
Western Kentucky University
TopSCHOLAR®

Computer Science Faculty Publications Computer Science

12-1-2009

Mining Data from Multiple Software Development
Projects
Huanjing Wang
Western Kentucky University, huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University, taghi@cse.fau.edu

Kehan Gao
Eastern Connecticut State University, gaok@easternct.edu

Naeem Seliya
University of Michigan – Dearborn, nseliya@umich.edu

Follow this and additional works at: http://digitalcommons.wku.edu/comp_sci
Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems

Commons, and the Other Computer Sciences Commons

This Article is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Computer Science Faculty Publications
by an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Repository Citation
Wang, Huanjing; Khoshgoftaar, Taghi M.; Gao, Kehan; and Seliya, Naeem. (2009). Mining Data from Multiple Software Development
Projects. The 9th IEEE International Conference on Data Mining - Workshops (IEEE ICDMW 09), 551-557.
Available at: http://digitalcommons.wku.edu/comp_sci/1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TopSCHOLAR

https://core.ac.uk/display/43612707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/comp_sci?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/computer_science?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/comp_sci?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Mining Data from Multiple Software Development Projects

Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao, and Naeem Seliya
{huanjing.wang@wku.edu; taghi@cse.fau.edu; gaok@easternct.edu; nseliya@umich.edu}

Abstract

A large system often goes through multiple software
project development cycles, in part due to changes in op-
eration and development environments. For example, rapid
turnover of the development team between releases can in-
fluence software quality, making it important to mine soft-
ware project data over multiple system releases when build-
ing defect predictors. Data collection of software attributes
are often conducted independent of the quality improve-
ment goals, leading to the availability of a large number
of attributes for analysis. Given the problems associated
with variations in development process, data collection, and
quality goals from one release to another emphasizes the
importance of selecting a best-set of software attributes for
software quality prediction. Moreover, it is intuitive to re-
move attributes that do not add to, or have an adverse ef-
fect on, the knowledge of the consequent model. Based on
real-world software projects’ data, we present a large case
study that compares wrapper-based feature ranking tech-
niques (WRT) and our proposed hybrid feature selection
(HFS) technique. The comparison is done using both three-
fold cross-validation (CV) and three-fold cross-validation
with risk impact (CVR). It is shown that HFS is better than
WRT, while CV is superior to CVR.
Keywords: data preparation, attribute selection, data selec-
tion, software measurements, defect prediction.

1 Introduction

Developing high-quality software is a primary goal for
any development team. Software practitioners strive to im-
prove software quality by constructing software quality pre-
diction models [9]. However, when a large system goes
through multiple software releases, it is very likely that the
characteristics and trends of software quality change from
one project development to another. A given system re-
lease can have relatively different operation and develop-
ment environments, which would be reflected in the soft-
ware development process. Moreover, a rapid turnover of
team members can also influence software quality charac-

teristics. Thus, it is important to analyze software data from
multiple sources, i.e., multiple development projects or re-
leases, when building software quality prediction models.

A typical defect prediction model is built using software
metrics and fault data of previously developed releases or
similar projects. Then the quality of the under-development
program modules is estimated, as fault-prone (fp) or not
fault-prone (nfp), for example. As described earlier, char-
acteristics of the software measurement data set play an im-
portant role in the efficacy of the defect prediction models.
One such aspect is which software attributes are good qual-
ity indicators for the given system, especially when there is
a likelihood of variation in development processes, data col-
lection methods and objectives, and quality improvement
goals from one release to another. We focus on feature
selection in the context of software quality prediction and
analysis when software measurement and defect data from
multiple development sources/releases is available.

Feature selection is an essential task during the data
preparation and data cleansing phases of a machine learning
problem [12]. The aim of feature selection is to find a fea-
ture subset that characterizes the underlying data as good as,
or even better, than the original data when all available fea-
tures are considered. Feature ranking techniques rank the
attributes based on their individual predictive power, while
feature selection approaches select subsets of attributes that
collectively have good predictive power. Feature subset se-
lection can be categorized as filters, wrappers, or embedded
methods. Filters are algorithms in which a feature subset is
selected without involving any learning algorithm. Wrap-
pers are algorithms that use feedback from a learning algo-
rithm to determine which feature(s) to include for building
a classifier. Embedded methods imply that the feature se-
lection aspect is incorporated within a learning algorithm.

