

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/
M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved
from: https://ujdigispace.uj.ac.za (Accessed: Date).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

SECURE OBJECT-ORIENTED DATABASES

by

MARTIN STEPHANUS OLIVIER

THESIS

submitted in fulfilment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

m

COMPUTER SCIENCE

in the

FACULTY OF NATURAL SCIENCES

of the

RAND AFRIKAANS UNIVERSITY

PROMOTER: PROF S.H. VON SOLMS

DECEMBER 1991

"
[·)K;

/'......": /.,1
_,~/ ..,. .

Contents

Prologue

Summary
Overview
SECDB .
The taxonomy
DISCO

Afrikaanse Oorsig

1 Aims and Scope
1.1 Introduction............
1.2 Secure object-oriented databases
1.3 Outline of this work

2 Computer Security
2.1 Introduction................
2.2 Aspects of security .

2.2.1 Secrecy, integrity and availability
2.2.2 Aspects to protect .
2.2.3 Mandatory security versus discretionary security
2.2.4 Development stages

2.3 Security models
2.3.1 Modeling access restrictions
2.3.2 Information flow models for secrecy
2.3.3 Information flow models for integrity.
2.3.4 Modeling the propagation of access rights

2.4 Conclusion .

3 The Object-oriented Paradigm
3.1 "Introduction .
3.2 Object-orientation: concepts.

vii

ix
IX

IX

X

X

.
Xl

1
3
3
4

7
9
9
9

10
11
12
12
12
13
13
14
14

15
17
17

11

3.3 Object-oriented software design .
3.4 Related paradigms

4 Databases, Object-orientation and Security
4.1 Introduction........
4.2 Databases.........
4.3 Object-oriented databases
4.4 Security in databases ...

4.4.1 Secrecy, integrity and availability .
4.4.2 Multilevel databases .
4.4.3 Statistical inference .

4.5 Security in object-oriented databases

CONTENTS

20
20

21
23
23
24
26
26
27
30
31

5 The Path Context Model 33
5.1 Introduction....... 35
5.2 Security background .. 35

5.2.1 Security in the human environment. 35
5.2.2 Traditional security in the computer environment. 36
5.2.3 PCM-another security model 37

5.3 The Path Context Model (PCM) . . . 38
5.3.1 Notation and terminology . . . 38
5.3.2 The baggage collection vehicle 39
5.3.3 The profile 41
5.3.4 The validator 44
5.3.5 A critical look at objects 44

5.4 Object-based PCM 46
5.4.1 Notation.......... 46
5.4.2 The baggage collection vehicle 47
5.4.3 The profile 48
5.4.4 The validator 50
5.4.5 A critical look at OPCM 50

5.5 The role of OPCM 51

6 SECDB: A Secure Object-oriented Database Model 53
6.1 Introduction........... 55
6.2 Object-oriented extensions. . 55

6.2.1 Object-oriented basics 55
6.2.2 Messages and baggage 55
6.2.3 Profile objects 57
6.2.4 Gates 58

6.3 Profiles 58
6.3.1 Description of profiles 58

CONTENTS

6.3.2 Profiles as objects ..
6.3.3 Associating profiles with information .

6.4 Gates .
6.4.1 Operation of gates
6.4.2 Examples of message tagging
6.4.3 Problems posed by gates.

6.5 Example...............
6.6 Model characteristics
6.7 PCM in the SECDB environment.
6.8 Implementation considerations
6.9 Comparison with other models
6.10 Further research ...
6.11 SECDB in perspective

111

59
59
61
61
62
65
66
68
69
70
71
72
73

7 A Taxonomy of Secure Object-oriented Databases 75
7.1 Introduction.... 77
7.2 Approach 77
7.3 Object-orientation 79
7.4 Security in object-oriented databases 81
7.5 Design parameters 82
7.6 The taxonomy 83

8 Taxonomy: Labeling Semantics 85
8.1 Introduction........... 87
8.2 Labeling semantics 87

8.2.1 (X1.1) Underlying model 87
8.2.2 (X1.2) Protection interpretation 89

8.3 Labels and object-oriented databases. 93

9 Taxonomy: Structural Labeling 95
9.1 Introduction........... 97
9.2 Structural labeling 97

9.2.1 (X2.1) Protectable entities. 97
9.2.2 (X2.2) Label instantiation . 99
9.2.3 (X2.3) Relationship restrictions. 100

9.3 Beyond the static structure 109

10 Taxonomy: Dynamic Labeling 111
10.1 Introduction. . . . 113
10.2 Notation. 113
10.3 Dynamic labeling 114

10.3.1 (X3.1) Authorisation flow 117

IV

10.3.2 (X3.2) Sensitivity flow
10.3.3 (X3.3) Information flow restrictions

10.4 Conclusion .

11 Taxonomy: Remaining Issues
11.1 Other design parameters .
11.2 Aggregation .
11.3 Implementation
11.4 Discretionary access controls

·11.5 Integrity constraints
11.6 Polyinstantiation
11.7 Conclusion

12 A Discretionary Security Model
12.1 Introduction .
12.2 Capability-based protection .
12.3 The new model

12.3.1 Protecting the entities
12.3.2 Creating and owning entities
12.3.3 Deleting entities

12.4 Transferring capabilities
12.4.1 Granting rights .
12.4.2 Revoking rights.
12.4.3 Establishment of capabilities

12.5 Information flow . .
12.6 Possible future work
12.7 Conclusion

13 Epilogue
13.1 Introduction.
13.2 Results. . . .
13.3 Future research

13.3.1 The taxonomy
13.3.2 Discretionary security
13.3.3 Distributed databases
13.3.4 SECDB
13.3.5 Security policy

Bibliography·

CONTENTS

123
126
129

131
133
133
133
135
136
137
138

139
141
141
142
142
143
145
145
145
150
151
152
154
154

155
157
157
157
157
159
159
160
160

163

CONTENTS v

A Taxonomy: Summary 167
Xl Labeling semantics 168
X2 Structural labeling 168
X3 Dynamic labeling . 168

B Taxonomy: Examples 171
B.1 SODA 172
B.2 Lunt .. 172
B.3 SECDB 173
BA DISCO. 174

List of Figures 175

List of Tables 177

Index 179

VI CONTENTS

Prologue

Many people contribute to one's work. Those who have contributed to this
work on a technical level are acknowledged in the bibliography at the back
of this thesis. Others have contributed on a personal level, especially with
their interest and encouragement. In the opinion of this author such per
sonal participation has more value in itself than any technical contribution
made by this work, and is therefore greatly appreciated by the author.

Firstly, my thanks to prof Von Solms for suggesting the topic of this
research and for his advice throughout the project.

Thanks also to my parents, family and friends. I am indebted to you for
the support and encouragement that you demonstrated in so many ways.

In the final instance, thanks and praise to God Almighty, by whose
grace all that we achieve is accomplished.

If the LORD does not build the hOUJe, the
work of the builderJ iJ UJeleJJ

Psalm 127:1
Good News Bible

Vll

vm PROLOGUE

Summary

The need for security in a database is obvious. Object-orientation enables
databases to be used in applications where other database models are not
adequate. It is thus clear that security of object-oriented databases must
be investigated.

Overview

This work investigates secure object-oriented databases. Firstly, we pro
pose a new model, SECDB, for such databases. SECDB differs substantially
from other proposals for such models. Secondly, we propose a taxonomy for
secure object-oriented databases. The taxonomy identifies a number of de
sign parameters-aspects that may differ from one such model to the next.
It also indicates implications that specific choices for one design parameter
have on the choice of other design parameters and on other aspects of the
model. Thirdly, we propose an initial model for discretionary security in
object-oriented databases, DISCO. DISCO illustrates how results from the
taxonomy may be applied when a new security model is developed. A brief
description of the work covered ill each of these cases follows.

This work focuses OIl the secrecy aspect of security; integrity remains a
major and essentially unsolved problem in secure databases.

SECDB

The first model proposed by us (SECDB) extends object-oriented databases
to enable individual objects to take responsibility for security-ie to protect
themselves. This extension is based on the concept of 'baggage'-baggage
is collected from all components involved in any request; this baggage may
then be verified by the object against its personal security profile before a
method is executed or a variable is accessed. Note that the profile has the
complete access path of such a request available to base its decision on.

IX

x

The taxonomy

SUMMARY

Models for secure object-oriented databases differ in many respects, be
cause they focus on different aspects of the security problem, because they
make different assumptions about what constitutes a secure database or
because they make different assumptions about the object-oriented model.
The taxonomy we propose may be used to compare the various models:
Models that focus on specific issues may be positioned in the broader con
text with the aid of the taxonomy, The taxonomy also identifies eight major
aspects where security models may differ and indicates some alternatives
available to the system designer for each such parameter. We also indicate
implications of using specific alternatives.

Since differences between models for secure object-oriented databases
are often subtle, a formal notation is necessary for a proper comparison.
Such a formal notation also facilitates the formal derivation of restrictions
that apply under specific conditions. The formal approach further gives a
clear indication about the assumptions made by us-given as axioms-and
the consequences of those assumptions (and of design choices made by the
model designer)-given as theorems.

DISCO

Lastly, we propose a discretionary security model for object-oriented data
bases (DISCO). Entities in the database are protected by capabilities. A
subject that possesses a capability is authorised to access the correspond
ing entity. Additionally, under certain conditions, a subject may pass the
capability on to another subject, authorising this other subject to access
the protected entity. Passing the capability on is done at the first subject's
discretion, hence the term di3cretionary security.

The object-oriented model has a rich variety of entities with relation
ships between such entities. A subject that passes a capability on to another
subject may (inadvertently) authorise the second subject to access more en
tities than intended. We describe the restrictions that apply to the transfer
of capabilities to safeguard against such an unintended disclosure of infor
mation. Similarly, we consider the restrictions that apply when capabilities
are revoked.

Afrikaanse Oorsig

Daar bestaan 'n verskeidenheid redes waarom dit nodig mag wees om in
ligting te beskerm: in 'n besigheid is inligting 'n bate wat die besigheid
'n finansiele voorsprong bo mededingers kan gee; in die militere omgewing
is geheimhouding van inligting dikwels van lewensbelang; voorts mag daar
sosiale, etiese en selfs regsredes wees waarom inligting nie aan ongemagtigde
persone bekendgemaak behoort te word nie. Namate rekenaars meer ge
bruik word om inligting te verwerk, raak dit des te belangriker dat kon
troles gevind word om te verseker dat inligting nie kwaadwilliglik of per
abuis openbaar word aan ongemagtigde persone rue.

Navorsing aangaande veilige databasisse is dus van wesenlike belang
en het, inderdaad, reeds heelwat navorsingsaandag ontvang. Sodanige na
vorsing het egter grootliks op relasionele databasisse gekonsentreer. Die
objekgeorienteerde databasismodel is egter geskik vir toepassings waar die
relasionele model tekortskiet. Dit is dus nodig om ook veiligheidsmega
nismes vir sulke databasisse te vind. 'n Aantal modelle vir veilige objek
georienteerde databasisse is reeds voorgestel. Dit is duidelik van hierdie
voorstelle dat 'n veilige objekgeorienteerde databasis 'n hele verskeidenheid
aspekte het wat aandag verg. Die primere bydrae van hierdie projek is die
identifikasie van sulke aspekte, asook 'n aantal aanduidings watter invloed
'n keuse ten opsigte van 'n gegewe aspek op ander aspekte van die model
het. Hierdie resultate word as 'n taksonomie vir veilige objekgeorienteerde
databasisse gegee.

Benewens die taksonomie ste1 ons ook twee modelle vir veilige objek
georienteerde databasisse voor. Die eerste model, SECDB, beperk die
vloei van inligting binne (en uit) die databasis sodat sulke inligting nie
na plekke vloei waar 'n ongemagtigde gebruiker dit kan bereik rue. Die
tweede model, DISCO, illustreer diskresionere sekerheidsmodelle in objek
georienteerde databasisse. In 'n diskresionere model beskik gebruikers oor
regte ten opsigte van sommige entiteite; sulke regte kan, na die 'eienaar' van
die entiteit se diskresie, ook aan ander gebruikers oorgedra word. DISCO
maak van die taksonomie gebruik om 'n aanduiding te gee van die beper
kings wat· geld ten opsigte van sodanige oordrag van regte. Ons lig die twee

Xl

Xll AFRIKA.ANSE OORSIG

modelle en die taksonomie vervolgens kortliks toe.

SECDB
SECDB is 'n model vir 'n veilige objekgeorienteerde databasis. 'n Ver
soek in 'n objekgeorienteerde databasis bestaan uit 'n reeks boodskappe
wat tussen objekte gestuur word. SECDB hou boek van die roete wat so 'n
versoek deur die databasis volg: Inligting word versamel aangaande alle ob
jekte en metodes, asook apparatuur wat by enige versoek betrokke is; sulke
inligting staan as bagasie bekend. Vir elke entiteit wat beskerm word, word
'n profiel geskep wat in besonderhede beskryf wie toegang tot die entiteit
mag verkry en watter roetes deur so 'n gemagtigde subjek gebruik mag
word en watter nie. Voor 'n versoek toe gang tot enige entiteit verkry, on
dersoek die profiel die bagasie wat met die versoek geassosieer is, en bepaal
of aan al die toegangsvereistes voldoen is. Hierdie toegangsbeheer is op die
pad-konteksmodel van Boshoff en Von Solms gebaseer; ons toon in hierdie
proefskrif hoe hierdie model aangepas kan word vir die objekgeorienteerde
geval.

