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ABSTRACT 

Almost every theory of mathematics has its discrete counterpart that makes it 

conceptually easier to understand and practically easier to use in the modeling process of 

real world problems. For instance, one can take the "difference" of any function, from 1st 

order up to the 𝑛-th order with discrete calculus. However, it is also possible to extend 

this theory by means of discrete fractional calculus and make 𝑛 any real number such that 

the ½-th order difference is well defined. This thesis is comprised of five chapters that 

demonstrate some basic definitions and properties of discrete fractional calculus while 

developing the simplest discrete fractional variational theory. Some applications of the 

theory to tumor growth are also studied. 

 

The first chapter is a brief introduction to discrete fractional calculus that presents some 

important mathematical functions widely used in the theory. The second chapter shows 

the main fractional difference and sum operators as well as their important properties. In 

the third chapter, a new proof for Leibniz formula is given and summation by parts for 

discrete fractional calculus is stated and proved. The simplest variational problem in 

discrete calculus and the related Euler-Lagrange equation are developed in the fourth 

iii 



chapter. In the fifth chapter, the fractional Gompertz difference equation is introduced. 

First, the existence and uniqueness of the solution is shown and then the equation is 

solved by the method of successive approximation. Finally, applications of the theory to 

tumor and bacterial growth are presented.  
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CHAPTER 1

A Brief Introduction to Discrete Fractional Calculus

Derivative and integral operators are two fundamental concepts of ordinary

calculus (calculus on R (the set of real numbers)). Analogously, difference and sum

operators are two fundamental concepts of discrete calculus (calculus on Z (the set of

integers)) [19]. In general, derivative or difference operators can be applied to a func-

tion up to the n-th order where n is an integer, and they are denoted by dnf(x)/dxn,

∆nf(x) respectively. The reasoning behind setting the order to an exact integer num-

ber, however, usually goes unnoticed in ordinary calculus. In fact, fractional calculus

asserts that orders of derivative or integral operators can be arbitrary numbers, for

instance, one could calculate the 1/2-th order derivative or
√

3-th order integral of a

function.

Fractional calculus is a field of applied mathematics that deals with deriva-

tives and integrals of arbitrary orders, and their applications appear in science, engi-

neering, applied mathematics, economics and other fields [10, 11, 14, 18, 20, 21,

24, 26]. It is well known that there is a similarity between properties of differential

calculus involving the operator D = d
dx

and properties of discrete calculus involving

the operator ∆f(x) = f(x+ 1)−f(x) which is known as the forward difference oper-

ator. Expectedly, a similar correspondence exists between the operators of fractional

and discrete fractional calculus.

3
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1.1. Historical Background of Fractional Calculus

The seeds of fractional calculus were planted over 300 years ago in a letter

from L’Hôspital to Leibniz where L’Hôspital raised a question about the meaning of

dny/dxn if n = 1/2. In his reply, dated 30 September 1695, Leibniz wrote: ‘This is

an apparent paradox from which, one day, useful consequences will be drawn.’

Later, corresponding with Johann Bernoulli, Leibniz mentioned derivatives

of ‘general order’. He used the notation d1/2y to denote the derivative of order 1/2.

After that fractional derivatives were mentioned in several different contexts: by

Euler in 1730, by Lagrange in 1772 defining a fractional derivative by means of an

integral, by Laplace in 1812, by Lacroix in 1819 devoting less than two pages of his

700-page text to the topic, by Fourier in 1822, by Liouville in 1832, by Riemann in

1847, by Greer in 1859, by Holmgren in 1865, by Griinwald in 1867, by Letnikov in

1868, by Sonin in 1869, by Laurent in 1884, by Nekrassov in 1888, by Krug in 1890

and by Weyl in 1917.

Although later on the derivative of fractional order Dαf has been considered

extensively in the literature [25, 27], difference of fractional order has attracted

less attention over the years. Differences of fractional order were first mentioned by

Kuttner in 1956 [1].

For an is any sequence of complex numbers and s is any real constant, Kuttner defined

the s-th order difference as

∆san =
∞∑
m=0

(
−s− 1 +m

m

)
an+m. (1.1)
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In 1974, Diaz and Osler [2] defined the fractional difference by the rather natural

approach of allowing the index of differencing, in the standard expression for the

n-th difference as

∆αf(x) =
∞∑
k=0

(−1)k
(
α

k

)
f(x+ α− k), (1.2)(

α

k

)
=

Γ(α + 1)

Γ(α− k + 1)k!
, (1.3)

where α is any real or complex number.

In 1989 Miller and Ross [22] defined the fractional order sum and difference operators

as shown below respectively,

∆−αf(t) =
1

Γ(α)

t−α∑
s=a

(t− σ(s))(α−1)f(s), (1.4)

∆αf(t) = ∆∆−(1−α)f(t) = ∆
1

Γ(1− α)

t−1+α∑
s=a

(t− σ(s))(−α)f(s), (1.5)

where t ≡ α (mod1) and 0 < α < 1.

In 2009 Anastassiou [3] defined the Caputo like discrete fractional difference as

∆αf(t) = ∆−(m−α)∆mf(t) =
1

Γ(m− α)

t−m+α∑
s=a

(t− σ(s))(m−α−1)∆mf(s). (1.6)

In this thesis we use definitions (1.3), (1.4). Following the work of Miller

and Ross, Atici and Eloe [6, 7, 8, 9] defined and proved several properties of these

operators and solved the initial value problems of fractional difference equations.

1.2. Gamma Function and Falling Factorial

In this section, we focus on the Gamma function and Falling factorial since

the definition of the discrete fractional difference and sum operators involve them. We

also list some well known properties of the Gamma function and Factorial polynomial.
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1.2.1. Gamma Function. Gamma function is a special transcendental

function denoted by Γ(x), and was first introduced by Euler to generalize the factorial

to noninteger values. For x > 0, it is defined as:

Γ(x) =

∫ ∞
0

tx−1e−tdt. (2.1)

It follows that the Gamma function Γ(x) (or the Eulerian integral of the second kind)

is well defined and is analytic for x > 0.

We have,

Γ(1) =

∫ ∞
0

e−tdt = 1 (2.2)

and for x > 0, integration by parts yields

Γ(x+ 1) =

∫ ∞
0

txe−tdt = [−txe−t]∞0 + x

∫ ∞
0

tx−1e−tdt = xΓ(x), (2.3)

and the relation Γ(x+ 1) = xΓ(x) is an important functional equation.

For integer values functional equation becomes

Γ(n+ 1) = n! (2.4)

and this is why the Gamma function can be interpreted as an extension of the factorial

function to nonzero positive real numbers.
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1.2.2. Falling Factorial. The falling factorial (factorial polynomial) t(n) is de-

fined as

t(n) = t(t− 1)(t− 2)(t− (n− 1)) =
n−1∏
k=0

(t− k) =
Γ(t+ 1)

Γ(t+ 1− n)
, (2.5)

for any integer n ≥ 0 and Γ denotes the Gamma function.

These are some properties of the factorial polynomial that will be used in this thesis.

Theorem 1.2.1. (i) ∆t(α) = αt(α−1), where ∆ is the forward difference operator.

(ii) (t− µ)t(µ) = t(µ+1), where µ ∈ R.

(iii) µ(µ) = Γ(µ+ 1).

(iv) t(α+β) = (t− β)(α)t(β).

Proof.

According to the definition of the falling factorial and its properties proofs can be

shown directly as below.

(i) ∆t(α) = ∆
Γ(t+ 1)

Γ(t− α + 1)

=
Γ((t+ 1) + 1)

Γ((t+ 1)− α + 1)
− Γ(t+ 1)

Γ(t− α + 1)

=
Γ(t+ 2)

Γ(t− α + 2)
− Γ(t+ 1)

Γ(t− α + 1)

=
(t+ 1)Γ(t+ 1)

(t− α + 1)Γ(t− α + 1)
− Γ(t+ 1)

Γ(t− α + 1)
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=
Γ(t+ 1)

Γ(t− α + 1)
(

t+ 1

t+ 1− α
− 1) =

Γ(t+ 1)

Γ(t− α + 1)

α

(t− α + 1)

= α
Γ(t+ 1)

Γ(t− α + 2)
= αt(α−1).

(ii) (t− µ)t(µ) = (t− µ)
Γ(t+ 1)

Γ(t+ 1− µ)
= (t− µ)

Γ(t+ 1)

(t− µ)Γ(t− µ)
= t(µ+1).

(iii) µ(µ) = Γ(µ+ 1) directly from the definition of falling factorial.

