

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/
M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved
from: https://ujdigispace.uj.ac.za (Accessed: Date).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

N~,,\O

~'ON\~

THE NORMALIZATION OF FRAMES AS A SUPERCLASS OF
RELATIONS

by

JACOB JONKER

DISSERTATION

submitted in fulfillment of the requirements for the degree of

MASTERS IN NATURAL SCIENCE

in

COMPUTER SCIENCE

in the

FACULTY OF SCIENCE

at

RAND AFRIKAANS UNIVERSITY

SUPERVISOR: PROF. E.M. EHLERS

NOVEMBER 1992

Contents

Opsomming '" " vi

Abstract vi

CHAPTER I : Introduction 1

1.1 Frames and Relations 1

1.2 Differences vs. Similarities : 1

1.3 Data, Information and Knowledge I

1.4 Knowledge-Bases and Databases 3

1.5 Model Theoretic and Proof Theoretic Views of Databases 3

1.6 Database Management Systems and Expert Systems 4

1.7 Knowledge-based Systems and Artificial Intelligence 5

1.8 Framework for study 6

CHAPTER II : Relations and Their Operations 8

2.1 Introduction 8

2.2 Re1ations 8

2.3 Example 10

2.4 Normalization II

2.4.1 First Normal Form 12

2.4.2 Second Normal Form 12

2.4.3 Third Normal Form 15

2.4.4 Fourth Normal Form 17

2.4.5 Project-Join Normal Form 17

2.4.6 Domain-Key Normal Form 19

2.5 Integrity Constraints 19

2.5.1 Uniqueness property 19

2.5.2 Referential integrity 20

2.6 Conclusion 20

CHAPTER III : Frames 21

3. I Introduction 21

3.2 Knowledge Representation 2)

3.3 The development of Frames 22

3.4 Frames 22

3.4.1 Example Frames 23

3.5 Different Views of Frames 24

II

3.6 Application Areas of Frames 24

3.6.1 Frames and Vision 25

3.6.2 Frames and text. 25

3.6.3 Frames and Expert Systems 26

3.7 Frames as an Object-oriented Representation Scheme 26

3.8 Semantics and Basic Characteristics of Frames 26

3.8.1 Frame Inference 27

3.8.2 Seeing as 28

3.8.3 Defaults 28

3.8.4 Reflexive Reasoning 28

3.9 Conclusion 29

CHAPTER IV : Formal Definitions of Frames 30

4.1 Introduction 30

4.2 Representation Languages 30

4.2.1 Frame representation Language (FRL) , 30

4.2.2 Knowledge Representation Language (KRL) 31

4.3 Mathematical Definitions 31

4.3.1 Algebraic Structured Model of Frames 31

4.3.2 Predicate Algebra Notation of Frames 32

4.3.3 Functional mapping definition of Frames 33

4.4 Formal Definition of a Frame 34

4.4.1 Example 35

4.5 Conclusion 36

CHAPTER V : Problems With Frames : 37

5.1 Introduction 37

5.2 Representing Knowledge 37

5.2.1 Conflicting requirements 37

5.2.2 Blindness 38

5.2.3 Common sense knowledge 38

5.2.4 Self-knowledge and meta-knowledge 38

5.3 Problems with Frames as a Knowledge Representation Structure 38

5.3.1 Lack of theoretical foundations and formalisms for using

frames: 38

5.3.2 Default Reasoning: : 39

5.3.3 Ineffective search 39

5.3.4 Enforcing of Integrity constraints 39

III

5.4 Advantages of Using a Frame-based Representation Scheme 40

5.4.1 Natural Representation of Knowledge 40

5.4.2 Multiple relationships 40

5.4.3 Combining declarative and procedural information 40

5.5 Conclusion : 40

Chapter VI : The Normalization of Frames 41

6.1 Introduction 41

6.2 Comparison ofFrames and Relations 41

6.3 Normalization 44

6.3. I Functional dependence and primary keys 46

6.3.2 Non-Derivable normal form 47

6.3.3 First Normal Form : 49

6.3.4 Second Normal Form 50

6.3.5 Third Normal Form 52

6.3.6 Fourth Normal Form ..: 53

6.4 The Relational Algebra 53

6.4.1 Select.. 53

6.4.2 Project 54

6.4.3 Join 55

6.4.4 Union 55

6.5 Motivation of normalization 56

6.6 Advantages of Seeing Frames as a Superclass of Relations 57

6.6.1 Lack of theoretical foundations and formalisms for using

frames 58

6.6.2 Ineffective search 58

6.7 A Complete Example of Frame Normalization 58

6.7.1 The Example: 58

6.7.2 Normalization 61

6.7.2.1 Non-derivable normal form 6'1

6.7.2.2 First Normal Form 61

6.7.2.3 Second Normal Form 64

6.7.2.4 Third Normal Form 65

6.7.2.5 Fourth Normal Form 66

6.7.3 The Normalized Example 66

. 6.8 Conclusion 67

Chapter VII : An Overview of Expert Systems 68

iv

7.1 Introduction 68

7.2 Expert Systems 68

7.3 Rule based Expert Systems 69

7.3.1 Domain specific knowledge 69

7.3.2 Domain-independent knowledge 69

7.3.3 Advantages of a rule-based expert system 70

7.3.4 Disadvantage of separation of knowledge and control 70

7.4 Frame based Expert Systems 71

7.4.1 Domain specific knowledge 71

7.4.2 Domain-independent knowledge 71

7.4.3 Advantages of a frame-based expert system 72

7.4.4 Disadvantages of frame-based expert systems 72

7.5 Hybrid Expert Systems 72

7.5.1 Domain Specific Knowledge : 73

7.5.2 Domain-Independent Knowledge 73

7.5.3 Advantages of hybrid expert syste ns 73

7.6 Conclusion 74

Chapter VIn : The Integration of Knowledge-based Systems and Database

Management Systems 75

8.1 Introduction 75

8.2 Motivation 75

8.3 Classification 76

8.4 Approaches to Integrate Expert Systems and Database Management

Systems 78

8.4.1 Expert Database Systems 78

8.4.1.1 Architecture of an Expert Database System 78

8.4.1.2 Important issues about EDS 79

8.4.1.3 Inference versus Query Evaluation: A Comparison 80

8.4.1.4 Conclusion : '" 80

8.4.2 The Extended Disjunctive Normal Form Approach 81

8.4.2.1 Advantages of the EDNF Approach 81

8.5 Using the Relational Model for Knowledge-bases 81

8.5.1 Knowledge Representation Using Views in Relational

Deductive Databases ; 82

8.5.1.1 Knowledge-bases and Databases... .. 83

8.5.1.2 Rules and Views 83

v

8.5.2 Extensions to the Relational Algebra 83

8.5.3 Deductive object bases 83

8.5.4 A Mapping from Frame-based knowledge to Nested

Relations 84

8.5.5 Frames as a Superclass of Relations 84

8.5.5.1 An Alternative view of a Frame-based Expert

System 84

8.6 Objections Against Using Relational Databases for Representing

Knowledge " .." '" ., 86

8.7 Database management systems and Knowledge-based systems as

complementary technologies 88

8.8 Conclusion 88

Chapter IX : Normalization and the System Development Life Cycle of Expert

Systems 90

9.1 Introduction 90

9.2 Steps in Developing an Expert System : 90

9.2.1 Feasibility 90

9.2.2 Selecting a Development Tool. 91

9.2.3 Knowledge Acquisition 91

9.2.4 Creating a Representation of the Knowledge 92

9.2.5 Verification and Evaluation 93

9.2.6 Maintaining and Expanding the System 93

9.3 Encoding the Knowledge 93

9.3.1 Represent the knowledge as colIections of frame classes 94

9.3.2 Identify all the keys 94

9.3.3 Normalize the Frames 95

9.3.4 Determine defaults, domains and constraints 95

9.4 Conclusion 96

CHAPTER X : CONCLUSION 97

10.1 Introduction 97

10.2 Frames as a Superclass of Relations 97

10.3 Topics for Further Research 98

10.4 Conclusion 98

REFERENCES AND BIBLIOGRAPHy : 99

vi

Opsomming

Daar is sekere probleme met kennisvoorstelling, wat me veroorsaak word deur

kennisvoorstellingsstrukture wat onvoldoende is nie, maar deur die manier waarop die

kennisvoorstellingsstrukture gebruik word. In die eerste deel van hierdie verhandeling kyk

ons na die relasie model (vir databasisbeheerste1sels) asook na rame ('n

kennisvoorstellingsstruktuur gebruik in ekspertstelsels) , soos voorgestel deur M. Minsky

[MIN75]. Ons verskaf dan ons eie definisie van rame, gebaseer op die definisie van

Minsky. In die tweede gedeelte, vergelyk ons die twee mode1le (die relasie model en ons

model van rame), en ons toon aan dat rame gesier. kan word as 'n superklas van relasies.

As gevolg van die verwantskap tussen die twee modelle, definieer ons normalisering vir

rame en ons ondersoek hoe die normalisering sekere van die probleme wat ons

geidentifiseer het, oplos. Daarna kyk ons na die integrasie van ekspertste1sels en

databasisbeheerstelsels, en ons klassifiseer dan ook ons normalisering as so 'n poging. Ten

slotte ky': ons na die plek van normalisering in die ekspertstelsel ontwikke1ings

lewensikh s.

Abstract

Knowledge representation suffers from certain problems, which is not a result of the

inadequacies of knowledge representation schemes, but of the way in which they are used

and implemented. In the first part of this dissertation we examine the relational model (as

used in relational database management systems) and we examine frames (a knowledge

representation scheme used in expert systems), as proposed by M. Minsky [MIN75]. We

then provide our own definition of frames. In the second part, we examine similarities

between the two models (the relational model and our frame model), establishing frames

as a superclass of relations. We then define normalization for frames and examine how

normalization might solve some of the problems we have identified. We then examine the

integration of knowledge-based systems and database management systems and classify

our normalization of frames as such an attempt. We conclude by examining the place of

normalization within the expert system development life cycle.

1

CHAPTER I : Introduction

1.1 Frames and Relations

In this chapter we provide the rationale for wanting to establish frames as a superclass of

relations. We look at the distinctions between data, information and knowledge, and at the

differences in the state of technology in databases and expert systems. We also provide a

framework for our study.

1.2 Differences vs. Similarities

Most textbooks on expert systems, devote some time to the differences between expert

system tools and more traditional programs, like database management systems and

management information systems (MIS) [BOW88, LUG89]. Specifying these differences

serve to better define the concept of expert systems. Th-: mistake that is made by many

however is to stop as soon as they have identified iiese differences. This is very

unfortunate, as, in general, just as much knowledge might be gained by looking at

similarities between concepts, as can be by looking at differences. The main advantage of

identifying similarities between two concepts, is that it is .hen possible to modify results

proven or discovered for one concept and to re-use them or apply them to the second

concept.

This dissertation is devoted, primarily to the similarities between expert systems, and

database management systems, more specifically to the similarity between frames (a

knowledge representation scheme, used in some expert systems) and relations (a model

used by most commercial database management systems).

1.3 Data, Information and Knowledge

Data is said to refer to numeric or alphanumeric strings, and the processing of data is said

to be limited to various sorting, filtering and collating operations performed on these

elementary data fields.

When data is organized and meaningfui to a person, it is called information. In other

words: the right data, available at the right place and time is information. The fundamental

2

difference between data and information is therefore, not necessarily its structure, but its

application.

Symbols are the representation of data or information as meaningful related objects,

symbols in other words are a different representation of data and information that is

meaningful to a person or group of persons.

Knowledge is said to be characterized in terms of three aspects: the knower, the known

and the process of knowing. Knowledge in other words is the interaction between the

knower and the known. [BOW88]

Increased

abstraction

and Power

e.g. Expert Systems

Knowledge Level

e.g. Spreadsheets,

Business Graphics

Symbol level

e.g. Traditional Data

Processing Programs

Information Level

e.g. ASCII, EBCDIC, Hardwired Logic

Data Level

Fig. 1.1 Four levels of abstraction in computer systems. [BOW88]

The differences between knowledge, symbols, information and data are very subjective. If

in some or other program the fact is stored that Peter's birthday is on the second of

October, it is a piece of data, should this program inform me on the First of October, that

tomorrow is Peter's birthday, this fact is called information, and if I know when Peter's

birthday is it is called knowledge.

3

1.4 Knowledge-Bases and Databases

The reason for the previous discussion is simply to illustrate the following:

Although the internal structure of databases, and knowledge-bases generally differ,

because different representation schemes are used in each (relations as opposed to rules),

the 'items' contained within a database might be used as knowledge, and the 'items'

contained within a knowledge-base might be used as data or information. The only real

difference between a database and knowledge-base, is the use to which their contents are

put. It is possible for two different applications to contain exactly the same 'databases'

identical in both structure and content, but one might be classified as a database system

and the other as an expert system.

Because of this similarity between knowledge-bases and databases, the following should

be possible:

I) It should be possible to develop expert systems, that provide mechanisms to ensure

integrity at d optimize queries, using traditional database management techniques.

2) It should b ~ possible to develop databases systems, using expert system development

tools.

The second point is not intended to suggest developing database systems using expert

system development tools, but is intended as a test for any expert system development

tool. If an expert system development tool is not able to access its knowledge or data just

as efficiently as any commercial database management system and does not provide the

same level of integrity, you will be better off developing a serious expert system using

database management software. An expert system tool that is worth anything should

provide methods to manipulate its data that is at least equal to the methods used by

database management systems [UCK9I, REI89].

1.5 Model Theoretic and Proof Theoretic Views of Databases.

There are two distinct views of a relational database:

The first, the model theoretic view of a database, is the traditional perception of a

relational database. In this view, a database is seen as a set of explicit base relations. In

4

this view, the processing of a query is seen as the equivalent to evaluating a formula over

the tuples of the database.

The second, alternative view, proposed by Reiter is the proof theoretic view. In this view,

a database is consistent of a set of facts, encoded as tuples in the relations and a set of

deductive. axioms that can be used to derive new facts. In this approach, processing a

query is seen as the same as proving a theorem, that is, that some specified fact is the

logical consequence of the axioms stored in the database. rUCK91, DAT90]

1.6 Database Management Systems and Expert Systems

The situation that currently exists is the following:

Database management systems that manage large volumes of data with a rather simple

structure have been designed [DAT90, REI89, PRA87]. These database management

systems have extremely effective data storage and retrieval functions that are able to

efficiently manage the large volumes of data generated by a nodern commercial database

application. Expert systems that have been developed, use ~ ophisticated representation

schemes, but the aspect of handling large volumes of knowledge, has not been an issue,

because most expert systems were designed for small experimental applications, that were

able to keep all their knowledge in main memory, making even .i sequential search through

all its knowledge reasonably fast [REI89].

Using existing methods, to develop a real-world knowledge-based system raises new

problems.

- It is difficult to assure integrity of knowledge during modification of any part of the

knowledge-base.

- Efficiently searching through a large knowledge-base might also go beyond acceptable

computational time. [REI89]

The same type of problems has already been solved for relational database systems

[PRA87, DAT90, C0090, MAl83]. These problems were mainly solved by normalization

of relations and by the definition of concepts such as primary and foreign keys of a

relation. In this dissertation (chapter 6) we examine the similarities between frames and

relations and we attempt to define normalization for frames. In figure 1.2 we see a

summary of the current situation in database and expert systems.

5

Database Systems Expert Systems

- Simple data structures - Complex knowledge representation

structures

- Large Volumes of data - Generally small amounts of

knowledge

- Efficient mechanisms for: - Ineffective mechanisms when

• Integrity processing large volumes of

• Storage and retrieval knowledge.

Fig. 1.2 Comparison of Database and Expert Systems.

1.7 Knowledge-based Systems and Artificial Intelligence

Artificial il/telligeuce(Al) can be defined as the branch of computer science, that involves

itself with the automation of intelligent behavior. The term Artificial intelligence is a

misnomer, because it is impossible to create artificial intelligence without knowing the

exact nature of intelligence. Current artificial intelligence applications. can more correctly

be described as 'simulated' intelligence, as these systems only seem to act intelligently.

The term Artificial Intelligence is however used so frequently that it is doubtful that the

more correct term will ever be adopted [TEL88, LUG89].

AI research can be divided into different research areas, which include:

1) Game playing:

This is one of the oldest areas in Al research, that focus primarily on strategy

games, like chess and checkers [TEL88, LUG89]. The most important issues in

game playing are: How to represent the different board configurations, and how to

search the problem space.

2) Expert systems:

Expert systems or knowledge-based systems use' domain-specific knowledge to

solve problems in a specific problem domain [BOW88, LUG89).

3) Natural-language processing:

Natural language processing involves not only the parsing of sentences into

individual parts of speech, and looking up the meaning of words in a dictionary. It

also includes the application of extensive background knowledge about the domain

6

of discourse, to correctly interpret the meaning of human speech [LUG89]. An

example of a system that processes natural language is BORIS [TEL88, BLA86].

BORIS was developed at Yale University and is able to understand large bodies of

natural-language texts. BORIS, when given a story to read is able to answer

questions about the characters in the story and why they took certain actions.

-I) Machine learning:

Most expert systems are unable to learn. The objective of machine learning is to

enable programs to learn, from experience, analogy and examples [LUG89].

5) Vision and sensory recognition:

This area of research attempts to provide computers with the ability to evaluate

visual images and to take action on them. Examples of this are a system for

recognizing a face from stored pictures of people, or a system that is able to drive

a motor car, without driving into anything [TEL88].