SECDB hou, bo en behalwe diebagasie van 'n versoek, rekord van die
sensitiwiteit van die inligting waaroor enige metode beskik. Dit word ge
doen deur die profiel(e) van enige inligting wat (potensieel) deur 'n metode
bekom word, met die metode te assosieer-sien die volledige beskrywing
van SECDB in die proefskrif vir besonderhede. Telkens wanneer 'n metode
inligting na 'n veranderlike skryf, word die profiele wat met die metode
geassosieer is, ook met die veranderlike geassosieer; dit verseker dat inlig
ting me na 'n plek geskryf word waar 'n ongemagtigde gebruiker toegang
daartoe kan verkry me.

SECDB verskil aansienlik van ander modelle vir veilige objekgeorien
teerde databasisse: beide die konsep van bagasie en die aanwending (en
veral die 'rondstuur') van profiele kom nie by vergelykbare modelle voor
nie, SECDB verbreed dus die spektrum modelle wat gebruik word om die
taksonomie van veilige objekgeorienteerde databasisse voor te stel.

Die taksonomie

'n Aantal modelle vir veilige objekgeorienteerde databasisse is reeds in
die literatuur voorgestel. Hierdie modelle openbaar 'n verbasende diver
sit.eit, deels omdat die modelle verskillende aspekte van sulke databasisse
in gedagte het. Die taksonomie beskryf agt sulke aspekte sistematies; dit
toon ook hoe spesifieke keuses vir sommige aspekte ander aspekte van die
databasis kan beinvloed.

AFRIK.4.ANSE OORSIG Xlll

Die eerste groep aspekte (of parameters) het te doene met die semantiek
van die beskerming van entiteite: Parameter Xl.1 beskryf die onderliggende
model: dit kan byvoorbee1d die militere model van inligtingklassifikasie
wees, of toegangsbeheerlyste, of vermoens. Parameter Xl.2 spesifiseer die
betekenis wat geheg word aan die feit dat 'n entiteit beskerm is; dit kan in
een model byvoorbeeld beteken dat 'n ongemagtigde gebruiker nie toegang
tot so 'n entiteit kan verkry nie, terwyl 'n ander model kan vereis dat 'n
ongemagtigde gebruiker nie van die bestaan van so 'n beskermde entititeit
bewus mag wees nie.

Die tweede groep parameters handel oor sekerheidsaspekte wat voort
vloei uit die (objekgeorienteerde) struktuur van die databasis. Parameter
X2.1 spesifiseer watter entiteite beskerm kan word in 'n gegewe model; dit
kan byvoorbeeld objekte, veranderlikes, metodes en/of klasse wees. Pa
rameter X2.2 beskryf hoe die aanvanklike 'beskermingsvlak' van 'n entiteit
bepaal word; dit kan byvoorbeeld geerf word van die klas waar die entiteit
gedefinieer is. Parameter X2.3 beskryf die verwantskappe wat tussen die
'beskermingsvlakke' van verwante entiteite kan (en moet) bestaan; daar
word byvoorbeeld aangetoon dat 'n voorkoms van 'n klas minstens so
beskermd as die klas self moet wces.

Die derde (en finale) groep parameters beskryf aspekte wat na yore tree
tydens die (dinamiese) werking van die databasis. Parameter X3.1 toon 'n
aantal wyses waarop die magtiging (klaring) van 'n aktiewe metode bepaal
kan word; in die eenvoudigste geval sal dit slegs afhang van die magtiging
van die gebruiker van wie die oorspronklike versoek kom. Parameter X3.2
toon hoe die sensitiwiteit van inligting waaroor 'n aktiewe metode beskik
bepaal kan word; sien die bespreking van SECDB hierbo ter illustrasie.
Parameter X3.3 beskryf maatreels wat get ref kan word om te verseker dat
inligting nie blootgestcl word aan ongemagtigde toegang wanneer dit na 'n
veranderlike geskryf word nie.

DISCO

Die tweede model wat ons voorste1 is vir diskresionere sekerheid in 'n objek
georienteerde databasis. Ons stel hierdie model, DISCO, voor om te illus
treer hoe die taksonomie gebruik kan word wanneer nuwe modelle ontwerp
word. DISCO is dus nie ln omvattende model van diskresionere sekerheid in
objekgeorienteerde databasisse nie; dit is egter uitgebreid genoeg om beide
die aanwending van die taksonomie en die implikasies van diskresionere
sekerheid in objekgeorienteerde databasisse te illustreer.

DISCO maak gebruik van vermoens om entiteite te beskerm: 'n Sub
jek wat in besit is van 'n vermoe vir 'n spesifieke entiteit is gemagtig om

xiv AFRIKAANSE OORSIG

toegang tot daardie entiteit te verkry, Voorts mag die 'eienaar' van die
entiteit vermoens vir die entiteit aan ander subjekte verskaf of van ander
subjekte terugtrek. DISCO toon dat die eienaar nie willekeurig vermoens
kan uitdeel en terugtrek nie: die objekgeorienteerde struktuur veroorsaak
dat 'n eienaar (onopsetlik) meer regte mag toestaan as bedoel wanneer 'n
vermoe veskaf word; soortgelyk is dit moontlik dat me aile bedoelde regte
teruggetrek word wanneer 'n vermoe teruggetrek word nie. DISCO toon
watter beperkings geld vir die spesifieke omstandighede wat in DISCO geld;
eenvoudiger (strenger) beperkings word dan voorgestel.

Slotsom

Ons hoop dat die werk in hierdie proefskrif die huidige werk aangaande
veilige objekgeorienteerde databasisse in perspektief plaas. Voorts behoort
die werk wat in die taksonomie beskryf is, 'n positiewe bydrae tot toekoms
tige modelle vir sulke databasisse te maak. Laastens raak die twee modelle,
SECDB en DISCO, aan 'n aantal buitengewone aspekte; ons hoop dat die
melding van hierdie aspekte verdere navorsing sal stimuleer.

Om jou een eie taal tot nut te gebruik is 'n
groter kun" a" om "ewe vreemde by ie leer.

C. J. Langenhoven

Chapter 1

Aims and Scope

Chapter 1 serves as a road map for the remainder of the thesis:
it delineates the research area and describes how the chapters
of the thesis are organised to address the research questions.

1

2 CHAPTER 1. AIMS AND SCOPE

'Where "hall I begin, pleas« you.r Maje"ty'l'
he a"ked.
'Begin at the beginning, ' the King "aid,
gravely, 'and go on till you. come to the end:
then stop.'

Lewis Carroll
. Alice's Adventures in Wonderland, ch.l l

1.1. INTRODUCTION

1.1 Introduction

3

This work deals with secure object-oriented databases. The primary con
tributions to the field contained herein are:

• A proposed theoretical model for secure object-oriented databases
(called SECDB);

• A taxonomy that may be used to compare various models for secure
object-oriented databases; and

• An initial theoretical model for discretionary security in an object
oriented database (called DISCO).

Note that the focus is on secrecy in secure databases; integrity remains a
major problem we do not address in this work.

The next section explains the interest in secure object-oriented data
bases. The last section of this chapter outlines the approach followed in
this work.

1.2 Secure object-oriented databases

Information is an asset that needs protection against unauthorised access;
this explains the need for secure databases. Further, a database is a shared
resource and not everybody authorised to access some information is nec
essarily authorised to access all the information in the database-hence the
need for multilevel secure databases.

The research effort regarding multilevel secure databases has primarily
focused on relational databases. Since the object-oriented database model
differs substantially from the relational model, results obtained for rela
tional databases, as well as models proposed for relational databases, are
not necessarily applicable to object-oriented databases. Amongst other
issues, inheritance and the inclusion of methods in the database pose chal
lenges in a secure object-oriented database. It is therefore necessary to ex
tend the research on secure databases to include the object-oriented model.

The fact that sensitive information in an object-oriented database needs
protection (just like sensitive information in any other database) is not
the only reason for studying multilevel secure object-oriented databases
object-oriented databases have potential benefits for security that are not
present in other database models. Firstly, since methods are stored as
part of such a database, it is possible to protect sensitive information by
restricting access to the relevant methods. Restriction of access to methods

4 CHAPTER 1. AIMS AND SCOPE

often provides a more natural protection of information than protection of
variables does: it is relatively easy to determine which employees has to
perform an operation on a given entity as part of their jobs (for example
from job description documents); if the database closely models the real
world, the methods supported by objects will in many cases reflect the
day to day tasks of employees; this makes it relatively simple to determine
appropriate access restrictions to methods based on the job functions of
employees. This is known as role-based security.

The second security benefit stems from the encapsulation feature of
object-orientation: Encapsulation restricts the. ways in which an object
may be accessed. Thesystem. prevents direct access to all instance variables
(and possibly access to private methods). Firstly, this means that a user
can only manipulate data in ways specified beforehand, and not in any ad
hoc way. Secondly, it is possible to include the protection of an object as
an integrated part of the object, similar to the way the data and methods
are integrated parts of the object. If protection forms pa;t. of the object,
it means that the object may flow, without any restrictions, to another
location in the system without compromising security-the information
encapsulated by the object will be just as protected in the new location as
it was in the original location.

1.3 Outline of this work

The primary goal of this work is the proposal of a taxonomy for secure
object-oriented databases. To reach this goal this work is structured as
follows:

• Brief overviews of existing background material are given: chapter 2
describes the fundamentals of computer security, chapter 3 describes
object-orientation and chapter 4 database theory, including the fun
damentals of secure databases. The intentions of these chapters are
to introduce terminology and to give references to existing literature.

• In order to make the taxonomy applicable as widely as possible we
propose a new model, SECDB, for a secure object-oriented database;
see chapter 6. SECDB differs in many respects from comparable
models, amongst others the fact that SECDB is based on the Path
Context Security Model (PCM) which we had to adapt for the object
oriented environment-see chapter 5 for details.

• The taxonomy for secure object-oriented databases will be found in
chapters 7 through 11.

1.3. OUTLINE OF THIS "VORK 5

• A model for discretionary access control in object-oriented databases,
DISCO, is proposed in chapter 12. It illustrates how the results ob
tained from the taxonomy may be applied when a new security model
is proposed.

• An evaluation of the research, together with suggestions for future
work, are contained in chapter 13.

In order to limit the extent of this work, we had to confine our attention
to the issues described above. The fact that some issues had to be excluded
does not indicate that we do not consider them as important, but only that
they are not directly relevant to this work, or that they fit logically after
this work.

6 CHAPTER 1. AIMS AND SCOPE

Chapter 2

Computer Security

The three cornerstones of this thesis are computer security,
object-orientation and database theory. Chapter 2 consists of
an overview of the relevant computer security theory. Object
orientation and database theory will receive attention in the
following two chapters.

In this work we will primarily be concerned with the secrecy
aspect of computer security, in other words, ensuring that sen
sitive information is not (accidentally or intentionally) disclosed
to unauthorised parties.

7

8 CHAPTER 2. COMPUTER SECURITY

I know thet's a secret for it'3 whi."pered
every where.

William Congreve
Love for Love III.iii

'If everybody minded their own business, '
said the Duchess in a hoarse growl, 'the
world would go round a deal [aster than in
does. '

Lewis Carrol
Alice's Adventures in Wonderland, ch.6

2.1. INTRODUCTION

2.1 Introduction

9

This chapter serves as a brief introduction to general computer security. It
is intended for positioning of subsequent chapters rather than providing an
overview of the field. Readers requiring an overview or a thorough back
ground is referred to one of the many textbooks on the topic, for example
[PflS9]; the reader is also referred to [PflS9] for details on any aspect in
this chapter for which an explicit reference is not given.

2.2 Aspects of security

2.2.1 Secrecy, integrity and availability

Computer security has three goals:

• Secrecy of protected entities;

• Integrity of information; and

• Availability of service to authorised users.

Secrecy measures in a secure system ensure that a user (or Jubject) does
not obtain (read) access to any protected entity (information, software,
equipment, etc) in the system". The secrecy goal often includes restrictions
on the flow of information to ensure that a subject does not read sensitive
information and store it in a less sensitive location where a less trusted
subject may access it.

Integrity measures ensure that. the information in the system is reliable;
integrity is ensured by, amongst others

• Disallowing unauthorised users to modify or add information;

• Adding controls to limit an authorised user's ability to modify (or
insert) information where the new values are inconsistent with other
information in the system or the new values are obviously wrong;

• Inhibiting the flow of unreliable information to locations where it will
be accepted as reliable; and

1Items in a computer system that may be accessed by a subject are normally referred
to as objects; in this work we will use the term entity to refer to such an item and the term
object to refer to an object in the object-oriented sense-see chapter 3

10 CHAPTER 2. COMPUTER SECURITY

• Ensuring that physical phenomena (such as power failures, natural
disasters, etc) do not cause inconsistencies or other integrity problems
in the system.

Measures to ensure availability of service to authorised users include
aspects such as the following:

• Ensuring that measures for secrecy and integrity do not hinder au
thorised users;

• Ensuring that other users (both authorised and unauthorised) do not
monopolise the system such that an authorised user is denied service;
and

• Establishing facilities and procedures to ensure that work can con
tinue despite physical phenomena (such as power failures, natural
disasters, etc).

