊݅݃݁ܤ
5. |’ܵ| ݁ݎℎ݁ݓ ’ܵ ∀        = ݅ ܽ݊݀ ܵ’ ∈   ܵ
6. ,’ܵ)݈ܽܥ݊݋ܥ = ܴܱܰܥܥ        (ܦ
7. ≤ ܴܱܰܥܥ ݂ܫ        ݁ݐܴܽݕܿ݊݁ݐݏ݅ݏ݊݋ܥݐݏ݁ܤ 
8. |ܵ| > | ݐ݁ܵݐݏ݁ܤ | ݂ܫ             
9. ’ܵ = ݐ݁ܵݐݏ݁ܤ                    
10. ܴܱܰܥܥ = ݁ݐܴܽݕܿ݊݁ݐݏ݅ݏ݊݋ܥݐݏ݁ܤ             
11. ݀݊ܧ
12. ݊ݎݑݐܴ݁ ݐ݁ܵݐݏ݁ܤ
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4.2 HEURISTIC SEARCH (HS)

There are two fundamental goals in computer algorithms: finding a way to use a

shorter running time and to produce an optimal solution. A heuristic algorithm is used

when there is no known way to find an optimal solution in which case the goal is to

develop a simple process with a provable better running time and an improved solution.

Since exhaustive search algorithms take a significant amount of unnecessary time and

computationally costly, the heuristic algorithm is a good alternative to quickly conduct

and return a decent result.

There are many heuristic search techniques in practice such as ܵ݁ݎ݁ݒ݋ܥݐ.

is depicted in [1] to be the most time efficient, close to optimal and ݎ݁ݒ݋ܥݐ݁ܵ

deterministic heuristic algorithm in comparison to genetic algorithms and simulated

annealing. The original idea for is that two instances with different class labels ݎ݁ݒ݋ܥݐ݁ܵ

are said to be “covered” when there exists at least one feature which takes different

values for the two instances [6]. In other words, two instances with two different class

labels are considered to be consistent if two instances have at least one distinctive feature

value between them. This is actually a very similar concept to consistency rate in the

inverse order. For consistency rate, the two instances with the same feature pattern are

considered to be consistent if they have identical value for each of their features.

In the thesis, we apply Johnson’s algorithm [7] with the consistency rate as the

evaluation. The following is its pseudo-code
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Figure5. Heuristic search algorithm (HS)

4.3 PROBABILISTIC SEARCH (PS)

As aforementioned, a traditional feature selection process consists of four

components:  generation procedure, evaluation function, stopping criterion and validation

procedure.  The third component, stopping criterion, usually has a stopping point by

which an algorithm’s completion is determined. For feature selection, the stopping point

is reached when the smallest feature subset with the highest merit is found and thus the

search algorithm stops searching process. In a probabilistic search, the stopping criterion

can be defined in many ways. Some probabilistic search techniques combine with

Heuristic Search Algorithm

Input: Data full feature set ,ܦ ܵ

Output: Consistent Feature Subset

1. ,ܵ)݈ܽܥ݊݋ܥ = ݁ݐܴܽ݊݋ܥݐݏ݁ܤ     (ܦ
2.       ܵ ∅ = ݐ݁ܵ݁ݎݑݐܽ݁ܨ݀݁ݐ݈ܿ݁݁
3.       ܵ ’ = ∅
4. ∞− = ݁ݐܴܽ݊݋ܥݐݏ݁݃ݎܽܮ      
5. ∋ ݂ ݁ݎݑݐ݂ܽ݁  ∀        ܵ

