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Lucas Clay Devore December 2009 80 Pages
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Department of Mathematics Western Kentucky University

This thesis provides a study of one-dimensional random walks which move in
one-step intervals and are bounded below by an elastic or reflective lower boundary. The
random walks start at a given starting height j on the y-axis. They then move one unit to
the right and upward with probability p, downward with probability g, or stay at the same
height with probability . The walk ceases when a given upper boundary n > j is
reached. If an elastic lower boundary m < j is reached, the walk automatically has one
unit of height restored without an extra step taken. If a reflective lower boundary m < j

is reached, the next step taken is automatically upward.

We first show that, given p > 0, a random walk containing an elastic or reflective
lower boundary will reach any upper boundary n with probability 1. We then derive
formulas for the average number of steps needed to reach n for both cases. Next, we use
Markov Chain methods and Systems of Equations to analyze scenarios where our walk
moves upward a units on an upward step for some integer a > 1. For our conclusion, we
use the results obtained to analyze a scenario in which a gambler wagers at a House that
gives the bettor one chip when he or she goes broke. Throughout, computer simulations

are used to verify many of the results obtained in the thesis.
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Chapter 1: Introduction

In this thesis, we will study two special cases of a lower boundary in a random
walk: an elastic lower boundary and a reflective lower boundary. Both of these special
lower boundaries automatically restore one unit of height whenever the walk reaches
them. For the case of the elastic lower boundary, we restore one unit of height without an
extra step taken. The reflective lower boundary, however, restores one unit of height on
the following step after it is reached.

We first provide background information on what a random walk is. The type of
random walk we will consider throughout the course of this thesis may be described as a
process which measures the height of a particle that randomly moves upward, moves
downward, or stays at the same height with each unit step. We often present a random
walk as a two-dimensional graph where the units on the x-axis represent a unit step, and
units on the y-axis represent the height of the particle after each step. Some often
consider cases where the random walk ends after a given number of steps. For our
example, however, we will demonstrate a random walk which only ceases when a given
upper or lower boundary is reached.

Before we demonstrate such a walk, we first provide some notations which we

will use throughout this thesis. We let j denote the initial starting height of the walk on

the y-axis. We let a represent the size of upward steps taken, and 5 represent the size of

downward steps taken. We let p be the probability of taking an upward step, g be the
probability of taking a downward step, and r =1- p —g be the probability of staying at

the same height. Finally, our walk is bounded above by upper boundary » , and below by

lower boundary m . We now provide the following example of a random walk path:
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A random walk path with j =4, p=05,¢9¢=04,r=0.1, n=7, m=0,and a=b=1.

We note that this walk began with initial height j =4 and proceeded to take a
downward step with probability ¢ =0.4. The second, third and fourth steps were each
upward with probability p =0.5, and the walk reached a height of 6. The walk then
proceeded to take three downward steps and one upward step until step 8, when it then
took a step and remained at the same height with probability » =0.1. We see that the
walk stops upon reaching the upper boundary of n =7 after thirteen steps.

Two important questions one might ask regarding random walks of this form are
as follows: Given j, p, q, n and m, what is the probability of reaching an upper or
lower boundary? Also, given that an upper or lower boundary is reached, what is the
average number of steps needed to reach one of the boundaries? The answer to these

questions was first given by William Feller in 1968. In his book An Introduction to

Probability Theory and Its Applications [1], he shows that for the classic boundary

problem, where @ = b =1, any random walk in which r # 1 will reach an upper or lower
boundary with probability 1. He also proves that the average number of steps needed for

the classic boundary problem is given by the following formula:



(n - j)Jj—m) if p=g
E[ S”] o
Joml=y _ j=m -
nom 1-(/p) _J-nm if p=#g.
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Henceforth we will refer to the case where a =b =1 as the 1:1 case.
In Section 1 of Chapter 2 of this thesis, we adjust Feller’s argument for the classic

boundary problem to prove that, when p >0, random walks with an elastic lower

boundary will reach any given upper boundary » almost surely. This argument applies
to the 1:1 case. Next, we proceed to adjust Fellers argument for determining E[ j Syl to
obtain a formula for the average number of steps needed to reach n for the elastic lower
boundary case when the step sizes are 1:1. We denote this average by EJ jS(" m)] .

In Section 3, we provide two specific examples of random walks with elastic
lower boundaries for the 1:1 case. Numerous computer simulations are performed for
each example using Mathematica, and the results are used to verify the conclusions of

Section 2 for a case where p =g and a case where p #q .

In Section 4 of Chapter 2, we begin by discussing cases where our walk may
move up a units of height on an upward step where a is an integer greater than 1. We
will refer to this as the a:1 case. First we demonstrate that obtaining a closed-form
solution for the average number of steps using a similar argument as with the 1:1 case is
impossible. We then give the results of numerous computer simulations on two different
a:1 scenarios in order to obtain an approximation for the average number of steps
needed to reach » for both.

In Section 5 we describe how to adjust the Markov Chain method described by
David Neal in his paper Generalized Boundary Problem for One-Dimensional Random
Walks [2] to provide an approximation for the average number of steps needed to reach »
for the a :1 case. We also use the method to analyze probability states for our walk after
a given number of steps. Finally, we use a Markov Chain on the same examples used in

Section 4 to see how the results compare to the computer simulations performed in that

section.



Section 6 describes how to adjust the Systems of Equations method, also given by
Neal in [2], to obtain exact solutions for the average number of steps needed to reach n
in an a:1 case. To conclude the chapter, we apply the Systems of Equations solution to
the two scenarios used in Sections 2.4 and 2.5 and compare the results to those obtained
in those sections.

In Chapter 3 we perform the same steps as in Chapter 2 except we now analyze
the reflective lower boundary. Each section in Chapter 3 mirrors its counterpart in
Chapter 2; however the results obtained are significantly different due to the extra step
taken in the reflective lower boundary case when our random walk reaches m . This

includes determining the average number of steps needed to reach the upper boundary for

the 1:1 case which we denote by E[ J-R("m)] .

Random walks are naturally conducive to modeling gambling scenarios; thus in
our conclusion, Chapter 4, we apply the results obtained in Chapters 2 and 3 to a
gambling scenario involving a gambling House that spots the bettor one chip whenever
he or she goes broke. However, the bettor must repay the House any chips he or she was
spotted at the end of the gambling session. We first demonstrate how to calculate the
average number of chips the bettor is spotted and must pay back. Determining this value

allows us to find the average net gain of the bettor at the end of the gambling session,
which we denote EI ; G(”O)] . Next, we prove that a gambler at such a House will break

even on average if p =g =0.5 and the payouts are 1:1. In Section 4.2, we proceed to

show by induction that if p < g and the payouts are 1:1, the bettor is guaranteed to lose
money on average. We then compute ET ; G("O)] for a specific case. Finally, in Section

4.3, we describe how we may use the Markov Chain method and Systems of Equations to

determine EJ ; G(”O)] for a gambling scenario with an « :1 payout.



Chapter 2: The Elastic Lower Boundary Scenario

For this random-walk scenario, we assume that whenever our walk drops to
height 0, we automatically have one unit of height restored with no extra step taken. We
will call this an “elastic lower boundary.” A good application of this problem would be a
gambling scenario where we have a generous house that always spots the bettor one chip

when he or she goes broke. For this scenario, we will do the following:

1) Prove that, for p >0, the particle will eventually reach any height »n> j with
probability 1.

2) Derive the average number of steps needed to reach height » given a =b=1 (the

1:1case).
3) Provide numerical examples and computer simulations of the 1:1 case.

4) Discuss the a:1 case (a>b=1), and use simulations to approximate the average

number of steps needed to reach height 7.

5) Use a Markov Chain Method to derive the probability states after & steps for the a:1

case, as well as to approximate the average number of steps needed to reach height #.

6) Use a System of Equations Method to obtain numerical solutions for the average

number of steps needed to reach height » in the a:1 case.



2.1 The Probability of Reaching Height n
Using induction, we will prove that a bettor at the generous casino will reach any

given maximum almost surely. Assume for now that we have an elastic lower boundary

of m=0. Let e; represent the probability of reaching height » from height j, and let

p>0. Clearly e, =1,and for 1< j <n,we have

e]' =pxej+1+q><ej_1+rxej.

For j =1, however, going down is the same as staying even due to the elastic boundary.