In all these cases a threat may be intentional-from someone who de
liberately sets out to access or damage the system. The threat may also
be unintentional-a user can unknowingly do something that may (eventu
ally) compromise security. Security measures have to address all threats,
whether intentional or unintentional.

In this work we are concerned with secrecy and with those aspects of
integrity that ensure that an unauthorised user does not modify informa
tion.

2.2.2 Aspects to protect

A number of aspects of a system has to be protected to maintain security.
The three primary areas are

• Phy~ical protection to prevent unauthorised parties from reaching the
hardware, also to protect the hardware against the environment;

• Communication protection to prevent parties from obtaining infor
mation from the medium that is used to transmit the information
and, also, to prevent such parties from directly putting information
on such a medium; and

• Logical protection to prevent a user from accessing (using) the system,
where the- user does have physical access to (parts ofrthe system.

2.2. ASPECTS OF SECURITY 11

(

These areas lead to secondary goals, which may overlap: For both phys
ical and logical protection it is, for example, necessary to authenticate a
potential user-in other words, to ensure that a person is indeed who that
person professes to be.

In this work we are only concerned with logical protection. This is espe
cially important on a system where not every (legitimate) user is authorised
to access everything on the system; on such a system it is necessary to en
sure that every user is only allowed access to those parts of the system that
the user has been authorised to access. A system that only allows users ?
access to those parts of the system they are authorised to access, is known
as a multilevel secure (MLS) system. /

2.2.3 Mandatory security versus discretionary secu
rity

Logical protection is often subdivided into mandatory security and discre
tionary security.

Mandatory security refers to the security that is implemented based on
the sensitivity of the information. The sensitivity of information is usually
not determined by the users, but by a person with this specific responsibility
in the organisation (often known as the system security officer). This person
also determines the clearance of users of the system: The clearance of a user
is an indication of the sensitivity of information the user is allowed to access.
This clearance is based on the role of the user in the organisation and on
the level of trust associated with the user.

Mandatory security will ensure that a user without the necessary clear
ance is prevented from directly or indirectly accessing protected informa
tion.

Note that, where a user 'owns' information, the owner does not have
the power to grant access to another user who does not have the necessary
clearance.

Discretionary security refers to the rights that users have to access pro
tected entities and to the discretionary power they have to grant such rights
to other users as well as to revoke such rights from other users.

In this work we are primarily concerned with mandatory security. We
refer to the differences and similarities between mandatory and discretio
nary security in section 11.4. A model for discretionary security in object
oriented databases is proposed in chapter 12.

12 CHAPTER 2. COMPUTER SECURITY

2.2.4 Development stages

Pfleeger [Pfl89] lists four stages in the development of a secure system:

1. Modeling, where a (mathematical) model is developed that reflects
the environment in which the system will operate and describes the
strategy that will be used to ensure security in the system;

2. Design, where a strategy to implement the model is selected (or de- .
veloped);

3. Demonstratinq trust, where it is indicated that the implementation
strategy accurately represents the model and where the design is scru
tinised for flaws; and

4. Implementation, where the design is implemented and tested.

In this work we are only concerned with models for secure systems (ie
stage 1). The next section introduces some existing security models.

2.3 Security models

A number of security models have been proposed with various goals. We
briefly look at some of these.

2.3.1 Modeling access restrictions

Some models are primarily concerned with the sensitivity of information,
theclearance of subjects and the rules to determine which users are allowed
to access which entities in the system. Usually, being "cleared" high enough,
is not sufficient to access an entity; the subject must have a valid reason to
access the entity before being allowed to do so.

In a computer system the sensitivity levels of entities and clearance
levels of subjects are often integers; if the clearance level of a subject domi
nates the sensitivity level of an entity, the subject is "cleared high enough"
to access the entity.

The second requirement before being allowed to access the entity, is
that the subject must have a valid reason for accessing the entity; this
requirement is referred to as the need to know requirement. For this reason
one or more "categories" is associated with every subject and every entity.
Subjects are associated with all those categories that they need to access

- in their day to day activities. Entities are associated with one or more
categories to indicate the reason(s) why the information appears in the
system. A subject is then only allowed to access an entity if, both

2.3. SECURITY;";IODELS 13

• The subject's clearance level dominates the entity's sensitivity level;
and

• The subject is authorised to obtain information about all the cate
gories that are listed with the protected entity.

If this is the case, the clearance of the subject is said to dominate the
sensitivity of the entity.

A set of subjects and entities conforming to these rules form a rnathe
matical structure known as a lattice: a lattice is a set with a partial ordering
(2:) such that any two elements have a greatest lower bound and a least
upper bound. For this reason the described security models are known as
lattice models of security. In chapter 5 we look at these models again and,
specifically, at the military security model, which is one example of a lattice
model.

2.3.2 Information flow models for secrecy

An authorised subject may read sensitive information and then write it in
a location where an unauthorised subject may access it. In order to restrict
such a "flow of information" a number of models have been proposed, the
best known being the Bell-LaPadula model [BeI76].

The Bell-LaPadula model is based on two properties: the simple security
property and the *-property. Every subject and every entity are assigned to
a fixed security class. According to the simple security property, a subject is
allowed to read information from an entity if the security class of the subject
dominates that of the entity. According to the *-property, if a subject has
read access to an entity, it does not have write access to entities at lower
security classes. Informally, a subject may not 'read up' (simple security
property) and may not 'write down' (*-property).

The security classes for subjects and entities may be based on the lattice
model; however, any model where it is possible to assign "security classes"
such that a partial ordering exists, may be used.

Information flow models for secrecy is one of the main topics of this
thesis.

2.3.3 Information flow models for integrity

Similar to the models that maintain secrecy despite the fact that informa
tion flows from one location to another, some models maintain integrity
in the system. These models restrict the extent to which unreliable in-

14 CHAPTER 2. COMPUTER SECURITY

formation will flow through the system. The Biba model [Bib77] is one
example.

In the Biba model an integrity level is associated with every subject and
every entity. The integrity level of an entity indicates the trustworthiness or
reliability of the information contained in the entity. The simple integrity
property states that a subject may only read information if the entity's
integrity level dominates that of the subject. The integrity *-property states
that a subject may only write information if the subject does not have
read access to entities with a lower integrity level than the entity to be
written. Together these properties ensure that unreliable information will
not 'contaminate' reliable information and subjects.

We do not address integrity explicitly in this work. However, note that
many of the models we mention for secrecy do have integrity benefits; a
model that only allows trusted subjects to access a protected entity in
specific ways partially addresses the integrity problem.

2.3.4 Modeling the propagation of access rights

A number ofmodels has been proposed that model the propagation of access
rights. These models typically use mathematical principles to represent
mechanisms that may be used on a computer system to protect entities;
examples of such mechanisms are capabilities and access control lists (see
chapter 5). The model also contains mathematical rules that correspond
with the operations a user may invoke (such as creating new entities and
transferring access rights for such a new entity to other subjects). The
mathematical representations are then used to answer questions such as
whether a given subject may ever obtain access rights for a given entity.

Examples of models in this category include the HarriJon-Ruzzo- Ullman
model [Har76] and the take-grant system [SnyS!].

2.4 Conclusion

This brief overview only touched on some aspects of security. Aspects such
as encryption, secure operating systems, network security, etc, all play an
important role in secure databases. Since understanding the rest of this
work does not depend on a knowledge of these topics, we do not discuss
them at this time.

Chapter 3

The Object-oriented Paradigm

Object-orientation is the second cornerstone of this work; this
chapter is an introduction to the object-oriented paradigm. The
other two cornerstones are computer security theory (see chap
ter 2) and database theory (see chapter 4).

Object-orientation is a software development methodology char
acterised by the use of objects: an object is a unit encapsulating
both the data and the procedures necessary to model an entity
in the real world (or other problem space).

Much of the power of the object-oriented paradigm comes from
its inheritance facility: new object definitions can inherit (re
use) aspects from existing object definitions, just adding the
lacking aspects. This obviates the need to give an entire defini
tion for every different object.

15

16 CHAPTER 3. THE OBJECT-ORIENTED PARADIGM

I inherited it brick and left it marble.

Emperor Augustus
Divus Augustus, 28

3.1. INTRODUCTION

3.1 Introduction

17

/ I

Software systems model aspects of the real world. A software development
paradigm serves as a guide for the modeling process. Object-orientation is
such a paradigm: it provides a set of concepts that are used to construct a
software model. During the object-oriented software design process aspects
from the real world that have to be included in the model are identified;
representatives for these aspects are then constructed with the aid of these
object-oriented concepts.

Object-orientation originated in the programming language field, with
Smalltalk [GoI83] as the best known object-oriented programming language.
Since then it has seen active service in the database, artificial intelligence,
systems analysis and a variety of other fields.

3.2 Object-orientation: concepts

Object-orientation is a relatively new concept and experts do not fully agree
1 about its exact composition. Adherents of the different object-oriented ~
L philosophies also often use dissimilar terminology, adding to the confusion:J I .

We will adopt the philosophy and terminology as used in the Smalltalk
language [GoI83]. This philosophy is the original and currently predominant
one. Also, most of what will be said about this viewpoint can be translated
into the language of the different viewpoints without much trouble. The
interested reader is referred to [Shr88] for descriptions of alternative views
on object-orientation.

The basic components of an object-oriented system are

• Objects;

• Methods;

• Messages;

• Classes; and

• Inheritance via a class hierarchy.

We will briefly describe each of these components.
An object is a unit consisting of both the data (values) and code (pro

cedures) to manipulate the data; all values in the system are objects; an
object may be assigned to a variable or passed as a parameter to a proce
dure. A procedure forming part of an object (the 'code to manipulate the
data') is' known as a method. The object is encapsulated-the only way

18 CHAPTER 3. THE OBJECT-ORIENTED PARADIGM

to access it is by executing one of its methods. As an example, consider a
stack object. This object will have some data structure (probably a linked
list or an array) to hold the values currently on the stack. Of course this
data structure will be hidden from the user. The stack object will support
a method to push a value onto the stack (say PUSH), a method to pop a
value from the stack (say PoP) and one to determine whether the stack is
empty (say STACKEMPTY). Anyone wishing to use this object will do it by
'calling' the relevant method.

. Messaqes are the means objects use to communicate with each other: if
. an object wants to push something onto the stack described in the previous
paragraph, it will send the message PUSH together with the value to be
pushed to the stack object. To retrieve a value from the stack, an object
will send the message POP to the stack object, which will send the top
value to the sender of the POP message.

Methods consist of a sequence of 'actions', where every 'action' is again
a message to an object. When an object receives a message, the relevant
method will be activated. This method will perform its required function
by sending messages to other objects. This is similar to a procedure in
a conventional (procedural) programming language, which consists of calls
to other procedures and functions. Some methods-the so-called primitive
methods-are not implemented as messages to other objects, but is exe
cuted directly by the hardware: addition of integers is an example. As an
example, the PUSH method of the stack object may send a message to a
stack pointer, requesting it to increment itself; then send the stack pointer
and the value to be pushed to an array object, requesting the array to insert
the value at the position indexed by the stack pointer.

Rather than repeatedly describing an identical object if multiple copies
of that object are required, a class is described once and is used as a'tem
plate' to instantiate (or create) the identical objects. In fact, in the object
oriented philosophy we are describing, an object is never directly defined:
a class is always defined and the object(s) are instantiated by sending a
message to the class. For example, the stack object described in previous
paragraphs will typically be instantiated from a stack class that has been
defined specially, or that was already available in the system. Alternatively,
a class is sometimes viewed as a collection of similar objects.

A class description consists of a description of the methods and vari
ables which will make up objects of that class. There are two categories
of variables: instance variables and class variables. Whenever an object is
instantiated it receives its own set of instance variables; if an object mod
ifies one of its instance variables, it does not have any direct effect on any
other object of that class (or any other class). Class variables, however, are

3.2. OBJECT-ORIENTATION: CONCEPTS 19

shared by all objects belonging to a specific class; if an object modifies a
class variable, all subsequent references by any object of that class will use
the modified value.

Often objects are alike but not identical. In such a case inheritance
is used to 'inherit' the similar parts rather than redefining those parts re
peatedly. Usually the common aspects of a number of classes are identified
(or 'abstracted') and a class is defined based on those common aspects.
Subclasses may now be defined based on the class of common aspects: all
the common aspects are inherited and only the additional requirements are
defined. It is also possible to redefine any inherited aspect. The class on
which the subclasses are based are known: as their superclass. As an ex
ample, suppose we want to keep information about students and lecturers.
It is possible to immediately define classes describing both, but it is also
possible to describe a class containing the common elements like name,
age, identity number, etc. A subclass can now be defined for students that
inherits the common elements and adds the student details such as study
record, degree registered for, etc. Similarly a subclass can be defined for lec
turers adding their specific requirements such as courses currently taught,
publication record, etc.