(iv) t(α+β) =
Γ(t+ 1)

Γ(t+ 1− α− β)
. Multiplying and dividing by Γ(t− β + 1) we get

=
Γ(t− β + 1)

Γ(t+ 1− α− β)

Γ(t+ 1)

Γ(t− β + 1)
= (t− β)(α)t(β).

Remark 1.2.1. In calculus, for any given real number α > 0, we have
d

dt
tα = αtα−1

and in discrete calculus we have ∆t(α) = αt(α−1). Therefore, the powers xn in ordinary

calculus and x(n) in discrete calculus behave similarly.

Since some proofs in this thesis depend on the product rule for discrete calculus, let

us define and prove this rule.

Example 1.2.1. Let f and g be real valued functions, then

∆(f(t)g(t)) = g(t)∆f(t) + f(σ(t))∆g(t) = g(σ(t))∆f(t) + f(t)∆g(t), (2.6)

where σ(t) = t+ 1. For the first equality, we have

∆(f(t)g(t)) = f(t+ 1)g(t+ 1)− f(t)g(t).

= f(t+ 1)g(t+ 1)− f(t+ 1)g(t) + f(t+ 1)g(t)− f(t)g(t).

= f(t+ 1)(g(t+ 1)− g(t)) + g(t)(f(t+ 1)− f(t)).
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= f(σ(t))∆g(t) + g(t)∆f(t).

For the second equality, we have

∆(f(t)g(t)) = f(t+ 1)g(t+ 1)− f(t)g(t).

= f(t+ 1)g(t+ 1)− g(t+ 1)f(t) + g(t+ 1)f(t)− f(t)g(t).

= g(t+ 1)(f(t+ 1)− f(t)) + f(t)(g(t+ 1)− g(t)).

= g(σ(t))∆f(t) + f(t)∆g(t).

Remark 1.2.2. From the equation (2.6), we have

g(t)∆f(t) = ∆(f(t)g(t))− f(σ(t))∆g(t).

Applying the
∑b−1

t=1 operator to both sides gives

b−1∑
t=1

(g(t)∆f(t)) =
b−1∑
t=1

∆(f(t)g(t))−
b−1∑
t=1

(f(σ(t))∆g(t)).

b−1∑
t=1

g(t)∆f(t) = f(t)g(t)|b1 −
b−1∑
t=1

f(σ(t))∆g(t), (2.7)

where b > 1 is an integer. This is known as the summation by parts formula in

discrete calculus [19].



CHAPTER 2

Fractional Sum Operator and Fractional Difference Operator

In this chapter some basic definitions and results are given about discrete

fractional calculus. ∆−αa f(x) will denote the fractional sum of a function f(x) to an

arbitrary order α > 0, starting from a. ∆αf(x) will denote the fractional difference

of a function f(x) to an arbitrary order α where α is a positive real number.

2.1. Definition of α-order Fractional Sum and α-order Fractional

Difference

Let a be any real number, α be any positive real number. The α-th fractional sum

(α-sum) of f is defined by

∆−αa f(t) =
1

Γ(α)

t−α∑
s=a

(t− σ(s))(α−1)f(s). (1.1)

Here f is defined for s = a (mod 1) and ∆−αa f is defined for t = a + α (mod 1); in

particular, ∆−αa maps functions defined on Na to functions defined on Na+α, where

Nt = {t, t+ 1, t+ 2, . . .}.

Remark 2.1.1. We note that for α = 1 definition (1.1) reduces to discrete sum

operator ∆−1
a f(t) =

t−1∑
s=a

f(s).

10
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Let a be any real number, α be any positive real number such that m− 1 < α < m

where m is an integer. The α-order fractional difference (α-difference) of f is defined

by

∆αf(t) = ∆m∆−(m−α)f(t) = ∆m 1

Γ(m− α)

t−m+α∑
s=a

(t− σ(s))(m−α−1)f(s). (1.2)

The fractional difference of a function can be defined by the fractional sum of the same

function. This property can be interpreted as the fractional difference depending on

its whole time history. It does not depend on just the instantaneous behavior of the

function. Therefore, α-order difference and sum operators are perfectly suited for

modeling of materials with memory, such as tumors.

2.2. Properties of the Fractional Difference and Fractional Sum

Operators

2.2.1. Law of Exponent for Fractional Sums. The law of exponent for frac-

tional sums is proved by Atıcı and Eloe [6] as below and it is very useful to calculate

certain types of sums and to simplify the expressions that include them.

Theorem 2.2.1. Let f be a real valued function, and let µ, α > 0. Then for all t

such that t = µ+ α, (mod1),

∆−α[∆−µf(t)] = ∆−(µ+α)f(t) = ∆−µ[∆−αf(t)].

Proof. By definition of fractional sum, we have

∆−µ(∆−αf(t)) =
1

Γ(α)
∆−µ

t−α∑
r=0

(t− σ(r))(α−1)f(r)
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=
1

Γ(α)Γ(µ)

t−µ∑
s=α

(t− σ(s))(µ−1)

s−α∑
r=0

(s− σ(r))(α−1)f(r)

=
1

Γ(α)Γ(µ)

t−µ∑
s=α

s−α∑
r=0

(t− σ(s))(µ−1)(s− σ(r))(α−1)f(r).

Next we interchange the order of summation in the double sum to get

=
1

Γ(α)Γ(µ)

t−(µ+α)∑
r=0

t−µ∑
s=r+α

(t− σ(s))(µ−1)(s− σ(r))(α−1)f(r).

Let us call x = s− (r + 1). Then the above expression becomes

=
1

Γ(α)Γ(µ)

t−(µ+α)∑
r=0

(

t−σ(r)−µ∑
x=α−1

(t− σ(r)− σ(x))(µ−1)x(α−1))f(r).

By definition of the fractional sum operator, we have

=
1

Γ(α)

t−(µ+α)∑
r=0

(∆−µ(t− σ(r))(α−1))f(r),

=
1

Γ(α)

t−(µ+α)∑
r=0

Γ(α)

Γ(α + µ)
(t− σ(r))(α+µ−1)f(r),

= ∆−(µ+α)f(t). �

Remark 2.2.1. Let f be a real valued function defined on the set of integers. In

discrete calculus, we have ∆∆−1f = f . For any positive real number α, this equality

is valid for discrete fractional calculus as well. In fact, by definition of the discrete

fractional difference,

∆α∆−αf(x) = ∆∆−(1−α)∆−αf(x),

where 0 < α < 1.
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Thus using the exponent law (Theorem 2.2.1),

= ∆∆−α∆−(1−α)f(x) = ∆∆−1f(x) = f(x).

2.2.2. Power Rule for Discrete Fractional Calculus. The power rule states

the α order fractional sum of a factorial function. Miller and Ross [22] obtained the

following lemma in the case that µ is a positive integer by induction and µ = 0 with

a straightforward calculation. For any positive real number µ, the power rule was

proved by Atıcı and Eloe [6].

Lemma 2.2.1.

∆−αt(µ) =
Γ(µ+ 1)

Γ(µ+ α + 1)
t(µ+α).

Remark 2.2.2. It is interesting to note that for any constant c, ∆αc is not zero.

To see this, we use the power rule and the linearity property of sum operator, the

fractional difference of a constant c is

∆∆−(1−α)c = ∆
c

Γ(2− α)
t(1−α) =

c

Γ(1− α)
t(−α),

where 0 < α < 1.

For the definition of Caputo difference ∆αc is not zero with respect to definition 1.6.

Example 2.2.1. Let f and g be defined on the set of integers. For α = 1/2 by means

of the power rule, we can compute and generalize α-th sum of factorial polynomials

as below.

∆−1/2t(0) =
Γ(1)

Γ(3/2)
t(1/2) =

Γ(1)

Γ(3/2)

Γ(t+ 1)

Γ(t+ 1/2)
.
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∆−1/2t(1) =
Γ(2)

Γ(5/2)
t(3/2) =

Γ(2)

Γ(5/2)

Γ(t+ 1)

Γ(t− 1/2)
.

∆−1/2t(2) =
Γ(3)

Γ(7/2)
t(5/2) =

Γ(3)

Γ(7/2)

Γ(t+ 1)

Γ(t− 3/2)
.

So 1/2-th order sum for t(n) is

∆−1/2t(n) =
Γ(n+ 1)

Γ(n+ 3/2)
t(n+1/2) =

Γ(n+ 1)

Γ(n+ 3/2)

Γ(t+ 1)

Γ(t− n+ 1/2)
.

2.2.3. Commutative Property of the Fractional Sum and Difference

Operators. The commutative property states that we can interchange the order of

sum and difference operators and this effects the result as a constant. Since many

mathematical proofs depend on this property, it is worthwhile to mention it here.