The most promising area of AI research is expert and knowledge-based systems. It is

however impossil le to separate it from other AI research areas, as they are all interrelated.

For example a sy uem for machine learning might utilize an expert system, as well as a

natural-language interface. Therefore, knowledge representation is not only important for

expert systems, but for all areas of Artificial Intelligence.

1.8 Framework for study

We begin by giving the formal definition of relations, and looking at the normalization of

relations and the motivation for the normalization process (chapter 2).

We then look at knowledge representation schemes, paying particular attention to frames

(chapter J).

In chapter 4 we look at the different formal definitions of frames and conclude by giving

our own definition of frames.

We then look at problems with knowledge representation schemes in general, and at

problems with frames in particular (chapter 5).

After formally defining frames and relations, we compare the two structures for

differences and similarities, using the definition of relations, given in chapter 3 and our

own definition of frames for this comparison. We then define normalization for frames,

and examine the effect of 'normalization' on frames (chapter 6).

7

In the next chapter we examine expert systems and the distinction between frame- and

rule-based expert systems (chapter 7).

In chapter 8 we take a look at the integration of database management and knowledge

based systems.

And in chapter 9, we provide a methodology for using normalization during the

development of a frame-based expert system.

8

CHAPTER II : Relations and Their Operations

2.1 Introduction

A relation is a mathematical structure used as the foundation for the organization of data

in a relational database. The relational model was originally presented by Dr. E.F. Codd in

1970. This, at that time, radically different model, lead toa great deal of research and in

the early 1980s relational databases started to appear, and soon replaced other database

models, as the industry standard [PRA87).

In this chapter we will examine relations, and the normalization of relations. This is done

to provide a basis for comparison, when a formal definition of frames is given later.

Basic Definitions:

Relation: In its simplest terms, a relation can be seen as a two-dimensional table, with

each row in the table having the same format. Each row of a relation represents some

object in the real world, and each column represents specific attributes or characteristics of

these 'objects' [PRA87, DAT90, MAI83). In the next section we will give a more detailed

definition of the term relation.

Tuple: Each row of a relation is technically called a tuple. The number of tuples in a

specific relation is called its cardinality [PRA87, DAT90).

Attribute: Each column of a relation is technically called an attribute. The number of

attributes of a relation is called its degree [PRA87, DAT90).

Domain: The pool of values from which an attribute or group of attributes may draw their

actual values is called a domain [PRA87, DAT90).

2.2 Relations

The following formal definition of a relation. is given by c.J. Date [DAT90]. and is a

slightly modified version of the original definition given by Codd.

9

A relation R on a collection of domains 0 J, 02, ..., 01/

(not necessarily distinct) consists of two parts, a body and a heading,

The heading consists of a fixed set of attribute-domain pairs,

such that each attribute Aj corresponds to exactly one of the underlying domains ~j.

forj= 1,2, "0,11,

where 11 is the degree of the relation and,

Aj is the name of attributej.

The body consists of a time-varying set of n-tuples, where each tuple in turn consists of a

set of attribute-value pairs,

for i = I, 2, ..0' 111,

where 111 is the cardinality of the specific relation and,

vij is the value' of the i 'th tuple's j 'th attribute.

Properties ofRelations

Relations possess certain properties, all of them direct, but not necessarily obvious,

consequences of the above definition of a relation. The properties within any given relation

are as follows:

- There are no duplicate tuples;

- Tuples are unordered (top to bottom);

- Attributes are unordered (left to right);

- All attribute values are atomic. [DAT90]

1. There are 110 duplicate tuples

This follows directly from the definition of the body of the relation as a mathematical set,

as sets by definition do not contain any duplicate elements.

10

2. Tuple...· are unordered (top 10 bottom)

This property also follows from the fact that the body of the relation is a mathematical set.

Sets in mathematics are not ordered.

3. Attributes are unordered (left to right)

This property follows from the fact that the heading of a relation is also defined as a set.

4. All attribute values are atomic

This last property is a consequence of the fact that all underlying domains, contain atomic

values only. This property can also be stated as follows: Relations do not contain

repeating groups. A relation satisfying this condition is said to be normalized.

2.3 Example

- The Department the student belongs to.

- The date on which each course was finished.

- A unique number given to each student.

- The name of the student.

- The codes of courses already attended by the student.

- The name of each course.

Person name

Course number

Course name

Dept. number

Date

We will illustrate normalization of relations, using the table in figure 2.1, which in its

current form is still unnormalized and strictly speaking, not a relation at all because some

of its attribute values are not atomic. The relation we are using as ".n example has the

following attributes:

Person number

Students

Person Person Course Course Dept. Dept. Date

number name number name number name

003560 D. Adams 3016 Typing LOOO Languages 90109/07

3019 Orientation 91/01/03

4057 Greek I 91/07/03

000834 L. Davies 3016 Typing LOOO Languages 89/0 1/31

3017 Latin 1 90/02/25

00787,6 P. Davies 4011 Physics I EO 11 Science 90/01107

Fig. 2.1 An Unnormalized relation containing information about students.

11

2.4 Normalization

Normalization is a process of transforming a relation, into equivalent relation(s), that

eliminate certain problems (update anomalies), that might cause difficulty in updating the

relation consistently, in its original form. Before it is possible to go into normalization in

any detail, it will be necessary to first define some basic concepts:

Functional Dependence

Given a relation R, attribute Y of R isfunctionally dependent on attribute X of R

-symbolically: R.X -+ R.Y (read "R.X functionally determines R.Y")

- if and only if each X-value in R has associated with it precisely one Y-value in R

(at anyone time). Attributes X and Y may be composite. [DAT90]

Functional dependence is a semantic notion. Recognizing the functional dependencies is

part of the process of understanding what the data means. Functional dependence implies

that given:

R.X -+ R.Y, and given a value for R.X, it will be possible to determine a unique value for

R.Y, by inspecting the relation R. It is important to realize that functional dependence can

not be determined by only inspecting sample data, it is necessary to understand the

meaning of the data to make any decision about functional dependencies [DAT90].

In our example the following functional dependencies are present:

Person number -+ Person name, Dept. number

Course number -+ Course name

Dept. number -+ Dept. name

Person number, Course number -+ Date.

Primary key

Given a relation R, attribute R.Y (R.Y may be composite) is the primary key of R

if:

I. AII attributes in R are functionally dependent on R.Y.

2. No subset of the attributes in R Y also has property I [DAT90].

In other words the primary key of a relation R is the smallest subset of its

attributes, that has a unique set of values for each of its tuples.

12

Given this definition of a primary key, and the formal definition of a relation, it is obvious

that a relation always has a primary key even if the primary key consists of all of its

attributes, since a relation may contain no duplicate tuples.

In the example the primary key is the combination of the Person number and the Course

number attributes.

2.4.1 FirstNormal Form

A relation is infirst normalform (l NF) only if it contains no repeating groups.

A relation containing repeating groups is, strictly speaking, not a relation at all and IS

called an unnormalized relation.

Students

Person Person Course Course Dept. Dept. Date

number name number name number name

003560 D. Adams 1016 Typing LOOO Languages 90/09/07

003560 D. Adams 3019 Orientation LOOO Languages 91/01/03

003560 D. Adams 4057 Greek I LOOO Languages 91/07/03

000834 L. Davies ':016 Typing LOOO Languages 89/01/31

000834 L. Davies 3017 Latin I LOOO Languages 90/02/25

007876 P. Davies 40 II Physics I EOll Science 90/01/07

Fig. 2.2 The students relation without repeating groups (1 NF)

Removing the repeating groups in the example produces the relation in figure 2.2.

2.4.2 Second Normal Form

Even though a relation is in INF, problems may exist within the relation that will cause us

to want to restructure it. Consider the relation in figure 2.2:

STUDENTS (Person number, Course number, Person name, Course name, Dept. number,

Dept name., Date).

13

with functional dependencies:

Person number ~ Person name, Dept. number

Course number ~ Course name.

Dept. number~ Dept. name.

Person number, Course number-» Date.

As you can see in figure 2.2., the description of a specific course occurs several times in

the relation. This redundancy causes several problems, of which the least is that it is a

waste of space. The other problems caused by this are called update anomalies and they

fall in the following categories:

• Update.

• Inconsistent Data.

• Additions.

• Deletions [PRA87].

In our example the following update anomalies, are evident in each of there categories:

J. Update

Changing the description of course 3016 requires not one change but several - each row

where 3016 appears, has to be changed.

2. Inconsistent Data

There is nothing about the design that would prevent course 3016 from having two, or

more, different descriptions in the database.

3. Additions

We have a problem when we wish to add a new course that has not been attended by

anyone before.

-I. Deletions

In the example, if we delete the record ofP. Davies, we also lose the fact that course 40 II

is Physics I.

These anomalies lead to the definition of second normal form, which eliminates the above

mentioned update anomalies in these situations.

14

An attribute is a nottkey attribute if it is not part of the primary key [DAT90,

PRA87].

A relation is in second norma/form (2NF) if it is in first normal form and no

nonkey attribute is dependent on only a portion of the primary key [PRA87,

DAT90].

In our example (in INF), the relation:

Students(Person number, Person name, Course number, Course name, Dept.

number, Dept. Name, Date)

with primary key: Person number, Course number, has the following nonkey

attributes that are dependent on only a portion of the primary key:

Person number ~ Person Name, Dept. number, Dept. name.

Course number ~ Course name.

Person

Number Name Dept. Dept.

number name

003560 D. Adams LOOO Languages

003560 D. Adams LOOO Languages

003560 D. Adams LOOO Languages

000834 L. Davies LOOO Languages

000834 L. Davies LOOO Languages

007876 P. Davies EOII Science

Course

Number Name

3016 Typing

3019 Orientation

3017 Latin I

4011 Physics I

4057 Greek I

Training

Person Course Date

number number

003560 3016 90/09/07

003560 3019 91/01/03

003560 4057 91/07/03

000834 3016 89/01/31

000834 3017 90/02/25

007876 4011 90/01/07

Fig. 2.3 Our example, normalized to 2NF

15

In 2NF our example will therefore consist of the following three relations:

Person (Number, Name, Dept number, Dept name)

Course (Number, Name)

Training (Course number, Person number, Date)

The contents of these relations are shown in figure 2.3

2.4.3 Third Normal Form

It is clear by looking at the example, that even in second normal form, update anomalies

still exists because of redundant data. In the example descriptions of departments are

duplicated. This redundancy, results in exactly the same set of problems that lead to the

creation of the second normal form. For instance, it is possible for the department number

LOOO to have several different names in the present form of the Person relation. To

eliminate this type of problems third normal form was defined.

A candidate key is any attribute, which could also function as the primary key

Any attribute (or collec tion of attributes) that determines another attribute is called

a determinant.

A relation is in third normal form (3NF) if it is in second normal form and if the

only determinants it contains are candidate keys.

(Note. This definition of third normal form is also called BOYCE CODD NORMAL

FORM (BCNF), and was defined because the original definition of third normal form, was

found to be inadequate for certain complex relations. [PRA87])

16

In our example (in 2NF) the relation:

Person (Number. Name. Dept. number, Dept. name),

has the following determinants that are not candidate keys:

Dept. number Dept. name,

Department number being a determinant for department name. In 3NF our example will

therefore consist of the following relations:

Person (Number, Name, Dept number)

Department(Number, Name)

Course (Number, Name)

Training (Course number, Person number, Date)

The contents of these relations are shown in figure 2.4

Person

Number Name Dept.

number

003560 D. Adams LOOO

003560 D. Adams LOOO

003560 D. Adams LOOO

000834 L. Davies LOOO

000834· L. Davies LOOO

007876 P. Davies EOII

Course

Number Name

3016 Typing

3019 Orientation

3017 Latin I

40 II Physics I

4057 Greek I

Department

Number Name

LOOO Languages

EOll Science

Training

Person Course Date

number number

003560 3016 90109/07

003560 3019 91/01/03

003560 4057 91/07/03

000834 3016 89/01/31

000834 3017 90102/25

007876 4011 90101/07

Fig. 2.4 Our example. normalized to 3NF

17

2.4.4 Fourth Normal Form

There exist a number of higher normal forms. of which the first is fourth normal form

(4NF), which arises because of something called multivalued dependency.

In a relation with attributes A, B, and C. there is a ntultivalned dependency of

attribute B on attribute A if a value for A is associated with a specific coJlection of

values for B, independent of any values for C.

A relation is in fourth norma/ form (4NF) if it IS In 3NF and there are no

multivalued dependencies.

It is important to note, that multivalued dependency can be avoided by placing repeating

groups present in an unnormalized relation. in separate relations. when converting to I NF.

The other higher normal forms are fifth normal form (also caJled projection-join normal

form) and the so caJled domain-key normal form.

2.4.5 Project-Join Normal Form

Project-Join Normal form (PINF) attempts to find lossless decompositions to remove

redundancy from relations. The project-join normal form was developed because it was

discovered that relations exist that cannot be losslessly decomposed into two projections.

but can be losslessly decomposed into three or more. [DAT90). The example in figure 2.5

is given by Date [DAT90] to illustrate this point.

A join dependency is defined as folJows:

Let R = {Rj. R2..... Rp }be a set of relational schemes over U. A relation r(U)

satisfies the join dependency *[R j. R2..... Rp] if r decomposes losslessly onto R t
R] Rp . in other words. if the original relation r can be obtained by the join of

the relations containing attributes RJ. R] Rp. Where each Un consists of

multiple attributes of r, for 1 ~ n ~ p.

'Let R be a relational scheme and let F be a set of functional dependencies and join

dependencies. R is in project-join normal form with respect to F if every

18

join dependency * [R]. R2..... Rp] implied by F that applies to R, *[R]. 1<2.....

Rp] is implied by the key functional dependencies of R [MAI83]. Alternatively

stated, a relation R is in project-join normal form if and only if every join

dependency in R is implied by the candidate keys of R [DA T90].

SPJ S# P# 1#

SI PI 12

SI P2 11
S2 PI 11

SI PI 11

SP S# P#

SI PI
SI P2
S2 PI

P1

Join

over P#

.!J.

P# J#

PI 12
P2 1I

PI J I

1S 1# S#

12 SI
JI SI

11 S2

spurious

S# P# 1#

SI PI J2

SI PI 11

SI P2 11

S2 PI J2

S2 PI J1

~ Jam over

(1#,S#)
J}

Original SP1

Fig. 2.5 SPJ is the join of all three of its binary projections but not of any two.

Given this definition of fifth normal form (project-join normal form) clearly to tell whether

a relation R is in 4NF, but not in 5NF, we need to know the candidate keys and all the join

dependencies in R. Discovering all the join dependencies, however is a nontrivial operation

and therefore the process for determining whether a given relation is in 5NF, is still

unclear.. Fortunately relations needing to be decomposed to 5NF are rarely found in

practice [DAT90].

19

2A.6 Domain-Key Normal Form

A relation is in domain-key normal form (DKINF) if and only if every constraint

on the relation is a logical consequence of the key constraints and domain

constraints [DAT90, PRA87].

A key constraint is a statement that a certain attribute or attribute combination is a

candidate key.

A domain constraint is a statement that the values of a certain attribute lie within a

certain set of values [DAT90].

A relation in DKINF is already in 5NF [DAT90] and suffers from no update anomalies.

Therefore no higher normal forms are needed [PRA87]. DKlNF is however not always

achievable nor is any general means of converting a relation to DKlNF known.

2.5 Integrity Constraints

A relational database needs to take into account certain integrity constraints associated

with relations. For the integrity of a relation to be maintained, the following should be

enforced:

2.5.1 Uniqueness property

The value of the primary key in each row of a relation must be unique (since the primary

key by definition identifies a tuple within a relation uniquely).

It is also valid to interpret this uniqueness property in terms of object identification: the

value of the primary key uniquely identifies the object represented by a particular row

within a relation. within the class of objects represented by that specific relation. In any

other relation in the database where it is necessary to refer to that object. the reference is

made by adding the primary key of the object to the relation referring to it. The fields in a

relation. that contains the primary key of another relation. to refer to objects within that

relation: are called zforeign key. Looking at our example in 3NF (figure 2.4), the Course

20

number field within the Training relation, is a foreign key, as it contains the primary key of

a specific course within the course relation.

2.5.2 Referential integrity

Let D be a domain from which one or more primary keys draw their values. Let K be a

foreign key, which draws its values from domain D. Every unmarked value that occurs in

K .must also exist in the database as the value of the primary key on domain D of some

base relation. This also implies that a value is marked if and only if it is missing.

In our example (in 3NF), we can explain these terms as follows:

In the Course relation, the course number, must be unique for each course.

In the Person relation, we have the foreign key: Dept number.

For referential integrity to be maintained, in the Person relation, each reference to

a Department in the Dept. number field, must be the number of a Department

existing in the Department relation. [COD90]

2.6 Conclusion

In this chapter we examined the exact nature of relations, the problems encountered with

data stored in relations and the manner in which these problems can be avoided by

normalizing relations. In the following chapters, we will take a look at frames and examine

the similarities between frames and relations, trying to establish frames as a superclass of

relations, making the re-use of relational theory possible for frames.

21

CHAPTER III : Frames

3.1 Introduction

The two most important concerns in AI research are knowledge representation and

search. Knowledge representation addresses the problem of capturing, in symbolic form,

the chunks of knowledge required to simulate intelligence. The available knowledge

representation structures limit and direct the way problems are solved in AI applications

[MIN91]. Search is the systematic exploration of the problem space for valid solutions. In

this chapter we will concern ourselves primarily with the representation of knowledge and

specifically with frames.