We evaluate two types of feature selection methods:
wrapper-based feature ranking techniques (WRT) and our
proposed hybrid feature selection method (HFS). In the
case of WRT, classifiers with a single independent at-
tribute (and the dependent class attribute) are built, and
then the attributes are selected according to their individ-
ual predictive capability as measured by a performance
metric. We used five different and commonly used learn-
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ers [14]: Naı̈ve Bayes (NB), Multilayer Perceptron (MLP),
K-Nearest Neighbors (KNN), Support Vector Machines
(SVM), and Logistic Regression (LR). In addition, five
different performance metrics are used: Overall Accuracy
(OA), Default Geometric Mean (DGM), Area Under ROC
(AUC), Area Under PRC (PRC) and Best Arithmetic Mean
(BAM). In total, we had 25 rankers – based on five learn-
ers and five performance metrics. An unique contribution
of our work is that we build classifiers using 25 rankers.

The proposed HFS technique consists of a wrapper-
based feature ranking technique and a consistency-based
feature subset selection – the latter is our proposed au-
tomatic hybrid search (AHS) [10]. We assessed the fea-
ture selection methods (WRT and HFS) by building clas-
sification models with the selected attributes and evaluat-
ing them with two performance metrics [14]: Area Un-
der the ROC (receiver operator characteristic) curve (AUC)
and Best Geometric Mean (BGM). When building a de-
fect prediction classifier, we considered two model-building
strategies: three-fold cross-validation (CV) and three-fold
cross-validation risk impact (CVR). For each strategy, fea-
tures were selected through WRT and HFS, and we analyze
which strategy provides better performance for a given clas-
sifier. Such a large comparative study of feature selection
for defect prediction modeling is relatively unique to this
paper. Moreover, all data sets analyzed in this study suf-
fer from class imbalance, and investigating feature selection
with such data sets poses additional challenges.

The paper is organized as follows. Section 2 provides
information on the cross-validation strategies, feature se-
lection techniques, and learners used. Section 3 provides
a description of the software projects’ data, and Section 4
details the empirical results. Relevant literature on feature
selection is presented in Section 5. Section 6 concludes the
paper and provides suggestions for future work.

2 Methodology

2.1 Cross-Validation Methods

We use two strategies for the WRT approaches. First, a
three-fold cross-validation (CV) method is used. For each
attribute to be ranked, a reduced dataset consisting solely of
that attribute and the class attribute is created. For each of
the three folds (partitions), a classifier is trained on the other
two folds (partitions), then tested on that fold. For each
learner, all five performance metrics are calculated based
on cross-validation. Performance scores are obtained in this
manner for all attributes in the data set, one at a time. After
the five performance metrics are obtained for all five learn-
ers for every attribute, features are ranked based on a given
performance metric for each classifier.

The second method, three-fold cross-validation with risk
impact (CVR), is similar to CV except that each instance of
the training data set contains n−1 independent features and
the class feature. For each learner, we build a model with all
n independent features and the class feature and recording
all performance measures, denoted as PMn, where PM
represents one of the five performance metrics. For each
independent feature i, we eliminate it, and build a model
with one less independent feature to get the associated per-
formance measure, denoted as PM i

n−1, where 1 ≤ i ≤ n.
The risk impact of each feature i for a particular learner is
defined as PMn − PM i

n−1. Each feature has a risk impact
score and these features are ranked in a descending order
according to risk impact scores. CVR is more time consum-
ing than CV since it builds models using n− 1 independent
features while CV uses only one independent feature.

2.2 Wrapper-Based Ranking Techniques

The WRT feature selection approach was implemented
by our team within the WEKA framework [14]. The ap-
proach consists of two parts, a learner (classifier) and a per-
formance metric, that collectively form a ranker (Figure 1).
In the feature ranking technique, every feature in a given fit
(training) data set is used individually in the model building
process. We used the CV and CVR strategies to build the
classification models and then assessed their performances
based on a specific performance metric. We then ranked the
features and selected the top �log2 n� features according to
their respective scores, where n is number of independent
features for a given data set. In this study, we selected six
features from the attribute set that contained 42 features.