Theorem 2.2.2. [6] For any α > 0, the following equality holds:

∆−α∆f(t) = ∆∆−αf(t)− (t− a)(α−1)

Γ(α)
f(a), (2.1)

where f is defined on Na.

Proof. First recall the summation by parts formula [19]:

∆s((t− s)(α−1)f(s)) = (t− σ(s))(α−1)∆sf(s)− (α− 1)(t− σ(s))(α−2)f(s)).

Using summmation by parts to obtain

1

Γ(α)

t−α∑
s=a

(t−σ(s))(α−1)∆sf(s) =
α− 1

Γ(α)

t−α∑
s=a

(t−σ(s))(α−2)f(s)+
(t− s)(α−1)f(s)

Γ(α)
|t+1−α
a
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=
α− 1

Γ(α)

t−α∑
s=a

(t− σ(s))(α−2)f(s) +
(α− 1)(α−1)f(t+ 1− α)

Γ(α)
− (t− a)(α−1)

Γ(α)
f(a)

=
1

Γ(α− 1)

t−(α−1)∑
s=a

(t−σ(s))(α−2)f(s)− (t− a)(α−1)

Γ(α)
f(a).

Since ∆∆−αf(t) =
1

Γ(α− 1)

t−(α−1)∑
s=a

(t − σ(s))(α−2)f(s), the desired equality follows.

�

Remark 2.2.3. Replace α by α + 1 in equation (2.1) and employ Theorem 2.2.2 to

obtain

∆−α−1∆f(t) = ∆−αf(t)− (t− a)(α)

Γ(α + 1)
f(a).

This implies

∆−αf(t) = ∆−α−1∆f(t) +
(t− a)(α)

Γ(α + 1)
f(a). (2.2)

Remark 2.2.4. Let p − 1 < α < p, where p is a positive integer. Theorem 2.2.2

implies that

∆∆αf(t) = ∆∆p(∆−(p−α)f(t)) = ∆p+1(∆−(p−α)f(t))

= ∆p(∆∆−(p−α)f(t)) = ∆p[∆−(p−α)∆f(t) +
(t− a)(p−α−1)

Γ(p− α)
f(a)]

= ∆p∆−(p−α)∆f(t) + ∆p (t− a)(p−α−1)

Γ(p− α)
f(a)

= ∆α∆f(t) +
(t− a)(−α−1)

Γ(−α)
f(a).

So we conclude that (2.1) is valid for any real number α.



CHAPTER 3

Leibniz Formula and Summation by Parts Formula

3.1. Leibniz Formula

The Leibniz rule is a generalization of the product rule in calculus. If f and

g are n times differentiable functions, then the n-th derivative of the product fg is

given by

(f.g)(n) =
n∑
k=0

(
n

k

)
f (k)g(n−k)

In difference calculus, corresponding Leibniz rule is

∆n(f.g) =
n+1∑
k=0

(
n

k

)
∆kf∆n−kEkg. (1.1)

where Ekg(t) = g(t+ k) is the shift operator.

In discrete fractional calculus, a relevant question to ask is whether the prod-

uct rules for fractional difference operators exist in the same way as they do in

fractional calculus. The affirmative answer to this question can be found in an early

paper by Miller and Ross [22]. Here we give an alternate proof to Leibniz formula

for α-sum while carefully defining the domains of each function f and g.

16
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Lemma 3.1.1. Let f be a real valued function defined on N0 and let g be a real valued

function defined on Nα ∪ N0, where α is a real number between 0 and 1. Then the

following equality holds

∆−α0 (fg)(t) =
∞∑
k=0

(
−α
k

)
[∆kg(t)][∆

−(α+k)
0 f(t+ k)],

where t ≡ α (mod 1) and(
−α
k

)
=

Γ(−α + 1)

Γ(k + 1)Γ(−α− k + 1)
.

Proof. By definition of discrete fractional sum, we have

∆−α0 (fg)(t) =
1

Γ(α)

t−α∑
s=0

(t− σ(s))(α−1)f(s)g(s),

where t ≡ α (mod 1).

By Taylor expansion of g(s) (page 40, [13]), we have

g(s) =
∞∑
k=0

(s− t)(k)

k!
∆kg(t) =

∞∑
k=0

(−1)k
∆kg(t)

k!
(t− σ(s) + k)(k).

Thus by substituting the Taylor series expansion of g(s) in the sum, we have,

∆−α0 (fg)(t) =
1

Γ(α)

t−α∑
s=0

(t− σ(s))(α−1)f(s)
∞∑
k=0

(−1)k
∆kg(t)

k!
(t− σ(s) + k)(k).

Since (t− σ(s))(α−1)(t− σ(s) + k)(k) = (t+ k − σ(s))(α+k−1), we have

∆−α0 (fg)(t) =
1

Γ(α)

∞∑
k=0

(−1)k
∆kg(t)

k!

(t+k)−(α+k)∑
s=0

(t+ k − σ(s))(α+k−1)f(s).
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Since (−1)k =
Γ(−α + 1)Γ(α)

Γ(−α− k + 1)Γ(k + α)
for any nonnegative integer k, the above

expression on the right becomes

∞∑
k=0

(
−α
k

)
[∆kg(t)][∆

−(α+k)
0 f(t+ k)].

This completes the proof of the lemma. �

Next we state and prove another version of the Leibniz formula which involves the

nabla (∇) operator, ∇f(t) = f(t)− f(t− 1).

Lemma 3.1.2. Let f and g be real valued functions defined on N0 and α be any real

number between 0 and 1. Then the following equality holds

∆−α0 (fg)(t) =
∞∑
k=0

(
−α
k

)
[∇kg(t− α)][∆

−(α+k)
0 f(t)],

where t ≡ α (mod 1) and(
−α
k

)
=

Γ(−α + 1)

Γ(k + 1)Γ(−α− k + 1)
.

Proof. By definition of discrete fractional sum, we have

∆−α0 (fg)(t) =
1

Γ(α)

t−α∑
s=0

(t− σ(s))(α−1)f(s)g(s).

By Taylor expansion of g(s) (see [5]), we have

g(s) =
∞∑
k=0

(s− t)k̄

k!
∇kg(t) =

∞∑
k=0

(−1)k(t− s)(k)∇kg(t)

k!
,

where (s− t)k =
Γ(s− t+ k)

Γ(s− t)
is the rising factorial power.



19

Thus by substituting Taylor series of g(s) at t− α in the sum, we have,

∆−α0 (fg)(t) =
1

Γ(α)

t−α∑
s=0

(t− σ(s))(α−1)f(s)
∞∑
k=0

(−1)k
∇kg(t− α)

k!
(t− s− α)(k).

Since
t−α∑

s=t−α−k+1

(t−α− s)(k) = 0 and (t− σ(s))(α−1)(t−α− s)(k) = (t− σ(s))(α+k−1),

we have

∆−α0 (fg)(t) = g(t− α)∆−αf(t) +
1

Γ(α)

∞∑
k=1

Γ(α + k)
∇kg(t− α)

k!
(−1)k∆

−(α+k)
0 f(t).

Since (−1)k =
Γ(−α + 1)Γ(α)

Γ(−α− k + 1)Γ(k + α)
for any nonnegative integer k, the above

expression on the right becomes

∞∑
k=0

(
−α
k

)
[∇kg(t− α)][∆

−(α+k)
0 f(t)].

This completes the proof. �

Example 3.1.1. Let us derive the α− th order difference of the product tf(t), where

f and t are defined on N0 and on Nα ∪ N0 respectively, and 0 < α < 1.

It follows from Lemma 3.1.1 that

∆α(tf(t)) = ∆∆−(1−α)(tf(t))

= ∆
∞∑
k=0

(
−1 + α

k

)
∆kt∆−(1−α+k)f(t+ k),

for t ≡ α (mod 1).
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Since ∆kt = 0 for k ≥ 2, we have

∆α(tf(t)) = ∆[t∆−(1−α)f(t) + (α− 1)∆−(2−α)f(t+ 1)].

∆α(tf(t)) = ∆−(1−α)f(t+ 1) + t∆αf(t) + (α− 1)∆−(1−α)f(t+ 1).

∆α(tf(t)) = α∆−(1−α)f(t+ 1) + t∆αf(t), (1.2)

for t ≡ α (mod 1).

If we consider the domain of the function g(t) = t as the set of whole numbers, then

it follows from Lemma 3.1.2 that

∆α(tf(t)) = ∆∆−(1−α)(tf(t))

= ∆
∞∑
k=0

(
−1 + α

k

)
∇k(t− 1 + α)∆−(1−α+k)f(t),

for t ≡ α (mod 1).