ܾ݁݃݅݊
6. ݂  ݏ݀݊݁݌݌ܽ  ’ܵ = ’’ܵ 
7.              ܶ ,’’ܵ)݈ܽܥ݊݋ܥ = ݁ݐܴܽ݊݋ܥ݌݉݁ (ܦ
8. ܶ    ݂ܫ              ݁ݐܴܽ݊݋ܥݐݏ݁ܤ  =  ݁ݐܴܽ݊݋ܥ݌݉݁
9. ’’ܵ  ݊ݎݑݐܴ݁                  
10. ݁ݐܴܽ݊݋ܥݐݏ݁݃ݎܽܮ < ݁ݐܴܽ݊݋ܥ݌݉݁ܶ  ݂݅݁ݏ݈ܧ             
11. ݁ݐܴܽ݊݋ܥ݌݉݁ܶ = ݁ݐܴܽ݊݋ܥݐݏ݁݃ݎܽܮ                  
12.                   ܵ ݂ = ݐ݁ܵ݁ݎݑݐܽ݁ܨ݀݁ݐ݈ܿ݁݁
13.               ܵ ݂  ݀݊݁݌݌ܽ  ’ܵ  = ’
14.               ܵ   =  ܵ −   ݂

݁݊݀
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heuristic search algorithms to identify the most useless features in each iteration and

generate a better candidate subset by eliminating the weakest feature from a combination

list. The probabilistic searches are often given a number as a parameter to specify how

many times the search is going to run. During each iteration, a new subset is generated

randomly from the remaining features which had the most useless one trimmed off during

the last iteration. As the time of the iteration increases, the accuracy is achieved at the

cost of a more expensive computational time. A typical example is genetic algorithm (GA)

where the stopping criterion is set to stop the algorithm at a certain amount of running

times. Genetic algorithm adopts the idea of mutation and crossover from biology to

generate new candidate feature sets and uses a fitness function to evaluate their merit.

The consistency rate can be used as a fitness function for genetic algorithm and it has to

be given an integer for the number of generations as a stop criterion. For example, if the

number of generations for GA is set to 11, the program will stop on running the algorithm

11 times. The number of generations should be predefined and sufficient to obtain a good

result. Some people tend to set the number of generations to be much more than

necessary in order to get an optimal result. Others trade off accuracy for efficiency.

Other probabilistic searches employ two stopping criterions combined. One is the

generation time, the other one is a traditional stopping point where the searching

algorithm is stopped when the best subset is found. Such a combination guarantees

accuracy and the search is stopped not only based on running times but also on the result,

this combination effectively avoids unnecessary lavish expenditures.  As the probabilistic

search proceeds, the feature subsets are randomly generated with equal probability, once
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a consistent feature subset is selected that satisfies the threshold, the search will stop

regardless of the specified running time. In other cases where data set may have a large

number of features and instances, if the general purpose is to find a result with a certain

amount of tolerance, setting the running time as the main stopping criterion is the most

reasonable way.

In the following, we implemented a probabilistic search algorithm called LVF

(Las Vegas Filter) [8] as an example.

Figure 6. Probabilistic search algorithm (PS)

Probabilistic Search

 Input: Data ܦ, feature-set ܵ, Running-Time ܶ

Output: Consistent Feature Subset

1. ,ܵ)݈ܽܥ݊݋ܥ = ݁ݐܴܽ݊݋ܥݐݏ݁ܤ (ܦ
2. ܵ = ݐ݁ܵ݌݉݁ܶ
3. ݅  ݎ݋ܨ ܶ ݋ݐ 1 = 
4. ݊݅݃݁ܤ        
5.           ܵ (ܵ)݉݋ܴ݀݊ܽ = ’
6. ≥ |’ܵ|  ݂ܫ           |ݐ݁ܵ݌݉݁ܶ| 
7. ,’ܵ)݈ܽܥ݊݋ܥ  ݂ܫ                 ݁ݐܴܽ݊݋ܥݐݏ݁ܤ = (ܦ
8. |ݐ݁ܵ݌݉݁ܶ| > |’ܵ|  ݂ܫ                      
9.                             ܶ ’ܵ = ݐ݁ܵݏ݉݁
10. ݁ݏ݈݁                      
11.                             ܶ ’ܵ  ݏ݀݊݁݌݌ܽ ݐ݁ܵ݌݉݁ܶ  =  ݐ݁ܵ݌݉݁
12. ݀݊ܧ         
13. ݐ݁ܵ݌݉݁ܶ ݊ݎݑݐܴ݁