The reasons for selecting the top �log2 n� features are:
(1) no general guidance is available on the number of fea-
tures that should be selected when using a feature ranking
technique; (2) in a recent empirical study [8], we showed
that it was appropriate to use �log2 n� as the number of fea-
tures when using WEKA [14] to build a classifier for binary
classification in general, and for imbalanced data sets in par-
ticular. Thus, we assume �log2 n� is a good choice for this
research; and (3) a software engineering expert with more
than 20 years experience recommends selecting �log2 n�
number of metrics for high-assurance systems such as our
case study system.

In a two-group classification, e.g., fp and nfp, there are
four possible outcomes: true positive (TP), false positive
(FP), true negative (TN) and false negative (FN), where
positive represents fp and negative represents nfp. The
respective frequency of the four outcomes form the basis
for several other performance measures that are commonly
used for classifier evaluation. We use five of them for the
wrapper-based feature ranking process, and they are:

1. Overall Accuracy (OA) provides a single value range
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from 0 to 1. It can be obtained by |TP |+|FN |
N , where N

is the total number of instances in the data set.

2. Default Geometric Mean (DGM) is a single-value
measure that ranges from 0 to 1, and a perfect classifier
provides a value of 1. Geometric Mean (GM) is de-
fined as the square root of the product of true positive
rate(defined as |TP |

|TP |+|FN | ) and true negative rate (de-

fined as |TN |
|FP |+|TN | ). The threshold, t = 0.5, is used

for DGM, while the Best Geometric Mean (BGM) is
the maximum GM value that is obtained when varying
the threshold between 0 and 1.

3. Area Under the ROC Curve (AUC) has been widely
used to measure classification model performance [2].
The ROC (Receiver Operating Characteristic) curve
characterizes the trade-off between the true positive
rate and the false positive rate. A perfect classifier pro-
vides an AUC that equals 1.

4. Area Under the Precision-Recall Curve (PRC) is a
single-value measure that depicts the trade off between
Recall and Precision [14]. A classifier that is optimal
in AUC space may not be optimal in PRC space.

5. Best Arithmetic Mean (BAM) is based on the arith-
metic mean of the true positive rate and true negative
rate values. The Best Arithmetic Mean (BAM) uses
the maximum arithmetic mean that is obtained when
varying the threshold between 0 and 1.

2.3 Proposed Hybrid Feature Selection Method

Feature subset selection techniques search the set of pos-
sible features as a group and evaluate their collective suit-
ability. However, the traditional approaches to feature selec-
tion with single evaluation criterion have shown limited ca-
pability in terms of knowledge discovery and decision sup-
port. We proposed a hybrid feature selection (HFS) method
which combines wrapper ranking and the Automatic Hybrid
Search (AHS), our recently proposed feature subset selec-
tion method [10]. AHS uses the consistency rate proper-
ties, relying on its monotonic property of consistency rate.
The AHS algorithm was developed and implemented by our
team in Java.

The AHS algorithm works as follows. The consistency
rate of the full feature set is computed first, and then starting
with size 1 of any feature, the feature subsets that have the
locally highest consistency rate are selected. These selected
feature subsets will be used to generate supersets. The pro-
cess is repeated until finding the attribute subsets that have
the same consistency rate or the specified number of fea-
tures is reached. The newly proposed hybrid feature selec-
tion (HFS) method consists of two steps (Figure 2). First,

use a wrapper-based feature ranking technique to rank the
features and the top 30% of features are selected from the
ranked list. Twelve features are selected in this study; Sec-
ond, apply AHS to select a subset of k features with the
highest local consistency rate. The size of feature subset
depends on the application domain and project characteris-
tics. In this study, k is set to six.

2.4 Classifiers

Classification is a form of data analysis that can be used
to extract a model that minimizes the number of classifica-
tion errors on a training data set. The first step of classi-
fication is to build a classification model that can describe
the predetermined set of data classes, whereas in the sec-
ond step, the classification model is evaluated using an in-
dependent test data set. The software quality prediction
models are built with five different learners available in
WEKA [14], including: Naı̈ve Bayes, Multilayer Percep-
tron, K-Nearest Neighbors, Support Vector Machines, and
Logistic Regression. These learners are used in data mining
serve as both aids to the ranking process and an inductive
learner for the classification performance process. Unless
stated otherwise, we use default parameter settings for the
different learners as specified in WEKA [14]. Parameter
settings are changed only when a significant improvement
in performance is obtained.