Since ∆kt = 0 for k ≥ 2, we have

∆α(tf(t)) = ∆[(t− 1 + α)∆−(1−α)f(t) + (α− 1)∆−(2−α)f(t)].

∆α(tf(t)) = ∆−(1−α)f(t) + (t+ α)∆αf(t) + (α− 1)∆−(1−α)f(t).

∆α(tf(t)) = α∆−(1−α)f(t) + (t+ α)∆αf(t). (1.3)

One immediate observation can now be made. Since limα→1 ∆α = ∆ (see[22]), we

apply this limit to both sides of the equations in (1.2) and (1.3) to obtain the forward

difference of the product tf(t) in discrete calculus, namely,

∆(tf(t)) = f(t+ 1) + t∆f(t) = f(t) + (t+ 1)∆f(t).
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3.2. Summation by Parts Formula in Discrete Fractional Calculus

One of the basic methods of integration in calculus is ‘integration by parts’ ,

the counterpart of which is ‘summation by parts’ in discrete calculus. In this section,

we argue that a summation by parts formula can also be defined and proved for

discrete fractional calculus. By doing this we see the generalization of the discrete

summation by parts formula.

In order to obtain the summation by parts formula in discrete fractional cal-

culus, we shall start by defining left and right discrete fractional difference operators.

3.2.1. The Left and the Right Discrete Fractional Difference Operators.

Definition 3.2.1. Let f be any real-valued function and α be a positive real number

between 0 and 1. Then the left discrete fractional difference and the right discrete

fractional difference operators are defined as follows, respectively,

t∆
α
af(t) = ∆t∆

−(1−α)
a f(t) =

1

Γ(1− α)
∆

t−1+α∑
s=a

(t− σ(s))(−α)f(s),

t ≡ a+ 1− α (mod 1),

b∆
α
t f(t) = −∆b∆

−(1−α)
t f(t) =

1

Γ(1− α)
(−∆)

b∑
s=t+1−α

(s− σ(t))(−α)f(s),

where t ≡ b+ α− 1 (mod 1). We will use the symbol ∆α for t∆
α
a except otherwise

stated.
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Remark 3.2.1. Note that for α = 1

t∆
1
af(t) = ∆f(t) and b∆

1
tf(t) = −∆f(t).

3.2.2. Proof of the Summation by Parts Formula.

Theorem 3.2.2. Let F and G be real valued functions and 0 < α < 1. If F (b+α−2) =

0 and F (a+α− 2) = 0 or G(a+α− 1) = 0 and G(b+α− 1) = 0, then the following

equality holds

b−1∑
s=a

F (s+ α− 1)s∆
α
a+α−1G(s) =

b−1∑
s=a

G(s+ α− 1)b+α−1∆α
sF

ρ(s+ 2(α− 1)), (2.1)

where F ρ = F ◦ ρ with ρ(t) = t− 1.

Proof. Using the definition of fractional difference on the left side of the equality,

we have

b−1∑
s=a

F (s+ α− 1)s∆
α
a+α−1G(s) =

b−1∑
s=a

F (s+ α− 1)∆∆−(1−α)G(s).

Using summation by parts formula for ∆-operator, we have

b−1∑
s=a

F (s+α−1)∆s∆
−(1−α)
a+α−1 G(s) = F (s+α−2)s∆

−(1−α)
a+α−1 G(s)

∣∣∣∣b
a

−
b−1∑
s=a

s∆
−(1−α)
a+α−1 G(s)∆sF (s+α−2)

(2.2)

=
−1

Γ(1− α)

b−1∑
s=a

s−(1−α)∑
τ=a+α−1

(s−σ(τ))(−α)G(τ)∆sF (s+α−2).

Next we interchange the order of summation in the double sum to obtain

−1

Γ(1− α)

b−2+α∑
τ=a+α−1

b−1∑
s=τ+1−α

(s− σ(τ))(−α)G(τ)∆sF (s+ α− 2).
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Let us call u = τ + 1− α. Then the above expression becomes

−1

Γ(1− α)

b−1∑
u=a

b−1∑
s=u

(s− α− u)(−α)G(u+ α− 1)∆sF (s+ α− 2). (2.3)

Now let us look at the following expression closely,

−1

Γ(1− α)

b−1∑
s=u

(s− α− u)(−α)∆sF (s+ α− 2). (2.4)

Using summation by parts, we have

b−1∑
s=u

(s− α− u)(−α)∆sF (s+ α− 2)

= [(s− α− u− 1)(−α)F (s+ α− 2)]|bu −
b−1∑
s=u

∆s(s− α− u− 1)(−α)F (s+ α− 2).

Since [(s− α− u− 1)(−α)F (s+ α− 2)]|bu = 0, then

−1

Γ(1− α)

b−1∑
s=u

(s−α−u)(−α)∆sF (s+α−2) =
1

Γ(1− α)

b−1∑
s=u

∆s(s−α−u−1)(−α)F (s+α−2)

=
1

Γ(1− α)
(−α)

b−1∑
s=u

(s−α−u−1)(−1−α)F (s+α−2).

It follows from (Theorem 8.50, [13])

∆u

b−1∑
s=u

(s− α− u)(−α)F (s+ α− 2) = α
b−1∑
s=u

(s− α− σ(u))(−1−α)F (s+ α− 2).

Hence the expression in (2.3) becomes

−1

Γ(1− α)

b−1∑
s=u

(s−α−u)(−α)∆sF (s+α−2) =
−1

Γ(1− α)
∆u

b−1∑
s=u

(s−α−u)(−α)F (s+α−2)

=
−1

Γ(1− α)
∆u

b−1∑
s=u

(s−σ(u+α−1))(−α)F ρ(s+α−1)

=
1

Γ(1− α)
(−∆u)

b+α−1∑
s=u−1+α

(s−σ(u+2α−2))(−α)F ρ(s),
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=b+α−1 ∆α
sF

ρ(u+ 2(α− 1)).

Replacing this back in (2.2) we have the desired result.

If we prove the equality (2.1), starting from its right side, we need to use the condi-

tions G(a+ α− 1) = 0 and G(b+ α− 1) = 0.

Using the definition of fractional difference on the right side of the equality, we have

b−1∑
s=a

G(s+α−1)b+α−1∆α
sF

ρ(s+2(α−1)) =
b−1∑
s=a

G(s+α−1)∆b+α−1∆−(1−α)
s F ρ(s+2(α−1)).

(2.5)

Using summation by parts formula for ∆-operator, we have

b−1∑
s=a

G(s+ α− 1)∆b+α−1∆−(1−α)
s F ρ(s+ 2(α− 1))

= G(s+ α− 1)b+α−1∆−(1−α)
s F ρ(s+ 2α− 1)

∣∣∣∣b
a

−
b−1∑
s=a

b+α−1∆−(1−α)
s F ρ(s+ 2α− 1)∆sG(s+ α− 1)

=
1

Γ(1− α)

b−1∑
s=a

b+α−1∑
τ=s+α

(τ − σ(s+ 2α− 1))(−α)F (ρ(τ))∆sG(s+ α− 1).

Next we interchange the order of summation in the double sum to obtain

1

Γ(1− α)

b−1+α∑
τ=a+α

τ−α∑
s=a

(τ − σ(s+ 2α− 1))(−α)F (ρ(τ))∆sG(s+ α− 1).

Let us call u = τ − α. Then the above expression becomes

−1

Γ(1− α)

b−1∑
u=a

u∑
s=a

(u− α− s)(−α)F (u+ α− 1)∆sG(s+ α− 1). (2.6)

Now let us look at the following expression closely,
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1

Γ(1− α)

u∑
s=a

(u− α− s)(−α)∆sG(s+ α− 1). (2.7)

Using summation by parts, we have

u∑
s=a

(u−α−s)(−α)∆sG(s+α−1) = [(u−α−s)(−α)G(s+α−1)]|u+1
a −

u∑
s=a

∆s(u−α−s)(−α)G(s+α).

Since [(u− α− s)(−α)G(s+ α− 1)]|u+1
a = 0, then

1

Γ(1− α)

u∑
s=a

(u−α−s)(−α)∆sG(s+α−1) =
−1

Γ(1− α)

u∑
s=a

∆s(u−α−s)(−α)G(s+α)

=
−1

Γ(1− α)
(−α)

u∑
s=a

(u−α−σ(s))(−1−α)G(s+α).