So for j =1, we have

e =pxey+qgxe +rxey. (1)

We now wish to solve for e; in terms of e,. Because p+g+r =1, we may rewrite

Equation (1) as
(p+q+re=pxey+gxe +rxey.
Then we have
pxe +gxe +rxe =pXey+qgXxe +rxep,
which gives pxe; = pxey. Thus, e =ej, because p=0. Thus, the probability of

reaching height » from height 1 is the same as reaching height # from height 2. That is,

€1 =62.



Now assume that e; =e;,1 forsome j=1. Then

€j+1 =pxej+2+qxej +7‘X€j+1.

However, e; =e;,1,50 ;1 may be rewritten as

€jr1 =PpXxejptgxe; g trxe;y
Thus,

(P+q+rej=pxejip+qxej+rxe iy ,
which gives pxe; 1 =pxe;,y,andthene; j =e;,5.
By induction, we may conclude that

ej=ej forl< j<n-1.
Because e, =1, we may conclude that ¢ =1 forall j from1to n.

The previous result was obtained given a lower bound of m =0. However, we

may generalize this result for any lower bound m , given p >0 and starting position j,
where m+1< j<n-1. Note that a random walk beginning at height ; with an elastic

lower boundary m and upper boundary » is equivalent to a random walk beginning at

height j—m with upper boundary »n—m and elastic lower boundary 0. Therefore, we
may adjust our result to accommodate any lower bound m < j by replacing n with

n—m and j with j —m . This allows us to state:
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Theorem 2.1. Given p > 0, any simple random walk beginning at height j with an

elastic lower boundary of m < j will reach any upper boundary n > j with probability 1.

Therefore, with an elastic lower boundary of m, as long as there is some chance of
moving upward, then we will reach any upper boundary » with probability 1 from any

starting height j between m and n.
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2.2 Average Number of Steps to Reach Height n

We wish to determine the average number of steps needed to reach height »

when starting from height j, where 0 < j <n, and O is an elastic lower boundary. Let

e; now represent the average number of steps needed to reach height » when starting at

height ;. Starting at height j, we take a step and go up 1 with probability p, down 1
with probability ¢, or stay at the same height with probability . Thus, we may express

e; as follows:

ej =l+pxe; 1 +gxe; 1 +rxe;.

Note that our walk stops upon reaching height » ; therefore, e, =0.

We will now set up a difference equations argument to find a solution for e; in

terms of p, ¢, n,and j. To do this, we will first establish a recursive relationship for

e; interms of e; . For j=1, wehave

e =1+ pxey+gxe +rxe

because going down from height 1 is the same as staying even. We now rewrite e; as

before:
pxej+qgxe +rxe; =1+ pxey +gxe  +rxey.

Then we have pxe) =1+ pxep,or

e1=l+e2. (2)
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Next, we have
e, =1l+pxe; +qxe +rxe,,
then
pxey+qgxey+rxey =1+pxez+qgxe +rxey,and
pxey+qgxey =1+ pxe3+gxey.

We now substitute for e; using Equation (2) to obtain the following equations:

1
pxey+gxey=1+pxes +qx(——+e2]
p
pxey+qgxey =1+ pxe;3 +i+qxe2
p

pxey =1+ pxes +4
p

1
ey =ej3 -f-—-l-i2
p

Continuing in this fashion, we see that, in general,

We now define the forward difference, f;,as e; —e;,q. Thus

J - J o i-1 j-1 i j-1 i
q q lwg 1 q
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If p=gq,wehave

fi==S1L] == ==Y1=-x,=2L
! pi§0p plg()() plg() P

If p+#gq,then

255l

zOp Pi-o

We will now use the forward differences to obtain a closed—form solution for e T

First, because e, =0, we have

n—1
Zfi =(e;—ep)+(eg —e3)+..+ (e, 1 —ey) =¢y.
i=1

Also,

j-1
Zf, =(ep—ex)+(ep—e3)+..+(ej_1—¢e;) =€ —e;.
i=1

Therefore,

Jj-1 n-1 Jj-1 n-1
ma-Th-S5-50-5h
=1 i=l  i=l =g
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If p =q, we then obtain

S s el 1l S 1 (=D (-1 _ (2= e+ 1)
GBS

Pl = 2p

If p+#gq,wehave

i=j j=j i=j i=j
n n J
22 {&1]
p p
L2 AP |t —(n-J)
q—p 1_1 -p q-p
P
( g) (qY g\ (q)
BRH BRE
b)) =p|_n-j PP
- 2 a—p | * 2
(@-p) q-pP | P4 (p—q

Our results so far have been based on having a lower bound of 0. However, we

may generalize these results for any lower bound m < j by replacing » with »—m and
j with j—m as we did at the end of Section 2.1. Making these substitutions, we can

state:
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Theorem 2.2. Let p > 0. For a simple random walk beginning at height j with an
elastic lower boundary of m< j, the average number of steps needed to reach the

boundary height of n > j is given by

(n—j)n+j-2m-1)

bk gy

+ 3 if p#gq.
pP—q (r—-q)

if p=gq
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2.3 Numerical Examples and Computer Simulations for the 1:1 Case

We will now examine two specific examples for the 1:1 case, and then use

simulations done with Mathematica to verify the accuracy of our results in Theorem 2.2.
Scenario 1: p=q

Suppose we have a random walk with the following properties:
Upper Boundary: n=8 Probability of Going Up: p=04
Initial Height: j=2 Probability of Going Down: ¢ =04

Elastic Lower Boundary: m =—4

According to Theorem 2.2, our walk should reach height » in an average of

(n—jYn+j-2m-1) _(8-2)8+2-2(-4-1)
2p 2(4)

=127.5 steps. We will now take a look

at some simulations done with Mathematica to see how our results hold up. To view the

code used to generate these results, refer to the Appendix.

Simulation 1:
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This simulation took 69 steps to complete, well under the expected average of 127.5.
Because p =g and we started at j =2, which is located directly between the upper and
lower bounds, we had an equal chance of hitting the lower bound or the upper bound
first. However, because this particular walk never reached the lower bound, it is not

surprising that the number of steps taken was below average.

Simulation 2:

i |
/
| |

Simulation 2 took 172 steps to reach n, which is above the expected average. Note that

this walk hit the lower bound at most 10 times.

Clearly we cannot ascertain the validity of our results based on a small number of
simulations. However, we may run a few thousand simulations and see if our sample
average for the walk matches our result from Theorem 2.2. Using code included in

Appendix A, Section 2.3, we obtain the following result after 5000 simulations:

SampleMean TrueAvgSteps
127.249 127.5

Hence our resultant average of 127.249 steps is quite close to our predicted average of

127.5 steps, which supports our result for the p =q case of Theorem 2.2,
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The following histogram displays the distribution of the number of steps taken to

complete the simulated walks:

800 1000 1200
Scenario 2: p#q

Suppose we have a random walk with the following properties:

Upper Boundary: n=8 Probability of Going Up: p=04
Initial Height: j=2 Probability of Going Down: ¢ =0.5
Elastic Lower Boundary: m =—4

Note that the only change in these values from Scenario 1 is that ¢ is raised from 0.4 to
0.5.

According to Theorem 2.2, random walks should reach height » in an average of

8-2 451959 _(5/ 9]
4-35 (4-.5)2

369.489 steps. Once again we will run

simulations with Mathematica to verify the validity of our result. The code for this
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scenario is the same as for Scenario 1 except the value of p should not equal the value of

q.

Simulation 1:

200 400 600 800 o 1000

This particular simulation took over 1000 steps to reach the upper boundary, well over

our predicted average of 369.489.

Simulation 2:

0 20 30
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This time, our walk took only 40 steps to reach the upper boundary.

Upon simulating Scenario 2 5000 times, Mathematica provides us with the

following result for the average number of steps:

SampleMean TrueAvgSteps
370.928 369.489

Our average of 370.928 steps for the S000 simulations agrees quite nicely with our
expected average of 369.489. Thus our result for the p # ¢ case of Theorem 2.2 is
supported by our results. The following histogram shows the distribution of the number

of steps taken for the simulated random walks:
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24 Thea:1Case(a>1)

Our work thus far with the elastic lower boundary has involved taking a step and
going up 1 unit with probability p >0, down 1 unit with probability g, or remaining at
the same height with probability » =1— p—g¢ (the 1:1 case). We now consider the a :1
case of the elastic lower boundary where we can move upward a units at a time where
a >1. Any such random walk will still reach any upper boundary n > j with probability

1; clearly if we are guaranteed to hit the boundary when going up 1 step with probability
p ,then we will hit it if we go up a steps with probability p .