3 Software Measurement Data Description

The software metrics and defect data used in our case
study were collected from four consecutive releases of a
very large telecommunications software system (denoted as
LLTS). Each of the software measurement data sets consist
of 42 software metrics: 24 product, 14 process, and four
execution metrics [5]. Details on these metrics are avoided
due to paper size consideration. A program module with
one or more faults is considered fp, and nfp otherwise. La-
beled chronologically as SP1, SP2, SP3 and SP4, the four
data sets consist of 3649, 3981, 3541 and 3978 modules,
respectively. These data sets suffer from the class imbal-
ance problem, i.e., the proportion of fp modules is much
lower than that of the nfp modules. The proportions of nfp
modules of four releases are 93.72%, 95.25%, 98.67% and
97.69%, respectively. The SP1 data set is used as fit (train-
ing) data, while the SP2, SP3 and SP4 data sets are used as
independent test (evaluation) data.

4 Empirical Case Study and Results

The experiments were conducted to discover the impact
of (1) standard cross-validation vs. cross-validation risk im-
pact; (2) wrapper based feature ranking vs. hybrid feature
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for each cross-validation method (CV and CVR) 
   for   each learner (NB, MLP, KNN, SVM, and LR) 
      for   each ranking technique (OA, DGM, AUC, PRC, and BAM)  
         rank features using fit data SP1 
         select top 6 features from ranked list 
         build classification model using reduced data set on SP1 with 

same learner 
         validate the model and collect the performance metrics AUC 

and BGM using test data SP2, SP3 and SP4 
      end 
   end 
end 

Figure 1. WRT experimental procedure

 

for each cross-validation method (CV and CVR)  
   for   each learner (NB, MLP, KNN, SVM, and LR) 
      for   each ranking technique (OA, DGM, AUC, PRC, and BAM)  
         rank features using fit data SP1 
         select top 30% features (12 features) from ranked list 
         select size 6 of feature subset using AHS 
         build classification model using reduced data set on SP1 with 

same learner 
         validate the model and collect the performance metrics AUC 

and BGM using test data SP2, SP3 and SP4 
      end 
   end 
end 

Figure 2. HFS experimental procedure

selection; (3) five different performance metrics used for the
rankers; and (4) five different learners.

We first used wrapper-based feature ranking to select the
subsets of attributes. Two approaches (CV and CVR), five
learners (NB, MLP, KNN, SVM and LR), and five perfor-
mance metrics (OA, DGM, AUC, PRC and BAM) form the
basis of our wrapper-based ranking techniques. The algo-
rithm for the wrapper-based feature ranking techniques and
the subsequent classification modeling is presented in Fig-
ure 1. We then used our proposed HFS technique to se-
lect the subsets of attributes. The HFS technique is a com-
bination of wrapper-based feature ranking and a (our pro-
posed) feature subset selection algorithm, AHS. The algo-
rithm of the HFS technique and the subsequent defect pre-
diction modeling is presented in Figure 2.

The defect predictors were evaluated in terms of AUC
and BGM. The results are summarized in Tables 1 through
5, where each value in a given table is based on six dimen-
sions: (1) feature selection technique (WRT vs. HFS); (2)
performance metric for feature ranking (OA, DGM, AUC,
PRC or BAM); (3) cross-validation strategy (CV vs. CVR);
(4) five classifiers (NB, MLP, KNN, SVM or LR); (5) per-
formance metric for the final models (AUC or BGM); and

Table 1. Learner – NB
CV CVR

AUC BGM AUC BGM
WRT HFS WRT HFS WRT HFS WRT HFS

OA 0.6977 0.7521 0.6552 0.7027 0.7653 0.7470 0.7190 0.6985
DGM 0.7697 0.8124 0.7226 0.7543 0.8246 0.7442 0.7608 0.7046

SP2 AUC 0.8217 0.8241 0.7576 0.7583 0.8272 0.8274 0.7560 0.7554
PRC 0.8151 0.8151 0.7474 0.7565 0.8228 0.8148 0.7489 0.7635
BAM 0.8192 0.8205 0.7552 0.7637 0.8188 0.7660 0.7555 0.7088