It follows from (Theorem 8.50 [13])

∆u

u∑
s=a

(u− α− s)(−α)G(s+ α) = α
u∑
s=a

(u− α− σ(s))(−1−α)G(s+ α).

Hence the expression in (2.6) becomes

1

Γ(1− α)

u∑
s=a

(u−α−s)(−α)∆sG(s+α−1) =
1

Γ(1− α)
∆u

u∑
s=a

(u−α−σ(s))(−α)G(s+α)

=
1

Γ(1− α)
∆u

u∑
s=a

(u−σ(s+α−1))(−α)G(s+α−1)

With v = s+ α− 1 transformation

=
1

Γ(1− α)
∆u

u+α−1∑
v=a+α−1

(u− σ(v))(−α)G(v)

=u ∆α
a+α−1G(v) �
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Remark 3.2.2. Here we note that for α = 1, equation (2.1) reduces to the standard

summation by parts formula for difference calculus as we proved in Section 1, the

equation (2.7).

b−1∑
t=1

g(t)∆f(t) = f(t)g(t)|b1 −
b−1∑
t=1

f(t+ 1)∆g(t).



CHAPTER 4

Simplest Variational Problem in Discrete Fractional Calculus

The calculus of variations is one of the oldest and most developed branches of

mathematics. The history of variational calculus dates back to the ancient Greeks,

but no substantial progress was made until the seventeenth century in Europe. A

classic problem of historical interest is the ‘brachistochrone problem’, given two points

A and B in a vertical plane, what is the curve traced out by a particle acted on only by

gravity, which starts at A and reaches B in the shortest time?, proposed by Johann

Bernoulli in 1696. In fact, Newton was challenged to solve the problem by Johann

Bernoulli. Later, the solution to the brachistochrone problem, which is a segment

of a cycloid, was independently given by Johann and Jacob Bernoulli, Newton and

L’Hospital.

Another important variational problem is the data modeling problem. A

conventional approach is the method of least squares, first proposed by Legendre and

Gauss in the early nineteenth century as a way of inferring planetary trajectories

from noisy data [6]. More generally, the aim of a variational problem is to find a

function which is the minimal or the maximal value of a specified functional. A

functional is a correspondence that assigns a number to each function belonging to

some class and can be formed by means of integrals involving an unknown function

and its derivatives. The calculus of variations gives methods for finding extrema of

27
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such functionals. Problems that consist of finding minimal and maximal values of

functionals are called variational problems.

In addition to its significance in mathematical theory, calculus of variations

has been widely used in the solution of many problems of economics, engineering,

biology and physics. The theory of calculus of variations in fractional calculus has

been first introduced by Agrawal [4] in 2002, and later developed by other scientists

[15, 16].

Here we will demonstrate one application of the summation by parts formula

(Theorem 3.2.2), which we derived in Chapter 3, and introduce the calculus of vari-

ations in discrete fractional calculus.

4.1. Calculus of Variations and the Euler-Lagrange Equation

Let F (t, u, v) be a real valued function with continuous partial derivatives and let D

be the set of all real valued functions y defined on [a + α − 1, b + α − 1] ⊂ Na+α−1

with y(a+ α− 1) = ya and y(b+ α− 1) = yb.

We consider the following functional

J [y] =
b−1∑
t=a

F (t+ α− 1, y(t+ α− 1), t∆
α
a+α−1y(t)).

Here our aim is to optimize this functional assuming that J has an extremum. This

is called the ‘simplest variational problem’ in discrete fractional calculus. To develop
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the necessary conditions for the extremum, let us assume that y∗(t) is the desired

function such that

y(t) = y∗(t) + εη(t), ε ∈ R

where η ∈ A = {w|w(t) is a real valued function defined on [a+α− 1, b+α− 1] with

η(a+ α− 1) = η(b+ α− 1) = 0}.

Since t∆
α
a+α−1 is a linear operator we have t∆

α
a+α−1y(t) = t∆

α
a+α−1y

∗(t)+εt∆
α
a+α−1η(t).

If we substitute this expression into the functional, we have

J(y∗+εη) =
b−1∑
t=a

F (t+α−1, y∗(t+α−1)+εη(t+α−1), t∆
α
a+α−1y

∗(t)+εt∆
α
a+α−1η(t)).

Then differentiating J(y∗ + εη) with respect to ε, we have

∂J(y∗ + εη)

∂ε
=

b−1∑
t=a

[Fu(t+ α− 1, y(t+ α− 1), t∆
α
a+α−1y(t))η(t+ α− 1)+

Fv(t+ α− 1, y(t+ α− 1), t∆
α
a+α−1y(t))t∆

α
a+α−1η(t)],

where Fu and Fv are partial derivatives of F (·, u, v) with respect to u and v respec-

tively.

Therefore for the functional J [y] to have an extremum at y = y∗(t), the following

must hold

∂J(y∗ + εη)

∂ε
|ε=0 =

b−1∑
t=a

Fuη(t+ α− 1) + Fvt∆
α
a+α−1η(t) = 0. (1.1)
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Using summation by parts formula in discrete fractional calculus (Theorem 3.2.2),

we have

b−1∑
t=a

Fv(t+ α− 1)t∆
α
a+α−1η(t) =

b−1∑
t=a

η(t+ α− 1)b+α−1∆α
t F

ρ
v (t+ 2(α− 1)),

where Fv(τ) = Fv(τ, y(τ), t∆
α
a+α−1y(τ − α + 1)).

Hence (1.1) becomes

b−1∑
t=a

[Fu(t+α−1, y(t+α−1), t∆
α
a+α−1y(t))+b+α−1 ∆α

t F
ρ
v (t+2(α−1))]η(t+α−1) = 0.

Since η(t+ α− 1) is arbitrary, we have

Fu(t+ α− 1, y(t+ α− 1), t∆
α
a+α−1y(t))) +b+α−1 ∆α

t F
ρ
v (t+ 2(α− 1)) = 0,

on [a+ 1, b− 1].

We just proved the following theorem.

Theorem 4.1.1. If the simplest variational problem has a local extremum at y∗(t),

then y∗(t) satisfies the Euler-Lagrange equation

Fu(t+ α− 1, y(t+ α− 1), t∆
α
a+α−1y(t)) +b+α−1 ∆α

t F
ρ
v (t+ 2(α− 1)) = 0, (1.2)

for t ∈ [a+ 1, b− 1].
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4.2. Modeling with Discrete Fractional Calculus

We developed the simplest variational problem for discrete fractional calculus.

According to this theory, we now are concerned with the following optimization

problem

J [y] = min
T−1∑
t=0

U(y(t+ α− 1))

with the constraint

∆αy(t− α + 1) = (b− 1)y(t) + a , y(0) = c

or with a transformation t = t+ α− 1

∆αy(t) = (b− 1)y(t+ α− 1) + a, (2.1)

where y(t) is the size of a tumor and U is a function with continuous partial deriva-

tives.

We have

J [y] =
T−1∑
t=0

{U(y(t+α− 1)) +λ(t+α− 1)(∆αy(t)− (b− 1)y(t+α− 1)−a)}.

It follows from Theorem 4.1.1, Euler-Lagrange equations with respect to λ and y are

Uy(y(t+ α− 1))− λ(t+ α− 1)(b− 1) + T+α−1∆α
t λ

ρ(t+ 2(α− 1)) = 0, (2.2)

or

Uy(y(t+ α− 1))− λ(t+ α− 1)(b− 1)

+
1

Γ(1− α)
(−∆)

T+α−1∑
s=t+α−1

(s−σ(t+(2α−1)))(−α)λ(ρ(s)),
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and

∆αy(t)− (b− 1)y(t+ α− 1)− a = 0, (2.3)

where t ∈ [1, T − 1].

At this point, to the best of our knowledge, there is no known numerical

method for solving the above system of equations (2.2)-(2.3). In the next chapter,

we will call equation (2.1) Gompertz fractional difference equation. We will focus on

proving the existence and uniqueness result for this equation with an initial condition

y(0) = c.



CHAPTER 5

Modeling for Tumor Growth

David Hilbert famously stated that ‘Physics is becoming too diffcult for physi-

cists’ implying the increasing mathematical complexity of ideas necessary for mod-

ern physics. The same argument is becoming more and more applicable for today’s

Mathematical Biology. As mathematical models describing biological phenomena

are getting more sophisticated and realistic, the attention needed from specialists

is growing at a fast pace. There are several recent areas of specialized research in

mathematical biology: Enzyme kinetics, biological tissue analysis, cancer modeling,

heart and arterial disease modeling being among the popular ones. In this thesis, we

specifically focus on tumor growth modeling with newly developing discrete fractional

calculus.