We will not be able to use difference-equations to establish a closed-form solution
for the average number of steps needed to reach the upper-boundary for the a: 1 case.
The reason difference-equations worked in the 1:1 case was that we could establish a

recursive relationship between e; and e j+1 Interms of g, p, and j. However, with the

a: 1 case we cannot solve for e; solely in terms of e;,; and the aforementioned

variables, making a forward-difference argument impossible to implement. To illustrate

this, take for example a 2 : 1 case, and let e; once again represent the average number of

steps needed to reach an upper boundary » from height j with elastic lower boundary 0.

In general, we have

ej=1+pxejip+gxej 1 +rxe;.

For j =1, due to the elastic lower boundary, we have

e =1+ pxe3+qgxe +rxel
pxe +qxe +rxe; =1+ pxez+qgxe +rxe
pxe;=1+pxes

€1 =i+e3 (3)
p
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. 1 .
Note that our result with the 1 : 1 case was ¢; = —+e¢,. Continuing, we have

ey =1l+pxeg+qgxe +rxep
pxeyt+gxey+rxey =l+pxes+gxe +rxey
pxey+qgxey =1+ pxes +gxe
(p+g)xey =1+ pxes+gxe
1+ pxeyg+gxe
- ptq

€2

Clearly from this point we will not be able to solve for e; solely in terms of e4 or e3,

even by substituting using Equation (3).

While we will not be able to provide a closed-form solution for the average
number of steps needed to reach the upper boundary for the « :1 case (as we did in the
1:1 case), later in this chapter we will discuss how to use a Markov Chain Method to
give probability states after k£ steps. Also, we will describe how to use systems of
equations to determine exact numerical solutions for the average number of steps needed
to reach the upper boundary. First, however, we will run some simulations with
Mathematica to obtain approximations for the average number of steps needed to reach
height » for some different examples of the a:1 case. Note that because our upward
jumps are greater than 1, there is now the possibility of exceeding the upper boundary on

the last step. At this point the walk will end as if it had hit the upper boundary.
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Scenario 1
Upper Boundary: n=12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: ¢ =0.5
Elastic Lower Boundary: m =2 Size of Upward Jumps: a=3

Simulation 1:

12

10

i 1 L 1 1 L L i | 1 Il I | L I L i L L 1 L L 1 1 1

2 4 6 8 10 12 14

This simulation took 14 steps to complete. We see that after 13 steps, the walk was at
height 9. On the 14™ step, the walk took an upward jump and reached the upper
boundary of 12, thus ending the walk.
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Simulation 2:

14
12}

10}

T S SO T T Y T A G S N U AN VA S S IU EU R T s )

05 10 L5 20 25 30

This time our walk took 3 upward jumps in a row and actually surpassed the upper
boundary by going from 5 to 8 to 11 to 14. The walk then halted because we stop
whenever the upper boundary is met or exceeded.

After running 500000 simulations with the above scenario, our average number of

steps to reach the upper boundary was 16.0463.

Scenario 2
Upper Boundary: n=12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: ¢ =0.5
Elastic Lower Boundary: m =2 Size of Upward Jumps: a=2

For the second scenario, all variables are kept the same is in the first scenario except the

size of upward jumps is lowered from 3 to 2.
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Simulation 1:

12

10

This simulation took 89 steps to complete.

Simulation 2:

121

10}

F
N
L
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This walk took 31 steps to complete. Our average number of steps appears to be
increasing from Scenario 1, which we would expect by lowering the size of upward
jumps. After 250000 simulations, the average number of steps needed to reach the upper
boundary was 37.975.



27

2.5 Markov Chain Method for the a : 1 Case

We will now discuss how to use Markov Chains to analyze the probability states
after a given number of steps. Let & be a positive integer. Using this method, we shall do

the following:

a) Give the probability states after & steps;
b) Determine the probability of reaching the upper boundary within £ steps;
¢) Determine the probability of reaching the upper boundary in exactly £ steps;

d) Approximate the average number of steps needed to reach the upper boundary.

To implement our Markov Chain method, we will need to construct two matrices,
the first of which is the initial state vector (I). This initial state matrix designates the

starting position of our walk () among all possible ending heights that may be achieved.

Due to the elastic lower boundary, the lowest ending height we may achieve is m+1.
Because we now go up a steps at a time, we could reach height »—1 and go up a steps
for a maximum ending height of n+a—1. Thus our walk will always have

(n—1+a)—m possible ending heights. However, we will never start our walk on a

boundary point, so j will always correspond to a height between m+1 and n-1.

Because our walk will begin at j with probability 1, our initial state matrix will have a 1
in the column corresponding to j . All other columns will have a value of 0. The initial

state matrix / will look as follows. A matrix displaying all possible heights is shown

below [ for comparison:

I=0 . .1 o o o . .. 0]

[m+1 .. j .0 .. n+a-1]

We also need a transition matrix A= (a;,),for m+1<i,h<n+a—1. This matrix

gives the probabilities of going to height /# from any height i after one step. For example,

assume we are at height 7, with i >m+2. Then we take a step and reach height i —1



28

with probability ¢, height i+a with probability p, or remain at ; with probability .
The probability of reaching any other height from i is 0.

There are two exceptions to the above. One is when we are at height m+1. In
this case, due to the elastic lower boundary, we take a step and stay at height m +1 with

probability g +r or move up a steps with probability p. The other exception occurs

when we meet or surpass the upper boundary n. When this occurs, we remain at that

height with probability 1.
For our example, assume the following values:

Upper Boundary: n="7 Size of Upward Jumps: a =3
Elastic Lower Boundary: m =2

Our transition matrix 4 will look as follows:

I 3 45 6 7 8 9]
3{g+r 0 0 p 0 O O
4| ¢ r 00 p 0 O
4 5 0 qg r 0 0 p O
6| 0 0 g r O O p
77 0 0 0 0 1 0 O
8 0 0 0 O O 1 O
1 0 0 0 0 0 0 1]

Note that the values in the leftmost column are placeholders and represent the ending
height of the previous state; thus this column is not a part of the actual matrix. Likewise,
the top row represents the possible heights after a step is taken and is also not a part of

the actual matrix. Matrix 4 always has dimensions (n—1+a-m)x(n—-1+a—-m).
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a) Determining probability states after k steps:

To determine the probability of being at each possible ending height after & steps,
we multiply 7x A* . The result will be a 1x (n—1+a—m) matrix where the first entry

represents the probability of ending at height m+1 after k£ steps, the second entry
represents the probability of ending at height m + 2, and so on until the last entry gives

the probability of ending at height n+a —1 after & steps.
b) Determining the probability F(k) of reaching the upper boundary within k steps:

To determine the probability of reaching the upper boundary within k steps, we
simply multiply I x 4* as above and sum the probabilities of each entry of the resulting

matrix that correspond to part of the upper boundary. In other words, we multiply 7 x 4"

and sum the n™ through (n+a —~1)™ entries in the resulting matrix. Henceforth we will

denote this result, known as the cumulative distribution function (cdf),by F(k) .

¢) Determining the probability f{k) of reaching the upper boundary in exactly k steps:
To determine the probability of reaching the upper boundary in exactly k steps, we
take the probability of reaching the upper boundary within k steps and subtract from it the

probability of reaching the upper boundary within £ —1 steps. Thus the probability
distribution function (pdf), denoted f(k),is given by

(k)= F(k)~F(k—-1) for k>1.

Note that F'(k)=0 when k£ <1;thus f(k)=F(k) when k=1.
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d) Approximating the average number of steps needed to reach the upper boundary:

To determine the average number of steps needed to reach the upper boundary,
we take each possible number of steps k, beginning with £ =1, and multiply £ by the
probability f(k) of reaching the upper boundary in exactly £ steps. We then take the sum
of each product kx f(k) from k=1 to . However, because it is impossible to
compute infinitely many definite sums, the best we can do is obtain an approximation of
the average number of steps needed by choosing a large integer N and summing the

product kx f(k) from k=1 to N. Thus the approximate average number of steps

needed to reach or surpass the upper boundary of » is given by
N
E[jS("m) ]z D kx f(k) for N large.
k=1

We will now simulate parts a) through d) above using Mathematica. We will use
the same values we used in Section 2.4, Scenario 1 so that we may compare our result in

d) with the result we obtained previously for the average number of steps needed to reach

the upper boundary.