OA 0.6629 0.7442 0.6618 0.7145 0.7616 0.7471 0.7194 0.7248
DGM 0.8011 0.8250 0.7686 0.7821 0.8036 0.7390 0.7293 0.7026

SP3 AUC 0.8158 0.8088 0.7709 0.7518 0.8189 0.8259 0.7759 0.7691
PRC 0.8352 0.8314 0.7952 0.7884 0.8236 0.7962 0.7635 0.7660
BAM 0.8132 0.8142 0.7481 0.7698 0.8294 0.7678 0.7624 0.7337

OA 0.6710 0.7415 0.6817 0.6966 0.7745 0.7283 0.7380 0.7024
DGM 0.7791 0.8093 0.7449 0.7383 0.8006 0.7682 0.7396 0.7279

SP4 AUC 0.8132 0.8173 0.7316 0.7264 0.8081 0.8276 0.7227 0.7370
PRC 0.8264 0.8125 0.7612 0.7347 0.8038 0.7826 0.7221 0.7293
BAM 0.8136 0.8117 0.7441 0.7298 0.8211 0.7671 0.7557 0.7256

Table 2. Learner – MLP
CV CVR

AUC BGM AUC BGM
WRT HFS WRT HFS WRT HFS WRT HFS

OA 0.7687 0.8285 0.7275 0.7552 0.8055 0.8290 0.7384 0.7607
DGM 0.7922 0.8285 0.7339 0.7552 0.7802 0.7921 0.7208 0.7309

SP2 AUC 0.8093 0.8055 0.7444 0.7473 0.8329 0.8252 0.7600 0.7465
PRC 0.8299 0.8304 0.7617 0.7636 0.8038 0.8300 0.7416 0.7531
BAM 0.7978 0.8051 0.7430 0.7476 0.8295 0.8311 0.7509 0.7563

OA 0.7449 0.8372 0.7183 0.7875 0.7916 0.8499 0.7600 0.8128
DGM 0.7582 0.8372 0.7226 0.7875 0.7321 0.7947 0.7363 0.7552

SP3 AUC 0.8305 0.8331 0.7761 0.7750 0.8484 0.8427 0.7921 0.7730
PRC 0.8514 0.8467 0.8080 0.7886 0.8329 0.8418 0.8123 0.7815
BAM 0.8329 0.8325 0.7728 0.7754 0.8433 0.8440 0.7802 0.7815

OA 0.7689 0.8268 0.7620 0.7508 0.7848 0.8377 0.7202 0.7691
DGM 0.7650 0.8268 0.7565 0.7508 0.7724 0.7725 0.7076 0.7140

SP4 AUC 0.7899 0.7881 0.7195 0.7178 0.8248 0.8237 0.7469 0.753
PRC 0.8318 0.8274 0.7585 0.7539 0.7895 0.8220 0.7225 0.7525
BAM 0.7849 0.7886 0.7190 0.7180 0.8296 0.8325 0.7511 0.7483

Table 3. Learner – KNN
CV CVR

AUC BGM AUC BGM
WRT HFS WRT HFS WRT HFS WRT HFS

OA 0.5925 0.7118 0.6201 0.6490 0.7285 0.7210 0.6989 0.6797
DGM 0.7779 0.7764 0.7197 0.7272 0.7363 0.7302 0.6997 0.6797

SP2 AUC 0.7684 0.7822 0.7192 0.7327 0.7534 0.7321 0.7119 0.6843
PRC 0.7709 0.7722 0.7145 0.7265 0.7664 0.7608 0.7063 0.7096
BAM 0.7772 0.7842 0.7255 0.7329 0.7534 0.7477 0.7119 0.6942

OA 0.7226 0.7249 0.7210 0.6721 0.7397 0.7371 0.7059 0.7019
DGM 0.7565 0.7808 0.7269 0.7595 0.7702 0.7637 0.7381 0.7367

SP3 AUC 0.7639 0.8124 0.7372 0.7790 0.7600 0.7510 0.7121 0.7388
PRC 0.7739 0.8029 0.7189 0.7688 0.7588 0.7309 0.7102 0.7181
BAM 0.7709 0.8178 0.7439 0.7952 0.7600 0.7764 0.7121 0.7493