Cancer is a disease in which abnormal cells divide uncontrollably and have the

potential to invade other tissues. These abnormal cells might form masses of tissues

known as tumors. All tumors are not cancerous, tumors can be benign or malignant.

Benign tumors are not cancerous and can often be surgically removed, in most cases

they do not come back. Malignant tumors, on the other hand, aggressively expand

and spread to other parts of the organism. The spread of cancer cells from one part

of the body to another is called metastasis. A highly metastasised cancer is usually

unstoppable and results in the death of the organism. The rapid growth of these

33
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tumors and the absence of a cure for cancer make the timing of diagnosis and treat-

ment very crucial. Understanding the kinetics of tumor growth enables physicians

to determine the best treatment available. There is a plethora of experimental data

available pending for systematic analysis and therefore it is clear that mathematics

could significantly contribute to many areas of experimental cancer investigation.

Although the kinetics of cancer is usually very complex depending on many

details such as the type, location and stage of the cancer, over the years mathematical

models for tumor growth have helped to quantitatively analyze the behavior of the

disease at different stages. Mathematical modeling of tumors began in the early

1950s after scientists discovered that the initiation of cancerous growth could only

occur after multiple successive mutations in a single cell’s DNA. The first models

were used statistics to examine the correlation between age and incidence of cancer,

but the field continued to develop as more information about the disease became

available. Today, many different types of models exist, including probabilistic and

deterministic, continuous and discrete models.

Mathematically, tumor growth is a special relationship between tumor size

and time. Three mathematical equations are typically used to model growth behavior

in biology: Exponential, logistic and sigmoidal.

Exponential growth is given by
dG(t)

dt
= λG.

Logistic growth is given by
dG(t)

dt
= λG(1− G

θ
).

Sigmoidal growth is given by
dG(t)

dt
= −λG ln(

G

θ
).

In these equations, λ defines the growth rate and θ defines the carrying capacity.
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In the literature, tumor growth, however, is best described by sigmoidal functions.

5.1. Gompertz Fractional Difference Equation

In 1825, Benjamin Gompertz introduced the Gompertz function, a sigmoid

function, which is found to be applicable to various growth phenomena, in particular

tumor and embryonic growth (see [17]).

The Gompertz difference equation describes the growth models and these

models can be studied on the basis of the parameters a and b in the recursive for-

mulation of the Gompertz law of growth [11]. a is the growth rate and b is the

exponential rate of growth deceleration in the equation.

The Gompertz difference equation in [11] is given by

lnG(t+ 1) = a+ b lnG(t).

Here we introduce Gompertz fractional difference equation

∆α lnG(t− α + 1) = (b− 1) lnG(t) + a. (1.1)

For simplicity if we replace lnG(t) = y(t), we obtain

∆αy(t− α + 1) = (b− 1)y(t) + a. (1.2)

5.2. Existence and Uniqueness for the Gompertz Fractional Difference

Equation

Consider the following fractional difference equation with an initial condition

∆αy(t− α + 1) = f(t, y(t)), t = 0, 1, 2, · · · (2.1)

y(0) = c (2.2)
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where α ∈ (0, 1], f is a real-valued function, and c is a real number.

Applying the ∆−α operator to both sides of the equation (2.1) and with t + α − 1

shift at the same time, we obtain

∆−α∆αy(t) = ∆−αf(t+ α− 1, y(t+ α− 1)), (2.3)

where t = 1, 2, · · · .

Applying Theorem 2.2.2 to the left-hand side of the equation (2.3), we get

∆−α∆αy(t) = ∆−α∆∆−(1−α)y(t) = ∆∆−α∆−(1−α)y(t)− (t+ α− 1)(α−1)y(0)

Γ(α)
. (2.4)

Hence we have

y(t) =
(t+ α− 1)(α−1)

Γ(α)
c+

1

Γ(α)

t−1∑
s=0

(t+ α− 1− σ(s))(α−1)f(s, y(s)), (2.5)

for t = 0, 1, 2, · · · .

The recursive iteration to the sum equation implies that (2.5) represents the unique

solution of the IVP.

5.3. Solution with the Method of Successive Approximation

We obtain a solution for the equation (2.1) with an initial value condition

y(0) = c.

Replacing f(s, y(s)) = (b− 1)y(s) + a in (2.5), the solution of the IVP (2.1)-(2.2) is

y(t) =
(t+ α− 1)(α−1)

Γ(α)
c+

1

Γ(α)

t−1∑
s=0

(t+ α− 1− σ(s))(α−1)[(b− 1)y(s) + a].
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Next, we employ the method of successive approximations that is also known as the

Picard iteration. Set

y0(t) =
(t+ α− 1)(α−1)

Γ(α)
c+ ∆−αa(t+ α− 1)(0),

ym(t) = (b− 1)∆−αym−1(t+ α− 1), m = 1, 2, · · · .

Apply the power rule (Lemma 2.2.1) to see that

y1(t) = (b− 1)∆−αy0(t+ α− 1),

= c(b− 1)
(t+ 2α− 2)(2α−1)

Γ(2α)
+ (b− 1)∆−2αa(t+ 2α− 2)(0)

and

y2(t) = (b− 1)∆−αy1(t+ α− 1),

= c(b− 1)2 (t+ 3α− 3)(3α−1)

Γ(3α)
+ (b− 1)2∆−3αa(t+ 3α− 3)(0).

With repeated applications of the power rule, it follows inductively that

ym(t) = c(b−1)m
(t+ (m+ 1)(α− 1))((m+1)α−1)

Γ((m+ 1)α)
+(b−1)ma

(t+ (m+ 1)(α− 1))((m+1)α)

Γ((m+ 1)α + 1)
.

∞∑
m=0

ym converges to the unique solution of the initial value problem

∆αy(t− α + 1)− (b− 1)y(t) = a, y(0) = c.
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Hence we have

y(t) = c
∞∑
m=0

(b−1)m
(t+ (m+ 1)(α− 1))((m+1)α−1)

Γ((m+ 1)α)
+a

∞∑
m=0

(b−1)m
(t+ (m+ 1)(α− 1))((m+1)α)

Γ((m+ 1)α + 1)
.

One immediate observation can be made. Set α = 1. Then

y(t) = c
∞∑
m=0

(b− 1)m
t(m)

Γ(m+ 1)
+ a

∞∑
m=0

(b− 1)m
t(m+1)

Γ(m+ 2)
.

Since the IVP with α = 1 has the unique solution

y(t) = cbt +
a

b− 1
bt − a

b− 1
, (3.1)

we obtain the equality bt =
∞∑
i=0

(b− 1)i

i!
t(i) which appears as a special case of [12,

Lemma 4.4] for a time scale T = Z, the set of integers.

The solution of the equation (1.1) is G(t) = ey(t).

5.4. Graphical Results

Growth comparisons, especially in tumor growth, are usually very important.

These comparisons are typically made according to growth stimulation or growth

inhibition.

There are two ways to measure growth alterations that are used in practice:

Assays with time as the independent variable and the changing tumor size as the

dependent variable or assays with tumor size as the independent variable and the

time to reach a given size as the dependent variable. Since experiments are limited

in time these assays generally measure alterations of growth rates. Therefore growth

stimulation or growth inhibition usually refer to an increase or a decrease of the
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growth rate (see Figure 5.1, 5.2 and 5.3 for α = 1, α = .94 and α = .83).

The gompertzian analysis of alterations of tumor growth patterns are shown

in Figure 5.1, Figure 5.2 and Figure 5.3. We apply fractional gompertz model results

to human renal cell carcinoma, which is a malignant tumor of the cells that cover and

line the kidney, in nude mice data. (Nude mice are labaratuary mice without hair.

They have inhibited immune system due to a greatly reduced number of T cells.)

Parameters for control growth are taken from ([10]).

Figure 5.1. Alterations of Growth : Control Growth (a=2, b=.85,
c=1, Y : α = 1, X : α = .94, Z : α = .85)

Figure 5.1 shows the control growth with parameters a = 2, b = .85 and

c = 1. We draw the control growth with different α values. First observation in

here is when α→ 1, fractional model converges to the continous model as expected.

This convergence is clear for low values of t in Figure 5.1. So, α values other than 1,

behave like the growth deceleration. Since the parameter b represents the exponential

growth deceleration, next we change b to observe the growth behaviour.

In Figure 5.2, if we take b = .9, we observe stimulation for each α value. It

can be seen that in this graph, curves Y and Z ′ behave similarly. Y is the curve with
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Figure 5.2. Alterations of Growth : Stimulation (a=2, b=.9, c=1,
Y ′ : α = 1, X ′ : α = .94, Z ′ : α = .83)

b = .85 and α = 1 and Z ′ is the curve with b = .9 and α = .83. This shows that we

can observe different behaviors by changing the parameter α in discrete fractional

calculus.