Scenario 1
Upper Boundary: n=12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: ¢ =0.5
Elastic Lower Boundary: m =2 Size of Upward Jumps: a=3

Based on these values, our initial height matrix / and our transition matrix 4 will look as

follows:
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I=[0 010000000 0 0]

1
1

O OO0 OO0 OO OO O oW
O OO O hivuO O o oo
O O O OO L oo o o
SO O~ OO0 Lo oo o oo
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O O O O O b OO o o
O O O O O Lo oo oo

a) First we will examine the probability states after 1 step is taken. To do this, we

multiply 7/ x A and obtain:
[0 05 02 0 0 03 0 0 0 0 0 0]

Note that this matrix corresponds to the 3™ row of our transition matrix. We obtained

this result because we started at the 3™ lowest possible height. Now we will examine the

probability states after 5 steps, given by 7 x A

[0.164 0060 0.132 0.146 0.024 0.104 0.146 0054 0007 0.040 0.073 0.050]

The probability states after 6 steps, given by / x A® , are as follows:

[0.145 0.078 0099 0.090 0.075 0.133 0.100 0022 0.033 0084 0.089 0.052]

Finally, to approximate the final ending probabilities of our walk, we find 7 x A* fora

very large value of k. Here we compute 7 x A1000.
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[0 000 O0OOO 0 045 0336 0.214]

Hence after 1000 steps our walk will almost assuredly have reached the upper boundary.
According to our result, we will eventually reach height 12 with probability 0.450, height
13 with probability 0.336, or height 14 with probability 0.214.

b) We will now examine the probability F(k) of reaching the top within % steps. We will
use the values for £ we used in part a). First we consider £ = 1. Because we start at
height 5, clearly there is no chance of reaching the upper boundary of 12 in 1 step. Thus
we would expect the sum of the probability states that correspond to the upper boundary
to be 0, which is the case. Hence F(0) = 0.

For the k£ =5 case, we see that there is a 0.040 probability of reaching height 12,a 0.073
probability of reaching height 13, and a 0.05 probability of reaching height 14. Thus F(5)
is approximately 0.040+0.073+0.050=0.163.

Similarly, the cumulative probability of reaching the upper boundary within 6 steps is

given by
F(6)~0.084+0.089+0.052=0.225.

For the k£ =1000 case, we see that our probability of reaching the top within 1000 steps is

F(1000) = 0.450+0.336+0.214 =1.

¢) Now we will examine the probability of reaching the upper boundary in exactly k
steps. For example, we know that F(5) is approximately 0.163, and F(6) is
approximately 0.225. Therefore we can conclude that the probability of reaching the
upper boundary in exactly 6 steps, given by F(6) — F(5), is

f(6)=F(6)-F(5)~0225-0.163=0.062
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Next we will use Mathematica to provide approximations of f{k) for k =1to k =20.

k yiL7] k 1)
1 0.000 11 0.045
2 0.000 12 0.040
3 0.027 13 0.037
4 0.057 14 0.036
5 0.079 15 0.034
6 0.062 16 0.031
7 0.046 17 0.028
8 0.044 18 0.026
9 0.050 19 0.024
10 0.051 20 0.022

Using the method in part ), we may determine that there is a cumulative probability of
approximately 0.739 that we will hit the upper boundary within 20 steps. Summing the

above figures may give a slightly different result due to rounding.

15000
d) Using Mathematica to compute the sum Zk x f(k), we obtain a value 16.0498 for
k=1

the average number of steps needed to reach the top. This result is close to our sample

average of 16.020 that we obtained in Section 2.4, Scenario 1.
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2.6 System of Equations Solution for the a : 1 Case
In this section, we will use a System of Equations method to determine exact

numerical solutions for the average number of steps needed to reach the upper boundary

for the a:1 case. Let x ; represent the average number of steps needed to reach or

surpass the upper boundary n from starting position j, where m+1< j<n+a-1.1If

n< j<n+a-1,thenclearly x; =0 because our walk has reached the upper boundary.

Now suppose m+2 < j <n-1. Then one step is taken and we go up a units with

probability p, down 1 unit with probability g, or stay at the same height with probability

r. Thus we may express x ; interms of x; 1 and x;,, as follows:
Xj=ltgxx; 1 +rxxj+pxxj,.

To establish our system of equations, we will need to organize the equations so
that the variables appear on one side of the equation and the constant on the other. Thus

we take the preceding equation and subtract x ; and 1 from both sides to obtain:
gxxj1+(r-Dxx;+pxxj,=-1.

For the case when j=m+1, we must take the elastic lower boundary into

consideration. In this case taking a downward step is equivalent to remaining at the same

height; thus, for j =m+1, we have:
Xmil =1H(G +7) X Xy + DX Xpyi4g
which we rewrite as:

(@+7r=DxXxp1+PXXpi144 =1
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We now have the following system of equations:

(@+r=DXXp) + PXXpyi14q =1

XXy +(r =D XXy 0+ PXXp 0y =-1

gqxxy_o+(r—Dxx, 1 +pxx,,,1=-1

To solve the system of equations, we first create the matrix of coefficients T, a

(n—1+a—-m)x(n—1+a—-m) matrix that is almost identical to the transition matrix A4

used in the previous section. The only difference is that where r is located in matrix 4,

we now have » —1 in matrix 7. Next, let 7 be the 1x(n—1+ a—m) column matrix that
contains the constants that appear on the right hand side of each equation. Finally, let X

be the 1x(n—1+a—m) matrix that contains the variables x,,,{,X,, 12 s Xp4q—1- OUr

goal is to solve for each x; by solving the system 7X = F .

For our example, we will use the following values:

Upper Boundary: n=7 Size of Upward Jumps: a =3
Elastic Lower Boundary: m =2

For a given p, g, and r, the system 7X = F will look as follows:
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[qg+r-1 0 0 p 0 0 Ofx] [-1]
q r-1 0 p 0 Ofx, -1
0 g r-1 0 0 p Ofx -1
0 0 g r-1 0 0 plx,i=|-1
0 0 0 1 0 Ofx, 0
0 0 0 0 1 Ofx 0
| 0 0 0 0 0 0 1jx]| |0

Clearly, we can use row operations to eliminate ¢ in each of the second, third,
and fourth rows. Thus, 7 can be converted into a non - singular, upper - triangular
matrix, which shows that the determinant of 7" is not zero and 7 is invertible. Because T’

will always be invertible, the solution for X is given by:
X=T"F.

We will now use the system of equations method to determine the average steps
needed to hit the upper boundary for the same walk we used in Sections 2.4 and 2.5. We

will then compare our results to the results obtained in those sections.

Scenario 1
Upper Boundary: n=12 Probability of Going Up: p=03
Elastic Lower Boundary: m =2 Probability of Going Down: ¢ =0.5

Size of Upward Jumps: a=3

Given this scenario, the system 7.X = F will be as follows:
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-1
-1
-1
-1
-1
-1
-1
-1
-1

0 0 0fx,

0

0 0 0 0fx,

0 0 0} x
0 0 Of x
0 0 0fx,
0 0 Of x
3 0 0 x
0 3 0fxq

-8 0 0 3|x,

0
0
0
3
0
0

-8

S

0

0 0 1fx,

0

T7'F:

Now we calculate the solutions for x3,x4,...,x14, given by X

17.6818]

170274
16.0498
143484
12.6036
11.0871
8.1795
6.3622
52264

X3

X4

X5

X6
X7

X8

X9
X10
X11
X12
X13

L *14
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We may conclude that the exact numerical solution for x3 to four decimal places
is 17.6818 steps, the exact solution for x4 is 17.0274 steps, and so on. Note that the
solution for x5, the average number of steps to reach the upper boundary from starting

position 5, is 16.0498. This is precisely the same solution we obtained with the Markov
Chain method from Section 2.5, and very close to the value of 16.020 we obtained from

running numerous simulations in Section 2.4.



Chapter 3: The Reflective Lower Boundary Scenario

For this random walk scenario, we will assume that whenever our walk drops to
height 0, the next step will be automatically upward. We will call this a “reflective lower

boundary.” For this scenario, we will do the following:

1) Prove that, forp >0, the particle will eventually reach any height »> j with

probability 1.

2) Derive the average number of steps needed to reach height n,given a=5b=1
(the 1:1 case).

3) Provide numerical examples and computer simulations of the 1:1 case.

4) Discuss the a:1 case (a>b=1), and use simulations to approximate the average

number of steps needed to reach height 7.

5) Use a Markov Chain Method to derive the probability states after & steps for the

a :1case, and to approximate the average number of steps needed to reach height # .

6) Use a System of Equations Method to obtain numerical solutions for the average

number of steps to reach height » in the a :1case.