3.2 Knowledge Representation

In any expert system, it is necessary t) represent the essential chunks of knowledge in the

problem domain. This is achieved by u ring one or other knowledge representation scheme.

The different knowledge representation schemes available, are classified into the following

categories by Mylopoulos and Levesque (1984) [LUG89]:

1. Logic Representation Schemes

These schemes use expressions in formal logic as their basis, for example, first

order predicate calculus.

2. Procedural Representation Schemes

These schemes represent knowledge as the set of instructions necessary to solve a

particular problem, for example production systems.

3. Network representation Schemes

These schemes capture knowledge as graphs, where each node represents an

object and the arcs represent the relationships between different objects. For

example, semantic nets.

4. Structured representation Schemes

These schemes extend networks, by allowing each node to be a complex data

structure. Structured representation schemes include the following: scripts, frames

and objects.

22

3.3 The development of Frames

The notation of a frame, goes back to the idea of a schema, developed in Gestalt

psychology, and can be characterized as a complex holistic entity. These schemas were

used by cognitive psychologists to describe situations by combining the descriptions of the

entities involved in a single structure. Later they used schemas to model human memory.

This finally led to Minsky's proposal, in 1975, to use frames as a representation scheme in

AI applications [MIN75]. His informal definition of frames led to the development of a

number of frame-based languages.

A year after Minsky's introduction of frames, Bobrow and Winograd introduced KRL

(Knowledge Representation Language), a frame-based language that profited considerably

from the frame concept, and from object-oriented languages such as Smalltalk [BOB77].

Another frame-based system came with the UNITS system, developed by Stanford

University. UNITS, unlike KRL was designed to support expert system development,

rather than natural-language processing [TEL88].

Later substantially modified versions of UNITS led to the meta-language .:-tLL

(Representation Language Language) and the commercial expert system tool know.: as

KEE (Knowledge Engineering Environment) that was designed and developed by

Intellicorp. [REI89. TEL88]

3.4 Frames

Minsky described frames as follows:

"Here is the essence of the theory: When one encounters a new situation (or

makes a substantial change in one's view of the present problem) one selects

from memory a substantial structure called a frame. This is a remembered

frame work to be adapted to fit reality by changing details as necessary"

[MIN75].

We can think of a frame as a network of nodes and relations. The "top levels" of a frame

are fixed, and represent things that are always true about the supposed situation. The

lower levels have many terminals (slots) that must be filled by specific instances or data.

For each terminal or 'slot', the conditions the values assigned to it, must meet can be

specified. Simple conditions can be the domain from which the value assignment must be

selected. More complex conditions can specify the necessary relationship between

23

different terminals. A Terminal assignment can be a value. or a pointer to a sub-frame.

Collections of related frames, are linked together intoframe systems [MIN75].

According to Luger and Stubblefield, a slot can have the following contents:

1. Frame identification information.

In other words, the unique name, or using database terminology, the primary key

of a frame is contained within one of its slots.

2. Relationships to other Frames.

Information about inheritance, for instance, reference to the superc1ass of a frame

might be contained within one of its slots.

3. Descriptors/or requirementsfor aframe to match a certain situation.

This kind of slots contains constraints, specifying valid entries for other slots.

-I. Procedural information on lise of the structure.

This type of slot, contains attached procedures, that can describe how a slot might

be used or which can test for valid entries of other slots.

5. Frame default information.

These slots contain values that are taken to be true when no information to the

contrary is found.

6. New instance information.

The contents of some slots are left unspecified, until needed for solving a particular

problem [LUG89].

This clearly is an extension of the original concept of a frame, as specified by Minsky.

3.4.1 Example Frames

ID: Radio Tape , 10: radio

parts: (radio, ---.J type of: reciever
tape player) - function: music

~

,- ID: tape player

uses: magnetic
tapes

decks: I.
Fig. 3.1 A frame description of a radio tape player.

24

Figure 3.1 shows how a radio tape player may be represented using the frame approach. In

this example we can see the following:

i) Each frame has a slot containing a unique identifierfor the specific frame.

ii)Each slot has a slot name and a slot value.

iii) The slot value of a frame can be a pointer to a sub-frame or,

iv) a slot can be filled with an actual value.

3.5 Different Views of Frames

P. 1. Hayes in his article the Logic of Frames [HAY80] identifies two different

interpretations of what Minsky intended. He calls these two different views the

metaphysical and the heuristic interpretations.

The "metaphysical" interpretation is, that to use frames is to make a certain kind of

assumption about what entities shall be assumed to exist in the world being described. This

view of frames is an assumption about w.iat a program needs to know, rather than how

exactly this knowledge will be presented.

The "heuristic" interpretation is, that frarr-es are a computational device for organizing

stored representations in computer memory and for retrieval and inference that

manipulates these stored representations. [HAY80]

The important point made here is that a given representation language might be

implemented in a number of different ways and that frames can be viewed as either, i.e.

frames can be seen as a representation language (metaphysical interpretation), or as an

implementation (heuristic interpretation). Therefore it is possible to implement frames in a

number of different ways. This is illustrated by the number of different frame-based

languages that exists (like FRL, KRL and UNITS) all being different implementations of

the basic frame concept.

3.6 Application Areas of Frames

Frames were proposed by Minsky primarily for visual scene analysis. He proposed that

different .frames in a system be used to describe a scene from different view points. The

area where frames have been used most often is however in natural-language processing

25

Frames also form part of the knowledge representation structures provided by a number of

expert system tools like KEE and Level 5 [MIN75, 80877, TEL88].

'The real force of the frames idea was not at the representational level at all,

but rather at the implementation level: a suggestion about how to organize

large memories.' [HAY80]

This statement implies that the functionality of frames is more important than the exact

structure of frames. Minsky designed frames as a representational structure to simplify

problems, so that they are easier to solve.

3.6.1 Frames and Vision

Frames can be used to symbolically represent three dimensional Images: rotation of the

image is then seen as a transformation between different sub-frames of the image. Frames

can also be used in visual scene analysis. If the current scene is a bedroom, the bedroom

frame might be selected and can be used to identify the objects in the bedroom b~

comparing them to the objects known to occur most often in a bedroom. This is much

easier than comparing the objects to all known objects. If 011 the other hand certain objects

in a room are identified, assumptions can be made about the nature of the room. For

instance a room containing a large number of chairs and a stage, is most probably a theater

of some kind.

3.6.2 Frames and text

To understand linguistic activity involves larger structures than can be described with

sentential grammar. The necessary background knowledge to understand language might

be provided by frames. The following levels of frame structures are suggested to cope

with language [MIN75]:

a) Surface Syntactic Frames - Verb and noun structures, prepositional and word-order

indicator conventions.

b) Surface Semantic Frames - Action-centered meanings of words. Containing qualifiers

and relations concerning participants, instruments, trajectories and strategies, goals,

consequences and side-effects.'

c) Thematic Frames - Scenarios concerned with topics, activities, portraits, setting.

Outstanding problems and strategies commonly connected with topics.

26

d) Narrative Frames ~ Skeleton forms for typical stories, explanations, and arguments.

Conventions about foci, protagonists, plot forms, development etc., designed to help a

listener construct a new instantiated Thematic Frame in his own mind.

3.6.3 Frames and Expert Systems

Frames are used as a knowledge representation structure for developing expert systems.

UNITS, for instance, is a frame-based expert system development tool [TEL88]. Most

expert systems, however, that support frames, use them in conjunction with rules. KEE, a

commercial expert system tool, uses frames to create structured hierarchies of rule sets to

control search in rule-based expert systems.

3.7 Frames as an Object-oriented Representation Scheme

Frames and objects have the following in common:

I. They group information about single entities together.

2. Both frames and objects support inheritance, frames support superclasses by the

addition of slots with labels like A-kind-of.

3. Both specify some kind of procedural attachments (called methods III the object

oriented terminology.)

Frames and objects differ in the sense that frames do not require data encapsulation, or at

least data encapsulation is not an issue when using frames. They also differ in the way

inheritance is implemented. In the object oriented approach, a sub-class inherits an its

superclass' properties (data structures), as well as all its methods. In the frame-based

approach, inheritance is usually limited to the 'data' and doesn't include the procedural

attachments. Frames however support more complex relationships between frame classes

than the sub-class, superclass relationship, provided by objects [NEE91].

3.8 Semantics and Basic Characteristics of Frames

Looking only at the structure of frames is not enough. For complete understanding of

frames, it is necessary to look at the semantics. or meaning of frames. It is important to

understand how knowledge is represented in terms of frames and what this knowledge

means as well as what the effect of different frame operations will be on this knowledge.

A frame instance represents a specific object, i.e., an individual instance of a specific class

of objects. Each slot of the frame represents an attribute of the object, or a relationship

27

between that frame and another frame [HAY80l Minsky suggested that this relationship

might be implemented as a pointer to a sub-frame. However, we would suggest that

implementing this relationship as a foreign key might be more effective to make the

knowledge more meaningful. Hayes says that frames are simply an alternative for

expressing relationships between individuals, i.e., for predicate logic. Frames however

have some important complexities not provided for by predicate logic, like default values.

To understand frames more fully, we will take a look at the ways in which they are used.

3.8.1 Frame Inference

Frame inference is classified into three groups by Hayes:

a) Frame instantiation:

A frame is instantiated, in other words, a new frame instance is created by finding

values for its slots.

h) "Criteriality" inference:

Criteriality inference states that if fillers for all the slots of a frame can be found, the

assumption that the concept represented by the frame exists is true.

c) Matching:

Matching is defined by Hayes as a form of frame reasoning. He states that matching is

the process of searching through a collection of frames to determine if a certain

assumption is valid [HA Y80]. Minsky's def nition of matching is slightly different. He

defines matching as a request for a new frame. The request can take one of the

following forms:

i) Find a frame with as many terminals as possible in common with a desired frame,

ii) Find or build a frame with certain properties.

iii) Find a frame that is like the old frame except for certain differences between them

[MIN75].

Requests for frames should make provision for the following excuses for an inexact

match:

OCCLUSION: In vision analysis for example, a part of an object might be obscured

making it impossible to observe some critical aspect of its frame definition. A table

for instance might be specified as having four legs, but at certain times some of its

legs might not be visible, being obscured by other objects

FUNCTIONAL VARIANT: In certain instances the function is more important than

exact physical descriptions. For example, the legs of a chair's function is support,

whatever their exact geometry, might be.

28

BROKEN: A visually inexact match might be explained by a physical defect. since

reality is rarely perfect.

PARASITIC CONTEXTS: An object might look exactly like a chair except for its size,

being too small, because it is a toy chair. Frames should make provision for

recognizing models of reality as such. A related example in text understanding is the

use of frames for understanding figurative speech [MIN75].

3.8.2 Seeing as

Frames might be interpreted as a way of looking at an entity that gives a correct view of

this entity. This can create problems when seeing on object as being like another. The

statement: "The little boy, Peter, is a pig," can cause all kinds of problems in a frame-based

text understanding system. This sentence doesn't mean that Peter is a four legged animal,

that might be turned into bacon. It is therefore necessary to be able to reason about Peter

as a pig, knowing that he is in fact not one. The frame-based knowledge representation

should make provision for distinguishing between likeness to an object and being an

instance of that object [HA Y80].

3.8.3 Defaults

An important aspect of frame reasoning is the idea of default values: A default is a value

associated with a slot and is used in the absence of explicit information to the contrary.

The slots using default values in a frame might be proven to be wrong with the addition of

any new information and it is therefore necessary to validate the contents of these slots

when new relevant information is found [HA Y80). According to Minsky, default

assignments are weakly-bound to the slots of a frame [MIN75].

3.8.4 Reflexive Reasoning

Reflexive Reasoning is the use of existing knowledge to try to determine whether a new

piece of knowledge is valid (true). Because of the structure of frames. it should be possible

to validate a new piece of knowledge and determine if this knowledge is confirmed by

existing knowledge. If the new knowledge is contradicted by default assumptions in

existing frames, it is necessary to change the values of these slots to accommodate the new

knowledge, if this new knowledge however is contradicted by the contents of slots known

to be true, this new knowledge should be rejected.

29

3.9 Conclusion

In this chapter we looked at the original definition of a frame, as proposed by M. Minsky

[MIN75]. This definition is still somewhat vague but provides the basis for a number of

more 'formal' definitions of frames. In the next chapter, we examine some of these

definitions of frames and conclude by proposing our own formal definition of a frame.

30

CHAPTER IV : Formal Definitions of Frames

4.1 Introduction

Minsky's proposal to use frames as a representation structure [MIN75] is rather informal.

To formulate any meaningful theories about frames, a more rigid definition of the frame

structure is necessary. A number of formal definitions of the frame structure are found in

the literature. These definitions can be classified into two broad categories: Representation

Languages (e.g. FRL and KRL) and Mathematical Definitions (not necessarily linked to a

specific implementation of frames).

4.2 Representation Languages

In this section we will look at two frame-based languages and their relation to the original

definition of frames

4.2.1 Frame representation Language (FRL)

FRL is one of the more well-known programming systems offering support for frames. In

FRL each frame corsists of a number of slots. There are two basic kinds of slots:

AKOslots (AKO = a kind of) and other slots. AKO slots define inheritance between

different frames.

The other slots, or localized slots, are defined to consist of a number offacets. These

facets can be classified as follows: Value facets (used for storing the value of a property),

Default facets (providing background assumptions in cases where a specific value may be

unknown. Each ordinary slot may also include a number of 'demon' procedures, which are

activated, by accessing the values of a slot in a particular manner. The demon procedures

are classified as IF-NEEDED, IF-ADDED and IF-REMOVED demons [KRE90].

Figure 4.1 shows the structure ofa frame in FRL.

f--- values
f--- defaults
'-- demon's

Frames

Slots

I local

• • •

I

\
I

(ako slots: contains relationships with

other frames.)

(local slots can contain
values,
default values.
and demon procedures.)

31

Fig. 4.1 Structure of a frame in FRL [KRE90].

4.2.2 Knowledge Representation Language (KRL)

D. G. Bobrow et al. (1977), describes a frame in the following manner: A frame is a data

structure, potentially with an associated name, a referenceto a prototype frame. and a set

of slots. A frame that has another frame, as prototype. is called an instance of the

prototype frame. A frame's important substructures and its relations to other frames are

defined in its slots. A slot has a slot-name, a value, and possibly a set of attached

procedures. The value of a slot might contain a specific value, a ref-renee to a sub-frame,

or in the case of a prototype, default and constraint information. All the slots of a frame

need not be filled, only those necessary for the current reasoning process [BOB77).

4.3 Mathematical Definitions

There exist a number of different formal definitions of frames, that is not associated with a

specific application. These formal definitions can be classified as mathematical definitions.

4.3.1 Algebraic Structured Model of Frames

This algebraic model of frames is defined in an article. by 1. B. Castellanos Pefiuela

[PEN89]. According to this article, a frame is a structure formed by different slots that can

either have expressions or be empty.

For a frame Mi : M denotes the frame class and 'i' denotes a specific instance of the

frame class M.

32

Two frames Mi and Mi are related as follows, in each row 'k' of M' there is the same

number of slots as in row 'k' of Mi. A class of frames M has the following structure:

slot(l,l) slot(1,2) ·...................... slot(1.t)

·
slot(2, I) slot(2,2) ·.................... slot(2,p)

·
...•.•.........•..... ·....................
. . · .
slot(k,1) slot(k,2) slot(k,m)

·

All the frames in class M have k rows; and each of them has the same number of slots in a

particular row. SLOTiUJ) is the slot in position (i.j) of frame Mi [PEN89].

The following operations are defined on frames, using this notation.

a) Frames equality

Two frames Mi and Mi is equal if:

i) They belong to the same frame class, M, and

ii) SLOTi(x,y) = SLOT/(x,y) for valid values ofx andy.[PEN89]

b) Frames addition

In the set of frames, the frame (Mi +MJ') is defined as the frame contammg in each

SLOT(x,y) the contents of SLOTiex,y) plus the contents of SLOT/(x,y) joined by the word

"or", a non-exclusive disjunction.[PEN89]

This definition of frames does not include references to many of the essential

characteristics of the frame structure in general, no reference are made to defaults. or

procedural attachments.

4.3.2 Predicate Algebra Notation of Frames

The predicate algebra notation of frames is found in [THA88]. Frames or units are defined

as several related predicate logic formulas aggregated into larger structures that are

33

identified with the characteristic objects of the domain of discourse. When information

about one of these objects is needed, the appropriate frame is accessed and all the relevant

facts about the object is retrieved at once. This representation of a frame takes the general

form:

Frame_name(atlrihute-!. value.n U= I ,..,1/).

The definition of a frame, consist of a collection of related binary-predicates. Each pair

(attribute, valuev in the frame is called a slot; the pair, using this terminology, can also be

called (slot-name, slot-value). This formal definition of frames, only makes provision for

slot values. No provision is made for attached procedures or default values.

4.3.3 Functional mapping definition of Frames

This definition of frames is given by Reimer and Scheck in their article: A frame-based

knowledge representation model and its mapping to nested relations [REI89]. They

define a frame knowledge-base as a sequence of three mappings. The first assigns eframe

name to a frame structure. The frame structure is given by a second mapping which is

defined upon the set of slot names for that frame. The third mapping specifies the slot

structure, i. e. the actual permitted entries of the slot.