Note: The function above randomly chooses a subset from S and ()݉݋ܴ݀݊ܽ
return it.
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CHAPTER 5: PROPOSED ALGORITHM (AHS)

5.1 PROPOSED ALGORITHM

The proposed algorithm is based on the aforementioned search algorithms. The

full feature set has the highest consistency rate. It can also be proven by its monotonic

property that a superset of a consistent feature subset is also consistent. This guarantees

that the best consistency rate can be calculated from the beginning and hence helps

setting up the threshold for a stopping criterion. However, our goal is more than to just

calculate the highest consistent rate. Reducing the dimensionality of a data set becomes

increasingly important since today’s data expands exponentially. Classification to the

large data depends heavily on feature selection techniques to perform quickly and make

an accurate result.

The algorithm works as follows: the consistency rate of full feature set is ߜ

computed at the beginning and serves as a threshold. The searching algorithm starts from

a feature subset of size 1. The searched features with local highest consistency rate are

selected. These selected features will be used to generate a super set. This process repeats

itself until it finds feature subsets that have consistency rate equals to or the full feature ߜ

set is reached. If more than one feature subset is generated (multiple selected subsets with

consistency rate ߜ ), a classifier called C4.5 [11] will be used to discriminate the selected

feature subsets again by their error rate.
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Figure 7. Automatic Hybrid search algorithm (step1)

,ܵ ݏ݊݅ ݁ݎݑݐ݂ܽ݁  ݐ݁ܵ݌݉݁ݐ ݊݅ ݐ݋݊ ᇱ ;

Automatic Hybrid Search

Input: Data ܦ, feature-set ܵ;

Output: consistent feature subsets ܮ, Consistent Feature Sub-Set

1. ܮ   = ܵ ;
2. ← ߜ   ,ܵ) ݈ܽܥ݊݋ܥ   ; (ܦ
3.   ܶ ← ∀ ܵᇱ ݅݊  ܵ  ݓℎ݁݁ݎ |ܵᇱ| = 1 ;
4.  max ←  −∞ ;
5. ݀݊ܽ ܶ ݊݅|ℎ݈݅݁ ∀ |ܶᇱݓ   < |ܵ| ;
6. ; ∅  = ݐ݁ܵ݌݉݁ݐ          
7. } ܶ   ݊݅ ℎ  ܶᇱܿܽ݁  ݎ݋݂         
8. ,′ܶ)݈ܽܥ݊݋ܥ  = ݈ܽܥ݌݉݁ݐ                   (ܦ
9.                   ݂݅ ݔܽ݉) < } ℎ݁݊ݐ (݈ܽܥ݌݉݁ݐ
10. ݔܽ݉                             = ; ݈ܽܥ݌݉݁ݐ
11. ݐ݁ܵ݌݉݁ݐ                             = ∅ ;
12.                             ܽ݀݀ ܶᇱݐ݁ܵ݌݉݁ݐ ݋ݐ ;
13.                     }
14.                   ݂݅ ݔܽ݉ ) == ℎ݁݊ݐ (݈ܽܥ݌݉݁ݐ
15.                         ܽ݀݀ ܶᇱݐ݁ܵ݌݉݁ݐ ݋ݐ ;
16.                     }
17.       ݂݅ ݔܽ݉) ≥ } ℎ݁݊ݐ (ߜ 
18. ܮ                 ; ݐ݁ܵ݌݉݁ݐ =
19. ; ܮ    ݊ݎݑݐ݁ݎ                    
20.                     }
21. ݂݅ ݁ݏ݈݁           |ݐ݁ܵ݌݉݁ݐ|) == } ℎ݁݊ݐ (|ܶ|
22.                     ܶ  ← ,ܶ)ݐ݁ܵ݊݋݅ݐܾܽ݊݅݉݋ܥ ݁ݖ݅ݏ + 1) ;
23.                     }
24. }  ݁ݏ݈݁       
25. ݐ݁ܵ݌݉݁ݐ ᇱ݅݊ݐ݁ܵ݌݉݁ݐ ݐ݁ݏ ݕ݊ܽ ݎ݋݂                
26. ݕ݊ܽ ݏ݅ ݂ ݁ݎℎ݁ݓ ݂ ℎݐ݅ݓᇱݐ݁ܵ݌݉݁ݐ ݀݊݁݌݌ܽ                          