OA 0.6705 0.7534 0.7029 0.6798 0.6931 0.7119 0.6790 0.6957
DGM 0.7610 0.7479 0.7105 0.6936 0.7621 0.7572 0.7101 0.7179

SP4 AUC 0.7535 0.7466 0.6797 0.6958 0.7495 0.7577 0.6962 0.6999
PRC 0.7817 0.7439 0.7148 0.6856 0.7359 0.7358 0.6735 0.6971
BAM 0.7666 0.7450 0.6940 0.6929 0.7495 0.7565 0.6962 0.7326

Table 4. Learner – SVM
CV CVR

AUC BGM AUC BGM
WRT HFS WRT HFS WRT HFS WRT HFS

OA 0.6265 0.6516 0.5890 0.6015 0.7626 0.6317 0.7024 0.6645
DGM 0.3798 0.3930 0.4326 0.4283 0.7546 0.7237 0.7111 0.6939

SP2 AUC 0.7187 0.4423 0.6964 0.4862 0.6300 0.7520 0.6208 0.6915
PRC 0.7187 0.8123 0.6964 0.7432 0.7670 0.6278 0.6983 0.6050
BAM 0.7997 0.8347 0.7253 0.7722 0.3715 0.4815 0.4333 0.5350

OA 0.6114 0.6194 0.5752 0.5990 0.7360 0.7108 0.7031 0.6923
DGM 0.4025 0.4179 0.4418 0.4674 0.7219 0.6651 0.6969 0.6636

SP3 AUC 0.6902 0.5761 0.6544 0.5968 0.6892 0.7611 0.6695 0.6954
PRC 0.6902 0.8040 0.6544 0.7743 0.7613 0.6980 0.7460 0.6593
BAM 0.8352 0.8351 0.7801 0.7771 0.3538 0.5391 0.4194 0.5538

OA 0.5510 0.6078 0.5559 0.6161 0.7454 0.6543 0.6923 0.6792
DGM 0.4725 0.5046 0.5290 0.5520 0.6939 0.7243 0.6794 0.6932

SP4 AUC 0.6996 0.5761 0.6704 0.5968 0.7561 0.7610 0.7059 0.7094
PRC 0.6996 0.7881 0.6704 0.7243 0.7705 0.7510 0.7187 0.7186
BAM 0.7683 0.8033 0.7162 0.7314 0.2913 0.3798 0.3730 0.4670
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Table 5. Learner – LR
CV CVR

AUC BGM AUC BGM
WRT HFS WRT HFS WRT HFS WRT HFS

OA 0.8258 0.8272 0.7443 0.7545 0.7648 0.7611 0.7092 0.6992
DGM 0.8024 0.8263 0.7413 0.7482 0.7676 0.8033 0.7095 0.7462

SP2 AUC 0.8331 0.8310 0.7675 0.7681 0.8224 0.8224 0.7528 0.7528
PRC 0.8331 0.8314 0.7675 0.7649 0.7626 0.8133 0.7151 0.7390
BAM 0.8234 0.8333 0.7561 0.7634 0.8260 0.8234 0.7539 0.7556

OA 0.8252 0.8468 0.7599 0.7881 0.7721 0.7572 0.7168 0.7017
DGM 0.7840 0.8435 0.7232 0.7811 0.7592 0.7936 0.7131 0.7620

SP3 AUC 0.8471 0.8528 0.8040 0.8126 0.8374 0.8374 0.7937 0.7937
PRC 0.8471 0.8527 0.8040 0.8122 0.7529 0.8053 0.7117 0.7572
BAM 0.8473 0.8467 0.7915 0.7875 0.8485 0.8520 0.7915 0.8034

OA 0.8315 0.8211 0.7711 0.7521 0.7416 0.7885 0.7073 0.7538
DGM 0.8145 0.8377 0.7569 0.7626 0.7440 0.7826 0.7025 0.7281

SP4 AUC 0.8341 0.8374 0.7547 0.7595 0.8024 0.8024 0.7381 0.7381
PRC 0.8341 0.8318 0.7547 0.7579 0.7473 0.7916 0.7388 0.7437
BAM 0.8311 0.8285 0.7591 0.7479 0.8115 0.8103 0.7379 0.7395