FRAMES = tf If: Fnames ~ SLOTS}

Fnames denotes the set of frame names and SLOTS denotes the set of mappings each of

which represents a frame by specifying its slots:

SLOTS = If If: Snames ~ SENTRY I

Snames denotes the set of slot names and SENTRY denotes the set of mappings each of

which yields the actual and permitted entries of a slot:

.\'ENTRY= {fll: [act.perm I ~ 2 Entries I

The set Entries comprise frame names as well as terminal values which are just plain

character strings:

Entries = Fnames u Strings.

34

It is important to note that frames are defined in this manner by Reiter and Schek,

specifically to provide a mapping from frames to nested relations. It is for the same reason

that we will provide our own formalization of frames in the next section - to facilitate the

comparison offrames and relations.

4.4 Formal Definition of a Frame

Taking into account the preceding definitions of a frame and the way in which relations

were defined in chapter 2, we define a frame as follows:

A frame class consists of two parts, the prototype of the frame class, and specific instances

of the frame class.

A prototype of a frame Fp = (S, P)

where:

S is the set of slots, S = (sl,s2,,sk), k >=1.

si= (n, c, d).

n = slot-name.

c = constraint/ slot type, i.e. domain for slot values.

d = default value.

P is the set of procedures, associated, with each frame,

P= {PI,P2,'Pm}, m >=0. Ifm=O then P is defined as the empty set.

Note: We only define a set of attached procedures. This does not mean that our

model does not support demons. The distinction between procedures and

demons is in the way they are activated. Therefore whenever we speak of

attached procedures, we might as well have used the term demons. as the way

in which a procedure or demon is activated has no effect on our model.

An instance ofa frame FF= (vl,v2,,vk), k >=1.

where:

vi = value of slot i of Frame instance FF

4.4.1 Example

Frames, describing cats and cat owners, using our definition offrames look like this:

Prototypes:

35

CATS n c d

Name Character String

Lives Integer 9

Legs Integer 4

Fur Color Colors Ginger

CAT OWNER

P={)

Instances:

CATS

CAT OWNER

n c d

Name Character String

Cat Name Character String

Address Character String

Name Lives Legs Fur Color

Winston

Max 8 Brown

Watson I 3 Black

Name Cat Name Address

Peter Winston Hvde Park

Peter Max

36

From this example we can gather that Winston is a ginger cat with 9 lives and 4 legs and

he, as well as a cat named Max, is owned by Peter. On the other hand. Watson is a very

unlucky cat, having only I life left, 3 legs and no owner.

4.5 Conclusion

In this chapter we looked at a number of different definitions of frame-like structures.

Taking into account these definitions, and the original definition of frames as given by

Minsky [MIN75], we presented a formal definition of frames. using set notation. Our

definition of frames provides for the notion of different frame classes, instances of frame

classes, default slot values, constraints on slot values, and attached procedures.

In chapter 5, we will try to motivate the normalization of frames by looking at problems

associated with frames, and in chapter 6, we will use our definition of frames, to provide a

basis for comparison between frames and relations. and to define the normalization of

frames.

37

CHAPTER V : Problems With Frames

5.1 Introduction

In this chapter, we look at the problems associated with representing knowledge in

symbolic form. We then examine specific problems associated with frames, as an example

of a knowledge representation structure. After identifying these problems, we take a look

at the advantages of using frames as the primary knowledge representation scheme for a

knowledge-based system.

5.2 Representing Knowledge

As we have stated before, knowledge representation is one of the primary concerns of AI

research. Although a vast amount of research has already been done into knowledge

representation, there are still many problems experienced when knowledge is encoded

using the available representation schemes. These problems are generally carsed by:

(i) The way a particular set of knowledge is encoded using the available knowledge

representation structures.

(ii) Restrictions imposed by the use of a specific knowledge representation s·:heme.

(iii) By a combination of (i) and (ii).

In this section we look at specific problems encountered with knowledge representation,

that is not associated with any particular representation scheme.

5.2.1 Conflicting requirements

A problem solving process needs knowledge in a form that is both expressive and

efficient. In other words, the knowledge representation should be able to express

all the necessary knowledge for solving a problem in such a way that the problem

can be solved within an acceptable time limit. Unfortunately it is generally so that

the more expressive a representation scheme is the less its computational efficiency

is and it is therefore often necessary to sacrifice expressiveness for increased

efficiency. [LUG89]

38

5.2.2 Blindness

The term blindness refers to the inability to solve a problem even though all the

necessary knowledge to solve the problem is available. Blindness is a result of the

way knowledge is represented: It is possible, using any knowledge representation

scheme, to represent the same piece of knowledge in several different ways, each

of which will facilitate certain inferences on the knowledge and obscure others. It

may therefore happen that all the knowledge necessary for solving a particular

problem is available, but because the knowledge was structured with certain kinds

of problems in mind, an A1 system using this knowledge might still be unable to

solve the problem. Blindness illustrates the fact that the problems of representing

real world knowledge are not necessarily caused by defects in current knowledge

representation schemes, but in the way that they are used.

5.2.3 Common sense knowledge

Even the most elementary of decisions made by humans on a day to day basis

requires a vast amount of so called common sense knowledge. Again the problem

is not that current representation schemes are inadequate for representing common

sense knowledge, but rather how to encode this knowledge into a specific

structure in such a way that it would be meaningful [LUG89, TEL88].

5.2.4 Self-knowledge and meta-knowledge

Most knowledge representation schemes lack the ability to include detailed

knowledge about the structure of the knowledge. This is largely a result of the

separation of the knowledge representation structure and the part of an AI system

(inference engine) that searches through the knowledge [KRE90, TEL88].

5.3 Problems with Frames as a Knowledge Representation Structure

Frames as a knowledge representation scheme has certain unique problems of its own in

addition to the problems mentioned in section 5.2. In this section we examine these

problems.

5.3.1 Lack of theoretical foundations and formalisms for using frames:

The original definition of frames by Minsky [MfN75] was rather vague and it led

to a number of different 'formal' definitions of frames [BOB77, THA88, PEN89,

38

5.2.2 Blindness

The term blindness refers to the inability to solve a problem even though all the

necessary knowledge to solve the problem is available. Blindness is a result of the

way knowledge is represented: It is possible, using any knowledge representation

scheme, to represent the same piece of knowledge in several different ways, each

of which will facilitate certain inferences on the knowledge and obscure others. It

may therefore happen that all the knowledge necessary for solving a particular

problem is available, but because the knowledge was structured with certain kinds

of problems in mind, an AI system using this knowledge might still be unable to

solve the problem. Blindness illustrates the fact that the problems of representing

real world knowledge are not necessarily caused by defects in current knowledge

representation schemes, but in the way that they are used.

5.2.3 Common sense knowledge

Even the most elementary of decisions made by humans on a day to day basis

requires a vast amount of so called common sense knowledge. Again the problem

is not that current representation schemes are inadequate for representing common

sense knowledge. but rather how to encode this knowledge into a specific

structure in such a way that it would be meaningful [LUG89, TEL88].

5.2.4 Self-knowledge and meta-knowledge

Most knowledge representation schemes lack the ability to include detailed

knowledge about the structure of the knowledge. This is largely a result of the

separation of the knowledge representation structure and the part of an AI system

(inference engine) that searches through the knowledge [KRE90. TEL88].

5.3 Problems with Frames as a Knowledge Representation Structure

Frames as a knowledge representation scheme has certain unique problems of its own in

addition to the problems mentioned in section 5.2. In this section we examine these

problems.

5.3.1 Lack of theoretical foundations and formalisms for using frames:

The original definition of frames by Minsky [MTN75] was rather vague and it led

to a number of different 'formal' definitions of frames [BOB77. THA88, PEN89,

39

REI89, KRE90]. This in it self is not a problem, when one realizes that Minsky's

definition of a frame should be seen as a general description of a structured

representation scheme and that all these 'formal' definitions can be seen as

implementations of this general concept. However even though the structural

characteristics of frames are quite clearly defined, the following problems still

exist:

i) There is no formal specification of how to encode knowledge as frames: It is

possible to encode a collection of knowledge in a number of different ways

using frames, some of which will work better than others. At this time it is still

not clear how to select the 'best' frame representation for a given set of

knowledge, or how to transform from one frame-based representation to a

'better' representation of the same set of knowledge.

ii) There is no formal definition of valid operations for frames.

ii) There are no definite guide-lines of how to search a collection of frames to solve

a particular problem.

In short, the structure of frames is clearly defined and well understood, but the

functional components!operations and search) of frames are still vague.

5.3.2 Default Reasoning:

Default reasoning is a very powerful characteristic of frames, but it can cause

problems. These problems are usually a result of the manner in which default

reasoning is implemented. The system should always keep in mind that default

values might be wrong and should be able to recover once a default value has been

proven wrong. Default values should only be used if no other way to determine a

value can be found.

5.3.3 Ineffective search

Mechanisms to optimize search through a large number of frames do not exist in

many frame-based systems. It is necessary to structure knowledge in such a way

within frames to improve the effectiveness of search. This might be done by

defining key slots for frames and indexing these key slots.

5.3.4 Enforcing of Integrity constraints

It is possible to enforce integrity constraints within frames by defining valid

domains for slot values and checking slot values with attached procedures

(demons), but the responsibility to do this lies with the user. [PAT91]

40

5.4 Advantages of Using a Frame-based Representation Scheme

In spite of the problems associated with frames, frames are still very widely used as a

knowledge representation scheme in many expert system tools because there are a number

of advantages to using frames. In this section we will take a look at some of these

advantages.

5.4.1 Natural Representation of Knowledge

One of the requirements of a knowledge representation scheme is that it should

provide a natural way of representing knowledge [LUG89]. Frames make use of

the natural tendency of humans to group knowledge into classes and can therefore

be said to fulfill this requirement.

5.4.2 Multiple relationships

Frames not only provide for inheritance (using AKO slots or superclass slots), but

makes it possible to define much more subtle relationships between different

objects, and different classes of objects.

5.4.3 Combining declarative and procedural information

The motivation behind combining procedural information with the structural

information makes it possible to program in terms of generic operations and moves

control to the object itself. It is possible to design event driven programs using

frames with attached procedures or demons because of this integration.

5.5 Conclusion

In this chapter we saw that although frames are a very popular representation scheme for

use in knowledge-based systems, there are still a number of problems associated with

them. In the next chapter, we will attempt to solve some of these problems by establishing

frames as a superclass of relations.

41

Chapter VI : The Normalization of Frames

6.1 Introduction

In previous chapters. we defined both relations and frames. In the first part of this chapter

we compare these two models and identify their structural similarities. We also take a look

at the main differences between the two models. Taking into account the similarities and

differences between these two structures, we then redefine normalization. for frames. In

chapter 8 we will look at other attempts to establish a relationship between knowledge

representation and databases. when we look at the integration of data and knowledge

bases.

6.2 Comparison of Frames and Relations

The following table contains the definitions of Frames and Relations. with the definition of

similar parts of the two models in the same rows.

Definition of Frames

A frame class consists of two parts, the

prototype of the frame class. and specific

instances of the frame class.

A prototype of a frame Fp =(S, P)

where:

S is the set of slots, S = [s l.s2,sk }.

k >=1.

si= (n, c. d). I::; i ::; k

n = slot-name.

c = constraint/ slot type. i.e. domain for

slot values.

d = default value.

Definition of Relations IDAT901

A relation R on a collectiun of domains

0].02, ...,011

(not necessarily distinct) consists of two

parts. the heading and the body.

The heading consists of a fixed set of

attribute-domain pairs.

such that each attribute Aj corresponds to

exactly one of the underlying domains ~I

(forj =: L 2, ..., 11. where 11 is the degree of

the relation).

P is the set of Procedures, associated, with

each frame,

P= {PI,P2, 'Pm}, m z O. Ifm=O then Pis

defined as the empty set.

An instance of a frame

FF= {(nrvl).(n2:v2),····,(nk:v~)},k? I.

where:

ni = name of slot i,

vi = value of slot i of Frame instance FF

42

No equivalent in the definition of relations.

The body consists of a time-varying set of

Il-tuples, where each tuple in turn consists

of a set of attribute-value pairs,

(for i = I, 2, ..., /17, where /17 IS the

cardinality of the specific relation).

From the table the following similarities between the two structures can be seen:

a) The Prototype of a frame class is similar to the Heading of a Relation.

b) The Instances of a frame class is similar to the Hod)' of a Relation.

c) A slot of a frame is similar to an attribute of a relation.

d) Each slot has certain constraints or values from which the slot can take its values,

and each attribute comes from a specific domain.

e) A collection of instances of frames in the same frame class is similar to the body

of a relation.

Also using the table we can identify the following differences between the two structures:

a) In the definition of a frame prototype, the slot-name, n, in the triple si=(n,c,d) is

equivalent to the Attribute, Ai, of a relation and the constraint c. is equivalent to

the domain Dr The default values defined for frames however doesn't have an

equivalent definition in terms of relations.

b) The set of procedures associated with a frame class also doesn't have a related

definition in terms of relations.

When looking at these similarities and differences, it IS evident that the differences

between frames and relations are isolated to the prototype/ heading parts of the two

models:, this means that both structures might be represented as two-dimensional tables.

43

Relations and Frames can be seen as exactly the same structure if the following holds:

(i) The set of procedures associated with each frame class is defined as the empty

set, and

(ii) All default values are defined as being empty.

This means that Frames might be seen as a superclass of relations, having all the properties

of relations, plus associated procedures and default values.

It is possible to include default values in a relational structure by defining within the body

of the relation, one tuple containing default values for all the attributes and using these

default values whenever an attribute is empty (figure 6.1). It is however impossible to

implement associated procedures for the relational model without any substantial change

to the model. This means that when redefining normalization for frames, special attention

will have to be paid to the effect normalization will have on the associated procedures.

AGENTS

Default information ~

Code Name Salary Commission

Default 1000.00 10% I

007 James 3000.00 15%

012 Charles i
t

Primary
key

Fig. 6.1 A relation containing default information.

Procedures associated with frames can be classified in the following ways: [BAR81.

BOB77, KRE90]

i) They can be classified by the way they are triggered. In general procedures will be

triggered when a given slot is empty or. when a given slot is needed. A procedure can

also be activated when the value of the slot it is attached to is changed.

ii) They can be classified by their function. An attached procedure might do any or a

combination of the following:

Prompt the user for the value of a slot.

Perform integrity checks on the value of a slot.

Derive the slot value from other slots in the frame system.

'Propagating information when a slot value is obtained.

44

iii) They can be classified by the way they are used into two general classes: servants and

demons. Demons are procedures that are activated automatically, and servants are

procedures that are activated on demand. In general a servant procedure will only be

activated, when it is invoked by the user or by a demon procedure.

According to Codd [COD90] the main difference between a database and a knowledge

base is the following: A database is in general large but not very rich, in other words a

database in general contains relations with a small number of attributes but with a large

number of tuples. A knowledge-base is in general rich but not very large. Real world

knowledge-bases will however tend to be both large and rich. Normalization will not be

able do anything to the size of these knowledge-bases, but it will minimize the richness of

each frame class, making operations on the knowledge-base easier and more effective.

6.3 Normalization

We will try to illustrate the basic issues in frame normalization with appropriate examples.

The knowledge-base used to illustrate normalization contains the following frames:

Person (Name, Sex, Date_of_birth, Age, Brothers, Sisters)

Marriage (Husband, Wife, Children, Start_date)

Note: We use the term frames when talking about the prototypes of frame classes and

when we are talking about frame instances, it should however be clear from the

context in which the term frames is used, whether we are referring to frame

prototypes or frame instances.

We will assume the following for this example:

i) Each person has a unique name. In the absence of unique names, it will be necessary to

use an artificial identifier to uniquely identify each person This assumption is only

made for the sake of simplicity.

ii) The Husband slot will contain the name of a male person.

iii) The Wife slot will contain the name of a female person.

iv) Each person can only be involved in one marriage.

45

We will have the following attached procedures:

Person:

IF-NEEDED-age [compute age from current date and date of birth]

CHECKS:

Name unique.

Marriage:

CHECKS:

Husband male,

Wife female,

Husband, Wife pair unique,

Husband unique, Wife unique (enforcing that each person can have only one

marriage)

These frames might contain the following instances:

Person:

Name Sex Date of Age Brothers Sisters

birth

Abe Male 45/08/03

Sandra Female 45/05/31

Peter Male 68/09/16 Mal)'

Ann

Mary Female 70/08/07 Peter Ann

Ann Female 73/07/04 Peter Ann

Suzanne Female 67/04/02

Pat Male 68/07/07 John

John Male 75/01/05 Pat

Pete Male 90/03112 Sam

Sam Male 92/03/06 Pete

(Age slot only filled if needed by attached procedure: IF-NEEDED-age)

46

Marrraae:

Husband Wife Children Marriage date

Abe Sandra Peter 65/05/30

Mary

Ann

Peter Suzanne Pete 89/02/14

Sam

Pat Mary 91/1 2/1 0

Fig. 6.2 Example frame instances (unnormalized)

6.3.1 Functional dependence and primary keys

We can rephrase the definition of functional dependence and of a primary key as follows

for frames:

Functional Dependence:

Given a frame F, slot Y of F is functionally dependent on slot X of F

symbolically: F.X ~ F.Y (read "F.X functionally determines F.Y")

- if and only if each X-value in F has associated with it precisely one Y-value ir. F

(at anyone time). Slots X and Y may be composite.