39
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3.1 The Probability of Reaching Height n

We will show that a simple random walk with a reflective lower bound will
almost surely reach any upper bound n. Let e; represent the probability of reaching
height » from height j. As with our scenario with the elastic lower bound, we have
e; =ey, because when our walk reaches the lower boundary the next step is

automatically upward. By the same argument used in the proof of Theorem 2.1, we then

have

ej =ej_,_1 forISan—l.

Because ¢, =1, we must have e; =1 for 1< j<n-1. We may also generalize

this result for any lower bound m < j by our vertical translation argument we used in

Section 2.1. This allows us to state:

Theorem 3.1. Given p > 0, any simple random walk beginning at height j with a

reflective lower boundary of m < j will reach any upper boundary n > j with probability
1.
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3.2 Average Number of Steps to Reach Height n

Let e; represent the average number of steps needed to reach height » from
beginning height j, where 0 < j <n. Starting at height j, we take a step and go up 1
with probability p, down 1 with probability ¢, or stay at the same height with

probability r . Thus, we may express e; as follows:

ej =1+ pxe; +gxe; | +rxe;.

We note that our walk stops upon reaching height » ; therefore, e, =0.

We will now set up a difference equations argument to find a solution for ¢; in

terms of p, g, n,and j. First we note that

€0 =1+e1

because from j =0 the next step is automatically upward. We now write e as follows:

e =1+pxey+gxey+rxey.

Substituting e; = (p+g +r)e; and ey =1+ e, we obtain the following equations:

pxe +gxe +rxe =1l+pxe, +gx(14+¢e)+rxe
pxe +qxe =1+pxe,+gx(1+e)
pxe +tqxe =1+pxe, +q+gxe
pxe =l+q+pxe,
I+q

o =1t @)
p
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Now consider the following equation for e, :

pxey+gxey+rxey =l+pxez+gxe +rxey

This expression may be simplified to

pxey+qxey =1+ pxez+gxey.

We now substitute for e; using Equation (2) to obtain

+
q+62j

1
pxey+qgxey=1+pxe;3 +qx(
Then we have

pxe,+gxe, =1+ pxe, +gx| — |+gXxe,
D

1
pxe; =l+pxe;+qx +qj
p

e, l+q(1-|;q)+e3
p p
1 q ¢
ez——+—2+——-+e3
p P p

Continuing in this fashion, we see that, in general,

J J i
g’ 1 q
ej =ej+1 +—j—+—2(—-j .

p’ 4=
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Jo1d(aY
9’ 134
Thus we have f; =e; —e . ——,+—Z(—j :
p’ 9i=\P
If p=gq,then
J o1d(aY o7 1&(p) J .
fj=q—.+12(ij =p—.+lZ(£J :1+121=1+i.
p/ aia\p) pl Pio\p Pig p

Otherwise, if p # g, we have

Hence

if p=gq
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To obtain a closed-form solution for e jo we will use the forward differences

formula we obtained in Chapter 2. So once again we have
n—1
e j = Z f;
i=j

We evaluate the summand for the p = ¢ case:

n-1 . n-1 . . . .
i ~ 1 . N (m=Hm+j-1 n—j¥n+j+2p-1
ej:Z[l+—]=(n—J)+—zl=(n—J)+( Nr+j-b) (= n+j+2p-1)
L P Iy 2p 2p
If p#gq,weobtain
[ i
g |
ihgY 1_(;j
ejZZ[_J+
i—\P p-q
L 4
n-1 z n—1 z
l'sz p_qi=j p
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Summarizing, we have

f (2= Y+ j+2p=1 _
2p
n-1 J j "
ej_lgjfi— plp—q-1 (%) —(%J +(p—g)n-J)
ifp#g
(p-a)f

We may once again generalize these results for any lower bound m as we did in

Section 2.2 by replacing j with j—m and n with n—m. Making these substitutions
into our result for e j» We state:

Theorem 3.2. Let p > 0. For a simple random walk beginning at height j with a
reflective lower boundary of m < j, the average number of steps needed to reach the

boundary height of n> j is given by

(n—jYn+j—2m+2p-1)

T if p=¢q
], R(nm)]:i p(p—q—l)[[ijj_m —[%J%m}(p—q)(n ~J)
(r-q) o
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3.3 Numerical Examples and Computer Simulations for the 1:1 Case

Similar to Section 2.3, we will now test the result of Theorem 3.2 by running
simulations for both the p = ¢ and p # q cases and seeing if the averages match our

expected result.

Scenario 1: p=gq

Suppose we have a random walk with the following properties:
Upper Boundary: n=8 Probability of Going Up: p=04
Initial Height: j=5 Probability of Going Down: ¢ =04

Reflective Lower Boundary: m =2

According to Theorem 3.2, our walk should reach # in an average of

(n=j)n+j-2m+2p-1) _(8-5)8+5-2(2)+2(4)-1)
2p 2(4)

=33 steps. Once again, we

will take a look at some simulations done with Mathematica to see how our results hold

up. To view the code used to generate these results, refer to the Appendix.



Simulation 1:

47

Simulation 1 took 34 steps to complete, very close to our expected average of 33 steps.

Simulation 2:

LSS S A B S

| S S R TR S (Y S SR S S [ S VU S IS R S T SR S

10 15 20 25 3.0
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Simulation 2 reaches the upper boundary in 3 steps, which is the minimum for this
scenario. This is not entirely unusual as the probability of going up the first three steps is
(4)° =0.064 0r6.4%.

After 200000 simulations, Mathematica provides us with the following result for

the average number of steps in this scenario:

SampleMean TrueAvgSteps
33.042 33

The sample average of 33.042 steps is quite close to our expected average of 33 steps.

Thus our result for the p = g case of Theorem 3.2 is supported by the data.

The following histogram shows the distribution of the number of steps in the

simulated walks:

200 300 400
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Scenario 2: p#q
Suppose we have a random walk with the following properties:
Upper Boundary: n=8 Probability of Going Up: p=04
Initial Height: j=5 Probability of Going Down: ¢ =0.5

Reflective Lower Boundary: m =2

According to Theorem 3.2, we would expect this walk to be completed in an average of

.4(.4—5-1)[@)&2 —(jj&2)+(.4—5)(8-5)

~ 51.91 steps. Two simulations of Scenario 2
(4-5)

follow:

Simulation 1:

LI S S S B S S

50 100 150
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This simulation took nearly 170 steps to reach the upper bound, well over our expected

average of 51.91 steps.

Simulation 2:

VWAVY

10 20 30 40

This time our walk took only 43 steps to complete.

After performing 5000 simulations of the scenario with Mathematica, we obtain the

following data:
SampleMean and TrueAvgSteps
52.00 51.91

Our result agrees with our expected average.

The histogram displaying the distribution of the total number of steps follows:
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300 400 500 600 700
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34 Thea:1Case(a>1)

As we did with the elastic lower boundary, we will now analyze a scenario for the
reflective lower boundary where we take a step and go up a units with probability p >0
(where a is an integer such that ¢ >1), down 1 unit with probability ¢, or remain at the
same height with probability » =1—- p—g. Once again, we are guaranteed to hit any
upper boundary eventually. We have proven already that with p >0 we will hit any
upper boundary with probability 1 in the 1 : 1 case, and clearly going up a steps instead
of 1 will not hurt our chances of reaching the top.

The difference-equations argument we used to obtain a closed-form solution for
the average number of steps needed to reach the top will not work with the a: 1 case.
The reasoning is very similar to that used for the elastic lower boundary; the only

difference is that with the reflective boundary we have ey =1+¢; instead of having

eg =ej . So once again we will use Markov Chains to determine probability states after

k steps and systems of equations to determine exact solutions for the average number of
steps needed to reach the upper boundary n. First, however, we will run a few
simulations with Mathematica to obtain some estimates for the average number of steps
needed, then compare our results with the solutions we obtain using systems of equations.

Note that once again our walks will come to a halt upon meeting or exceeding the upper

boundary.

Scenario 1
Upper Boundary: n =12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: ¢ =05

Reflective Lower Boundary: m =2 Size of Upward Jumps: a=3
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Simulation 1:
12

10}

This simulation took 26 steps to complete, coming to a stop upon reaching height 12.

Simulation 2:

12+

10-

This time our simulation took 20 steps before stopping upon reaching height 12.
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After running 500000 simulations with the above scenario, our sample average
number of steps to reach the upper boundary is 17.3776. Note that this is an increase
over the simulated average time of 16.0463. This difference is due to the fact that with

the reflective lower boundary, an extra step is taken each time the lower boundary is

reached.