The Object-oriented Database System Manifesto [Atk89,Atw90] gives
the following eight rules for a system to be considered "object-oriented":

1. Complex objects must be supported, ie one must be able to build
objects from other objects;

2. Objects should have an identity independent of the value of such
an object-this makes it possible for other objects to share a single
instance of a specific object: all these objects refer to the shared
object using this object's identity;

3. Objects should be encapsulated;

4. Types or classes (or both) should be supported: the Manifesto con
siders a type as a mechanism which is used to statically describe the
composition of an object, similar to data types in languages such as
Pascal; classes are objects able to create instances at run-time of the
objects they represent;

5. Inheritance should be supported;

6. Late binding must be used to associate a message with the method
in the target object: this allows objects to be created which will
manipulate other objects, where the type (or class) of the objects to
be manipulated is not fixed;

20 CHAPTER 3. THE OBJECT-ORIENTED PARADIGM

7. Any computable function must be expressible in the language; and

8. The system must be extensible: a user-defined type (or class) should
behave exactly like a system-defined type.

3.3 Object-oriented software design

It is important to remember that a system supporting the described compo
nents and rules is not automatically "object-oriented"-these components
have to play the central role from design through to implementation before
a system can be considered "object-oriented'.'. An object-oriented design
process will identify the objects involved in a system. These objects will
then each be analysed and decomposed into smaller objects. This process
will continue until the required objects are simple enough to be primitive
objects directly support.ed by the system.

Libraries of objects for particular applications or environments are often
available off the shelf or, otherwise, custom built. These libraries allow the
designer and implementer to deal with objects which reflect the real-life
objects they are modeling in their systems-ie it allows them to work at a
higher level of abstraction.

3.4 Related paradigms

Wegner[Weg88] distinguishes between object-based, class-based and object
oriented systems. An object-baud system is a system that supports the
concept of objects. A class-based system is an object-based system which
additionally supports the class concept. where every object in the system
is an instance of some class in the system. An object-oriented system is
a class-based system that also supports inheritance from a superclass to a
subclass.

A system that supports abstract data types thus is a class-based lan
guage.

The reader may consult [Weg90], [Shr88] or [Kim89] for a detailed expo
sition of the object-oriented paradigm-the first reference is a paper giving
a detailed overview of the field, while the latter two are collections of papers
addressing various aspects of the field.

Chapter 4

Databases, Object-orientation
and Security

This chapter briefly discusses database theory, concluding our
overviews of the underlying theory on which this work is based.
A database is a computerised repository for information typi
cally accessed by a number users through a diverse set of appli
cation programs.

Special attention is given to object-oriented database systems;
in other words, databases that use the object-oriented model
(see chapter 3) to represent information.

This chapter further discusses secure databases, drawing on
computer security as discussed in chapter 2.

Secure object-oriented databases are discussed in a later chap
ter.

21

,22 CHAPTER 4. DATABASES

I only ask for information.

Charles Dickens
David Copperfield, ch.20

4.1. INTRODUCTION

4.1 Introduction

23

This chapter first discusses databases, then object-oriented databases and,
lastly, security in databases. Security in object-oriented databases is dis
cussed in following chapters. No original work is presented here, but rather
a summary of relevant areas from the database field.

4.2 Databases

The following is quoted from Date [Dat90]:

A database consists of some collection of persistent data that is
used by the application systems of some given enterprise (p 10).

The term "entity" is widely used in database circles to mean any
distinguishable object that is to be represented in the database
(p 11). It is important to understand that, in addition to the
basic entities themselves, there will also be relationship» linking
those entities together (p 11).

... entities (and hence relationships also) have properties. For
example, suppliers have locations; parts have weight3; projects
have priorities; assignments have start dates; and so on. Such
properties must therefore be represented in the database also
(p 13).

The Object-Oriented Database SY3tem Manife3to (see page 19) lists five
rules a system must satisfy before it can be considered a database:

1. Data (of any type) stored must implicitly be stored persistently;

2. The system must be able (and optimised) to handle very large volumes
of data;

3. Multiple users should be able to access the database concurrently;

4. The system should be able to recover from hardware and software
failures; and

5. It should be easy to formulate and execute ad hoc queries efficiently.

Databases developed from files when files no longer adequately ad
dressed the needs of users. Change of user needs over the years have caused
a variety of database models. These models are usually categorised into four
generations.

24 CHAPTER 4. DATABASES

The first generation consists of hierarchical databases. These databases
are organised as inverted trees-any parent node can have one or more
child nodes, but a child node may not have more than one parent node.
Application programs navigate through the database by traversing the tree.

The second generation is the 'network' databases. Relationships be
tween the various records are not limited to a single parent related to one
or more children. One-to-one, one-to-many, many-to-one and many-to
many relationships are allowed. Application programs navigate through
the database by following the links relating the applicable records.

The third generation databases are based on the relational model. Data
is stored as tuples in tables. Application programs retrieve data by select
ing the appropriate values from these tables. Several tables can be joined
together over common columns to retrieve information not directly repre
sented in a table.

The fourth generation database model is the object-oriented model. In
this model code (or procedures, or methods) is stored with the data-that
is the stored information includes the 'intelligence'. Dat~ IS not accessed
directly by the application program-the application program sends a mes
sage to the relevant data in the database, which processes the message
internally and then returns the requested information. The relationships
between data can be brought about by building more complex entities from
simpler ones, or by sending messages between separate entities. More in
formation on object-oriented databases is given in the next section.

Many textbooks have been written about databases, including [Dat90].
The interested reader is referred to one of them for details.

4.3 Object-oriented databases

Object-oriented databases behave according to the general object-oriented
paradigm described in a previous chapter: such a database consists of per
sistent "intelligent" objects, which may be accessed via the methods each
provides.

Object-oriented databases look especially attractive in new application
areas such as Computer Aided Design and Manufacturing (CAD/CAM)
and Computer Aided Software Engineering (CASE) [Dat90, p 684]. How
ever, as Date [Dat90, p 684] points out, while application programs are
intended to solve specific problems, databases are (by definition) intended
to solve a variety of different problems; the success of the object-oriented
paradigm for writing application programs will therefore not necessarily
extend to databases. See (Dat90, pp 683-707] for a critical discussion of

4.3. OBJECT-ORIENTED DATABASES

object-oriented databases and, in particular, pp 700-704 for a list of prob
lem areas remaining (or inherent) in the object-oriented database model.

One of the primary players in the database field, IBM, is basing their
strategy on the relational model, with possible object-oriented extensions.
Quoting Davis [Dav89]:

One of IBM's basic concerns about the object-oriented approach
is that it is not based on a rigorously defined model. The re
lational model, on the other hand, is built on a sound, extensi
ble mathematical model. IBM acknowledges the utility of the
object-oriented approach and its ability to deal with certain ap
plications that are beyond the scope of current relational sys
tems (particularly in the area of performance). However, the
jury is still out on the basic question: Is it possible to extend
the relational model to incorporate object-oriented capabilities
and get good performance, or is it necessary to build a system
from the ground up to gain the benefits of object orientation?
Definitely not clear, according to IBM. Since IBM is basing
its strategy on the relational model, we expect to see object
oriented extensions to IBM's relational DBMSs.

New commercial object-oriented databases are presently announced reg
ularly; the following were (amongst others) released or upgraded during
1990:

• Objectstore release 1.0 from Object Design Inc for Sun Microsystems
3 and SPARCstation platforms

• Ontos release 2.0 from Ontologie (replaced an earlier product called
Vbase) for Sun-3, Sun-4, SPARCstations, Apollo and DECstation
workstations

• Gemstone version 2.0 from Servia Logic Corporation for Sun work
stations, Digital VAX/VMS and DECstations under Ultrix

• Versant ODBMS from Versant Object Technology Corporation for
Sun workstations

• Itasca (formerly Artemis, derived from MCC's Orion) from Itasca
Systems for Apollo, Hewlett-Packard, Silicon Graphics, Sun and Avi
ion workstations

See [Aye91] for a discussion of the development of one such object-oriented
database;

26 CHAPTER 4. DATABASES

The Object-Oriented Database System Manifesto (see page 19) lists five
areas where object-oriented database systems may differ and that may be
used as a basis for comparison between different offerings:

1. Is multiple inheritance supported or not?

2. Are types checked during compile-time (ie when a new class descrip
tion is added to the database)? Is type inferencing supported, ie is it
possible for the compiler to deduce the (derived) type of a combined
collection of objects based on usage?

3. Is it possible to distribute the database over a number of platforms?

4. Does it support "design transactions", ie transactions that cannot be
treated as classical serialisable "business transactions"?

5. Is it possible to maintain different versions of the same objects simul
taneously?

Note that a simple yes/no answer to these questions is not sufficient: for
instance, if multiple inheritance is supported, one can further distinguish
between the various implementations of multiple inheritance.

See [Kim9l] for a discussion of the strengths and weaknesses of object
oriented databases.

4.4 Security in databases

4.4.1 Secrecy, integrity and availability

Security is concerned with secrecy (or confidentiality), integrity and avail
ability. In a database environment, secrecy refers to measures taken to
ensure that information is not disclosed to unauthorised parties; integrity
to the prevention of unauthorised changes of (including additions to) the
database; and availability to the assurance that data is available to autho
rised users when they need it.

Denning [Den88, pp 1-2} lists the following components of a security
policy:

• A discretionary access control policy, stating which operations specific
users may perform on which data and, also, how a user may (at the
user's discretion) transfer such access rights to other users.

4.4. SECURITY IN DATABASES 27

• A mandatory access control policy, to ensure that users do not ob
tain direct or indirect access to data they are not cleared to access.
Mandatory access control is of concern when dealing with multilevel
databases, which we will address shortly.

• A statistical inference policy, specifying to what extent it will be pos
sible to draw conclusions from statistical summaries obtained from a
database.

• A consistency policy, defining the states in which the database is
considered consistent (ie valid or correct).

• An identification/authentication policy, specifying measures to ensure
that unauthorised users of the database do not masquerade as legiti
mate users.

• An audit policy, specifying how records will be kept of database op
erations for future reference.

Not all of these policies have to be present in a given organisation; also,
some of the requirements may be dealt with by the operating system. On
the research front, most of the effort has been spent on the first three issues.

Pfleeger [Pfl89, p 304] further distinguishes between physical database
integrity, logical database integrity and element integrity. Physical database
integrity must ensure that the database is immune to (or reconstructable
after) physical problems, such as power failures. Logical integrity is con
cerned with the internal logical structure of the database, for instance en
suring that if data in some part of the database refers to other data, the
other data does exist somewhere in the database. Element integrity en
sures that the data contained in every element is accurate by, for example,
ensuring that such values are between acceptable limits.

We will limit our attention in subsequent sections and chapters to mea
sures taken to ensure the secrecy of protected information and to prevent
unauthorised modification of information.

4.4.2 Multilevel databases

A multilevel secure system contains information of varying sensitivity; mul
tiple users may access the system simultaneously, but any user is only al
lowed to access information which that specific user has been cleared to
access. According to [Lun90b, p 593]

The concern for multilevel security arises when a computer sys
tem contains information with a variety of classifications and

28 CHAPTER 4. DAT4BASES

have some users who are not cleared for the highest classifica
tion of data contained in the system.

A security classification, or access class, consists of a hierarchi
cal sensitivity level (eg TOP-SECRET, SECRET, CONFIDENTIAL,

UNCLASSIFIED, etc) and a set of non-hierarchical categories. In
order for a user to be granted access to information, the user
must be cleared for the sensitivity level as well as for each of
the categories in the information's access class.

Multilevel security is not only applicable to databases; however, in this
work we will restrict our attention to multilevel secure (MLS) databases.

In a multilevel secure system, special care is taken that an authorised
user does not 'write information in a location where it can be accessed
by a user who was not cleared to access the information in its original
location. As an example, using the familiar military terminology, a user
with a SECRET clearance is not allowed to access information classified as
TOP-SECRET; a user with a TOP-SECRET clearance may read information
classified as TOP-SECRET but is not allowed to write the information in a
location that may be accessed by a user with a SECRET clearance.

Security in a multilevel database may be compromised if a user is able
to determine that a certain attribute exists in the database even if the user
cannot determine the actual value stored for that attribute. Suppose a user
tries to write an attribute value that already exists, but where the value is
classified too high for this particular user to read. If the update request is
rejected, the user may infer that such a value already exists. If the update
is allowed, the existing (highly classified) information may be overwritten.
A common solution for this dilemma is to allow more than one entry in the
database for the same information; one entry for every classification level;
an update request will then neither be rejected, nor interfere with higher
classified processes. This technique is known as polyinstantiation. On the
negative side, polyinstantiation places a bigger burden on the database
management system, because multiple entries for the same information has
to be maintained. Polyinstantiation may also cause consistency problems
because the wrong entry may be retrieved for a given query.

The four stages in the development of a secure system as given by
Piieeger[Pfl89, p 242-243] are:

• Modeling;

• Design;

• Ensuring trust; and

4.4. SECURITY IN DATABASES

• Implementation of the secure system.

29

In chapter 6 we propose a new theoretical model for secure object
oriented databases, which we have called SECDB. See chapter 7 for refer
ences to other examples of such models.

Much work has been done on implementation strategies (ie the second
implementation stage according to Pfleeger) for multilevel secure databases;
possible strategies for such databases include the following:

• The trusted filter or trusted. front- end approach, where a (trusted) fil
ter is placed between application programs and the database. It is the
responsibility of this filter to ensure that no unauthorised information
is disclosed. The mechanism often works by attaching fields contain
ing the classification level and a cryptographic checksum to any stored
data. The filter uses the classification level to check whether a given
user should be allowed access. The cryptographic checksum is used
to check that nothing has tampered with the record without going
through the filter. Because the checksum acts as a lock, this mecha
nism is also often called the integrity lock approach.