Primary key:

Given a frame F, slot F.Y (F.Y may be composite) is the primary key of F if:

1. AII the slots in F are functionally dependent on F.Y.

2. No subset of the slots in F.Y also has property I.

The frames in the example have the following primary keys:

Person: Name.

Marriage: Husband, Wife.

Note: Because of the uniqueness requirement of a primary key it is not possible to specify

default values for slots forming part of the primary key.

Defining a primary key for a frame class has the following advantages:

47

i) Clarifying the semantics (meaning) of a frame

ii) It makes referring to a specific frame easy and natural, using foreign keys (the

inclusion of the primary key of one frame, as a reference to that frame, in

another).

iii) It can make search through the knowledge-base more effective, if indexes are

maintained on the primary keys and foreign keys of each frame class. Using

indexes makes it possible to go directly to a frame whose primary key is known

instead of searching through all the frames in the knowledge-base.

6.3.2 Non-Derivable normal form

A slot value is derivable, if it is possible to determine a value for that slot by using

information already stored within the knowledge-base. In the example, the age slot are left

empty and only computed whenever it is needed. by the IF-NEEDED-age procedure. The

age slot is an example of a derivable slot.

Other examples of derivable slots, are the Brothers, and Sisters slots. Explicitly storing

this information in the frame causes the following problems during updates: When a new

baby is born, it is necessary to update the frames of all his brothers and sisters and it is also

necessary to search for all the brothers and sisters and add them to this new instance of the

person frame.

A frame is in non-derivable normal form if all the derivable slots are left empty

and only filled if their values are needed.

The value of a derivable slot might only be used without activating the associated

procedure, if it is known that the knowledge-base has not changed since computing it the

last time, but in general the value of a derivable slot has to be computed every time it is

used.

Figure 6.3 illustrates non-derivable normal form, for the example we introduced earlier in

this section.

48

Person:

Name Sex Date of Age Brothers Sisters

birth

Abe Male 45/08/03

Sandra Female 45/05/31

Peter Male 68/09/16

Mary . Female 70/08/07

Ann Female 73/07/04

Suzanne Female 67/04/02

Pat Male 68/07/07

John Male 75/01/05

Pete Male 90/03/12

Sam Male 92/03/06

(Age slot only fined if needed by attached procedure: IF-NEEDED-age)
(Brother slot only fined if needed by attached procedure: IF-NEEDED-brothers)
(Sisters slot only fined if needed by attached procedure: IF-NEEDED-sisters)

IIF-NEEDED-brothers (name of target person)

ISearches for all male members with same parents as target person.

IReturns an brothers of target person

IIF-NEEDED-sisters (name of target person)

ISearches for an female members with same parents as target person.

IReturns all sisters of target person

M arrraze:

Husband Wife Children Marriage date

Abe Sandra Peter 65/05/30

Mary

Ann

Peter Suzanne Pete 89/02/14

Sam

Pat Mary 91/12/1 0

Fig. 6.3 Example frame instances in non-derivable normal form.

49

6.3.3 First Normal Form

A relation is in first normal form, if it contains no repeating groups, or more simply stated

if all its attributes are atomic. For frames, we will have to take into account the non

derivable normal form and modify the definition to the following:

A frame is uifirst normalform (I NF) if: it is already in non-derivable normal form,

it contains no repeating groups, and all its IF-NEEDED procedures, computing

derivable slot values, returns only one value at a time.

The IF-NEEDED procedure's returning only one value is required to maintain the atomic

value characteristic, associated with the definition of relations, and our definition of

frames.

In First normal form for frames, our example will look like this:

Person: .

Name Sex Date of Age Brother Sister

birth

Abe Male 45/08/03

Sandra Female 45/05/31

Peter Male 68/09/16

Mary Female 70/08/07

Ann Female 73/07/04

Suzanne Female 67/04/02

Pat Male 68/07/07

John Male 75/01/05

Pete Male 90/03/12

Sam Male 92/03/06

(Age slot only filled if needed by attached procedure: IF-NEEDED-age)

(Brother slot only filled if needed by attached procedure: IF-NEEDElr-brother)

(Sister slot only filled if needed by attached procedure: IF-NEEDED-sister)

50

IIF-NEEDED-brother (name of target person, n)

ISearches for all male members with same parents as target person.

IReturns the n'th brother found.

IrF-NEEDED-sister (name of target person, n)

ISearches for all female members with same parents as target person.

IReturns the n'th sister found.

M arrraae:

Husband Wife Children Marriage Date

Abe Sandra Peter 65/05/30

Abe Sandra Mary 65/05/30

Abe Sandra Ann 65/05/30

Peter Suzanne Pete 89/02/14

Peter Suzanne Sam 89/02/14

Pat Mary 91/12/1 0

Fig. 6.4 Example frame instances in first normal form.

6.3.4 Second Normal Form

We know that a relation is in second normalform (2NF) if it is in first normal form and no

nonkey attribute is dependent on only a portion of the primary key.

We can rephrase these definitions as follows for frames:

A nonkey slot is a slot that does not form part of the primary key

A frame is in second normal form (2NF) if it is in first normal form and no nonkey,

slot, that is not a derivable slot, is dependent on only a portion of the primary key.

When looking at functional dependence, it is important to realize that an attached

procedure's slot is functionally dependent on the slots used by the procedure as

parameters.

51

In our example in 1NF, the primal)' key of marriage is the collection of slots husband,

wife, children. The date of the marriage is however only dependent on the husband and

wife slots. This can cause inconsistent data, because it is possible for two different dates of

marriage to exist within the knowledge-base, for the same marriage. To avoid this it is

necessary for the frames to be normalized to second normal form.

In Second normal form for frames, our example looks like this:

Person:

Name Sex Date of Age Brother Sister

birth

Abe Male 45/08/03

Sandra Female 45/05/31

Peter Male 68/09116

Mary Female 70108/07

Ann Female 73/07/04

Suzanne Female 67/04/02

Pat Male 68/07/07

John Male 75/01/05

Pete Male 90103112

Sam Male 92/03/06

(Age slot only filled if needed by attached procedure: IF-NEEDED-age)

(Brother slot only filled if needed by attached procedure: IF-NEEDED-brother)

(Sister slot only filled if needed by attached procedure: IF-NEEDED-sister)

IIF-NEEDED-brother (name of target person, n)

ISearches for all male members with same parents as target person.

IReturns the n'th brother found.

/IF-NEEDED-sister (name of target person, n)

ISearches for all female members with same parents as target person.

IReturns the n'th sister found.

52

M arrraae:

Husband Wife Marriage Date

Abe Sandra 65/05/30

Peter Suzanne 89/02/14

Pat Mary 91/12/1 0

Children:

Husband Wife Child

Abe Sandra Peter

Abe Sandra Mary

Abe Sandra Ann

Peter Suzanne Pete

Peter Suzanne Sam

Fig. 6.5 Example frame instances in second normal form.

6.3.5 Third Normal Form

A relation is in third normal form (3J\Tf) if it is second normal form and if the only

determinants it contains are candidate keys. Rephrasing this definition, we get the

following definition of third normal form for frames:

A candidate key is any slot, which could also function as the primary key.

Any slot (or collection of slots) that determines another slot is called a

determinant.

A frame is in third normalform (3NF) ifit is in second normal form and if the only

determinants it contains are candidate keys or the determinants it does contain,

only determines derivable slots, by being parameters in attached procedures.

In our example, the date of birth slot is a determinant of the age slot, but this doesn't cause

any problems, because values for the age slot are only computed when needed and

because the same procedure is used every time, two different frames with the same date of

birth, will always have the same age. Because of this our example is already in third

normal form, as all its determinants only determines derivable slots.

53

6.3.6 Fourth Normal Form

Rephrasing the definitions for fourth normal form for relations we propose the following

definitions for frames:

A frame is in fourth normal form if is in third normal form and there are no

multivalued dependencies.

In a frame with slots A, B, and C, there is a multivalued dependency of slot B on

slot A if a value for A is associated with a specific collection of values for B,

independent of any values for C.

Given this definition, it is important to note that it is possible to avoid the problem of

multivalued dependency, by placing each repeating group, when transforming to first

normal form, in its own frame class. Because of this fourth normal form is hardly ever

used because multivalued dependency can be avoided by correctly transforming to First

normal form. This is illustrated in our example in section 6.7 at the end of the chapter.

6.4 The Relational Algebra

The relational algebra is a theoretical way of manipulating a relational database. Because

of the similarities between relations and frames, the relational algebra might also be used

to manipulate a frame-based knowledge-base. The relational algebra can be especially

useful in specifying attached procedures in a frame-based knowledge representation. We

propose that relational algebra can be used for frames, not withstanding the differences

between frames and relations and have extended the relational algebra operations as found

in [PRA87] as follows:

6.4.1 Select

The select command takes a horizontal subset of a frame, in other words it causes

a certain frame instance or group of frame instances to be selected. ego To find all

the information associated with the person Pat the relational algebra statement

would be:

SELECT FROM person: Namev'Pat"

The result of this select, can be seen in figure 6.6

54

6.4.2 Project

The Project command takes a vertical subset of a frame, in other words the project

command causes only certain columns to be included in a new frame.

ego To create a frame containing only the names and date of birth of each person

the relational algebra statement would be:

PROJECT Person OVER (Name, Date of birth)

GIVING ANSWER

Person:

Name Sex Date of birth A2c Brother Sister

Abe Male 45/08/03

Sandra Female 45/05/31

Peter Male 68/09116

Mary Female 711108/07

Ann Female 73/07/04

Suzanne Female 67/04/02

Pat Male 68/07/07

John Male 75/0 I/O;

Pete Male 90/03112

Sam Male 92/03/06

PROJECT Person OVER (Name, Dale_(~r_hirlh)

Name Date of birth

Abe 45/0S/03

Sandra 45/05/31

Peter 68/09/J6

Mary 70/0S/07

Ann 73/07/04

Suzanne 67/04/02

Pat 68/07/07

John 75/ll1l05

Pete 90/03/12

Sam 92/03/06.

55

"P. "S'ELECT.. person: ame = at

Name Sex Date of birth A::c Brother Sister

Pat Male 68107/07

Fig. 6.6 An example of the Select and Project operations

6.4.3 Join

The Join command is used to join two relations /frame classes together, based on a

common slot. If we join the Children and PerSOl! frames, found in figure 6.6, using

the Child and Name slots, we get the frame in figure 6.7

Join [Person, Children} (Name.Child)

Name Sex Datc_of A~e Brother Sister Husband Wife Child

hirth

Peter Male 68/09/16 Abe Sandra Peter

Mary Female 70/08/07 Abe Sandra Mary

Ann Female 73/07/04 Abe Sandra Ann

Pete Male 90/03/12 Peter Suzanne Pete

Sam Male 92/03/06 Peter Suzanne Sam

Fig. 6.7 The result of a Join operation

6.4.4 Union

The union operation appends a group of frame instances to an existing group of

frame instance, with the same number and type of slots. The union operation is

similar to the union operation defined for sets and just like the union operation for

sets removes duplicate entries.

56

IF-NEEDED-brothers (name ofyerson)

T....frame = SELECT FROM children: Child=name_ofyerson

(Noll' TJrame contains only the persoll this quel)! concerns}

T_frame=JOIN[T_frame, children](husband.wife, husband.wife)

T_frame=PROJECT T_frame OVER (child)

{Now TJrame contains the name ofthe person and all his or her}

{brothers and sisters}

T_frame = SELECT FROM T_frame: child<>name_ofyerson

{Remove the name ofthispersonfrom T..f'rame}

T_frame = JOIN[T_frame,personJ(child, name)

T frame = SELECT FROM T frame: sex = 'Male'- -
brothers = PROJECT T frame OVER (name)

Fig. 6.8 An Attached Procedure for a frame, using Relational Algebra.

We can define attached procedures for our example using these relational algebra

.operations. In figure 6.8 we implimented the IF-NEEDED-brothers procedure, as found in

our example, using relational algebra statements. These examples of relational algebra

operations, applied to frames, clearly illustrates that relational algebra operations can be

applied to frames, as we have defined them, in the same way they are applied to relations.

6.5 Motivation of normalization

One might at this stage ask, why go to all the trouble of no~malizingframes:

It should be obvious, normalizing frames has the following advantages:

1) Simplifying updates to the knowledge-base, for example adding a child is simplified to

adding a entry to the Person frame and the children frame. instead of having to make

changes to all the frames containing brothers and sisters of this child.

2) Preventing inconsistent data, in the unnormalized form, it is possible for the same

marriage' to have different starting dates, this is eliminated in the normalized form.

3) In its normalized form it is possible to add a marriage even when they do not have

children. Where as in the unnormalized version it was necessary to leave that slot

empty.

4) In the normalized form, it is possible to delete a person from the knowledge-base,

without losing information about a marriage, if that person is an only child.

57

5) Normalization causes related information to be grouped together, it also forces one to

take a close look at the relationships between different frames, therefore, the process of

normalization can be seen as a valuable tool to discover the semantic structure of the

knowledge being represented.

One objection that might be raised against normalization of frames and even against

normalization of relations is that, for anybody who is any good at developing knowledge

bases (or databases), it is natural to automatically place all frames (or relations) in third

normal form. This might be true in a sense, but the following are also true:

i) Everybody makes mistakes at one time or another therefore it is better to have a method

for checking your own representation against a representation known to be free of

certain update anomalies (third normal form or higher)..

ii) Especially in knowledge-bases, the information stored in the knowledge-base and the

relationships between different objects will be generally more complex than in the

example, and the only way of assuring the absence of update anomalies in the

knowledge-base will be by carefully examining the semantics of the knowledge it

contains, using normalization, rather than one or other ad hoc method.

6.6 Advantages of Seeing Frames as a Superclass of Relations

Seeing frames as a superc1ass of relations has certain advantages for frame-based

knowledge representation:

i) Normalization with all the advantages mentioned in the previous section.

ii) The re-use of methods developed for relational databases in frame based systems. For

example methods to access data concurrently, methods for ensuring privacy and

security of data etc. In other words this relationship between frames and relations,

makes it possible to integrate knowledge-bases and databases, making these facilities of

database management systems available for use in knowledge-bases.

iii) The re-use of operations defined for relations (relational algebra), like for instance the

JOIN operation for Frames, rather than having to develop similar operations that

operates on frames. We saw an example of-this in figure 6.7.

58

In chapter 5, we looked at a number of problems with frames:

6.6.1 Lack of theoretical foundations and formalisms for using frames

Seeing frames as a superc1ass of relations makes it possible to use the theoretical

foundations of relations, in a slightly modified form, for frames. It is now possible

to use a wide range of operations, defined for relations on frames.

6.6.2 Ineffective search

We can now use the same techniques used 10 relational databases to optimize

queries on the database, to improve the effectiveness of search through a frame

based knowledge-base.

6.7 A Complete Example of Frame Normalization

6.7.1 The Example:

An expert system that identifies plant diseases, should contain the following frames.

Diseases Frame with slots:

Disease Name

Plant name

Affected Part

Symptoms

A or S

Nr of Symptoms

Cure

The name of plants affected by this disease

Primary part of plant affected by this disease ego stem or roots.

The symptoms of this disease

For each symptom, is this ALWAYS a symptom or only

SOMETIMES, in other words is it essential for a plant to

show this symptom to have this disease.

How many symptoms is associated with this disease (used

determine likelihood of a plant having this disease).

How can this disease be cured

Associated Procedures:

DISPLAY CURE

Given any of the known diseases, this procedure will display the treatment given in

the Cure slot of the specific disease instance.

59

Goal frame with slots:

Plant name The name of a sick plant

Affected Part Which part of the plant is affected by the disease

Likely diseases Diseases that might cause the observed symptoms

Nr of symptoms The number of symptoms, known for each disease, that was

observed.

Likelihood Percentage likelihood of each disease being the cause of the

illness

Associated Procedures:

START

This procedure will start a query by getting from the user, the name of the affected

plant, and the part of the plant that is affected, filling the Plant name, and

Affected part slots of the goal frame.

It will then fill the likely diseases slot of the goal frame with all the diseases found

in the Diseases frame, that is known to affect the specific part of the plant.

This procedure will then call another procedure to compute the likelihood of each

disease being the cause of the observed symptoms.

COMPUTE LIKELIHOOD

This procedure does the following:

I) For each disease identified as a possibility in the goal frame, determine, by

querying the user, if the symptoms which is always present in a plant affected by

this disease is present in the plant being tested. If the symptoms, known to

always be present for a specific disease, is not found in the plant being tested,

delete this disease instance from the goal frame.

2) For each of the diseases remaining after step I, determine which of the

symptoms associated with the disease is found in the plant being tested, by

querying the user.

3) During both step I and step 2, keep track for each disease, of the number of

symptoms observed.

4) Compute the likelihood of each disease being the cause of the observed

symptoms, by expressing the number of symptoms observed for each disease as

a percentage of the number of known symptoms of the disease.

Diseases:

60

Disease Plllnt name Affected Symptoms A_OI'_S Nr of CUI'C

name Pllrt S"IJIIJtoms
Bacterial Apricot tree Bark Exudes Gum Always

..,
Spray with.,

Cancer Cherry tree Bark dies Always copper
Plum tree Leaves show Sometimes oxychlorid

small brown e during
spots. leaf-fall.