27.                   ܶ = ;ݐ݁ܵ݌݉݁ݐ
28.   }
29. }
30.  Return L;
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Figure 8. C4.5 error rate checking (step2)

5.2 AHS VS. HS

AHS and HS are both using the monotonic property to setup the threshold from

the onset. The full feature set is used in both algorithms to generate the best merit

possible by the consistency rate evaluation criterion. The most obvious distinction

between AHS and HS is that HS only selects one feature subset in each iteration whereas

AHS selects all the feature subsets with the same highest merit. For example, if in one

iteration, N feature subsets are selected according to the consistency rate measure, HS

will only pick the first one. AHS, on the other hand, picks all the qualified candidates.

After the selection, the selected feature patterns are kept and used to combine the

Step2:

Input: L, consistent feature subsets from step1.

Output: T, selected feature subset.

Method:

1. min = ∞ ;
2. ܶ = ∅  ;
3. } ܮ ᇱ݅݊ܮ ݐ݁ݏܾݑݏ ݁ݎݑݐ݂ܽ݁ ℎܿܽ݁ ݎ݋݂
4. ; ᇱܮ ℎݐ݅ݓ 4.5ܥ ݃݊݅ݏݑ ݎ ݁ݐܽݎ ݎ݋ݎݎ݁ ݁ݐ݈ܽݑ݈ܿܽܿ          
5. ݎ)݂݅            < }ℎ݁݊ݐ(݊݅݉
6.                     ݉݅݊ = ; ݎ
7.                     ܶ = ᇱܮ

8.             }
9.    }
10. ݊ݎݑݐ݁ݎ ܶ ;
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remaining features. AHS keeps more patterns than HS in each loop since AHS uses the

entire feature subset. This greatly reduced the further possible computation cost since

there are less features left to generate new combinations in AHS. AHS is also more

accurate than HS. If the result contains more than one feature subsets, C4.5 is used to

check their error rate. The one with the best result is chosen and others are eliminated. In

conclusion, AHS is more accurate in comparison to HS and able to reduce computational

costs.

5.3 FLOW CHART OF AHS

AHS returns the entire qualified feature subset and involves more of a learning

process. It is more complex to implement since it has more conditions to consider. The

following is the flow chart for it.

Figure 9. Notations of AHS flow chart

ܶ  is a feature set holder that initially contains the whole features;

ܮ  is the consistent feature subsets;

;is dataset ܦ

;∞− is initialized ݔܽܯ

ܳ is the best consistency rate calculated by full set

is a temporary feature set holder ݐ݁ܵ݌݉݁ݐ

S is the full feature set
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Figure 10.  AHS flow chart
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CHAPTER 6: EXPERIMENTAL EVALUATION

6.1 DATE SET DESCRIPTION

In order to test the performance and accuracy of the AHS algorithm and make a

comparison to the algorithms we discussed in chapter 4 and chapter 5, we selected three

typical datasets. They are the Credit Approval dataset [12], the SPECT Heart dataset [13]

and the Weather dataset [14].