• The balanced as"urance approach, where responsibility is shared be
tween a trusted operating system and the database system-here the
operating system acts as a trusted back-end. This approach is also
known as the decomposed daiabas« architecture. Database entities are
split into parts which are then stored in single level operating system
"containers", which are protected by the operating system. As an
example, a multilevel relation may be reorganised into a set of single
level relations; every relation may then be stored in a file, which is
protected (at the relevant level) by the operating svstem.

• The monolithic or uniform a""urance approach. Using this approach,
the database is implemented to take sole responsibility for security of
information stored in the database.

With the balanced assurance and the monolithic approaches, view" or win
dow" may be used to present the user with only that information he is
entitled to access. See Laferriere [LafOO], Denning [Den88, pp 11-14] and
Pfleeger [Pfl89, pp 331-340] for a discussion of the relative merits of each of
these (and some related) approaches. Implementation strategies fall outside
the scope of this work.

30 CHAPTER 4. DATABASES

4.4.3 Statistical inference

Statistical inference refers to the possibility that it may be possible to
draw conclusions from statistical summaries obtained from a database. In
general, an inference problem may occur whenever data is only partially
disclosed and it is possible to infer (undisclosed) sensitive information from
the partially disclosed data. Although it is outside the scope of this re
search, we will briefly touch on the problem and mention some techniques
that may be considered as solutions.

. The problem occurs when a user is not allowed to access individual
values for a given attribute, but needs some statistical summary values for
that attribute. As an example, a given user may not be allowed to view
salary entries for individual employees, but may need to know the average
salary for certain categories of employees. If this user is allowed to get the
"average" salary of the one employee in the "managing director" employee
category, this user can easily "infer" the salary of the managing director.
Less accurate, but close, conclusions may be made about the salary if the
group is bigger than one, but still relatively small. One possible solution
thus is to restrict the size to some minimum number of entries for any
statistical value to be computed: if less than this minimum number of
entries wiJI take part in the computation, the computation is simply not
performed. Examples of summary information that may be used in such
an attack include the sum, count, average and mean of data conforming to
a specified set of constraints.

To worsen the problem, a user may be able to draw conclusions on
the basis of a number of queries. This happens when some relationship
exists between various attributes, in which case the user maybe able to
algebraically manipulate returned non-sensitive data to calculate sensitive
values. To further worsen the problem, such queries may be executed over
a period of days. This means that it may be necessary for the system
to maintain a list of queries executed by any given user, to be able to
determine what the user already knows, and thus what the user would
be able to infer given the next query from the user-if the user will be
able to infer sensitive information, the query may again be abandoned.
However, this still does not solve the problem if two users cooperate-with
their combined knowledge they may be able to make a sensitive inference,
without any possibility of the system noticing. And, of course, maintaining
a list for every user of what that user already knows is very expensive.

In the case of very sensitive data, perturbation is often used. Pertur
bation refers to the deliberate distortion of information released by the
database. The information is distorted in such a way that the necessary

4.5. SECURITY IN OBJECT-ORIENTED DATABASES 31

statistical calculations will still be correct (if calculated over a large enough
population). However, obtaining individual values will be useless.

According to Pfleeger [Pfl89, p 27J "there are no perfect solutions to
the inference problem". The three possibilities to consider are

1. Do not release any sensitive information, not even statistical sum
maries of such information;

2. Track what the user knows and do not release any further information
if it will compromise security; or

3. Use perturbation to disguise the data.

Inference is covered in more detail by Denning [Den88, pp 14-19J and
Pfleeger [Pfl89, pp 319-327J.

The aggregation problem is related to the inference problem: often the
subparts of an entity are not as sensitive as the complete entity. If a user
is not authorised to access the complete entity, but is allowed to access the
parts it may be possible for that user to combine (aggregate) the parts and
obtain the sensitive information. Object-oriented databases often provide
a very natural solution for the aggregation problem. We return to it in a
later chapter.

4.5 Security in object-oriented databases

A few models have been proposed to deal with security in object-oriented
databases. In chapter 6 we propose a new model, SECDB, for this purpose.
A taxonomy for such models is developed later in this work-see chapter
7. Examples of other models for secure object-oriented databases are given
there.

32 CHAPTER 4. DATABASES

Chapter 5

The Path Context Model

Most security models do not realistically reflect the complexity
of current computer systems. The Path Context Model (PCM)
is a recent formal security model attempting to solve this prob
lem. For any request, PCM notes all entities (software and
hardware) encountered along the access path of the request;
before the target entity is accessed, this collected information
about all involved entities is considered to determine whether
the access should be allowed or not.

PCM has not yet been defined precisely. This chapter first gives
a formal definition of PCM. It is then shown that it is difficult
to protect composite objects-e-objects consisting of other, less
complex objects-with PCM. This problem can be solved by
modifying PCM so that every level of such a composite object
can do the access checks relevant to that level of the object. We
illustrate this by defining an object-based version of PCM.

The object-based version of PCM uses object-oriented concepts
discussed in chapter 3. The object-based version of PCM will
be used in chapter 6 to define a new model for secure object
oriented databases; this model, together with other models for
secure object-oriented databases, will be used in chapters 7 to
11 as a basis for a taxonomy for such models.

33

34 CHAPTER 5. THE PATH CONTEXT MODEL

Should auld acquaintance be forgot,
And never brought to mind?

Robert Burns
Auld Lang Syne

5.1. INTRODUCTION

5 .1 Introduction

35

The Path Context Model (PCM) is a recent model for information security
proposed by Boshoff and Von Solms [Bos89a,Bos89b,Bos90]. This chapter
formalises the definition of the model given by the proposers. It is then
shown that it is difficult to use PCM to protect composite entities-entities
constructed from other (lower level) entities. This problem can be solved
by modifying PCM so that every level of such a composite entity can do
the access checks relevant to that level of the entity. This is illustrated in
the last section of the chapter, where an object-based version of PCM is
defined. This version of PCM will be used in the next chapter to propose
the SECDB model for secure object-oriented databases.

5.2 Security background

\Ve encountered security models briefly in chapter 2. In this section we re
visit some aspects of such models to serve as background for the description
ofPCM.

5.2.1 Security in the human environment

Traditionally secrecy measures are based on a classification level and a
clearance level: classified material is given a classification level based on
the material's sensitivity; people are given clearance levels based on their
trustworthiness and function in the organisation. If someone's clearance
level dominates the classification level of classified information, that person
is allowed to see the classified material. Additionally it is often required
that someone must have a valid reason to access information before such
a person may see it; this requirement is often referred to as the need to
know requirement. Security restrictions therefore usually form a partially
ordered structure known as a lattice.

Clearance and classification levels are typically named and ordered as
follows:

Restricted < Confidential < Secret < Top secret

Further, specific projects (or compartments) are named and individuals and
groups who need to know about those projects are identified. To determine
whether someone should be allowed to see classified material it is necessary
to determine whether

• That person's clearance level dominates the classification level of the
material; and

36 CHAPTER 5. THE PATH CONTEXT MODEL

• That person is a member of a group who may access information
about the project.

Both conditions must be satisfied before allowing access to the material.

5.2.2 Traditional security in the computer environ
ment

Security in the computer environment is traditionally based on the (human)
model described above. Information is classified by assigning a classification
level--often an integer.. Users are cleared by being assigned a clearance
level-again an integer. If a user wants to access information, the user's
clearance level must be higher than (or the same as) the classification level
of the information.

The requirement that a user may only access information he needs to
access is often enforced by protecting individual resources by so-called dis
cretionary access control". In the operating systems environment this is
often accomplished by access control lists or capabilities. Access control
lists are associated with protected entities in the system and contain a list
of users who may access the entity. The owner of the protected entity may
grant access by inserting a user's name into the list and revoke' access by
removing a user's name from the list. Capabilities are non-forgeable iden
tifiers, giving the owner of the capability the right to access a protected
entity. The owner of the entity may give a user a copy of the capability,
which this user may then use to access the entity or pass on to another
user, who may then access it. On a higher level passwords are often used
similar to capabilities.

The primary differences between security in the human and computer
environments are:

• It is much easier to copy information (often inadvertently) in the
computer environment. This copied information may then not be
protected, compromising security.

• The reader .of information in the computer environment often has
no indication of the identity of the writer, making it difficult (or
impossible) for the reader to verify the validity of the information.
The fact that the writer had an adequate clearance level to write the
information in the first place is usually the only guarantee of validity.

• Greater scale in the computer environment. Things happen quicker,
more often, more concurrently and on behalf of more users. This

5.2. SECURITY BACKGROUI\;D 3i

requires a finer granularity of classification and clearance levels, in
creases the possibility of covert channels and makes it less likely that
security breaches will be noticed by someone.

• The new technology used in the computer environment offers new pos
sible ways to breach security: electromagnetic radiation from comput
ers, but especially from communication lines, the possibility to read
disks, even after information has been deleted, amongst others, all
require attention.

Models for computer security usually address the basic principles and
some of the differences mentioned earlier. Clearance levels are usually as
signed to subjects-subjects are the active entities in the system, usually
processes acting on behalf of users. Classification levels are assigned to
entities-entities are the static items in the system such as files, printers
and other resources. Rules then determine whether a subject with a given
clearance level may access an entity with a given classification level. Dif
ferent rules may exist for reading and writing information.

5.2.3 PCM-another security model

The Path Context Model [Bos89a,Bos89b,Bos90] uses a different approach
to the security problem. Simply put, whenever a request to access some
resource is issued, information is collected about this request's progress
through the system until the request reaches the resource to be accessed.
The collected information (known as 'baggage') will include items such as

• The identity of the user who initiated the request;

• All software packages involved in the processing of the request;

• Networks used to transmit the request; and

• Computer system on which the request was initiated and all other
computer systems involved.

A profile is described for protected resources. Such a profile specifies
items which must be in the baggage and items which are not allowed to be
in the baggage of a request, for the request to be serviced by the resource.
The profile may, for instance. specify that only users X, Yand Z may access
the resource, that the request may only be initiated from a computer system
C and that the request may not be routed via an untrusted communications
line L. -

A validator is used to compare the actual collected baggage to the profile
specification, and decide whether the request should be serviced.

We give a formal description of PCM in the next section.

38 CHAPTER 5. THE PATH CONTEXT MODEL

5.3 The Path Context Model (PCM)

This section describes the Path Context Model formally. Firstly, we de
fine notation and terminology, which is then used to define the concept of
baggage and, after that, security profiles.

Our terminology and notation differs slightly from the original descrip
tion of PCM [Bos89a,Bos89b] to facilitate a mathematically more rigorous
approach. In accordance with [Bos89a,Bos89b] we use the term object in
this section to describe a static, protectable entity.

5.3.1 Notation and terminology

The following notation is used in describing PCM:

E - DxSxlxOxA

D - {d I d is any valid domain} x K

S - {s I s is any valid software component} x K .

I - {i I i is any valid integrity state} x K

0 - {o lois any valid object} x K

A - {a I a is any valid accessor} x K

K - {k I k is any valid access class}

The examples given in [Bos89b] of this notation, are as given in table
5.1.

PCM is based on three concepts:

1. The baggage collection vehicle (BCV), used to collect information
about the access request;

2. A profile for describing access rest.rictions to resources; and

3. A validator which will, given the baggage and the profile, determine
whether a resource may be accessed or not.

In our formal treatment, we will view these components as additional
levels of a security system: the baggage collection vehicle forms the basic
layer, the profile includes the baggage collection vehicle, but adds the func
tionality to describe access restrictions, while the validator includes both

5.3. THE PA.TH CONTEXT AJODEL (PClvI)

Element Example excluding Cartesian Product with K

D LAN, \VAN, VAN

5 Network software, teleprocessing software, DBMS

I Problem state, supervisor state, MESAS (multiple exe-
cutions in a single address space), encrypted transmis-
SIOn

0 Program, file, block of data, data element

A LTser-transformed accessor
K Read, execute, write, delete, passthru, pre-access

checking, post-access checking

Table 5.1: Notation used to describe PCM

39

the baggage collection vehicle and the profile, adding the access enforcing
capability.

5.3.2 The baggage collection vehicle

The baggage collection vehicle is the mechanism responsible for the collec
tion of baggage. It is described as a formal grammar, with productions
specifying the format of the baggage. This grammar maps all changes in
the physical environment to the baggage string generated for the request.
Application of this grammar will be discussed after formally defining it.