Scenario 2
Upper Boundary: n =12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: ¢ =0.5
Reflective Lower Boundary: m =2 Size of Upward Jumps: a=2

Once again, we change the size of upward jumps from 3 to 2, keeping all other

variables the same.

Simulation 1:

12

10

LI M RN e R

-

N EESR—Y " I W L I | 1 L L 1 L L IR B

20 40 60 80 100
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The previous simulation took 102 steps before reaching the upper boundary.
Simulation 2:
12 +

10}

This time our simulation took only 6 steps to reach the upper boundary.

After running 150000 simulations with the above scenario, our average number of steps
to reach the upper boundary is 41.481, slightly higher than the average of 37.975 we

obtained for the elastic lower boundary.
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3.5 Markov Chain Method for the a : 1 Case

In this section, we will use Markov Chains to analyze the probability states after a
given number of steps. Given a positive integer &, we will use this method to do the

following:

a) Give the probability states after 4 steps;
b) Determine the probability of reaching the upper boundary within & steps;
¢) Determine the probability of reaching the upper boundary in exactly £ steps;

d) Approximate the average number of steps needed to reach the upper boundary.

As we did for the elastic lower boundary case, we will first need to construct an
initial state matrix (I ) that designates the starting position ( j) of our walk among all
possible ending heights. Unlike with the elastic lower boundary, however, our walk may
attain the lower boundary m, so I must include an entry corresponding to m. Thus m is
the lowest possible ending height that may be achieved, while the greatest possible
ending height remains n+a —1. We will assume once again that our walk will not start
on a boundary point, so j will correspond to a height between m+1 and n—1. 7 will
again have a 1 in the column corresponding to j , while all other entries in the matrix will
be 0. The matrix / will look as follows, with a matrix displaying the possible heights

shown below for comparison:

I=0 ... 1 ... ... .. 0]

m . j o n . n+a-1]

Next we need to construct the transition matrix 4. Because m is a possible height,

the transition matrix is given by A =(ay,), for m<i ,h<n+a-1. In other words, we

will need to include a row and column for the lower boundary m where as with the
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elastic lower boundary none was needed. Due to the reflective lower boundary,
whenever height m is reached the next step is automatically upward 1 unit. Otherwise,

our walk takes a step and moves up a units with probability p, down 1 unit with
probability g , or stays at the same height with probability 7 =1- p — g . For our example,

we will use the same values as in Section 2.5 so we may compare the similarities and

differences in the transition matrix for the two cases.

Given the following values:

Upper Boundary: n=7 Size of Upward Jumps: a =3
Reflective Lower Boundary: m=2

The transition matrix 4 will be as follows:

23456 7 8 9]
2101 00 0 0 00
31g »r 00 p 0 0 O
4/0 g r 0 0 p 0 O
A=|510 0 ¢ r 0 O p O
6/0 00 g r 0 0 p
710 0 00 01 0 O
810 0 00 0 0 1 O
9{0 0 0 0 0 0 0 1]

Note that the top row and left column serve as placeholders and are not a part of the

actual matrix. Matrix 4 has dimensions (n+a-m)x(n+a—m).

a) Determining probability states after k steps:

To determine the probability states after 4 steps, we multiply 7 x AF as described in

Section 2.5. The only difference is that the resulting matrix will have dimensions
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1x(n+a—m), and the leftmost entry will now represent the probability of ending at

height m instead of height m +1 as was the case in the elastic lower boundary scenario.
The determination of parts b), ¢), and d) for the cdf F(k), the pdf f(k), and the
approximate average number of steps needed to reach n are performed precisely as in

Section 2.5.

Again we will simulate parts a) through d) using Mathematica. The values used
in Section 3.4 will be used again so that we may compare our result for part d) with the
result we obtained previously. Also, we will compare this result with the results obtained
in the elastic lower boundary case (Sections 2.4 and 2.5) for the approximate number of

steps needed to reach the upper boundary.

Scenario 1

Upper Boundary: n =12 Probability of Going Up: p=03
Initial Height: j=5 Probability of Going Down: g =0.5
Reflective Lower Boundary: m =2 Size of Upward Jumps: a=3

Based on these values, our initial height matrix I and our transition matrix 4 will look as

follows:

I=[0 0010000000 0 0]
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a) First we will examine the probability states after 5 steps are taken. To do this, we

multiply 7 x A’ and obtain:
[0.093 0.120 0060 0.113 0.128 0024 0.104 0.135 0054 0007 0040 0.073 0.050].
Next we determine the probability states after 6 steps:

[0.060 0.147 0068 0086 0074 0075 0.122 0092 0022 0033 0081 0089 0.052].

To approximate the final ending probabilities for the walk, we compute 7 x 4'%:

[0 000000 0O O 0450 0336 0214]

Thus after 1000 steps our walk will almost surely reach the upper boundary, with
a 45.0% chance of having stopped at height 12, a 33.6% chance of having stopped at
height 13, and a 21.4% chance of having stopped at height 14. These probabilities are

precisely the same as with the elastic lower boundary case.
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b) We will now examine the probability F(k) of reaching the top within & steps. We will
use the values for k we used in part @). For the £ =5 case, we see that there is a 0.040
probability of reaching height 12, a 0.073 probability of reaching height 13, and a 0.05
probability of reaching height 14. Thus F(5) ~ 0.040+0.073+0.050=0.163

Similarly, the cumulative probability of reaching the upper boundary within 6

steps is given by
F(6)~0.081+0.089+0.052=0.222.

For the £ =1000 case, we see that our probability of reaching the top is

F(1000) ~0.450+0.336 +0.214 =1.

c¢) Now we will examine the probability of reaching the upper boundary in exactly k
steps. For example, we know that F(5) is approximately 0.163, and F(6) is
approximately 0.222. Therefore we can conclude that the probability of reaching the

upper boundary in exactly 6 steps, given by F(6) — F(5), is
f(6)=F(6)-F(5) =0222-0.163=0.059

Next we will use Mathematica to provide approximations for f(k) for 1<k <20.
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k 1k) k k)
1 0.000 11 0.041
2 0.000 12 0.036
3 0.027 13 0.034
4 0.057 14 0.033
5 0.079 15 0.031
6 0.059 16 0.029
7 0.044 17 0.027
8 0.041 18 0.025
9 0.047 19 0.023
10 0.046 20 0.022

Using the method in part 4), we may determine that there is a cumulative probability of
approximately 0.703 that we will hit the upper boundary within 20 steps. Summing the

above figures may produce a slightly different result due to rounding.

15000
d) Using Mathematica to compute the sum Z kx f(k), we obtain a value 17.3945 for
k=1

the average number of steps needed to reach the top. This result is close to our sample

average of 17.3776 that we obtained in Section 3.4, Scenario 1.
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3.6 System of Equations Solutions for the a : 1 Case

In this section, we will use the systems of equations method described in Section

2.5 to determine exact numerical solutions for the average number of steps needed to

reach the upper boundary for the a:1 case of the reflective lower boundary. Let x;

represent the average number of steps needed to reach or surpass the upper boundary »

from starting position j, where m< j<n+a-1. If n<j<n+a-1, then clearly

x ; =0 because our walk has reached the upper boundary.

Now suppose m+1< j <n-1. Then one step is taken and we go up « units with
probability p, down 1 unit with probability ¢, or stay at the same height with probability

r. Thus we may express x; interms of x;_; and x;,, as follows:
Xj=ldgxxj g +rxx;+pxxj,.

To establish our system of equations, we once again organize the equations so that
the variables appear on one side of the equation and the constant on the other. Thus we

take the preceding equation and subtract x; and 1 from both sides to obtain:

gxx;_1 +(r-Dxx;+pxx;,=-1.