Borers Eucalyptus Bark General Always 2 Tree
Pine Tree debilitation of surge!')'.

bark followed
Ringbarking Sometimes by

fertilizer
treatement

Shot hole Apricot tree Leaves Brown spots with Always 3 Pnme
Almond tree reddish margins infected

on leaves twigs:
Spots fall out Always apply
Sunken black Always copper
holes in fruit oxychlorid

eat leaf-
fall,

Leaf blister Eucalyptus Leaves Raised brown Always 2 Spray with
sawfly bisters on leaves dirnethoate

Leaves fall from Sometimes
tree prematurely

Leaf Curl . Peach tree Leaves Infested portion Always 2 Spray with
Almond tree of leave are at copper

first pink and oxychlorid
thickened Ah\'C1Ys e before
Completely early bud
infected leaves swell.
are pale green to
vellow

Brown rot Peach tree Fruit BrO\\11 spots first Ah\'(IYs 2 Spray with
Apricot tree occur on blossom benomyl at
Cherry tree Brown area Always bud swell.

spread on fruit
until fmit are
rotten.

Fig. 6.9 Sample contents for Diseases Frame.

61

6.7.2 Normalization

6.7.2.1 Non-derivable norma/form

Looking at the different frame classes of the example, we see the following slots that can

be computed:

Diseases Frame:

The nr ofsymptoms slot can be computed by counting the number of symptoms associated

with a specific disease. Thus in non-derivable normal form, the Diseases frame should have

an IF-NEEDED procedure attached to the I1r ofsymptoms slot, that computes a value for

this slot only when one is required.

Goal Frame:

The likelihood slot can be computed for each disease. This frame howeve r is already in

. non-derivable normal form, as this slot is computed by the COMPUTE lIKELIHOOD

procedure.

6.7.2.2 First Norma/ Form

A frame is in first normal form, if all its attached procedures. associated with a specific slot

returns single values and it contains no repeating groups.

In the example we find the following repeating groups:

Diseases Frame:

The Plant name slot is a repeating group. as well as the symptoms slot.

Removing these two repeating groups can be done in two ways.

1) Simply place each plant name and symptom in its own frame instance, and fill the empty

Disease Name slots with the appropriate disease name. Removing the repeating groups

in this way however will cause multivalued dependency, making it necessary to

normalize up to fourth normal form.

2) Split the Diseases frame class into two frame classes, one containing symptoms and the

other plant names, avoiding multivalued dependencies and assuring that when these

frames are in third normal form, they will already be in fourth normal form.

62

Removing the repeating groups using method number 2, we get the following frame

classes:

Plants (Plant name, Disease Name)

Without any associated procedures

Diseases(Disease Name, Affected Part, Symptoms, A_or_S, Nr of Symptoms, Cure)

With the associated procedures:

IF-NEEDED number of symptoms

DISPLAY CURE

Goal Frame:

The Likely diseases slot is a repeating group.

Diseases:

Disease Affected Symptoms A_or_S Nrof Cure

name Part Svmntoms

Bacterial Bark Exudes Gum Always Spray with copper

Cancer oxychloride during leaf-

fall.

Bacterial Bark Bark dies Always Spray with copper

Cancer oxychloride during leaf-

fall.

Bacterial Bark Leaves show Sometimes Spray with copper

Cancer small brown oxychloride during leaf-

spots. fall.

Borers Bark General Always Tree surgery. followed by

debilitation of fertilizer treatement-
bark

Borers Bark Ringbarking Sometimes Tree surgery. followed by

fertilizer treatement

63

Shot hole Leaves Brownspots with Always Prune infected twigs:

reddish margins apply'copper oxychloride

on leaves at leaf-fall

Shot hole Leaves Spots fall out Always Prune infected twigs:

apply copper oxychloride

at leaf-fall

Shot hole Leaves Sunken black Always Prune infected twigs:

holes in fruit apply copper oxychloride

at leaf-fall

Leaf blister Leaves Raisedbrown Always Spray with dimethoate

sawfly bisters on leaves

Leaf blister Leaves Leavesfall from Sometimes Spray with dimethoate

sawflv tree prematurely

Leaf Curl Leaves Infestedportion Always Spray with copper

of leaveare at oxychloride before early

first pink and bud swell.

thickened

Leaf Curl Leaves Completely Always Spray with copper

infected leaves oxychloridebefore early

are pale green to bud swell.

vellow

Brown rot Fruit Brown spots first Always Spray with benomyl at

occur on blossom bud swell.

Brown rot Fruit Brown area Always Spray with benomyl at

spread on fruit bud swell.

until fruit are

rotten.

Attached Procedures:
IF-NEEDED number of symptoms
DISPLAY CURE

64

Plants:

Disease name Plant name

Bacterial Cancer Cherrv tree

Bacterial Cancer Plum tree

Bacterial Cancer Apricot tree

Borers Eucalyptus

Borers Pine Tree

Shot hole Apricot tree

Shot hole Almond tree

Leafblister sawflv Eucalyptus

Leaf Curl Peach tree

Leaf Curl Almond tree

Brown rot Peach tree

Brown rot Apricot tree

Brown rot Cherry tree

Fig. 6.10 Frames in First Normal Form

6.7.2.3 Second Normal Form

A frameis in second normal form (2NF) if it is in first normal form and no nonkey slot,

that is not a derivable slot, is dependent on only a portion of the primary key.

For each of the frame classes, we have the following primary keys and functional

dependency's:

Plants Frame class:

Primary key: Plant name, Disease

Diseases Frame class:

Primary key: Disease Name, Symptoms

Functional Dependency's:

Disease Name~ Cure, Affected Part

Disease Name, Symptoms ~ A_or_S, Nr of Symptoms

65

Goal Frame class:

Primary key: Plant Name, Affected Part, Likely diseases

Functional Dependency's:

Plant Name, Affected Part, Likely diseases ---? Nr of Symptoms, Likelihood.

In second normal form we will have the following frame classes:

Plants (Plant name, Disease name)

Diseases(Disease Name, Affected Part, Cure)

With the associated procedure:

DISPLAY CURE

Symptoms (Disease Name, Symptoms, A_or_S, Nr of Symptoms)

With the associated procedure:

IF-NEEDED number of symptoms

Goal (Plant name, Affected Part, Likely disease, Nr of symptoms, Likelihood)

With the associated procedures:

START

COMPUTE LIKELIHOOD

,
6.7.2.-1 Third Norma/ Form

A frame is in third norma/form if it is in second normal form and if the only determinants

it contains are candidate keys or the determinants it does contain, only determines

derivable slots, by being parameters in attached procedures.

In our example, we find the following determinants that is not part of the primary key:

Goal Frame class:

Nr of Symptoms ---? Likelihood

The likelihood slot however is a derivable slot, its value being determined by the

COMPUTE LIKELIHOOD procedure.

Because, of this, our example is already in third normal form.

66

6.7.2.5 Fourth Normal Form

We have no multivalued dependencies in our example, because of the way in which we

have transformed to first normal form. Therefore our example is already in fourth normal

form.

6.7.3 The Normalized Example

Figure 6.11 shows the contents of the normalized example:

Diseases:

Disease name Affected Cure

Part

Bacterial Cancer Bark Spraywith copperoxvchloride during leaf-fall.

Borers Bark Tree surgery. followed by fertilizer treatement

Shot hole Leaves Prune infected twigs: apply copper oxvchlorideat leaf-fall

Leaf blister sawfly Leaves Spraywith dimethoate

Leaf Curl Leaves Spraywith copper oxvchloride beforecarlv bud swell.

Brown rot Fmit Spray,,:ith benomvl at bud swell.

Plants:

Discase name Plant name

Bacterial Cancer Cherry tree

Bacterial Cancer Plum tree

Bacterial Cancer Apricot tree

Borers Eucalyptus

Borers Pine Tree

Shot hole Apricot tree

Shot hole Almond tree

Leaf blister sawfly Eucalyptus

LeafClIrl Peach tree

Leaf Curl Almond tree

Brown rot Peach tree

Brown rot Apricot tree.
Brown rot Cherry tree

67

svmntorns:

Disease mime Symptoms A_or_S NI' of

Svmntums

Bacterial Cancer Exudes Gum Alwavs

Bacterial Cancer Bark dies Alwavs

Bacterial Cancer Leaves show small brown spots. Sometimes

Borers General debilitation of bark Always

Borers Rinabarkinz Sometimes
~ .

Shot hole Brown spots with reddish margins on leaves Alwavs

Shot hole Spots fall out Alwavs

Shot hole Sunken black holes in fruit Always

Leaf blister Raised brown bisters on leaves Always

sawfly

Leaf blister Leaves fall from tree prematurely Sometimes

sawfly

Leaf Curl Infested portion of leave are at first pink and Always

thickened -
Leaf Curl Completely infected leaves are pale green to vcllow. Alwavs

Brown rot Brown spots first occur on blossom Always ,-
Brown rot Brown area spread all fruit until fruit arc rotten. Always

Fig. 6.11 The normalized example

6.8 Conclusion

In this chapter we established frames as a superclass of relations, frames having all the

properties of relations plus in addition, having default values specified for slots, as well as

attached procedures. This relationship between frames and relations has a number of

advantages. the primary advantage being that we were able to redefine normalization for

frames.

In the next chapter. we will take a closer look at expert systems. and the role of frames as

a representation scheme for expert systems, and in chapter 8 we will take a closer at the

similarities between databases and knowledge-bases. as we examine the integration of the

two.

68

Chapter VII : An Overview of Expert Systems

7.1 Introduction

This chapter contains a short overview of expert systems. We examine the structure of

rule-based, as well as frame-based expert systems, and the advantages of each. Finally we

examine the advantages of combining these representation schemes.

7.2 Expert Systems

An expert system is defined as a computer based system, that is software and hardware,

that is capable of performing a task, usually performed by a human expert. Expert systems

simulate the part of human intelligence that can be formulated as a set of facts and

heuristic rules [LUG89]. Expert systems are also known as knowledge-based systems. In

general, an expert system represe~ts knowledge as small discrete chunks, using logic rules,

production rules or frames [SMI86]. The knowledge contained within an expert system is

usually confined to a single domain. Therefore its problem-solving capacity is usually also

limited to a single field of technical expertise. It should be noted that an expert system is

classified as such, because of its functional characteristics, rather than because of its

structure or specific design aspects.

According to Bowerman and Glover, there are three different options for building an

expert system:

I). Use an expert system building shell, with all the capabilities required by the

specific project.

2) Use an expert system building shell, with most of the capabilities required by the

specific project, that also provides a high-level programming interface, that can

be used to develop the remaining facilities required.

3) Use a programming language to develop the expert system in question from the

ground up. This programming language can be anything, from a traditional

programmmg language like Pascal to languages like Prolog and LISP

[BOW88].

69

This means that a software system need not be developed using specific structures, tools,

languages or design methodologies to be classified as an expert system.

7.3 Rule based Expert Systems

In this section we examine the structure of a rule based expert system, as well as the

advantages and disadvantages of this structure.

A rule based expert system can be partitioned into two parts, one containing the domain

specific knowledge and the other containing the domain-independent knowledge.

Rule-based Expert System

Domain Specific

Knowledge:

Rules
&

Facts

Domain- Independent

Knowledge:

Inference

Engine

Fig.7.1 The Primary parts of a rule-based expert system [BOW88].

7.3.1 Domain specific knowledge

The domain specific knowledge, also known as the knowledge-base in a rule-based expert

system, consists of rules in the form IF...THEN... or IF....THEN....ELSE... These rules

are used by the inference engine, to solve problems in conjunction with some case-specific

knowledge or in other words values of variable for the specific problem being solved.

[LUG89, BOW88]

7.3.2 Domain-independent knowledge

The domain independent knowledge, also known as the inference engine, has two parts:

the rule interpreter and the scheduler. The interpreter evaluates rules in the system to find

those whose conditions are satisfied. The scheduler decides the order in which to fire the

70

rules identified by the scheduler. The inference mechanisms used by the inference engine is

either forward-chaining or backward-chaining. Forward chaining infers conclusions from

facts in the database. backward chaining on the other hand attempts to find probable

causes for conclusions or goals [BOW88]. Two examples of famous rule based expert

systems are MYCIN and PROSPECTOR [TEL88].

7.3.3 Advantages of a rule-based expert system

1) Making the representation of knowledge more natural: Representing knowledge as

"IF..THEN" rules are closer to the way humans describe their knowledge than

knowledge imbedded within lower level computer code.

2) The separation of knowledge and control makes it possible for expert system builders

to focus on capturing and organizing knowledge, rather than on the details of the control

of inference.

3) The separation of knowledge and control makes it possible to change part of the

knowledge-base without having to make any changes to the inference engine or the rest

of the knowledge-base.

4) Because of the separation of knowledge and control it is possible to use the sa-ne

inference engine with different sets of knowledge (rules).

5) It is possible to experiment. using a set of rules with different inference engines.

[LUG89, SMI86].

7.3.4 Disadvantage of separation of knowledge and control

The main disadvantage of the separation of knowledge ana control that we identify is the

following: Because an inference engine has to be very general in the way it evaluates and

fires rules, it is not always possible to take advantage of patterns within a specific set of

rules to make the firing of rules more effective. In other words, knowledge representation

can be kept simple, using rules. because performance-oriented details are omitted. To

make up for these missing details, it is necessary to use powerful, but inefficient control

strategies to control search in the rule base [SMJ86]. This is an illustration of the general

tendency within all problem solving methods: The more general a method is, the weaker it

will be for specific cases.

71

7.4 Frame based Expert Systems

In this section we examine frame based expert systems and see how they compare to rule

based expert systems.

Looking at the structure of a frame based expert system (figure 7.2), it seems that it is

very similar to a rule based expert system. It can also be divided into a part containing

domain specific knowledge and a part containing domain independent knowledge, but as

we shall see in the rest of this section, this is about as far as the similarity goes.

Frame-based Expert System

Domain Specific

Knowledge:

Domain-Independent

Knowledge:

Frames

Attached
Procedures

Frame
Management

Sub-system

Fig. 7.2 The structure of a frame based expert system

7.4.1 Domain specific knowledge

The domain specific knowledge or knowledge-base in a frame-based expert system

consists of a number of frame classes, each with possibly a number of attached procedures

and a number of instances. Frames contain facts, rather than rules. The rules in a frame

based system for deducting new knowledge is embedded within its procedural

attachments[BAR81, BOB77, MIN75] . Because of this difference in its knowledge-base,

the inference engine for a frame-based system has a completely different function than that

of a rule based system.

7.4.2 Domain-independent knowledge

The inference engine for a frame-based system is not completely in charge of inference as

such. Therefore we will rather call it the frame-management sub-system. The frame

management sub-systems' function is to select an initial frame to activate and to transfer

control from one frame class to another. Inference is implemented by the procedures

72

attached to frames. In a typical frame-based expert system, the frame-management

subsystem will transfer control to a goal frame, which will attempt to fill all its empty slots,

by asking the user for information, deducting information using its own attached

procedures, and activating other frames to find information. The only role of the frame

management sub-system being the transfer of control between different frames [MIN75].

7.4.3 Advantages of a frame-based expert system

1) Frames are a natural way to represent knowledge because of human's tendency, to

group knowledge into classes, making it easy to represent knowledge as frames

[MIN75].

2) Using Frames makes it possible to create generic systems for, say natural-language

understanding, using frames, and to use these in a number of different applications.

3) Using Frames makes it possible to control inference 'much more closely than using

rules. This makes it possible to optimize inference .whenever definite patterns in

knowledge are known.

7.4.4 Disadvantages of frame-based expert systems

Because knowledge and control are not separated in a frame-based expert system, a

frame-based expert system has none of the advantages. offered by this separation. It is

further necessary to specify all inference yourself when developing a frame-based expert

system, making it a much more complex task than developing a rule-based expert system.

7.5 Hybrid Expert Systems

.Becauseof the above mentioned disadvantages of a frame based system, expert system

development tools that support only frames as a representation structure is rarely found.

Most expert system tools that support frames are hybrid. systems, using both rules and

frames to represent their knowledge. A few examples of such 'hybrid' expert systems are

KES, Acquaint, The Intelligence Compiler and Goldworks [TEL88]. In figure 7.3, we can

see the general structure of a hybrid system, using both frames and rules.

73

A Hybrid Expert System

Domain Specific Knowledge:
Domain-Independent

Knowledge:

Frames
Inference

~ Rules - Engine,I Attached I
Procedures

Fig. 7.3 The Structure ofa Hybrid expert system.

A hybrid expert system can again be divided into two parts, Domain Specific and Domain

Independent Knowledge.

7.5.1 Domain Specific Knowledge

The domain specific knowledge of a hybrid expert system consists of both frames and

rules. The interaction between frames and rules are the following: The rules can access

facts stored within individual frames, activating attached procedures when necessary

[TEL88]. The reverse is also true, frames in a hybrid system can deduct new knowledge

by using their attached procedures or by using the combination of the rules and inference

engine.

7.5.2 Domain-Independent Knowledge

The inference engine of a hybrid expert system evaluates rules and selects which rule to

fire next. It must also be able to transfer control between 'different frames. Thus its domain

independent knowledge combines the requirements ofboth a rule-based and a frame-based

expert system.

7.5.3 Advantages of hybrid expert systems

Hybrid expert systems provide the best of both worlds: Using a hybrid expert system it is

possible to separate knowledge and control, using the combination of rules and inference

engine. It is possible to group knowledge into classes, using frames, and to make use of

patterns within the knowledge to optimize the. inference process by using attached

procedures.