Table 6. ANOVA in terms of AUC
Source Sum Sq. d.f. Mean Sq. F p-value
A 0.1238 4 0.0309 8.38 0
B 0.0034 1 0.0034 0.93 0.336
C 1.1241 4 0.2810 76.11 0
D 0.0049 1 0.0049 1.32 0.252
A×B 0.1526 4 0.0382 10.33 0
A×C 0.1916 16 0.0120 3.24 0
A×D 0.0067 4 0.0017 0.46 0.768
B×C 0.0230 4 0.0058 1.56 0.186
B×D 0.0033 1 0.0033 0.90 0.345
C×D 0.0067 4 0.0017 0.46 0.768
Error 0.9453 256 0.0037
Total 2.5856 299

(6) test data set (SP2, SP3 or SP4). For example, the first
value in Table 1, 0.6977, refers to the predictive accuracy in
terms of AUC for the NB classifier on the first test data set
(SP2), where the NB classifier was built with the six fea-
tures that were selected using the ranker, which was formed
by the NB learner in conjunction with the OA performance
metric and using the CV approach on the fit data.

We perform a four-way ANalysis Of VAriance
(ANOVA) F-test with respect to the AUC and BGM met-
rics (separately), to statistically examine the various effects
on the models’ performances. The four main factors in
the ANOVA test are: Factor A, for the five performance
metrics used for the rankings (OA, DGM, AUC, PRC and
BAM); Factor B, for the two cross-validation strategies (CV
and CVR); Factor C, for the five learners (NB, MLP, KNN,
SVM and LR); and Factor D, for the two feature selection
methods (WRT and HFS). The interaction effects of any two
factors were also considered in the ANOVA test.

The ANOVA model can be used to test the hypothesis

Table 7. Classification on 42 attributes
SP2 SP3 SP4

learner AUC BGM AUC BGM AUC BGM
NB 0.8149 0.7457 0.7963 0.7248 0.8059 0.7411

MLP 0.8314 0.7595 0.8322 0.7688 0.8309 0.7655
KNN 0.7849 0.7255 0.8054 0.7746 0.7901 0.7285
SVM 0.6662 0.6655 0.6519 0.6622 0.6779 0.6948
LR 0.8287 0.7486 0.7989 0.7557 0.8246 0.7382
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Figure 3. Multiple comparisons for AUC
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that the AUC (or BGM) for the main factors A, B, C and D
and/or for the interaction effects (terms) A×B, A×C, A×D,
B×C, B×D and C×D are equal against the alternative hy-
pothesis that at least one mean is different. If the alternative
hypothesis is accepted, multiple comparisons can be used
to determine which of the means are significantly different
from the others. We performed the multiple comparison
tests using Tukey’s honestly significant difference (HSD)
criterion. A significance level of α = 5% is used for all
statistical tests. The ANOVA results based on AUC are pre-
sented in Table 6. From the table, we can see that the p-
values (last column of Table 6) for the main factors A and C
and the interaction terms A×B and A×C are less than 0.05,
indicating the AUC values are not similar for all groups in
each of these factors or interaction terms.

Additional multiple comparisons for the main factors
and interaction terms were performed to investigate the dif-
ference among the respective groups (levels). Although the
ANOVA tests showed that all the group means are equal
(similar) for Factor B and Factor D, we also performed
the multiple comparisons for both factors to identify which
group means are higher. The test results are shown in Figure
3, where each sub-figure displays graphs with each group
mean represented by a symbol (◦) and 95% confidence in-
terval. The summarized results reveal the following:

1. For Factor A (Figure 3(a)), the rankers based on AUC
or PRC as performance metrics significantly outper-
formed those using OA or DGM as performance met-
rics. The rankers based on the BAM performance met-
ric come in within the two above groups.

2. For Factor B (Figure 3(b)), CV performed generally
better than CVR (at significance level of 0.336). How-
ever, since CV has lower relative complexity, we rec-
ommend CV in this research.

3. For Factor C (Figure 3(c)), the NB, MLP and LR clas-
sifiers performed significantly better than the SVM and
KNN classifiers. While MLP and LR performed the
best, SVM performed the worst.

4. For Factor D (Figure 3(d)), HFS outperformed WRT
(at significance level of 0.252). HFS searches a subset
of features that collectively has good predictive power,
while WRT only considers each feature’s predictive
capability; therefore, may miss a feature that only has
better predictive power when combined with another
feature(s). We recommend HFS in this research.