The Credit Approval dataset is interesting because it contains a mix of attributes -

continuous, nominal with small numbers of values, and nominal with larger numbers of

values. This fact allows us to test whether our program can implement on different

attribute values. There are also a small amount of instances with missing data which are

removed because dealing with missing data is out of the scope of this thesis. The Credit

Approval dataset is about credit card applications. To protect the confidentiality, the

domain for each attribute is replaced by meaningless symbols. The SPECT Heart dataset

describes diagnosing of Cardiac Single Proton Emission Computed Tomography (SPECT)

images. Each of the patients is classified into two categories: normal and abnormal. The

Weather dataset is small but a very typical dataset which has been used as sample dataset

by many major data mining tools such as WAKA. The target attribute is ‘play’ which

consists of two classes: no and yes. All three datasets are described in the table 1 below.
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Name # of instances # of features
Credit

Approval 673 15

SPECT
Heart 80 22

Weather 15 4
Table 1. Experimental datasets

6.2 COMPARISONS

Figure 11 shows the application interfaces where the four search algorithms are

implemented using Java. The four algorithms are compared with running time and

accuracy. Ten runs were done for each search algorithm and the running time is based

on their average outcomes. From table 2, we can see that ES is more time consuming

than HS, PS and AHS. AHS took a bit longer than HS and PS since AHS is a hybrid

algorithm and involved learning and selecting feature subset. The execution time

differences are insignificant between the four algorithms when the feature size is small

and significant when the feature size is large i.e. tens or hundreds of thousands of

features.
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  Figure 11.  Interface to implement different search algorithms

Feature
Selection
Methods

Dataset
Credit

Approval
SPECT
Heart Weather

ES 13761219 27110657 31
HS 2043 1109 25
PS 4931 226 52

AHS 4234 24562 29.8
Table 2. Run-time comparisons (in milliseconds)

Feature
Selection
Methods

Dataset
Credit

Approval
SPECT
Heart Weather

ES 3 11 3
HS 3 15 3
PS 4 15 3

AHS 3 11 3
Table 3. Size of consistent feature subset
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Table 3 shows the number of features selected by each algorithm. The result for AHS is

the same as ES for all dataset. As ES searches for every possible dataset combination, the

result by ES is usually more accurate. This again shows us that the AHS can get more

accurate results with much less time overhead.

We also employed a well known classification algorithm C4.5 [11] to evaluate the

degree that each result affects the classification and their error rate. Table 4 shows the

error rate of the decision tree for each feature selection method. As seen in the empirical

results, AHS performed the same as HS and PS with smaller size of feature subset.

Method Error rate

ES 21.25%

HS 18.75%

PS 18.75%

AHS 18.75%
Table 4. Results for the C4.5 Algorithm
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CHAPTER 7: CONCLUSIONS

In this thesis, we have reviewed the framework of feature selection and explained

the basic concept of different feature selection model: filter, wrapper and hybrid model.

After that, we gave a brief review on several evaluation criterions and centered our

attention on the consistency rate measurement. We examined its properties such as the

monotonic property. Three typical search algorithms are investigated in this thesis which

are : the exhaustive (ES), the heuristic (HS) and the probabilistic search (PS). Based on

the studies on those search algorithms, we also introduced a new hybrid searching

algorithm, AHS (Automatic Hybrid Search Algorithm).

Instead of stopping on finding only one result, the new algorithm is able to find all

the feature subsets with the same highest merit measured in consistency rate. C4.5 is

integrated into the algorithm in step two to evaluate and select again in order to further

ensure the result to be more accurate with a slight trade off with time. Finally, we

developed a tool to run ES, PS, HS and AHS and an empirical evaluation of these

measures is given. Their pros and cons on accuracy, time consumption and the reduction

of the number of features were discussed.
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CHAPTER 8: FUTURE DIRECTION

Future work will focus on experimental analysis on more datasets with broad

feature spaces. The AHS algorithm will be tested on more datasets with various

backgrounds. The comparison between different algorithms in performance and accuracy

can be conducted more thoroughly and the outcomes will be more convincing as more

experimental results will be available. The different evaluation criteria would be

employed to test the AHS and make a comparison with consistency rate. We can also

change the different error checking algorithms for the second part of AHS algorithm.