For the case when j=m, we must take the reflective lower boundary into
consideration. When our walk reaches height m , the next step is automatically upward,
so we have:

Xm =1+ Xy 41

which we rewrite as:

— Xy + Xy =1
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We now have the following system of equations:

—Xm tXp4 =-1
gX Xy +(r =D xxp 1 +PXXpy 140 =1

XX H(r =D Xxp 0+ PXXpyi04g =—1

gxxy 2+ (r=Dxx, 1 +pxxy44-1=-1

x,=0
Xn+a-1 =0

To solve the system of equations, we again create T, the (n+a-m)x(n+a—m)
matrix of coefficients, F, the 1x (n+ a —m) matrix that contains the constants that appear

on the right hand side of each equation, and X, the 1x (n + a — m) matrix that contains the
variables X, ,Xp 11, Xp44-1- Our goal is to solve for each x; by solving the system

IX=F.
For our example, we will use the following values:

Upper Boundary: n=7 Size of Upward Jumps: a =3
Reflective Lower Boundary: m =2

For a given p, q, and r, the system 7X = F will look as follows:

-1 1 0 0 0 0 0 0fxp]| [-1]
g r-1 0 p 0 0 Ofx; -1
0 ¢ r-1 0 0 p 0 Ofx4 -1
0 O g r-1 0 0 p 0|xs5 -1
0 0 0 g r-10 0 plxg| |-1
0 o0 0 0 0 1 0 O0fxy 0
0 0 0 0 0 0 1 Ofuxg 0
|0 0 0 0 0 0 0 1)xg| [ O]
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By the same reasoning used in Section 2.6, matrix 7 will be invertible, and the solution

for X is given by:
X=T"F.

We will now use the system of equations method to determine the average steps
needed to hit the upper boundary for the same walk we used in Sections 3.4 and 3.5. We

will then compare our results to the results obtained in those Sections.

Scenario 1
Upper Boundary: n=12 Probability of Going Up: p=03
Reflective Lower Boundary: m =2 Probability of Going Down: g =0.5

Size of Upward Jumps: a=3

Given this scenario, the system 7X = F will be as follows:

.11 0 0 0 0 0 0 0 0 0 0 Ofx]| [-1]
5 -8 0 0 3 0 0 0 0 0 0 0 Ofx3| |-1
0 5 -8 0 0 3 0 0 0 0 0 0 Ojxq]| |-1
0 0 5 -8 0 0 3 0 0 0 0 O0 Ofxs]| |-1
0O 0 0 5 -8 0 0 3 0 0 0O Oflxg| |-1
0o 0 0 0O 5 -8 0 0 3 0 00 Ofxy/( |-1
0O 0 0 0 0 35 -8 0 0 3 00 Ofxg|=|-1
O 0 0 O O O 5 -8 0 0 30 Ofjxg| |-t
o 0 0 0O O O O 5 -8 0 0 3 Ofxo]| |-!
o 0 0 0O O 0 0 0 5 -820 0 3jx;| (-1
0 0 0 0 0 0 0 0 0 0 1 0 Ofxp| |0
0o 0 0 0O O O 0 0 0 0 0 1 Ofx3| |O
0 0 0 0 0 0 0 0 0 0 0 0 1|x4| [O,
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Now we calculate the solutions for x3,x4,...,x14 , givenby X =T7'F :

X [21.2949
X3 20.2949
X4 18.9074
Xs 173945
Xg 15.2949
X7 132614
xg |=X =T7'F ~|11.5397
Xg 8.4623
X10 6.5390
X1 5.3369
X12 0
X13 0

| X14 L 0 ]

We may conclude that the exact numerical solution for x, to four decimal places
is 21.2949 steps, the exact solution for x3 is 20.2949 steps, and so on. Note that the
solution for x5, the average number of steps to reach the upper boundary from starting

position 5, is 17.3945. This is precisely the same solution we obtained with the Markov
Chain method from Section 3.5, and very close to the value of 17.3776 we obtained from

running numerous simulations in Section 3 .4.



Chapter 4: Conclusions and Results

For our conclusion, we will now apply the results we obtained in Chapters 2 and 3
to a gambling scenario with a generous House. Throughout, let » =0 and let m =0. Let
p >0 be the probability of winning a bet and let g=1- p. Assume that p <0.50. We
start with j chips and will keep betting one chip at a time (of the same value) until we
reach n chips, where n > j. Whenever we go broke, the House spots us a chip so that

we can keep betting. When we reach r chips, we quit, but we have to pay back the

House all the chips that were given to us. Let ; G(’B) be the final amount of chips we

have gained at the conclusion after paying back the House. Here, ;SG) and jR(g) are

respectively the number of bets needed to reach » chips with elastic and reflective lower

boundaries of m =0.

Because ; R(g) - ;S (8) is the number of times we go broke before attaining »
chips, it is also the number of chips given to us that we must pay back. In the 1:1 case,
we end with » chips, so our net gain is (n— j) —( jR(g) —j S(g)) , which may be negative.
We may now conclude that the average net gain is given by

E[jG(%)] = E[(n—j)—(jR(nO)—jS('B))] :n_j+E[jS(’10)]_E[jR('6)] .

In this chapter, we will use this result as well as results obtained in previous

chapters to do the following:

66
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1) Show that E ; G?O)] =0 forthe 1:1case when p=¢=0.25.
2) Prove by induction that when p < q, E[ j G(';))] <0 forall n> j+1 forthe 1:1 case.

3) Compute E[ j G(”O)] for a specific example for the 1:1 case.

4) Analyze a specific example for the a:1 case, and compare the result for E[; G(”O)]

with the result obtained in Part 3.
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4.1 Average Net Gain for the 1: 1 Case whenp=¢=0.5

Using our result for E[ jG(”O)] and our formulas for EJ[ jR(”m)] and E[ jS("m)]

with m=0 and p = ¢ =0.5, our average net gain in the 1:1 case is given by

(n=—jln+j-2m=1) (n-j)n+j+2p-1)

=n—j+
2p 2p
cneja (n=jln+j-1) (n=n+;j+25)-1)
2(5) 2(5)

=n—j+m—-n+j-D—(n-j)n+j)
=(n-)A+n+j-1-n-j)

=(n—- /0

=0.

Hence when p =4 =0.5 with 1:1 payoffs, we would expect to break even on average

for any gambling scenario when the House spots us an additional chip whenever we go
broke.
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4.2 Average Net Gain for the 1: 1 Case whenp <g

Previously we showed that when p =g, we would have an average net gain of 0

for a given gambling scenario where we are given one chip whenever we go broke.

However, any gambling house will want p < ¢ for any wager for which there is a 1:1

payout. We will now prove by induction that, when p < gqand the payout is 1:1,
h .
E[jG(O)]<O forall n> j+1>1.

Step 1: Suppose n=j+1. Then E[; G(JbJ;I] -

G+D-) p[[%)f“ _(%Jj]_p(p _q_l{(%)j _(%jm}(ﬁ—q)((iﬂ)—j)

o p_q. ' ¢’ , (p-g)?
. f[[%) (%—)]_p(p‘q*{(%j (l—%)}(p_q)

P oo -

el )
e

Because g > p, this result is clearly negative forany j>0. If j=0 and n=1,

then we enter the casino with no chips, the casino then spots us a chip so we then reach

our goal of gaining one chip, and then we pay back the one chip that the casino gave us.

Thus we would break even, so EJ G(IO)] =0. For any other case when n = j +1, clearly
E[jG(J(';;l] <0.

Step 2: Assume that E[ G("OJ)’I] <0 forsome n> j+1>1.

. . n+lq _ n n+l .
Step 3: We claim that E[J-G(O) ]—E[jG(O)]+E[,,G(O) ]. First,
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+1 . 1 1
E[jG(%) I=n+l-j +EIJ-S(’§; ]—EIJ-R(’Z;; ]

nel—j L{(Zj’m _(%]j] PP -q—l)[(%jj ‘[%]M}(p—q)(nﬂ_ )
Y oa -

=n+l1-j+ +

Also, we have

H ;G 1+ FL,Glgy 1=
n- {(ZJ_ m v 'q‘l)”[(%]j—(%jn}(p—q)(n—j)
n—j+ _{]+ (p-q) - o—af ¥
n+l n n ntl
o ) e e
n+l-n+ p—q (p—q)? .(p_q)z
n+l-j p(%jn —p(aj (v —q_l)p(%jj—(p q 1)0(1jn
R (p-aF (r—aP +
p[%}”“ _p(%j” i (p—g ‘UP(%]" ~(p-q —l)p(%jnﬂ +(p-g)n—j+1)
(p~af (p—9)*
L ”{(;)nﬂ ‘(%jjJ P(P—(J—l)[[%Jj _[_q_jnﬂ]ﬂp—q)(nﬂ— )
S p_‘-’J+ (p-aF (p-9)
:E[jG(IZ)-;l]

Therefore, E[ jG("(gl]:E[ jG(”O)]+E[nG("OJ)’1]. By Steps 2 and 1, we know that

E[ jG(n())] and E[nGZ’OJ)Fl] are both negative; thus E[ jG?O’;1]<O. We may now

conclude by induction that E[ i G("O)] <0 forall n>j+1>1.
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Scenario 1: Average Net Gain for 1 : 1 Case

We will now compute a numerical example for the average net gain for a 1:1
case. Suppose we are playing roulette at a generous House and betting on red. We start
with 10 chips and stop playing when we reach 20 chips. Our values for p, g, j, n,and
m are then as follows:

_ 18 20

= — q=— 20 m=0.
38 38

j=10 n

p

The average net gain in this scenario, given by E[ ; G(”O)] = n—j+E[jS('6)]—E[jR("O)] ,

is then 20~10+ E[10 S 1 - El1gRy) 1% 10+726.097 774312 ~ ~38.215.