74

7.6 Conclusion

In this chapter we saw how the rule and frame-based representation schemes can

complement each other when used in combination, each providing some desirable

characteristics while eliminating some of the other's weaknesses.

It should be noted at this stage, that normalization of frames as we defined it in the

previous chapter should also be used to normalize the frames used in a hybrid system.

Normalization of frames in a hybrid system will eliminate redundancy within frames,

prevent update anomalies, and facilitate, making the frame-based part of the system more

effective. In a hybrid system, added care should however be taken when normalizing

frames, because it will be necessary in some cases to modify the structure of rules that

access these frames.

In the next chapter we will examine the integration of expert systems and database

management systems, and how the use of database technology might eliminate some of the

. inherent weaknesses within expert system tools.

75

Chapter VIII : The Integration of Knowledge-based Systems and
Database Management Systems

8.1 Introduction

In this chapter, we examine the integration of knowledge-based systems or expert systems

and database management systems. We look at the motivation for this integration and at

the different approaches taken to integrate expert systems and database management

systems. Finally we examine some examples of attempts to integrate expert systems and

knowledge-based systems, found in the literature.

8.2 Motivation

Integrating expert systems and database management systems is an on going area of

research. The following are some of the reasons for wanting to integrate expert systems

and database management systems:

• In expert systems, the general nature of inference causes a performance bottleneck. In

some cases, inference might be replaced by a query evaluation in a Database

management system, improving performance [SMI86].

• In most business applications of expert systems, some sharing of information between the

expert system and databases might be necessary [SMI86]. Even if the knowledge-base

and database remain separate, rules often need to be tied to specific fields in the

database [BOW88], e.g., an Expert system identifying market trends, might need to

access trade figures for the past year, which might be available in a traditional database

system. A Database management system might also have to obtain information from an

expert system running in the same environment. To simplify this kind of integration it

is desirable to filter these connections through a shared database and to keep the

variables passed each way to the absolute minimum [BOW88].

• Database management systems is especially useful for the management of shared data

between multiple users. As expert systems develop, the requirement of multiple users

will become more of an issue. Integrating database management and expert systems will

provide mechanisms for managing multiple users of a single knowledge-base.

76

• Database management and expert systems is complimentary technology and the current

trend is to require aspects ofboth to develop database and expert system applications.

From the previous discussion, we can see the need for integrating the two different

technologies. Doing this however is not as simple as integrating two different software

systems. To integrate expert systems and database management systems, it is necessary to

accommodate differences in the theoretical foundations of each.

According to Whang and Navathe [WHA92], the motivation for integrating expert

systems and database systems, is to provide processing of logic queries (search) with the

following characteristics:

• Feasibility and correctness: Each search should be guaranteed to terminate and should

produce correct results.

• Coupling efficiency: The database should provide efficient access to data on secondary

storage.

• Search efficiency: The search should focus on relevant data only, in other words, the

search process should not evaluate irrelevant tuples (tuples not necessary to formulate

the results) and it should evaluate each relevant tuple only once.

Through integration of expert systems and database management the above mentioned

characteristics should be achievable.

How this integration is done will be examined in the next sections.

8.3 Classification

There is primarily two ways of integrating expert systems with database management

systems: The first, called tight coupling, is when the definition of a database management

system is extended to include things like rule management and inferencing, thus adding the

deductive capabilities of an expert system to the capabilities of a traditional database

management system. Tight coupling is primarily achieved by extending the definition of

the relational structure [UCK91,WHA92]. The second method, called loose coupling, is

when the expert system and database management system exist as two independent

systems and communication between the two occur at the level of a database query

language [WHA92].

77

ce

Database
Management

System

I 1\
Interfa

\ II

Expert
System

Database
Management

System

Rules and
Inference

tightly coupled system

loosely coupled system

Fig. 8.1 Different methods of integrating expert and database management systems.

Systems integrating expert systems and database management systems can also be

clas sified as homogeneous or heterogeneous systems. In the heterogeneous approach, two

distinct systems exist, one for conventional database management and the other for

theorem proving, and these two systems are coupled through an interface rUCK91]. In

horr ogeneous systems, data management and theorem proving function are integrated to

form a single system [UCK91]. The difference between tight coupled and homogeneous

systems is that tight coupling refers to the logical view and homogenous refers to the

physical view of the system. When using tight coupling there still might be two distinct

systems; .but the users view is that there is only one system, because he uses one

representation to formulate queries and deductive axioms [UCK9]].

The approaches to integration can also be divided into the following categories:

• Logic based approaches

e.g. Prolog interfaces to a Database management system.

• AI frame interfaces to databases

e.g. KEE. interface to relational databases.

• Object oriented approaches

• Extended relational approaches [BAN89]

e.g. The nested relations used by Reiter and Schek [REI89]

78

The system resulting from integration of expert systems and database management system

is in essence an expert system. the only difference it has to conventional expert systems. is

that it is much more effective in answering certain kinds of queries.

8.4 Approaches to Integrate Expert Systems and Database Management
Systems

Although alI attempts at integrating expert and database management systems can be

classified using the terms defined in the previous section, there still remains a number of

different ways of integrating the two technologies. In this section we will examine some of

the attempts found in the literature. We will also take a look at the advantages of the

different approaches that are used.

8.4.1 Expert Database Systems

An expert database system (EDS) is defined as Ita system for developing applications

requiring knowledge-directed processing of shared information. II The motivation for

expert database systems is the fact that search is rhe common underlying function of

expert systems and database management systems. [SMI86]

8.-I.J.J Architecture ofan ExpertDatabase System

An EDS consists of three kinds of components:

• Expert systems, for knowledge directed processing.

.• A database management system for managing shared information.

• Specialized processors for handling specialized data formats. [SMI86]

The third component, the ability to handle specialized data, like visual data, is required in

a growing number of so called multi-media applications. A general propose EDS should

therefore be capable of managing this type of data. The reason for keeping each ES in a

separate module is to encapsulate each problem solving activity within a single module.

The basic architecture of an EDS is shown in figure 8.2.

79

Users

Knowledge
Directed
Processing Expert

System
Expert

System

----------------------~--------------~-----------

Shared
Information
Management

Distributed
DBMS

-----------r>': -- ----~ -- -----------
Specialized
Data
Processors

Information r--'\

Image
Processor

Finite
Element
Analyzer

o
Image
Data

Generic
Information

Analysis
Data

Fig. 8.2 Architecture of an EDS [SMI86]

8.-1.1.2 Important issues about EDS

The two main issues are the following:

• How should functionality be distributed across the expert system and the

database management system? Should the database' functionality be stripped to

a bare minimum and all other services be provided by the expert system, or

should the stripping be done the other way around?

• How should the system appear to the user? Should it appear as a tightly coupled

. system, with no visible boundary between database management system and

80

expert system, or should there be a definite boundary between the two, with

different representation and query languages for each?

In the rest of this section, we will focus on the first of these issues. The general answer to

the question of distributing functionality is this: The main reason for integrating expert

systems and database management systems is to improve performance, a function should

therefore be allocated to the system (database management or expert) where it can be

executed in the most efficient manner.

8.-1.1. 3 Inference versus Query Evaluation: A Comparison

• Query evaluation is a much simpler process than deductive inference and in general query

evaluation can be expected to be much faster than deductive inference.

• The knowledge representation for deductive inference is more powerful than the

knowledge representation for query evaluation.

• Deductive inference is more flexible than query evaluation.

• The flexibility of deductive inferencing is not needed in many applications where some of

the knowledge will never change. Integrity constraints (knowledge which never

change) in deductive inferencing is not distinguished from other knowledge and

therefore the search process can not take advantage of them. This knowledge should

rather be built into the search process as integrity constraints, giving improved

performance.

• The ability to provide explanations for deductions is not limited to deductive inferencing,

as often believed. Query evaluation has a comparable query explanation capability,

which involves backtracking the query evaluation tree. [SMI86]

8.-1.1. -I Conclusion

Taking into account the previous discussion the following conclusions about the decision

for distributing functionality between expert system and database management system are

reached:

• An expert system and a database management system containing the equivalent sets of

data or knowledge can both'support similar query and explanation functions, the only

difference being that the database management system can answer queries much more

efficiently than the expert system.

• Expert systems have a more flexible way of representing knowledge, but in most cases

this added flexibility is unnecessary.

81

• The search mechanism employed in expert systems is very powerful, but it is also

computationally expensive, because it uses the same method of search for all its

knowledge. On the other hand, database management systems have a much less

powerful, but also much more efficient search mechanism. [SMI86]

The key design criterion for deciding which functions to incorporate in which system is

therefore the following: Where a powerful search mechanism is really needed the inference

mechanisms of the expert system should be used and in all other cases the database

management system should be used for search, to achieve f!1aximum efficiency.

8.4.2 The Extended Disjunctive Normal Form Approach

The Extended Disjunctive Normal Form (EDNF) approach is suggested by Whang and

Navathe [WHA92] and is used to achieve performance in a loosely coupled integrated

expert, database management system. The EDNF is an extension of the disjunctive normal

form of relational algebra so as to include recursion. The EDNF is used to construct

optimized queries for loosely coupled systems and is therefore a mechanism to optimize

the interface (see figure 8.1) between the expert system and database management system

in a loosely coupled system.

8..1.2.1 Advantages of the EDNF Approach

• This approach is used for loosely coupled systems, it is therefore possible to use existing

database management systems without any modification.

• It improves performance by optimizing queries directed to the database management

system.

• One of the main draw backs of relational algebra is that is does not provide any recursive

functions. This approach extends the relational algebra to provide for recursive logic

queries. [WHA92]

8.5 Using the Relational Model for Knowledge-bases

Much of the work that can be categorized as attempts to integrate knowledge-bases and

databases management systems, do not use expert systems at all but are attempts to use

the relational model, in a particularly creative manner or to modify it slightly, to add expert

system capability to it. In other words, much of the work on integrating expert systems

and dat-abase management systems are at the level of extending the models used by

82

database management systems (primarily the relational model) to include logic-based

capabilities. In this and in the following sections, we will look at this kind of attempts at

integration. It is possible to use the relational model as it is as a basis for building

knowledge-bases. There is however a few limitations to using this model:

• Knowledge-bases need to be able to access generic-level data about objects with the

same ease as accessing specific instances of objects. The generic data also need to be

easily changed in a knowledge-base. Relational database management systems usually

do not provide mechanisms to do this [LOC91].

• Due to normalization usually associated with relations, related information is distributed

across several relations, making the representation more complex to understand.

[LOC9I]

• Relational algebra do not provide for recursion. This isadequate for database queries,

but inference in expert systems, usually requires recursion. [BAN89, WHA92, SMI86,

DAT90]

• The relational algebra does not provide any list processing facilities. [BAN89]

• Relations requires that attributes be single valued, where most knowledge-bases requires

non-atomic valued attributes. [BAN89]

• The Relational model do not provide any methods for attaching procedures to relations.

[BAN89, DAT90]

• Relational database management systems usually do not provide any mechanisms to

support making deductions (inferencing). [BAN89]

Because of these limitations a number of additions is proposed to the relational model to

make it a more viable method for implementing knowledge-bases. In this section we will

examine some of the ways in which the relational model is augmented to be used as a basis

for knowledge-base management systems.

8.5.1 Knowledge Representation Using Views in Relational Deductive Databases

A deductive database is defined as a homogeneous logic-based database system in which

only one programming system is used for both database access operations and inferential

functions [UCK91].

83

8.5.1.1 Knowledge-bases and Databases

According to Uckan [UCK91], knowledge is information that can be derived from data

stored within a relational database. This knowledge can be expressed using a variety of

knowledge representation schemes, including frames and production rules. Rules can be

used to derive new information from the database and therefore, the knowledge-base

might consist of a number of rules on how data stored in the knowledge-base might be

used to derive information.

8.5.1.2 Rules and Views

Production rules can be substituted by virtual relations or views in a relational database.

Many relational data base management systems support views. This makes it possible to

implement production rules using views in a relational system. According to Uckan, views

can be used with the same functionality as rule definitions, using languages like SQL. The

only weakness being the processing of recursive rules [UCK91].

8.5.2 Extensions to the Relational Algebra

As we mentioned earlier, relational algebra does not support any form of recursion or

deduction. Banks et al. [BAN89] defines what they call a Deductive Algebra (DEAL) for

relations. DEAL is based on SQL (Structured Query Language: an equivalent of relational

algebra) and aspects of Prolog. DEAL strengthens the basic operations of SQL to support

deductions, functions, molecular objects (as opposed to atomic objects) and virtual

attributes. DEAL can also be used for list processing. DEAL is thus an extension of the

relational algebra, that makes it more feasible to implement a knowledge-base using the

relational model.

8.5.3 Deductive object bases

A deductive database extends the relational framework, using mathematical logic. In a

deductive database, it is possible to represent facts in a database in terms of normal

relations, deductive rules and integrity constraints [SHE90]. In an object-oriented

database, the user can define high level objects and their associated set of customized

operations. A deductive object base is a combination of the previous two and can be

implemented as a system consisting of a rule base, a relational database and a set of

primitive operations that can be directly evaluated [SHE90]. A deductive object base

integrates database management systems, expert systems, and object-oriented

programming, to provide a more effective model for developing expert systems.

84

8.5.4 A Mapping from Frame-based knowledge to Nested Relations

Reimer and Schek [REI89] proposes a mapping from Frames to Nested Relations. They

introduce the frame representation model with a strong type system. They allow for

polymorphic type hierarchies and recursive type definition. They map this to a one NF2

relation per frame prototype and one meta NF2 relation ~here each tuple describes the

schema of a prototype-frame relation. Inheritance is recorded within the meta-relation by

explicitly naming sub- and superframes. Nesting is used only to capture the part-of

relationship. This mapping makes it possible to implement a Frame-based knowledge-base,

using a nested relation model.

8.5.5 Frames as a Superclass of Relations

Our attempt to establish frames as a superclass of relations can also be seen as an attempt

to integrate expert systems and database management systems. We define frames in such a

way, that it is possible to see frames as an extension of the relational model. Frames as a

superclass of relations, again gives rise to the idea that relations, can be used to form the

basis of knowledge-based system, even if they are used in a modified form.

8.5.5. J An Alternative view ofa Frame-hosed Expert System

Because of our definition of frames as an extension of the relational model, we can look

at a frame based-expert system in terms of a relational databa-ie system.

In chapter 6 we showed that the following relationship exists between frames and

relations: A frame is equivalent to a relation, with certain features in addition to those of a

relation namely attached procedures and default values. We illustrate this relationship

between frames and relations in figure 8.3.

Frames is a superclass of relations:

=> Frames :» Relations

=> Frames = Relations + Attached Procedures +

Default values

Fig. 8.3 The relationship between Frames and Relations

85

It is this relationship between frames and relations that prompts us to attempt to define a

frame-based expert system in terms of a relational database. Because frames is a superclass

of relations, it is clear that a frame-based expert system can not be represented by a

relational database on its own.

A data dictionary is defined as a part of a database management system that contains the

following information:

• Information about the structure ofdata.

• Characteristics of the data.

• Usage of the data contained within the database.

In other words, the data dictionary contains meta-data, that can include procedures (usage

ofdata) and default values (characteristics of the data).

A frame-based expert system, using our definition of frames, can be seen as a relational

database management system with an integrated data dictionary. The database contains the

frame instances, and the data dictionary contains the following: Information about how the

database. is to be used (attached procedures), Default values for empty slots, and

information of the constraints or domain of each slot. We illustrate this alternative view of

a frame-based expert system, in terms of a database management system and data

dictionary in figure 8.4.

Relational Data Dictionary:

Database Management
./ <,
........ /" • Attached procedures

System • Constraints
,/ I'

"-1/

,-

Relational Database

Frame
-- instances....

Fig. 8.4 A frame-based expert system in terms of a relational database and a data dictionary.

86

This alternative view of a frame-based expert system suggest the following:

• It might indeed be possible to develop some expert systems, using a relational

database management system that includes an integrated data dictionary.

• Frame-based expert systems might be made more efficient, if they are developed,

using relational database management systems, rather than frame-based

development tools.

There are however some objections to the use of relational databases for representing

knowledge. In the next section, we will look at some of these objections and we will try to

put them in the correct perspective.

8.6 Objections Against Using Relational Databases for Representing
Knowledge

P.C. Lockemann et al. [LOC91] raises the following objections against using databases as

knowledge bases:

• DBMS provide exactly one level of abstraction: Inheritance, on the other hand,

requires an unlimited number of levels of abstraction. It is however possible to

simulate inheritance on the instance level, but this leads to unwieldy relational

schemas.

This is true, but inheritance can be implemented by extending the relational model,

an example of such an extension is found in deductive object bases, and object

oriented databases.

• When mapping a knowledge-base to a database, it is not clear how to determine the

optimal relational structures for representing the knowledge.

We believe that the optimal mapping from knowledge to relations might be achieved

by normalization.

",

87

• Normalization causes information about a single object to be divided across a number of

different relational schemes, making the representation of knowledge. less natural and

making expensive join operations necessary to retrieve this information.

It is true that normalized knowledge is more difficult ~o understand, but

normalization is essential to eliminate update anomalies as we have seen in chapter 6.

Join operations, however need not be expensive: Join operations can be optimized by

maintaining indexes on the fields used for the joins. Inefficient join operations will

only be a factor if they are implemented inefficiently.