In addition, different data mining functions could be added to our programs such

as eliminating missing values or data discretization. Numerical dataset could be

discretized into an appropriate form by the program before the feature selection

procedure. Different algorithms for discretizing dataset would be implemented. It is

interesting to explore the measures that can make several related data mining techniques

working together and be able to handle all types of data.
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TOOL SPECIFICATION

Step 1:  Double click the program icon labeled with “Search Algorithm Implementation”:

Step 2:  Go to menu “file” at the leftmost corner and click “open file”:
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Step 3: Select data file with “CSV” extension:
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If you accidentally select file with different extension, the program will pop a window:

Step 4: Choose an algorithm:
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If you select PS algorithm, you have to specify the running time:

Step 5:  Hit the button “Execute”:
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Output:
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APPENDIX

Source code of AHS

import javax.swing.*;

import java.lang.*;

import java.io.*;

import java.util.*;

public class LP1 {

    private readData toRead;

    private inConCal toInCon;

    private CombinationGenerator X;

    float BestResult;

    List<String[]> BestSet;

    List<String[]> LeftSet;

    private String S[];//feature set

    private List<String[]> TestSet;

    public LP1() {

        BestSet = new ArrayList<String[]>();

        TestSet = new ArrayList<String[]>();

        LeftSet = new ArrayList<String[]>();

        toRead = new readData();

        toInCon = new inConCal();

    }
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    public List<String[]> result(File fileName)

        {

               if(S!=null&&TestSet!=null)

               toClear();

               toRead.toRead(fileName);

               S = new String[toRead.toGetTable().getColumnCount()];

               for(int i=0; i<toRead.toGetTable().getColumnCount();i++)

               S[i]=toRead.toGetTable().getColumnName(i);

               BestSet.add(S);

               BestResult = toInCon.ConCal(S,toRead.toGetTable());

                for(String aa:S)

                {

                    String[]bb=new String[1];

                    bb[0]=aa;

                    TestSet.add(bb);

                }

                TestSet.remove(S.length-1);

                String Target = S[S.length-1];

                for(int i=0;i<TestSet.size();i++)

                    LeftSet.add((String[])TestSet.get(i));

                float T = Integer.MIN_VALUE;

Stop:{
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      while(((String[])TestSet.get(0)).length<S.length)

      {

          List<String[]> set = new ArrayList<String[]>();

          set.clear();

          for (Object aa : TestSet) {

              String[] input = addTarget((String[]) aa, Target);

              float SubResult = toInCon.ConCal(input, toRead.toGetTable());

              for (String a1 : input)

                  System.out.print(a1+"  ");

              System.out.println();

              System.out.println(SubResult);

              if (T < SubResult) {

                  T = SubResult;

                  set.clear();

                  set.add((String[]) aa);

              } else if (T == SubResult) {

                  set.add((String[]) aa);

}

             }

             if (T >= BestResult) {

              if (((String[]) set.get(0)).length <

                  ((String[]) BestSet.get(0)).length) {

                  BestSet = set;
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                  break Stop;

}

}

             else if(set.size()==TestSet.size())

             {

              int length1 = set.get(0).length;//to get current candidate's length

              TestSet = ToSieveDuplication(set);

              if(TestSet.size()<=length1)

  return BestSet;

              TestSet = CombineSet(TestSet,length1+1);

             }

             else{

             updateLeftSet(LeftSet,S);

              LeftSet = DeleteElement(LeftSet, set);

              if (LeftSet.isEmpty())

              {

  BestSet = set;

  return BestSet;

              }

              TestSet = AppendElement(LeftSet, set);

             }

       }

  }
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        return BestSet;

  }

    private List<String[]> DeleteElement(List<String[]> LeftSet,List<String[]> Set)