Definition 5.1 The baggage collection vehicle is a formal grammar

where VN is the set of non-terminal "ymbol", with

v: - {E' A'T)' S' I' O' C}N - ., , , , ,

Vr is the set of terminal "ymboz." with

Vr = AU D U SUI U 0

E E VN is the starting symbol.
P i" the following set of production":

'D ~ d1Id2Id31···ldm le
S ~ SdS2I s31···lsnle
I ~ i1Ii2Ii31···liple

0 ~ oll o2Io31···lor Ie
C ~ A'DSIC

C ~ 0
E ~ C

where

a' E A,l s j s k]

d· E D,l $ j < m]

s· E S,l s j < n]

l . E I,l s j < p]

o· E 0,1 s j s r]

40 CH.4.PTER 5. THE PATH CONTEXT MODEL

The value e is used whenever a value is not defined, cannot be determined
or does not make sense in the specific context. 0

Equivalently, the baggage can be described by

C~ (A'DSI)+O

where the plus denotes one or more repetitions of the preceding symbol.
A baggage string thus consists of one or more 4-tuples, Vj, followed by

the identity of the object being accessed, with

Vi E ADSI = {adsila E A Ad E D A s E S Ai E I}

Such a Vi is known as a baggage vector. A baggage string is thus of the
form

Here VI represents the initial values for the accessor, domain, software and
integrity state. Note that the value of such a baggage vector is defined
the whole time from initiation of the request until the request has been
serviced. Whenever the value of V changes it is appended to the baggage
string, ie for any 1 $ j < n,vi 1= Vi+!' but in the time between assuming
values Vi and Vi+! no other values are assumed.

5.3. THE PATH CONTEXT j\;IODEL (PC1vf)

5.3.3 The profile

41

A security profile is a formal grammar designed with the following in mind:

• Productions of the grammar correspond to possible variations along
the path of an access request. Examples of such variations are when
the integrity state of the computer changes from problem state to su
pervisor state or when the request is transferred from one domain
to another. The derivation process starts, as usual, with the start
ing symbol and productions are applied until the string only consists
of terminal symbols. When one of these variations along the access
path occurs it will be accompanied by the application of one or more
productions in the derivation process. The end result of the deriva
tion process is a string reflecting the access path from the user to the
accessed object, including information on accessors, domains, soft
ware and integrity states along the way, similar to the baggage string
described previously.

• The productions of the grammar are designed that a terminal string
will only be reached at the end of the derivation process if a valid ac
cess path has been followed. In other words, if, at the point where the
requested object is to be accessed, the derived string only consists of
terminal symbols, access is granted to the object; if any non-terminal
symbols remain which cannot be replaced by terminal symbols, access
will be denied.

• Productions will usually be included to describe all (potential) ac
cess paths. However, the use of some productions will be restricted
based on the access path followed thus far. This will be done with
the allowing and forbidding contexts of random context grammars
[Van70]. Such contexts are sets of symbols from the alphabet of the
grammar. In order to apply a production with an allowing context,
all symbols in the allowing context must appear somewhere in the
sentential string derived thus far. To apply a production with a for
bidding context, no symbol from the forbidding context is allowed to
appear in the sentential string derived thus far. In practical terms,
a production may have an allowing context containing the name of
a specific user-only if that user was involved in the request will the
derivation process be allowed to proceed by using this production.
Similarly, a production may have a forbidding context containing the
identity of some untrusted piece of software-if that software was in
volved along the access path of a request, the derivation process will
not be allowed to continue by applying this production.

42 CHA.PTER 5. THE PATH CONTEXT MODEL

More formally, a security profile is an extended path context gram
mar [BosS9b], which is based on random context grammars. The primary
difference between random context grammars and extended path context
grammars is the fact that the restrictions associated with productions in
the latter may also require that symbols be adjacent and/or in a specific
order. This will be clear after the formal definition of a profile has been
given.

The productions in the path context grammar correspond largely to the
productions given earlier for the baggage collection vehicle. The important
difference between those productions and the current ones is the fact that
a non-terminal symbol, nj , is introduced for every object, OJ, in the sys
tem. Productions with allowing and forbidding contexts are then included,
allowing this non-terminal to be replaced by the terminal symbol repre
senting the object; these contexts are used to specify security constraints
affecting the concerned object. We return to this topic after defining a
security profile formally.

Definition 5.2 A security profile is an extended path context grammar

VN is the set of non-terminal symbols, with

VN = {~;A;V;S;I;O:C} U {njloj EO}

VT is the set of terminal symbols, with

VT = AU D U SUI U 0

Let V represent the alphabet, ie

~ E VN is the starting symbol.
P is a set of productions of the form

~ - C
A - os- where c, E A
V - dj , where dj E D

S - Sj, where sj E S

I - ij, where i, E I

0 - nj , where nj E VN

-+ c
-+ e
-+ c
-+ e

-+ c

5.3. THE PATH CONTEXT MODEL (PClvf)

A
V

S

I

o
C -+ AVSIC

C -+ 0
nj -+ OJ(B; F), with

B ~ V U {(x)lx E Vn,n 2:: 2} U {((x))lx E Vn,n 2:: 2},

F ~ V U {(x)lx E V'\n 2:: 2} U {((x))Ix E Vn,n 2:: 2},and

V n = {0'1 0'20'3"'O'n IOj E V,l ::; j ::; n}

43

o

As mentioned, the nj symbols have been introduced as the 'placehold
ers' for objects; these symbols correspond one-to-one with the objects, OJ,

in the system. The B in the production

is the permitting context and the F the forbidding context. If we have a
sentential string

then the production
nj -+ oiCB; F)

can be applied resulting in 0'1 OJ 0'2 if

• all single symbol elements of B appear somewhere in 0'10'2; for all
n-tuples of the form (Xll X2, ••• , xn), the xi> 1 ~ j ::; n, ali appear
adjacent (but in any order) to one another in 0'10'2 (ie a permutation
of Xl, X2, ••• , X n is a substring of 0'10'1); for all n-tuples of the form
{(XllX2,."'Xn)), X1X2 ••. Xn is a substring of 0'10'2; and

• no single symbol element of F appears anywhere in 0'10'2; for all
n-tuples of the form (XllXl, ••• , x n) , 1 ::; j ::; n, no permutation of
XI, X2, ••• , X n is a substring of 0'10'2; and for all n-tuples of the form
((Xl,X2,""X n)}, X1X2",Xn is not a substring of 0'10'2.

If access to object OJ is required, following the access path with produc
tions of the profile will eventually yield a string of the form O'n j . Before ac
cessing object OJ, the n j will have to be replaced by OJ (that is O'nj :=} O'Oj)'

This will only happen if a suitable production of the form

n· --+ o·(B· F)1 l'

44 CHAPTER 5. THE PATH CONTEXT lvIODEL

exists, ie if the access path thus far (represented by a in anj) did follow
the 'paths' described in B, but did not follow any 'paths' described in F.

5.3.4 The validator

The validator is the component mapping a derivation step (using notation
defined in the previous section)

an· => 0'0'1 1

to access to the physical object OJ.

The complexity of the model is concentrated in the previous two layers
(in the BCV and profile) resulting in an extremely simple validator.

5.3.5 A critical look at objects

This section addresses the problems encountered when protecting composite
objects with PCM. Remember that objects are traditionally viewed as the
passive entities (such as files) in the system which can be manipulated by
software, while subjects are active entities. Composite objects are objects
which themselves consist of other, lower-level objects.

Let us first consider requests. The notion of requests is treated infor
mally in PCM. Considering the given grammars, it is clear that PCM makes
the following assumptions about requests:

• A request is initiated by a primary aCCeJJOT, usually a human;

• A request terminates when it accesses the requested object;

• Zero or more intermediaries (software, hardware, etc) may take part
in the request between the primary accessor and the object; and

• Access checks are only performed at the point where the object is to
be accessed.

Now, consider objects which consist of other objects: examples are

• Database management systems which use files at a lower level to store
iniormation;

• Files which are stored as sectors on disks;

5.3. THE PATH CONTEXT l'vfODEL (PC)';!) 45

• Any resources managed by a 'server', where the server is then treated
as the 'object'; etc.

If we take a file consisting of sectors as an example, it is easy to see that
both the file and the sectors must be protected. This leaves us with three
possibilities:

1. Protect the sectors. A typical profile constraint for such a sector will
check that

• the access request comes from an authorised user VIa a valid
access path; and

• the request did go via the file system.

The problem with this approach is that it is unnatural to do access
checking for a higher level object at the low level. The file is the logical
object which needs protection-protection measures should be at this
level.

2. Only protect the file with PCM and use an alternative mechanism to
protect the sectors. This solution is unsatisfactory, because it uses a
non-homogeneous approach to protection.

3. Protect the file with PCM and let the file system issue requests to
access the sectors. PCM can then be used to check that any access
to sectors was originated by the file system. Also this solution is un
satisfactory: the problem PCM addresses is precisely the one caused
by 'agents' acting on behalf on users and concealing the identities of
the real users.

As an even more problematic example, consider a database consisting of
files, which each consists of sectors. In the case of a database, it is often
desirable to protect the individual records (at possibly different classifi
cation levels). In this case, two logical records, with differing protection
requirements, can be stored on the same physical sector, necessitating a
very unnatural application of PCM-only possibilities (2) and (3) above
are viable with the current definition of PCM.

In the next section we describe a version of PCM adapted for the object
oriented environment, which solves the described problem: simply put. we
propose that a single request must be able to travel from the originator to
the (high-level) object to be accessed; the access controls necessary at this
level can then be performed, after which the access request travels to the
next lower level object, where access controls necessary at that level can
then be performed: this process continues until the lowest level (physical)
object has been accessed.

46 CHAPTER 5. THE PATH CONTEXT MODEL

5.4 Object-based PCM

This section describes a version of PC:\1 for the object-oriented environ
ment. (See chapter 3 and [GoI83,Weg90] for a description of this environ
ment.) Our reasons for using the object-oriented environment include:

• The problem described in the previous section is aggravated in the
object-oriented environment, beca.use all entities are objects; further
all non-primitive objects are built on top of other objects; and

• The fact that all entities in the object-oriented environment are ob
jects, simplifies the resulting model.

Although we use theobject-oriented environment and terminology, the de
scribed model can easily be adapted for conventional environments.

Our model assumes that objects are instantiated and classified before
the profile is defined. This makes it applicable to real-world environments
such as the client-server model, where the servers can indeed be instantiated
and classified before defining the profile.

5.4.1 Notation

The underlying concepts used for describing PCM were

• Domains

• Software components

• Integrity states

• Objects

• Accessors

• Access classes

In the pure object-oriented environment software components, accessors
and 'physical' objects are all viewed as objects. Also, for any such object,
the valid access classes are represented by the methods supported by such
an object.

While domains and integrity states may also be modeled as objects,
they do belong to a different level: they represent the underlying comput
ing environment, while the objects represent the logical entities supported
by that environment. To illustrate this consider the following: to the pro
grammer it should not make any difference whether object z is residing on

5.4. OBJECT-BASED PCM 47

domain d1 or d2 ; also it is immaterial whether an object is one designed by
an applications programmer or whether it is an operating systems object
executing in privileged state; however these differences have major security
implications.

In the version of OPCM we describe, we only make provision for objects
to be protected. However, it is desirable that it should be possible to protect
other entities such as individual methods and instance variables of a given
method. Also we make no special provision for the protection of classes.
\Ve return to these issues after defining OPCM.

The following notation is used to describe OPCM:

E OX.J.\1xDxI

o - {o lois any valid object}

AI {m I m is any valid method}

D {d I d is any valid domain}

I - {i I i is any valid integrity state}

Note that the definitions of 0, D and I differ from those given when defining
PCM-this is because we have incorporated the access classes (represented
by K there) as methods in the description above.

As mentioned earlier, 0 x M represents the active entities, while D x I
represents the underlying computing environment. Elements of 0 x AI are
ordered pairs consisting of an object name, followed by the name of the
method currently active in that object. Elements of D x I are ordered
pairs describing a physical component and its current integrity state: this
could be a CPU executing in, say, privileged state or a communications line
currently carrying data in, say, unencrypted form.

As is the case in PCM, the described environment reflects security re
quirements in current systems; if any given system has more variables to
keep track of, it is only necessary to add those variables to the environment
and extend the baggage collection vehicle and profile descriptions accord
ingly.

5.4.2 The baggage collection vehicle

The definition of the BCV corresponds largely to that given earlier for the
BCVofPCM.

Definition 5.3 The baggage collection vehicle is a formal grammar

48 CHAPTER 5. THE PATH CONTEXT MODEL

where VN is the set of non-terminal 3ymbol3, with

V:v = {E;O;M;V;I;C}

VT is the set of terminal sumbols, with

VT = OUMUDuI

E E VN is the stariinq 3ymbol. P is the following set of productions:

0 ---+ OtI0210:31···l orle
M ---+ mdm2Im31···lmn le
V ---+ dtld2Id31···ldm Ie
I ---+ itli2Ii31···liple

C ---+ OMVIC

C ---+ 0
E ---+ C

where

o· E 0,1 < j ~ r)

m· E M, 1 s j s n)

d· E D, 1 ~ j ~ m)

z. E 1,1 ~j ~ps

The value e is used whenever a value is not defined, cannot be determined
or does not make sense in the specific context. 0

5.4.3 The profile

The profile definition for OPCM corresponds to the profile definition of
PCM-refleeting the new environment.