From these objections it is clear that the use of the relational model for knowledge

representation is. not without its sacrifices. It is indeed possible to represent any

knowledge, using the relational model in a slightly modified form. There are however

certain types of knowledge that can be represented much better using expert systems

techniques. This seems to point towards using the expert database system approach that

represents knowledge using relations whenever possible und uses expert systems

techniques in the few cases where they are better suited to representing a specific fact.

It also seems that much of the disadvantages of using relations for representing

knowledge, rather than knowledge representation schemes is tha they are more difficult to

use, but not necessarily more effective. In other words, there seems to be a trade-off

between the simplicity of using a specific knowledge representation scheme and how

effective it will be. This opinion is confirmed by the current trend to separate the

development and delivery systems. A knowledge-based system, developed using an expert

system development tool, might be translated to compiled C code [HEL91].

People rarely think of it this way, but the only reason for using complex knowledge

representation schemes for designing knowledge-based systems, is to simplify their

implementation, but 'it is even possible to implement. an expert system directly in

assembler, it will only be much more difficult and take much longer to finish than using

higher level techniques.

88

8.7 Database management systems and Knowledge-based systems as
complementary technologies

Database technology is a mature technology [REI89, SMI86]. There are a vast number of

commercial database management systems available. These systems are able to meet all

the demands in terms of speed, security, management of shared information etc., required

by commercial database applications. There is however a class of applications, namely

knowledge-based applications, which they cannot easily support. These problems are

solved by expert systems development tools. Expert systems development tools, however

have their own set of problems, like inefficient search and too slow response times with a

large amount of rules, to name a few.

No matter how these two technologies are integrated, they can both benefit from each

other: The extensions to database models, made to support knowledge-based applications,

makes itpossible to develop more complex database systems than before, that combines

both traditional database aspects, and knowledge. Expert system technology on the other

hand can borrow a great deal from databases. Many of the problems currently experienced

with expert systems was also teething problems with database technology and rather than

developing new solutions. for expert systems, we can learn from the way similar problems

were solved for databases, and in many cases we can re-use these solutions with only small

changes.

8.8 Conclusion

Although there are still some significant differences between data and knowledge-bases, it

seems as Wthe distinctions between them are becoming increasingly vague. Considerable

work has been done to establish common ground between the two technologies and in the

long run, both technologies can only benefit from each other. The previous discussion of

the different attempts to integrate expert systems and database management systems

however highlight a very important problem with this integration: There is a general

agreement that this integration can have some advantages, but the manner in which this is

to be achieved is still not clear. A great deal of confusion is also starting to develop

concerning terminology. Terms like expert system, knowledge-based system, deductive

database system, object-oriented database and logic-based· systems, are being used in the

89

same context. This also ilIustrates the fading of the borders between database and expert

systems.

Another problem with the integration of expert systems and database system is that

research is done from two directions. From the database community, there is attempts to

extend the capabilities of databases, to include functions, traditionally only found in expert

systems. And from the expert system community there is an attempt to make expert

systems more efficient by using database technology. We believe that meaningful results

will be achieved much sooner if there is closer cooperation between these two

approaches.

90

Chapter IX : Normalization and the System Development Life
Cycle of Expert Systems

9.1 Introduction

In this chapter, we look at how normalization fits into the development life cycle of an

expert system. In the first part of this chapter, we examine the different steps in developing

an expert system, and in the second part, we provide a methodology for the use of

normalization when developing an expert system, using a frame-based expert system

development tool.

9.2 Steps in Developing an Expert System

The development of expert systems is a very wide topic and it is possible to write several

books about it. Therefore this section serves only as a summary of the steps in the

development life cycle.

9.2.1 Feasibility

Before developing an expert system, it is necessary to determine vhether the problem

being solved should indeed be solved by the development of an expert system and if

indeed this is a problem requiring an expert system solution. It is also necessary to

determine whether it will be feasible to develop such an expert system.

A system requiring expert system development generalIy has some of the following

features [LUG89]:

• A requirement for symbolic reasoning.

• A focus. on problems that do not respond to algorithmic -solutions, but that relies on

heuristic search as a problem-solving technique.

• It has to solve problems, using inexact, missing or poorly defined information.

• It has to capture and manipulate qualitative features, rather than numeric data about a

problem area.

• It has to deal with semantic meaning, as well as syntacticform.

91

• It has to give answers that is not necessarily optimal but that is sufficient. This has to do

. with solving problems in situations where an exact or optimal solution is impossible or

too expensive to achieve.

• It has to solve problems using large amounts of domain-specific knowledge.

According to R. Tello [TEL88] the following are a few important rules of thumb that can

be used to determine whether the development of a specific expert system will be feasible:

• The problem domain should be specialized and common sense knowledge should not be

essential in solving these problems.

• The problem domain should neither be too easy nor too difficult for the current human

experts.

• The expert system should include the capability to keep track of the problem space.

• The developer of the expert system must be able to count on a commitment from one or

more experts to help in developing the system, for a considerable amount of time.

• The experts should be able to communicate the contents of their expertise, and they

should agree on the way in which problems are solved.

9.2.2 Selecting a Development Tool

The selection of an expert system development tool will be influenced, by [TEL88,

LUG89, BOW88]:

• The knowledge representation structures provided by the expert system shell.

• The tools provided for developing a user interface.

• The cost of the different expert system shells.

• The integration provided with other systems, i.e., graphics, database and programming

interfaces.

• The machine requirements of the development tools.

9.2.3 Knowledge Acquisition

Knowledge acquisition IS the process by which knowledge IS obtained for

transferal to the expert system.

Knowledge acquisition IS an iterative process that consists of three phases [BOW88,

TEL88J:

92

• Extracting knowledge from knowledge sources to establish the initial knowledge

required by the system.

• The ongoing formulation of knowledge, to add to the knowledge-base.

• Testing and verifying that the knowledge-base is correct and complete.

This knowledge acquisition process is illustrated in figure 9.1.

Initial formulation of
knowledge.

Formulation of additiona
knowledge

Testing and verification

Complete and Correct

Knowledge-Lase

Fig. 9.1 Tile three phases of knowledge acquisition.

Knowledge can be acquired from the following sources [SEL85]:

• One or more human experts.

• Text books and manuals.

• Examples.

9.2.4 Creating a Representation of the Knowledge

Creating a representation of the knowledge or encoding the knowledge, using the available

representation structures, is a central issue to the development of expert systems. In

section 9.3 we will examine this encoding of knowledge using frames more closely and

provide a methodology for the normalization of frames.

93

9.2.5 Verification and Evaluation

The verification of an expert system usually involves "hands-on" testing by domain experts

and the intended users of the system.

9.2.6 Maintaining and Expanding the System

If an expert system advances to the stage where it is being used then, just like any other

piece of software, it will have to be maintained and it might at some stage, be necessary to

add a number of extensions to the original system.

9.3 Encoding the Knowledge

Before encoding the knowledge it is necessary to decide which representation scheme will

be used. In this section, we examine, how knowledge can be encoded, using frames. We

also suggest a methodology for normalizing the frames. The use of frames as a knowledge

representation structure is indicated by the following:

• Frames are ideal for systems that require reasoning about ster-eotyped situations

[MIN75, JAC86].

• Frames offer mechanisms for dealing with exceptions and def 'ults, that can not

be easily handled by any other representation scheme [JAC86].

• Frames are recommended when the knowledge structure of the domain is

hierarchical and dependent; and the degree of knowledge heuristics is well

defined [MOC92].

• Frames are appropriate for object-oriented systems, in other words frames are

appropriate to represent knowledge that focuses on related objects [OLS92].

• Frames can be used for knowledge-based applications that focus on gathering or

sorting data-activated procedures. In other words, any change in data will

activate procedures. This especially appropriate for monitoring computations

[OLS92].

• Frames are useful for representing descriptive information about objects.

94

To encode the knowledge, gathered in the knowledge acquisition phase, it is necessary to

complete the following steps:

• Represent the knowledge as collections of frame classes.

• Identify all the keys.

• Normalize the frames.

• Determining defaults, constraints and domains.

9.3.1 Represent the knowledge as collections of frame classes

Representing the knowledge as collections of frame classes can be achieved 10 the

following manner:

• Try to create a separate frame class for each type of object encountered.

• Determine the primary key for each of these frame classes.

• Determine the properties of each of these frame classes, in other words,

determine which slots are associated with each frame class.

• Determine the procedural information to be associated with each frame class, i.e.,

define all the attached procedures' associated with each frame class.

9.3.2 Identify all the keys

Primary keys:

The primary key of each frame class should already be determined in the previous

step.

Candidate keys:

It is necessary to identify all the candidate keys so that their uniqueness property

might be enforced in subsequent steps, by defining attached procedures that will

check this uniqueness property, thus maintaining the integrity of the knowledge

base.

Foreign keys:

Foreign keys, are by far the most important category, as they are used to establish

relationships between different frame classes. It is also necessary to add attached

procedures to ensure the referential integrity of foreign keys.

95

9.3.3 Normalize the Frames

T~ normalize the frames, it is necessary to do the following:

• Identify the derivable slots of each frame class.

• Taking into account these derivable slots, transform the frames to non-derivable

normal form.

• Normalize the frames to 1NF.

• Identify the functional dependency between the slots within each frame class.

• Use the functional dependencies, along with the primary key to transform all the

frames to 2NF.

• Use this information, along with the keys determined in the previous steps, to

normalize the"frames, to 3NF, and if necessary, 4NF, using the definitions of

normalization as defined in chapter 6.

9.3.4 Determine defaults, domains and constraints

For each slot of each frame class, the following should be determined:

• Determine a default value for each slot. A default value should be a value

that is true in general for the slot, otherwise, the default value should be left

empty. It is important to remember that a slot that is part of the primary

key or of a candidate key, can not have a default value, because of the

uniqueness property. Also it is necessary to define attached procedures that

prevent slots without default values or IF-NEEDED procedures attached

to them from being empty.

• Establish the pool of valid values that may be used to fill each slot. In other

words determine the domain of each slot and make sure that the domain

restrictions are enforced, if they are not automatically enforced by the

frame-management system.

• Determine any other constraints that limit the valid values for each slot, and

make sure that they will be enforced.

Determining the defaults, domains and constraints can be done at any stage, we however

suggest doing it only after the frames have been normalized, because after normalizing all

the functional dependencies and relationships between different frame classes have been

determined. If for instance, the default values for all the slots, are determined before

normalization, new information about the structure of the. knowledge might influence the

default~, invalidating previous assumptions made about their values.

96

9.4 Conclusion

In this chapter, we provided an overview of the development life cycle of an expert system

and we examined how normalization can form part of the knowledge encoding phase. We

suggest that normalization should form part of any attempt to map a knowledge-base to

frames. This normalization process can also be used when developing an expert system,

using a hybrid expert system development tool. In such a case the normalization will only

be applied to that part of the knowledge, represented by frames.

97

CHAPTER X : CONCLUSION

10.1 Introduction

In this chapter we summarize what we have achieved in this dissertation. We also examine

possible topics for further research that arises from our study.

10.2 Frames as a Superclass of Relations

The main objective of this dissertation was to establish frames as a superclass of relations.

We have seen that frames can indeed be seen as an extension of the relational model, with

all the characteristics of the relational model and in addition a few characteristics of its

own namely default values and attached procedures. This relationship between frames and

relations enabled us to do the following:

• We defined normal forms for frames:

non-derivable normal form,

first normal form,

second normal form,

third normal form and

fourth normal form (chapter 6).

• We applied relational algebra operations to frames, providing a mechanism by

which to manipulate the contents of a frame. We also discovered that it was

possible to define the attached procedures of frames, using the relational algebra

operations (chapter 6).

• We were able to define an alternative view of a frame-based expert system, in

terms of a relational database management system, with an integrated data

dictionary (chapter 8).

The normalization of frames, as a superclass of relations, enabled us to transform an initial

representation of a collection of knowledge as frames, to a representation, using frames

that we know to be free of any update anomalies.

98

10.3 Topics for Further Research

The following is some topics, arising from this research, that require further looking into:

• It might be interesting, to implement an expert system, using a frame-based

expert system development tool, as well as implementing the same expert

system using a commercial database management system with an integrated data

dictionary and to then compare the systems in terms of the following:

• Development time.

• Response time.

• How easy or difficult it is to change each system to incorporate new

knowledge or change existing knowledge.

• The integration of expert systems and database management system also deserves

some further attention especially in terms of combining the different approaches

of integrating expert systems and database management systems.

• The normalization of frames, if we classify frames as an object-oriented

representation raises the question whether normalization might also benefit

other object-oriented representations of data.

10.4 Conclusion

We end this dissertation on the same note we started, by reiterating the point, that a great

deal can be gained by comparing different technologies for similarities, rather than

differences.

We used similarities between frames and relations to define normalization for frames. This

clearly shows the advantage ofexamining related technologies for similarities, even though

there are also a number of differences between them.

99

REFERENCES AND BIBLIOGRAPHY

[BAN89] B. J. Banks, S.M. Deen , L.A. Garcia, S. M. Harding, A. C. Herath.

"Design and Implementation of DEAL". Data and Knowledge Base Integration

Proceedings of the Working Conference held at the University of Keele. S.M.

Deen and G.P. Thomas (ed.), pp. 29-58, 1989.

[BAR81] A. Barr & E. A Feigenbaum (ed.). The Handbook of Artificial

Intelligence Volume I, Pitman, 1981

[BLA86] W.J. Black. Intelligent Knowledge Based Systems, Van Nostrand

Reinhold, U.K. 1986.

[BOB77J D.G. Bobrow, T. Winograd. "GUS, A Frame-Driven Dialog System."

Artificialinte/ligence. Volume 8, pp.155-173. North-Holland Publishing Company,

1977.

[BOW88] R.G. Bowerman, D. E. Glover. Putting Expert Systems into Practice.

Von Nostrand Reinhold, 1988.

[COD90] E. F. Codd, The relational model for database management: version 2.

Addison-Wesley, 1990.

[DAT90]. C.J. Date. An Introduction to Database Systems Volume I, 5th ed.

Addison-Wesley, 1990.

[HAY80] P. J. Hayes. "The Logic of Frames." Frame Conceptions and Text

Understanding. Metzing D. (ed.). Walter de Gruyter, Berlin, 1980.

[HEL91] M. Heller. "Once it works, does it still qualify as AI?" Byte. January 1991

pp. 267-278.

[JAC86] P. Jackson. Introduction to Expert Systems. Addison-Wesley

Wokingham, England, 1986.

100

[KRE90] W. Kreutzer. Programming for Artificial Intelligence : Methods, Tools

and Applications. Addison-Wesley Singapore, 1990.

[LOC91] P. Lockemann, H. Nagel & I. Walter. "Databases for knowledge bases:

empirical study of a knowledge base management system for a semantic

network." Data & Knowledge Engineering Vol 7 pp. 115-154. North-Holland

Publishing Company, 1991.

[LUG89] G. F. Luger & W.A. Stubblefield. Artificial Intelligence and the Design of .

Expert Systems. The Benjamin/Cummings Publishing Company California, 1989.

[MAI83] D. Maier. The theory of relational databases. Pitman Publishing Limited

London, 1983.

[MIN91] M. Minasi. "More complex knowledge representation." AI Expert,

Volume 6 nr. 1 pp. 15-20, January 1991.

[MIN75] M. Minsky. "A framework for representing knowledge." The Psychology

of Computer Vision. Winston P. (ed.). McGraw-Hili New York, 1975.

[MOC92] R. J. Mockler and D.G. Dologite. Knowledge-Based Systems: An

Introduction to Expert Systems. Macmillan Publishin Company, New York, 1992.

[NEE91] Neena B. AI tools and Object Oriented Programming Techniques. New

Science Report on Strategic Computing, Volume 1 nr. 3, pp. 2(1), 1991.

[OLS92] D. L. Olson, J. F. Courtney, jr. Decision Support Models and Expert

Systems. Maxwell Macmillan International, 1992.

[PAT91] N. W. Paton and O. Diaz. "Object-oriented databases and frame-based

systems: comparison." Information and Software Technology, Volume 33 nr. 5,

pp. 357-365, 1991.

[PEN89] Juan B. Castellanos Periuela et al. "An Algebraic Structured Model of

Formal Knowledge Representations (Frames and Rules)." International Journal

101

of Computer Mathematics, Volume. 2, pp. 1-9. Gordon and Breach, Science

Publishers, Inc, 1989.

[PRA87] Phillip J. Pratt & J.J. Adamski. DATABASE SYSTEM: Management and

Design. Boyd & Fraser Publishing Company Boston, 1987.

[REI89] U. Reimer & H.J. Schek. "A frame-based knowledge representation

model and its mapping to nested relations", Data. & Knowledge Engineering,

Volume 4 pp. 321-352. North-Holland Publishing Company, 1989.

[SEL85] P. S..Sell. Expert Systems- A Practical Introduction. Camelot Press,

Southampton, 1986. .

[SMI86] J. M. Smith. "Expert Database Systems: A Database Perspective",

Expert Database Systems Proceedings From the First International. Workshop.

pp. 3-15. Kerschberg, L. (ed), Benjaminl Ci.mrninqs Publishing Company, Inc,
. .

1986.

[TEL88] E. R. Tello. Mastering AI Tools and Techniques. Howard W. Sams &

Company,1988

[THA88] I. A. Thayse. From standard logic to logic programming. Anchor Press

Britain, 1988.

[UCK91J Y. Uckan. "Knowledge Representation Using Views in Relational

Deductive Data Bases." Journal of Systems Software, Volume 15, pp. 217-232,

Elsevier Science Publishing Co., Inc, 1991.