   {

       List<String[]> returner = new ArrayList<String[]>();

       if(Set.size()==0)

           returner = LeftSet;

       else

       {

          List<String[]> newSet =(List<String[]>) ToSieveDuplication(Set);

        stop2:for (Object aa : LeftSet) {

               for (Object bb : newSet) {

                   if (IsArrayEqual((String[]) aa, (String[]) bb))

                       continue stop2;

               }

               returner.add((String[]) aa);

           }

       }

       return returner;

   }

    private List<String[]> AppendElement(List<String[]> LeftSet,List<String[]> Set)

   {

       List<String[]> returner = new ArrayList<String[]>();
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       int Length=0;

       for(Object aa:Set)

       {

           for(Object bb:LeftSet)

           {

              String S1[] = (String[])aa;

              String S2[] = (String[])bb;

              String S3[] = new String[S1.length+S2.length];

              Length = S3.length;

              List<String> newList = new ArrayList<String>();

              for(int i=0;i<S1.length;i++)

              {

                  newList.add(S1[i]);

              }

              for(int j=0;j<S2.length;j++)

              {

                  newList.add(S2[j]);

              }

              for(int ij=0;ij<S3.length;ij++)

              {

                  S3[ij]=newList.get(ij);

              }

              returner.add(S3);
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              newList.clear();

           }

       }

       List<String[]> newSet =(List<String[]>) ToSieveDuplication(Set);

       if(Length!=0)

       {

           if(newSet.size()>=Length)

           {

           List<String[]> tempList = CombineSet(newSet,Length);

           for(Object ob:tempList)

           returner.add((String[])ob);

           }

       }

       return returner;

   }

    private List<String[]> CombineSet(List<String[]> set,int length)

    {

        List<String> temp = new ArrayList<String>();

        List<String[]> returner = new ArrayList<String[]>();

        int[] indices;

        CombinationGenerator X = new CombinationGenerator(set.size(),length);

        while(X.hasMore())

        {
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            indices = X.getNext();

            for(int i=0;i<indices.length;i++)

            {

                String[]a1 = (String[])set.get(indices[i]);

                temp.add(a1[0]);

            }

            String[] tempString = new String[temp.size()];

            for(int i=0;i<tempString.length;i++)

            {

                tempString[i]=temp.get(i);

            }

            returner.add(tempString);

            temp.clear();

        }

        return returner;

    }

    private List<String[]> ToSieveDuplication(List<String[]> set)

    {

        List<String[]> SievedSet = new ArrayList<String[]>();

        Set<String> toSieve = new HashSet<String>();

        for(Object aa:set)

        {
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            String[] temp = (String[])aa;

            for(String bb:temp)

                toSieve.add(bb);

        }

        for(Object aa : toSieve)

        {

            String[] temp2=new String[1];

            temp2[0]=(String)aa;

            SievedSet.add(temp2);

        }

        return SievedSet;

    }

    private String[] addTarget(String[] main, String target)

        {

            String[] newArray = new String[main.length+1];

            for(int i=0;i<main.length;i++)

            {

                newArray[i] = main[i];

            }

            newArray[newArray.length-1]=target;

            return newArray;

    }

    private boolean IsArrayEqual(String[] a,String[] b)
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  {

        boolean bb = true;

        for(int i=0; i<a.length;i++)

        {

            if(!(a[i].equalsIgnoreCase(b[i])))

            {

                bb=false;

                break;

            }

        }

        return bb;

  }

    private void toClear()

    {

        BestResult=0;

        BestSet.clear();

        TestSet.clear();

        for(String aa : S)

            aa=null;

    }

    private void updateLeftSet(List<String[]> Set,String[] FeatureString){

     Set.clear();

     for(String aa:FeatureString)
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        {

            String[]bb=new String[1];

            bb[0]=aa;

            Set.add(bb);

        }

     Set.remove(FeatureString.length-1);

    }

}
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