Definition 5.4 A "ecurity profile is an extended path context grammar

VN is the set of non-terminal "ymboz", with

VN = {E;O;M;V;I;'R.;C} U {!1j loj EO}

- C- nj,where nj E V;v

- mj>where mj E }vI

- dj , where d, ED- i j, where i j E I

- e

5.4. OBJECT-BASED PCNI

VT is the set of terminal symbols, with

VT = a u AI U D U I

Let V represent the alphabet, ie

E E VN is the starting symbol.
P is a set of productions of the form

E

o
A1

V

I

o
M - e

V - e

I - e
C - OMVIn
R: - C(0;G), with

G = {njloj E O}

C - 0
nj - OJ(B; F), with

B £; VU {(x)lx E Vn,n 2:: 2} U {((x)}lx E vn,n 2:: 2},and

F £;'V U {(x)lx E Vn,n 2:: 2} U {((x))Ix E Vn,n 2:: 2}

49

o

In this case a baggage string consists of one or more 4-tuples, Vj, followed
by the identity of the final object being accessed, with

Vj E OlvIDI = {omdilo EO f\ mE Al f\ d ED f\ i E I}

A baggage string is thus of the form

Here VI represents the initial values for the accessor object, method, do
main, and integrity state.

50 CHAPTER 5. THE PATH CONTEXT MODEL

Note that the baggage at points where objects are to be accessed will
always be of the form afJ-/R or anj with a E V·. Similar to the case for
PCM access to object OJ in such a case will only be granted if there is a
production mapping Qj to OJ and a satisfies the constraints specified in the
allowing and prohibiting contexts of the production. Also note that the
production

R - C(0;G)

will ensure that a request is not allowed to advance to another object if
access has not been granted to all previous objects on the path of the
request; ie a request will only be allowed to continue if every nj encountered
thus far has been replaced by its corresponding OJ.

5.4.4 The validator

The validator is identical to the validator of PCM-mapping the replace
ment of a non-terminal symbol representing an object with the terminal
symbol representing that object to physical access to that object.

5.4.5 A critical look at OPCM

OPCM solves the problem of composite objects. However, some critical
remarks are in order

• The notion of a request has still not been defined formally. Since a
request is allowed to travel from object to object, requests could be
of a relatively long duration (especially when compared to requests
in PCM). This could be a problem because baggage is collected from
initiation until termination of a request, possibly leading to an exces
sive amount of baggage. It may be possible to write software which
will consider the allowing and forbidding contexts specified in the pro
file and then identify and discard superfluous baggage at some points
along the path; it may even be possible to adapt the profile grammar,
based on given contexts, so that some useless information is not col
lected in the first place. The formal nature of PCMjOPCM ensures
that this can be done safely.

• We stated that it is desirable to be able to protect individual methods
and instance variables of an object. In order to protect methods, it
is a simple matter to add allowing and forbidding contexts to the
production mapping M to M, in the profile specification; this will
be similar to the way such contexts were added to the production
mapping '0 to OJ (with the introduction of nj) to control access to

5.5. THE ROLE OF orcu 51

the object. To protect instance variables, the reading from or writing
to an instance variable may be viewed as a 'read' or a 'write' message
sent to an 'instance variable object', in which case the given grammars
will handle it without modification.

• Our assumption that objects are created and classified before defi
nition of the profile side-stepped the problems associated with dy
namic creation of objects and also with inheritance. These issues
are addressed in subsequent research; the SECDB model for secure
object-oriented databases (see chapter 6) makes use of OPCM and
specifies additional rules to deal with both inheritance and object in
stantiation. Indeed, in the taxonomy described in chapters 7 to 11
these issues are assigned to different parameters, because it reflects
the way most current models for secure object-oriented databases are
designed: parameter Xl.l there specifies the underlying model (which
may be for example OPCM), parameter X2.2 handles the security la
beling of newly instantiated objects, while parameter X2.3 discusses
the implications that inheritance (and other relationships) have on
the security labeling of such related entities.

• Lastly, some remarks on the protection of classes: Classes are normal
objects in an object-oriented environment. Therefore they may be
protected just like any other object with OPCM. However, classes do
have an additional purpose: they serve as templates for new objects
that are created. This 'template section' of classes may be protected
against unauthorised access (similar to the way methods and instance
variables may be protected). Alternatively the 'template section' may
be labeled with the intention that any objects created from the tem
plate must inherit the given protection, in which case the discussion
in the previous point applies.

5.5 The role of OPCM

As mentioned earlier, OPCM will be used in the next chapter to define
SECDB, a model for secure object-oriented databases. OPCM will also
be used to develop the taxonomy for secure object-oriented databases in
chapters 7 to 1l.

In the remainder of this work we will use the term PCM to mean both
PCM and OPCM: where PCM is used in an object-oriented context, OPC~1
should be understood.

52 CHAPTER 5. THE PATH CONTEXT MODEL

Chapter 6

SECDB: A Secure
Object-oriented Database
Model

This chapter defines SECDB, a model for secure object-oriented
databases. It uses the Path Context Model (see chapter 5) to
protect the information contained by it.

SECDB uses normal object-oriented concepts-most of which
are already present in an object-oriented database-to repre
sent security features. This enables one to encapsulate security
restrictions in an object-similar to the way instance variables ,

(and methods are already encapsulated in the object. This leads!1 to objects that have the 'intelligence' to protect themselves. ...)

See our overview of database theory in chapter 4 for informa
tion on object-oriented data.bases; see the discussion of object
orientation in chapter 3 for information on the object-oriented
paradigm itself. SECDB is used as one of the models on which
the taxonomy for secure object-oriented databases in chapters
7 to 11 is based.

53

/ '

54 CHAPTER 6. SECDB

Get animal es: tres mechand,
Quand on l'attaque il se defend.
This animal is very bad; when attacked it
defends itself.

Anonymous

6.1. INTRODUCTION

6.1 Introduction

55

This chapter describes a model for a secure object-oriented database based
on the Path Context Model (PC:YI) [Bos89a,Bos89b,Bos90]. \Ve will refer
to this model as SECDB (SECure DataBase).

The necessary extensions to an object-oriented database to support se
curity are considered. Such extensions must fit as cleanly as possible into
the object-oriented model. The proposed mechanisms are designed to be
objects themselves, conforming to the normal object, class and inheritance
structures. Also, in line with the object-oriented database model, the secu
rity information must be stored as part of the database, together with the
data and code.

We will mainly be concerned with the secrecy aspect of security, al
though the proposed model has some advantages regarding integrity.

6.2 Object-oriented extensions

This section introduces the terminology used. The concepts are treated in
more detail in subsequent sections.

6.2.1 Object-oriented basics

We consider objects, classes, inheritance, methods and messages as the
necessary ingredients of object-orientation [\Veg90, pp 8-11]. Also, in a
secure system encapsulation [Weg90, p 11] must be enforced-that is an
object's instance variables must be hidden from all methods except the
object's own methods.

6.2.2 Messages and baggage

Throughout this chapter we use the term 'message' to refer to an active
message: it starts to exist when it is sent (by a user or from some method
which is being executed). We will say a message 'activates' a method; mes
sages sent by the executing method are 'spawned' by the original message;
the message directly responsible for sending a message will be referred to
as the 'spawning' message.

Example 6.1 See figure 6.1. SuppoJe a u"er "end" the message GET

COST to an object PROJECTX. The method GETCOST "ends the message
GETRATE to the object Worker and then GETDATE to the object CLOCK.

We say that GETCOST spawned GETRATE and GETDATE. The spawning

56

PROJECTX8-----i- GETCOST

GETRATE

GETDATE

CHAPTER 6. SECDB

WORKER

GETRATE

D

CLOCK

GETDATE

D

Figure 6.1: .The operation of messages

message of both GETRATE and GETDATE is GETCOST. Note that the mes
sage GETCOST starts to exist when it is sent by the user; GETRATE exists
until it returns an answer. After that GETDATE starts to exist and ends its
existence when it returns the date. After this the GETCOST message stops
to exist when it retur~ its answer.

Messages are required to carry 'baggage' with them. SECDB is de
signed to support the baggage concept as defined in the Path Context
Model (PCM) [Bos89a,Bos89b,Bos90]; see also chapter 5. Informally, PCM
requires that 'baggage' or information must be collected about all relevant
software and hardware components involved in the handling of any request.
A profile is associated with every item in the system to which access must
be controlled-this profile specifies which components are required to take
part in the handling of the request and which components are not allowed
to take part. A profile may, for example, be defined to

1. Allow access only if one of a few specified users has originated the
request; but

2. Deny access if some non-encrypted communications line has been used
to transmit the request.

6.2. OBJECT-ORIENTED EXTENSIONS 57

We expand on this later; initially this baggage may be viewed as the 'clear
ance level' of the sender or originator of the message: it is an indication
of the trust associated with the request. Some researchers prefer the term
guardian [Cae90] for what is known as a profile in SECDB.

6.2.3 Profile objects

SECDB defines a profile as an object containing security information about
protected information; given the baggage carried by a message, a profile can
use its security information to determine whether the message may be al
lowed to access the protected information. The security information will
typically be allowing and prohibiting contexts as defined in PCM; initially
this information may be viewed as the 'sensitivity level' or 'classification
level' of the information protected by the specific profile-ie a restriction
of who is allowed to access the information. Profiles are normal objects
instances of profile classes-placing no additional requirements on the un
derlying system.

Since messages carry information they need protection and will there
fore also have profiles associated with them. The information carried by
a message will typically consist of parameters; however, the information
can be much more subtle: the fact that a message has been sent can com
promise information. Note that messages are active entities which cannot
be accessed, assuming that the operating system protects executing pro
grams: messages exist as method activations-similar to an activation of
a procedure in a conventional system [Aho86], with the activation record
usually kept on an internal stack protected by the operating system and/or
hardware. Messages therefore do not pose a security threat-the problem
arises when such a message 'drops' information somewhere where it can
be accessed, eg by assigning it to a variable or by creating an object. So,
whenever a message is sent, profiles are taken along for all the information
contained in it-contained directly in its parameters or contained implic
itly. These profiles carried by messages will then be associated with any
objects created or modified by that message. The profiles associated with
a message will also be tagged to messages spawned by it. This will ensure
that the *-property [Be176] is not violated when messages are sent between
objects; simply put, this property requires that no user (or application)
can write information he has access to where someone without the proper
authorisation can then read it. \'lie will formalise this mechanism later. See
section 6.5 for an example.

It is important to distinguish between baggage carried by messages and
profiles carried by messages. Baggage is a record of the path a request has

58 CHAPTER 6. SECDB

followed, ie which user initiated the request, which application programs
were involved, which networks have taken part, etc. When a message arrives
at an object, the object's profile(s) will look at this baggage to determine
whether access should be granted to the message. On the other hand, a
message also carries profiles with it to protect the infonnation contained
by the message. These profiles will have no influence on what the message
mayor may not access; the profiles will rather be attached to any variables
modified or objects created by the message, controlling access to those
variables and objects.

6.2.4 Gates

In SECDB a gate is a 'boundary' around every object in the system: when
ever a message is sent to an object, the message will be intercepted by the
sending object's gate and then by the receiving object's gate. The sending
object's gate will tag any profiles associated with the sending object to the
message. The receiving object's gate will ask access permission from the
receiving object's profile(s). The profile will make this decision based on
the baggage sent with the message and its internal profile information. If
access is denied, it is the gate's responsibility to handle the rejection of the
message. If access is allowed, the gate will associate any profilescarried by
the message with the instance variables changed or created in the receiving
object (in addition to any existing profiles).

6.3 Profiles

6.3.1 Description of profiles

Profiles will be defined for information in a SECDB database to which
access is restricted. Profiles are objects containing access requirements:
these requirements will typically consist of a list of objects (users, programs,
etc) that may take part in a request to access the information and a list
of objects that may not take part in a request to access the information.
Based on the baggage. carried by a message and these requirements in a
profile the profile can determine whether the message satisfies the access
requirements or not. PCM specifies that the access requirements must be
in the fonn of a Random Context Granunar [Van70]: it will specify which
contexts (ie human, software and hardware components) are required to
be in the baggage and which contexts are not allowed to appear in the
baggage.

6.3. PROFILES 59

The profile may also support methods to dynamically modify the profile
data; however, if such mechanisms are too general, the resulting security
may be too complex. reducing trust. We do not consider meaningful re
strictions to methods supported by profiles in the current study.

SECDB additionally requires that a profile object provides a method
GRANTAcCESS, which may be called by the protected object's gate and
which will reply with a Yes or a No.

Note that the PCM requirement of a Random Context Grammar profile
may be modified to yield other interesting versions of SECDB; we discuss
one such possibility later.

6.3.2 Profiles as objects

The implications of profiles being objects are

1. There are profile classes, subclasses and superclasses; and

2. Profile objects are protected by profiles themselves.

Considering (1), it is convenient to assume that a profile class has more
restrictive access requirements than its (profile) superclass, ie that each
subclass has a higher (or equal) 'sensitivity level' than its superclass. A
hierarchy of profile classes then forms a partially ordered set of 'sensitivity
levels'. In order to guarantee this, SECDB requires that GRANT ACCESS in
any profile subclass will send a message to GRANT ACCESS in the superclass
of the profile subclass; access will be denied if it is denied by the superclass.

From (2) it follows that there is potentially an infinite chain of profiles.
This problem is easily (and soundly) solved by allowing one profile object
to act as its own security profile-the problem is similar to the one caused
by the fact that classes are indeed objects and therefore instances of some
metaclass, which is again an object itself.

6.3.3 Associating profiles with information

In order to protect information, profiles are specified when a class is defined.
The specified profile(s) will then be used for all instantiations of that class.