Figure 5.3. Alterations of Growth : Inhibition (a=2, b=.7, c=1,
Y ′ : α = 1, X ′ : α = .94, Z ′ : α = .83)

Moreover if we set b = .7, which is less than the control growth, we observe inhibition

for each α value.

Based on the results above, we also observe that growth behaviour shows

significant variation with respect to α. Using fractional calculus for curve fitting,

we could get more accurate results for data analysis since we have one more fitting

parameter, α, in addition to the model parameters. To support this insight, we
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compare our model for different α values with the continuous model by using real

data.

5.4.1. Bacterial Growth Application. In this section, we evaluate the Gom-

pertz fractional difference model and the Gompertz differential model for the growth

curve of Pseudomonas putida which is a kind of soil bacterium. Then we compare two

models searching for a better fit for the actual growth by varying α. Square of resid-

uals (SQR) between the expected values and the experimental values is calculated

for each of these models to determine the best fit clearly.

The bacterial growth curve([28]) is generally given by

Ut = A+BCt (4.1)

where Ut represents the time series value at the time t and A,B,C are constant

parameters.

In the method of partial sums, the given time-series data are split up into three

parts each containing n consecutive values of Ut corresponding to t = 1, 2, . . . , n;

t = n+ 1, n+ 2, . . . , 2n; and t = 2n+ 1, 2n+ 2, . . . , 3n.

Let S1,S2 and S3 represent the partial sums of the three parts respectively so that:

S1 =
n∑
t=1

Ut, S2 =
2n∑

t=n+1

Ut, S3 =
3n∑

t=2n+1

Ut.

Substituting equation (4.1) into S1,S2 and S3, we get

S1 =
n∑
t=1

(A+BCt) = nA+B(C + C2 + · · ·+ Cn)



42

= nA+BC(
Cn − 1

C − 1
).

Similarly

S2 = nA+BCn+1(
Cn − 1

C − 1
),

S3 = nA+BC2n+1(
Cn − 1

C − 1
).

Subtracting S1 from S2 and S1 from S3, we get respectively:

S2 − S1 = BC
(Cn − 1)2

(C − 1)
, (4.2)

S3 − S2 = BCn+1 (Cn − 1)2

(C − 1)
. (4.3)

Dividing equation (4.3) by (4.2), we have

S3 − S2

S2 − S1

= Cn.

Therefore,

C = (
S3 − S2

S2 − S1

)1/n. (4.4)

Substituting C in equation (4.2), we get

S2 − S1 =
BC

C − 1

[
S3 − S2

S2 − S1

− 1

]2

.

Hence

B =
(C − 1)(S2 − S1)3

C(S3 − 2S2 + S1)2
. (4.5)

Finally substituting the values of B and C in the expression of S1, we have

A =
1

n

[
S1 −

BC

C − 1
(Cn − 1)

]
,

=
1

n

[
S1 −

(S2 − S1)3

(S3 − 2S2 + S1)2
(Cn − 1)

]
,

=
1

n

[
S1 −

(S2 − S1)3

(S3 − 2S2 + S1)2

{
S3 − S2

S2 − S1

− 1

}]
,

=
1

n

[
S1 −

(S2 − S1)3

(S3 − 2S2 + S1)2

{
S3 − 2S2 + S1

S2 − S1

}]
,
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=
1

n

[
S1 −

(S2 − S1)2

(S3 − 2S2 + S1)

]
,

A =
1

n

[
S1S3 − S2

2

S3 − 2S2 + S1

]
. (4.6)

Thus, by the method of partial sums, the three parameters A,B and C are determined

and the modified exponential growth curve is fitted. Gompertz and discrete fractional

Gompertz models are fitted by the same approach, modifying their basic equation

into a form of an exponential growth curve.

Figure 5.4. Growth rate of Pseudomonas putida at various time in-
tervals [27].

The equation of Gompertz curve is

y = ae−e
(b−cx)

where a,b and c are parameters.

It is converted into a modified exponential form as

ln y = ln a− eb(e−c)x, (4.7)



44

which can also be written as

Ut = A+BCt, (4.8)

where Ut = ln y, A = ln a, B = −eb, C = e−c and t = x.

The ln values of the growth data in Figure 5.4 are calculated and a set of nine such

values are summed up

S1 =
9∑

n=1

ln yn, S2 =
18∑

n=10

ln yn, S3 =
27∑

n=19

ln yn.

Hence we get

S1 = −12.135, S2 = −6.921, S3 = −4.049.

Using the formula (4.6), we obtain

A =
1

n

[
S1S3 − S2

2

S3 − 2S2 + S1

]
= −0.0585. (4.9)

Since ln a = −0.0585 which gives a = .943.

Using the formula (4.4), we obtain

C = (
S3 − S2

S2 − S1

)1/n = 0.9358. (4.10)

Since e−c = 0.93581 which gives c = .066.

Using the formula (4.5), we obtain

B =
(C − 1)(S2 − S1)3

C(S3 − 2S2 + S1)2
= −1.773. (4.11)

Since −eb = −1.773 which gives b = −.573.

Therefore, the Gompertz curve for the growth of Pseudomonas putida is given by

the parameters calculated above:

y = .943e−e
(.573−.066x)

. (4.12)
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We fit our model with these parameters. Our solution for α = 1 is given by the

equation (3.1) as

y(t) = (c+
a

b− 1
)bt − a

b− 1
. (4.13)

When we fit this equation by y(t) = A+BCt, our parameters become

A = − a

b− 1
, C = b and B = c+

a

b− 1
.

After substituting the values A = −0.0585, B = −1.773 and C = 0.9358 and solving

for a, b and c we obtain the paramaters for our model as a = −.0037557, b = .9358

and c = −1.8315.

Figure 5.5. Data fitting

In Figure (5.5), it is shown that each curve visually gives reasonably good

fits to the given data. To determine the curve that gives the best result, the table

in Figure (5.6) presents the data points and the square of the residuals between the

experimental and expected values. The best model is the one showing the least sum

of the square of residuals.

It is clear from the table in Figure (5.5) that Gompertz fractional difference

model with α = 1 gives the least value of SQR(=.023986). It yields very close results
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Figure 5.6. Data analysis for bacteria

to the continuous Gompertz curve as expected. It can also be seen that the fractional

difference model with α = .995 gives more accurate results than the continuous model.

To make sure our model works better than its continuous counterpart, we also

found fitting parameters by using Mathematica’s ‘FindFit’ function which computed

a least-squares fit for the given 23 data points. As a result, we obtained the parame-

ters a = .0119493, b = .9488 and c = −1.9 for our model. First, we draw the curves

for α = 1, α = .98 and the continuous case. As is shown in Figure (5.7), each model

visually gives a reasonably good fit to the given data.
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Figure 5.7. Data fitting

Data values and square of the residuals are also calculated for these para-

maters. When we inspect the tables in Figure (5.8) and Figure (5.9), it is suprising

that the best result is given by the fractional Gompertz model with α = .98 and fol-

lowed by α = .97 closely. Our model with α = 1 once again gives very close results to

the continuous model as expected. With decreasing α values, square of the residual

results are increasing, for instance see α = .96. In conclusion, since the least sum

of square of residuals between the experimental and expected values belongs to the

discrete fractional model with α = .98, we conclude that our model is stronger than

the continuous model in this particular example.

5.4.2. Application on Mammary Tumors of the Rat. We also apply our

model to mammary tumor data of rats Figure (5.10). Mammary tumors of rats

are very important in the study of tumor induction and in the elucidation of the

relationship between breast tumors, steroids and pituitary hormones. The growth

data used in this thesis were obtained from the work of Durbin, Jeung, Williams
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Figure 5.8. Data analysis for bacteria

and Arnold [29]. Tumor age was defined as the number of days a tumor had been

growing starting from a ‘reference size’. The size at which the mammary tumors are

just detectable was determined to be a diameter of 1 cm and this was selected to be

the ‘reference size’. Growth of fibroadenoma from .5 to 5.0 gm was observed to be

nearly exponential. Growth rate gradually decrased and eventually the limiting size

was approached.