5. For the interaction term A×B (Figure 3(e)), 10 groups
(levels) are presented – five performance metrics used
in conjunction with two cross-validation methods. The
rankers based on AUC and PRC performed better than
the rankers based on OA and DGM for both cross-
validation methods, CV and CVR. The rankers based

Table 8. t-test
p-value ↘ AUC BGM
NB 0.5690 0.9212
MLP 0.2645 0.4595
KNN 0.0341 0.0650
SVM 0.8533 0.5256
LR 0.8037 0.7132

on BAM outperformed the rankers based on all other
performance metrics for the CV method. In contrast,
rankers based on BAM performed worst compared to
all other performance metrics for the CVR method.

6. For the interaction term A×C (Figure 3(f)), 25 groups
(rankers) are presented. The rankers that use the NB,
MLP and LR learners and based on the AUC, PRC
and BAM performance metrics outperformed the other
rankers. This conclusion is consistent with the results
obtained from the main factors A and C. Subsequent
to an ANOVA test and multiple comparisons analysis
with respect to BGM, the conclusions drawn were very
similar to those when AUC is the response variable.

We also compared the performances (with respect to
AUC and BGM) of the defect prediction models built with
the subsets of features to those built with the complete set of
features – Table 7. A t-test was used for the comparisons at
the α = 0.05 significance level. For each learner, we have
two groups of classification models: one group was created
by using the smaller subsets of features (six attributes in
this study as explained earlier), while the other group was
created by using the original dataset with 42 software at-
tributes. The t-test results are presented in Table 8. For all
the learners, except KNN, the classification performances
are very similar (p-values are less than 0.05) regardless of
whether the complete set of attributes were used to build the
prediction models or when the selected subsets of features
were used to build the prediction models. In the case of
KNN, the models constructed using the complete set of at-
tributes performed better than the models constructed using
the smaller subsets of features.

5 Related Work

We provide a brief overview of the most relevant works
on feature selection, primarily in the software engineering
field. The reader is referred to the cited references for fur-
ther details on the respective works – due to the paper size.

Guyon and Elisseeff [3] present feature construction,
feature ranking, multivariate feature selection, efficient
search methods, and feature validity assessment methods.
Liu and Yu [11] present an integrated approach to intel-
ligent feature selection. Based on datasets from the UCI
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machine learning repository, Hall and Holmes [4] investi-
gate six feature ranking techniques (in association with the
C4.5 and Naı̈ve Bayes learners) and conclude that wrappers
were generally better in terms of accuracy, but not in terms
of computational complexity. Some other works include:
Saeys et al. [13], Jong et al. [7], and Ilczuk et al. [6].

The application of feature selection to problems in the
software quality and reliability engineering is rather lim-
ited. Chen et al. [1] study wrapper-based techniques for
software cost estimation, concluding that the data reduc-
tion improved estimations. Rodrı́guez et al. [12] evaluate
three filter- and three wrapper-based models for software
metrics and defect data sets, with the conclusion that wrap-
pers were better than filters but only at a high computational
cost. Compared to our work, Rodrı́guez et al. [12] base
their conclusions on cross-validation training performance
alone. We use three independent test data sets for model
evaluation, in addition to using cross-validation for model
training. Using independent test data sets during feature se-
lection for defect prediction is relatively unique to our study.

6 Conclusion

A system with a long operational life is associated with
practical issues related to software defect prediction, such as
likely variations in the development process, data collection
strategy, software quality goals, etc. from one development
cycle to another. The software attributes and defect data
collected from each source (a given release) provide unique
perspectives into quality characteristics of that development
project. Thus, mining project data from multiple system
releases becomes vital to building a useful defect predictor.

This paper investigates feature selection for software
quality modeling. A large case study of software met-
rics and defect data compares the attribute selection per-
formances of wrapper-based feature ranking techniques
(WRT) and our proposed hybrid feature selection (HFS)
technique. Four large software measurement data sets ob-
tained from a real-world system are used in the study. Our
results reveals that among the two attribute selection tech-
niques, HFS outperforms WRT. A comparison of the two
cross-validation strategies indicates that cross-validation by
itself is better than cross-validation with risk impact consid-
eration. For the case study, even the removal of over 85%
of software metrics did not have a negative effect on the
consequent model’s performance.

Further work will include empirical analysis with ad-
ditional feature selection techniques in the context of data
from other software development projects. A comparison of
wrapper-based ranking and filter-based ranking would also
benefit software quality practitioners.
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