Therefore, after reaching our goal of 20 chips, on average we would be down about 38

chips after paying the House back all the chips it spotted us.
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4.3 Average Net Gain for the a : 1 Case

We will now determine the average net gain in an a :1 scenario. Suppose that we
play roulette starting with 10 chips and stop when we reach 20 chips as we did in
Scenario 1. This time, however, we will make column bets instead of betting on red.
The amount we may win now increases from 1 to 2 chips, but our odds of winning
decrease from 18/38 t012/38. Our values forfor p, q, j, n, m,and a are now
, 226

38 38

Because we now gain 2 chips when we win, we must take into consideration the

Jj=10 n=20 m=0 a=2.

fact that we may reach 20 or 21 chips when our gambling session ends. To account for
this, we will apply the Markov Chain method from Section 2.5 to compute the end
probability states of being at 20 or 21 chips. We then obtain p,5 = 0.673 and
P21 =0.327. Thus our final average chip count before paying back the House, given by
20x ppg +21x pyq, is approximately 20.327. Because we start the session with 10
chips, our average gain before paying back the house will be approximately
20327 -10=10.327.

Next we determine the average amount of chips we must give back to the House

for our scenario. Using the system of equations solutions from Sections 2.6 and 3.6, we

obtain

E[jS” 1=~237.606 and E[ ;R

N ]~ 259.864 .

n
©

The average number of times we hit the lower boundary, and therefore the
average number of chips we must pay back, is then E[ jR(”O)]—E[ J-S("O)] ~22.258.

Because our average gain is about 10.327 chips and the average we must pay back is
around 22258 , we may conclude that our average net gain after paying back the House
is approximately 10.327 —22.258 =—-11.931 chips. Comparing our result to the result
from Scenario 1, we may conclude that making column bets is more advantageous than

betting red. Not only is our average net gain of —11.931 in the column betting scenario



73

greater than the —38.215 average net in Scenario 1, but the average number of steps
needed in the column betting scenario is much less than the average number of steps in
Scenario 1. So not only do we lose less on average making the column bets, we also

reach our goal more quickly.
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Appendix

Below we present the Mathematica code used to generate the random walk
simulations used throughout the course of the thesis.

Section 2.3

Elastic Lower Boundary — 1:1 steps

ProbUp =p=04;

ProbDown = q =0.5;

r=1-q-gq;

SizeOfUpwardJumps = a =1;

SizeofDownwardJumps =b =1;

StartingHeight = j=2;

UpperBound =n = §;

LowerBound = m = -4;

NumberOflterations = num = 5000;

Do[x[s,0] = j,{s,1,num}]

Dofi = 0; While[x[s,i] < n,

yls,i+1] =IfIx[s,i] > m+1,1,0];

z[i+1] = Random] ];

x[s,i+1]=Ily[s,i+1]=1,If[z[i +1] < p, x[s,i] + a,If[z[i + 1] >=1- q, X[s,1] - b, x[s,1]]],
If[z[i+1] < p, x[s,i] + a, x[s,i]]];i + +]; t[s] = i,{s,1,num}]

For[s =1,s <10,s + +,Print[ListPlot[ Table[{k,x[s,k]} ,{k,0,t[s]}],
PlotJoined — True, AxesOrigin — {0,m}]]]
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Histogram[Table[t[s],{s,1,num}]]

600 800 1000

MeanSteps = N[Mean[Table[t[s],{s,1,num}]]};
MatrixFornf{{ "SampleMead,"TrueAvgStps"},
{MeanStepsIfi[p==q,(n- j)(n+ j-2m-1)/(2p),

(- j(p- )+ p ((a/p)"(n-m)-(q/p)"(- m))/(p- 9) 21} }]
Sample Mean True Average Steps)

( 127249 1275
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Section 2 .4

Elastic Lower Boundary — a:1 steps

ProbUp =p=0.3;

ProbDown =q=0.5;

r=1-q-p;

SizeOfUpwardJumps =a =3;

SizeOfDownwardJumps =b=1;

StartingHeight = j=35;

UpperBound =n =12;

LowerBound =m =2;

NumberOflterations = num = 500000;

Do[x[s,0] = j,{s,1,num}]

Dol[i =0;While[x[s,i] <n,

yls,i+1]1=If[x[s,i] >m+1,1,0];

z[i+1]=Random[];

x[s,i+1]=Ifly[s,i + 1] =1,If[z[i+ 1] < p,x[s,i] + a,If[z[i+ 1] >=1-q,X[s,i] - b,x[s,i]]],
Iffz[i+1] < p,x[s,i]+ a,x[s,i]1];i + +];t[s] =1,{s,1,num}]

For[s =1,s <10,s + +,Print[ListPlot[ Table[{ k,x[s k] } ,{k,0,t[s]}],
PlotJoined — True, AxesOrigin — {0, m}]]]

14
12|

10|




Histogram[Table[t[s],{s,1,num}]]
8000 |
6000
4000 ,

2000

30 100 120
MeanSteps = N[Mean[Table[t[s] {s,1,num}]]]

16.0463
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Section 3.3

Reflective Lower Boundary — 1:1 steps

ProbUp =p =0.40;

ProbDown =q =0.50;

r=1-q-p;

SizeOfUpwardJumps =a =1;
SizeOfDownwardJumps =b =1;
StartingHeight = j=35;
UpperBound =n=8§;

LowerBound =m=2;
NumberOflterations = num = 5000;
Do[x[s,0] = j,{s,1,num}]
Do[i=0;While[x[sj]<n,
yls,i+1]=If[x[s,i] > m,1,0];
z[i+1]=Random{[];
x[s,i+1]=ITy[s,i+1]==1,If[z[i+1] < p,x[s.i] +a,If[z[i+1] >=1-q,X[s,i] - b,x[s,i]]] ,x[s,i] +a];
i++];t[s]=1,{s,1,num}]

For[s =1,s <10,s + +,Print[ListPlot[ Table[{k,x[s,k]} ,{k,0,t[s]}],
PlotJoined — True, AxesOrigin — {0,m-1}]]]

8F

10 20 30 40 50 60



Histogram[Table[t[s],{s,],num}]]

300 400 300 600 700

MeanTime = N[Mean[Table[t[s] {s,1,num}]]];
MatrixForm[{{"SampleMean","TrueAvgSteps"},
{MeanTime,If[p==q,n- j+(n- j)}(n+ j-2m-1)/(2p),

(- Ap-9)+Q2*p*q+p*n*(a/p)"(n-m)-(¢/p)" (-m)/p-9)"2]}}]
(Sample Mean True Average Stepsj

52.00 5191
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Section 3.4

Reflective Lower Boundary — a:1 steps

ProbUp =p=0.3;

ProbDown =q =0.5;

r=1-q-p;

SizeOfUpwardJumps = a = 3;
SizeOfDownwardJumps =b =1;
StartingHeight = j=5;

UpperBound =n =12;

LowerBound =m =2;
NumberOflterations = num = 500000;
Do[x[s,0]=j.{s,1,num}]
Do[i=0;While[x[sj]<n,
yls,i+1]=1If[x[s,i]> m,1 0];
z[i+1]=Random([];
x[s,i+1]=Ify[s,i+1]=1,Ifz[i+1] < p,x[s,i] +a,If[z[i+1] >=1-q,X[s,i] - b,Xx[s,i]]] x[s,i] +1];
i++];t[s]=1,{s,1,num}]

Forfs =1,s <10,s + +, Print[ListPlot{ Table[{k,x[s.k]} .{k,0, t[s]}],
PlotJoined — True, AxesOrigin — {0,m-1}]]]

14}
12}

10f




Histogram[Table[t[s],{s,1,num}]]
2000
6000
4000 |

2000 Hi

100 150

MeanTime = N[Mean[Table[t[s],{s,1,num}]]]

17.3776
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