Such a growth pattern can be represented by a Gompertz function

G = ceα/β(1−e−βt) (4.14)
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Figure 5.9. Data analysis for bacteria

Figure 5.10. Growth rate of the mammary tumors of the rat at var-
ious time intervals.

where c is the initial tumor weight and fixed at c = .5 gm. Parameters α = .085 and

β = .0174 are the initial growth rate and growth deceleration respectively. These

parameters are calculated from the original data by a least-squares method.
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To fit our model with these parameters, let us take the natural logarithm of the

equation (4.14) as

lnG(t) = ln c+
α

β
(1− e−βt).

Let lnG(t) = u(t). Then

u(t) = ln c+
α

β
(1− e−βt).

After taking the derivative of both side with respect to t, we have

u′(t) = αe−βt.

When we fix the equation u′(t) + βu(t) = β ln c + α with our model equation (3.1),

we get the parameters for our model as a = β ln c+α = .0676425131 and b = 1−β =

0.9865.

Figure 5.11. Data fitting

Figure (5.11) shows the data points, curves of the continuous model and our

model for α = 1 and α = .98. Each model visually gives reasonably good fits for

the given data. To determine which one gives the best fit, we once more perform a
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square of the residuals analysis. The values of growth for different values of time and

α are calculated. Results are given in the tables in Figures (5.12) and (5.13).

Figure 5.12. Data analysis table for mammary tumors of the Rats

Figure 5.13. Data analysis table for mammary tumors of the Rats

It is clear from the tables in Figures (5.12) and (5.13), the best fit is given

by the discrete fractional model with α = .98 determined by the residual sum of

squares(SQR) analysis. For α = .99 and α = .98, results are very close but with

decreasing α, residual sum of square values are increasing. Continuous case gives the
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least accurate result in this example and although α = 1 is worse than the other α

values, it is still better than the continuous case.
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CONCLUSION AND FUTURE WORK

Discrete fractional calculus is a relatively new theory compared to ordinary

calculus. There are still many open questions in this newly developing theory and

although the theory shows great potential for analyzing real world applications, ordi-

nary calculus is still much more commonly used in such problems. In this thesis, we

closed some of the gaps in the theory of discrete fractional calculus and we showed

that discrete fractional calculus could perform better in the modeling of particular

applications. We gave a new proof of the Leibniz rule for two different function

domains. We also developed the summation by parts formula, which is a very pow-

erful formula, for discrete fractional calculus. To prove the summation by parts

formula, we defined the left and right discrete fractional difference operators by care-

fully analyzing the domains. Later, we introduced the simplest variational problem

for discrete fractional calculus. The summation by parts formula was instrumental

in the development of the Euler-Lagrange equation for discrete fractional calculus.

After mathematically justifying the use of the discrete fractional variational problem,

we proposed applications for tumor modeling in order to demonstrate the power of

discrete fractional calculus. Since tumor growth is best described by the Gompertz

equation, we first wrote the corresponding discrete fractional Gompertz equation and

we applied the variational theory to optimize tumor growth. Then, we compared our

theory to ordinary calculus by using real data. According to our results, our model

gave the best fit for different α values where α is defined as the order of the difference

operator.
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For future work, we would like to extend the ideas that were presented for

the discrete Gompertz fractional difference equation. Although the current model

with a saturating feedback mechanism is quite good, improvements can still be made

in tumor growth modeling, for instance, by using different growth models, such as

Richards growth equations.

Y ′(t) = aY (1− (
Y

K
)ν). (4.15)

Moreover, because discrete fractional theory is relatively new and undeveloped, there

is no well-established numerical method to solve some of fractional difference equa-

tions, therefore another future direction could be to seek optimized numerical meth-

ods to solve various fractional difference equations.



APPENDIX 

The following Mathematica codes were used to compute and plot the graphs  

Figure(5.1) 

Y a = 2;    b = .85;    c = 1;     nu = 1; 

X a = 2;    b = .85;    c = 1;     nu = .94; 

Z a = 2;    b = .85;    c = 1;     nu = .85; 

 

Y=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,10}]; 

 

Plot[{Y,X,Z},{t,0,20},PlotStyle-

>{AbsoluteThickness[3],AbsoluteThickness[1],Dashing[{.05,.03}]},AxesLabel-

>{t,Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 

 

Figure(5.2) 

Y’ a = 2;    b = .85;    c = 1;     nu = 1; 

X’ a = 2;    b = .85;    c = 1;     nu = .94; 

Z’ a = 2;    b = .85;    c = 1;     nu = .85; 

 

Y=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,10}]; 

 

Plot[{Y,X,Z,Y’,X’,Z’},{t,0,20},PlotStyle-

>{AbsoluteThickness[3],AbsoluteThickness[1],Dashing[{.05,.03}]},AxesLabel-

>{t,Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 

 

Figure(5.3) 

Y’ a = 2;    b = .7;    c = 1;     nu = 1; 

X’ a = 2;    b = .7;    c = 1;     nu = .94; 

Z’ a = 2;    b = .7;    c = 1;     nu = .85; 

 

Y=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,10}]; 
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Plot[{Y,X,Z,Y’,X’,Z’},{t,0,20},PlotStyle-

>{AbsoluteThickness[3],AbsoluteThickness[1],Dashing[{.05,.03}]},AxesLabel-

>{t,Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 

 

Figure(5.5) 

f={{1,.216},{2,.220},{3,.240},{4,.250},{5,.260},{6,.270},{7,.280},{8,.290},{9,.330},{1

0,.360},{11,.380},{12,.400},{13,.460},{14,.482},{15,.492},{16,.592},{17,.544},{18,.58

4},{19,.594},{20,.620},{21,.644},{22,.644},{23,.648}} 

 

fp=ListPlot[f,PlotMarkers->{Automatic,Medium}] 

Y a=-.0037557;  b=0.9358;  c=-1.8315;   nu=.99; 

X a=-.0037557;  b=0.9358;  c=-1.8315;   nu=1; 

 

Y,X=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,10}]; 

 

PY,PX=Plot[{X,Y},{t,0,23},PlotStyle-

>{AbsoluteThickness[4],AbsoluteThickness[4],Dashing[{.01,.01}]},AxesLabel-

>{t,Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 

 

m = Plot[−.0037557* Exp[-Exp[(.9358 −1.8315*x)]],{x,0,23}] 

Show[fp,PX,PY,m,PlotRange->All] 

Figure(5.7) 

f={{1,.216},{2,.220},{3,.240},{4,.250},{5,.260},{6,.270},{7,.280},{8,.290},{9,.330},{1

0,.360},{11,.380},{12,.400},{13,.460},{14,.482},{15,.492},{16,.592},{17,.544},{18,.58

4},{19,.594},{20,.620},{21,.644},{22,.644},{23,.648}} 

 

fp=ListPlot[f,PlotMarkers->{Automatic,Medium}] 

Y a= .0119493;  b= .9488;  c −1.9;   nu=.98; 

X a= .0119493;  b= .9488;  c −1.9;   nu=1; 

 

Y,X=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,10}]; 

 

PY,PX=Plot[{X,Y},{t,0,23},PlotStyle-

>{AbsoluteThickness[4],AbsoluteThickness[4],Dashing[{.01,.01}]},AxesLabel-

>{t,Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 
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Model=q*Exp[-Exp[r-u*x]]; 

 

fit=FindFit[f,Model,{q,r,u},x] 

 

{q->1.34651,r->0.734078,u->0.0487025} 

 

m = Plot[1.34651* Exp[-Exp[(0.734078 −0.0487025*x)]],{x,0,23}] 

Show[fp,PX,PY,m,PlotRange->All] 

Figure(5.11) 

f13={{16,1.4},{34.3,9.03},{51,12.3},{68.8,31.3},{96,29.8},{119.6,48.1},{13,1.19},{30.

1,5.28},{51.2,11.34},{72.5,23.1},{92.8,21.2},{116.5,65.7}} 

fp=ListPlot[f13,PlotMarkers->{Automatic,Medium}] 

X a=.0676425131; b=0.9865; c=.5; nu=1; 

Y a=.0676425131; b=0.9865; c=.5; nu=.98; 

 

Y,X=Exp[Sum[((c*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k+1]*Gamma[(k+1)*nu]))+(a*(b-1)^k*Gamma[t+(k+1)*(nu-1)+1]/(Gamma[t-

k]*Gamma[(k+1)*nu+1]))),{k,0,40}]]; 

 

PX,PY=Plot[{Y},{t,0,120} ,PlotStyle-

>{AbsoluteThickness[3],AbsoluteThickness[1],Dashing[{.05,.03}]},AxesLabel->{t, 

Size},BaseStyle->{FontWeight->"Bold",FontSize->16}] 

 

R=Plot[.5*Exp[.077/.0135*(1-Exp[-.0135*t])],{t,0,120}] 

Show[P,fp,R,PX,PlotRange->All] 
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