An object may be viewed as a layered entity: The outermost layer
contains those instance variables and methods (and shares those class vari
ables) defined in its class; the next layer those defined in the superclass of
its class, and so on up to the innermost level which contains the items de
fined highest up in the class hierarchy. (In Smalltalk terminology [GoI83], it
contains the class variables and methods defined in class OBJECT.) Figure

60 CHAPTER 6. SECDB

6.2 illustrates this. Since information at different levels in the class hierar
chy may have different security requirements, different layers of an object
may be protected by different profiles.

Class hierarchy

HUMAN

Instantiation
of POSTGRAD

STAFF
POST

SALARY

NAME

AGE

STUDENT
NUMBER

DEGREE

PREGRAD
SUBJECTS

POSTGRAD

DISSERTATIO N
DISSERTATION

Figure 6.2: Objects are layered entities

A profile may be associated with one of more of the following:

1. A layer of an object;

2. Specific methods of an object; and/or

3. Specific instance variables of an object.

In order to activate a method

1. Profile(s) protecting all object layers surrounding the method must
allow access;

2. The method's specific profile must allow access; and

3. None of the instance variables accessed by the method must deny
access.

6.4. GATES 61

Typically, a profile will be associated with the object reflecting the object's
overall 'sensitivity'. Profiles will be associated with the methods to imple
ment role-based security: the set of operations any user can perform on an
object does not only depend on that user's clearance level, but also on the
user's function or role in the organisation. Profiles which are associated
with instance variables will mainly be used as an additional safeguard to
ensure that no method accesses information which the subject should not
have access to.

An object, message or variable may have more than one profile associ
ated with it, in which case all the profiles must allow access before access
will be granted for a message.

In figure 6.3 OBJECT! is protected by both PROFILE! and PROFILE2,
while METHOD! is additionally protected by PROFILE3 and PROFILE4. In
order to activate METHOD!, permission will have to be obtained from all
four profiles; if anyone denies access, METHOD! will not be activated.

METHOD!

Figure 6.3: Multiple profiles

6.4 Gates

6.4.1 Operation of gates

A gate is a mechanism associated with every object, which will intercept
any message leaving the object or arriving at the object. Arriving messages
will only be allowed to activate the called method if permission can be
obtained from the relevant profile(s). In the case of leaving messages, the
profiles associated" with the sending object will be tagged to the message.
Whenever an instance variable with a profile is accessed, the message will
be tagged with that profile. Messages spawned by another message will
be tagged with all the profiles associated with the spawning message. If a

62 CHAPTER 6. SECDB

spawned message returns a value, the spawning message will be tagged with
the profiles carried by the returning message; if no values are returned the
spawning message will resume execution with all the profiles it had before
it spawned the message which has just returned.

All messages crossing the borders between object layers will be checked
by the gate, verifying baggage when traveling inwards and attaching profiles
when traveling outwards. In order to reference any method or variable at
an inner layer, all border crossings between the origin of the reference and
the referenced variable or method have to be checked. This ensures that
information does not flow to a lower classified class by means of inheritance.

6.4.2 Examples of message tagging

Assume we are working with a payroll system. All employee salaries are
protected by a profile P. The payroll object starts sending messages to all
employee objects to determine their current salaries. When these messages
return the result (the salary) the profile P is attached to the returning
message. The payroll object inserts the salaries into its internal table
this implies that a variable is being modified, causing the profile P to be
attached to this variable. Although the payroll object now contains the
sensitive salaries, it is not possible to retrieve them illegitimately from this
object because they are still protected by their original profile P. If this
payroll object now sends a message to the cashbook object with this table
as a parameter, the profile P will again be sent along and (eventually) be
attached to the cashbook's variable(s) so that it will still not be possible
to obtain the sensitive salaries from the cashbook without the (original)
authorisation.

Another example of tagging profiles to messages is given in figure 6.4.
There are three objects, 01, 02 and 03, six messages, Ml to M6, and eleven
profiles, P 1 to P II.

If we firstly assume that all messages return values and that the message
Ml is sent to object 01, the sequence of events will be as given in table 6.1.

Note the following (numbers refer to the Remark column in table 6.1):

1. We assume that the message starts without any profiles attached to
it.

2. Sending the message M3 to object 02 causes the activity to 'leave'
object 01 and be transferred to object 02. The 'leaving' of 01 causes
ol's profile pI to be attached to the message.

3. Object 02 now sends the message M6 to 03. This message first 'leaves'
the layer of 02 which is protected by p3 and then the layer protected

6.4. GATES

01

63

M1
02: m3
02: m4

p1

p8

p 10 I-----++_ M5

..-+---~ pg

Figure 6.4: Tagging profiles to messages

64 CHAPTER 6. SECDB

i

Object Active message Profiles tagged to message Remark
01 M1 - 1
02 M3 PI 2
03 M6 Pl,P3,P2 3
02 M3 P1,P3,P2,P8 4
01 M1 P1,P3,P2,P8,P3,P2 5
02 M4 PI ,P3,P2,P8,P3,P2,P1
03 M5 Pl,P3,P2,P8,P3,P2,Pl,P2
02 M4 Pl,P3,P2,P8,P3,P2,Pl,P2,P9,P8
01 Ml Pl,P3,P2,P8,P3,P2,Pl,P2,P9,P8,P2

Table 6.1: Profiles tagged if the methods of figure 6.4 return results

by p2 causing both p3 and p2 to be attached to the message. pI is
still attached to the message because the message was spawned by
M3 of 02 with which pI was then associated.

4. Control now returns to method M3 of object 02. Since information is
returned (our initial assumption), this information 'leaves' the layer
protected by profile P8, causing p8 to be attached to the message.

5. Control has now returned from M3 of 02. Again, since the message
returned a value to M1 of 01, 'leaving' from M3 caused profiles p3
and p2 to be attached to the message. (Note that p3 and p2 are
already attached to the message-in an optimised environment it is
not necessary to attach them again.)

IT we assume, on the other hand, that no message returns a value, the
sequence of events will be as given in table 6.2 if the message M 1 is sent to
object ol.

Note the following (numbers refer to the Remark column in table 6.2):

1. Control returned to method M3, object 02 from method M6, object
03. Since no value is returned (our assumption) M3 resumes execution
with the profiles it had before sending message M6.

2. M 1 resumes execution with the profiles it had before sending message
M3.

3. M4 resumes execution with the profiles it had before sending message
M5.

4: Ml resumes execution with the profiles it had before sending message
M4.

6.4. GATES

Object Active message Profiles tagged to message Remark
01 M1 -

02 M3 P1
03 M6 P1,P3,P2
02 M3 P1 I
01 M1 - 2
02 M4 P1
03 M5 P1,P2
02 M4 PI 3
01 M1 - 4

65

Table 6.2: Profiles tagged if the methods of figure 6.4 do not return results

6.4.3 Problems posed by gates

The concept of a gate is the only real deviation in SECDB from the classical
object-oriented concept and (not surprisingly) poses the most challenges.
These challenges include

1. Handling of messages when access is denied;

2. Cooperation with the object's profile, especially when the profile re
quires information from the object in order to decide whether access
should be granted; and

3. Logical integration into the object-oriented model, especially where
such a model is described formally.

Problem (1) can be treated like a normal failure to complete execution
of a method, eg when the hardware fails or the disk media is unreadable.
This will typically involve abortion of the current transaction and rolling
the database back. We do not go into further details here.

Polyinstantiation is often used to solve (1): different 'slots' for a single
field are maintained for every clearance level; when a process with clearance
level n writes a value to a field, any other process with clearance level n
(or higher) can read that value. However, if a process with clearance level
m, where m is more trusted than n, writes a value to the same field, all
processes at clearance level m and higher will be returned this value when
they read the field, while all processes at clearance levels n to m - 1 will still
be returned the value written by the process at level n. (See chapter 11 or
[Thu89] for a description of polyinstantiation in object-oriented systems.)
Polyinstantiation has to be adapted to be usable in SECDB since data

66 CHAPTER 6. SECDB

is not necessarily classified at different levels in the PCM model. This
means that it is not always possible to determine (and, in any case, it
might be dangerous when it is possible) how many 'slots' may exist for the
same value. Polyinstantiation will have to be done by attaching 'cascading'
profiles to a polyinstantiated object-one level of profile for every copy
of the object. If a profile denies access, the profile one level lower in the
cascade is asked for access; this process is continued until a profile allows
access; in this case access will be granted to the (copy of the) object on the
same level as the granting profile. Only if none of the profiles grants access,
will the request be denied. We do not discuss cascaded profiles further in
this chapter.

Problem (2)-cooperation between an object and its profile-s-can be
illustrated as follows: Suppose some user must have access to every non
manager's employee information. The profile for the employee objects must
then first determine whether a specific employee is a manager before grant
ing access. If the fact whether an employee is a manager or not forms part
of the employee information, this implies that a profile must sometimes
access an object which may not be accessed by the sender of the original
message. A similar, but slightly more difficult restriction to solve by ad hoc
programming, is a rule allowing access to a salary if and only if the salary
is less than $100 000. In order to handle this kind of restriction, SECDB
allows a profile to access an object (by sending messages to it) without
getting permission from a profile. To ensure that profiles are not used to
extract protected information from an object, access to the profile may be
restricted to come from gates (and possibly from some other highly trusted
objects, but not from arbitrary objects).

6.5 Example

The example in figure 6.5 is intended to illustrate profiles, profile classes
and hierarchies of profiles. In a real application we would like to see a classi
fication scheme based on functions (or roles) in the organisation, rather than
on traditional classification levels. In figure 6.5 SECPROFILE is the prim
itive security profile class. UNCLASSIFIED, RESTRICTED, SYSADMIN, etc,
are all profile (sub) classes. SECPROFILE, UNCLASSIFIED, RESTRICTED,
CONFIDENTIAL, SECRET and TOPSECRET form a non-decreasing sequence
of profile classes. SYSADMIN also offers at least as much protection as
SECPROFILE. However, no such relationship exists necessarily between
SYSADMIN and UNCLASSIFIED, RESTRICTED, etc. In the example this is
used where some profile classes are intended to protect information accord
ing to the classification level of the information and another class, SYSAD-

6.5. EXAMPLE 67

*
EMPREC......._._ ..._~~-----------~

EMPCLASS

~..

__......1 Class

~ II Object

SECPROFILE

1
UNCLASSIFIED SYSADMIN

i f
j
,

RESTRICTED r

1 ~ SAPR~FILE
0·CONFIDENTIAL · .·
0

1
0
0

0

·.~
SECRET CONFPROFILE

1
TOPSECRET I

Subclass

.------.. Instantiation

......................... Profile link

Figure 6.5: Example

68 CHAPTER 6. SECDB

.
MIN, is used to protect system structures, such as profile objects.

EMPCLASS describes a class of employee objects. When defining this
class, the system security officer decided to link it to the CONFPROFILE
profile. Every instance of EMPCLASS, such as EMPREC, will then be asso
ciated with CONFPROFILE.

6.6 Model characteristics

In SECDB a previously defined and instantiated security profile is specified
(or inherited) for every class whenever such a class is defined.

Subclasses of a class will, by default, inherit the profile of the superclass.
A security profile may, however, be specified when defining a subclass, over
riding the inherited profile. Viewing an object as a layered entity implies
that security (both the simple security property and the *-property) [BeI76]
will not be compromised, even if the subclass has less restricting access re
quirements than its superclass. The simple security properly requires that
subjects should not have access to information they do not have permis
sion to access and the *-property requires, as mentioned earlier, that no
subject can write information where another subject without the proper
authorisation can then read it.

The simple security property and the *-property have to be demon
strated for two cases:

1. Where messages are sent from one object to another (possibly at
different classification levels); and

2. Where an object inherits a message or variable from some superclass
(again possibly at a different classification level).

The following arguments do this for the respective cases.

1. When messages are sent from one object to another, the gate/pro
file combination{s) of every object will ensure the simple security
property. Since information sent along with any message carries with
it the profile of any object it leaves, the *-property is ensured: any
access to that object will have to go through the original containing
object's profile, implying that a lower "clearance" level will still not
be allowed to access it, although it may now be contained in an object
with a lower classification level.

2. When a message or variable is inherited from a superclass, the profile
specified in that superclass will be associated with the correspond
ing layer of the object. Information contained may therefore not be

6.7. PCM IN THE SECDB ENVIRONMENT 69

accessed without permission from that security profile, ensuring the
simple security property. Also, any information leaving that layer will
be tagged with that layer's profile, ensuring the *-property.

6.7 PCM in the SECDB environment

As we indicated earlier, SECDB has been designed to use PCM. The pri
mary advantage of PCM is its ability to enforce security in potentially non
secure environments, especially in network environments where the identity
of the originator of a request is often concealed by layers of application soft
ware, network servers and system software. SECDB also shows promise in
a distributed database where multiple system security officers may be in
volved. (The original description of PCM uses the term object to refer to
a static item; remember that we use the term entity to avoid confusion in
the object-oriented context.)

PCM uses three concepts:

1. A baggage collector to collect 'baggage' about all software and hard
ware involved in handling a request; baggage is defined as 'the min
imum amount of information that has to be collected and must ac
company the access request on its route in order that responsibility
and access authority checking can be performed even though various
transformations or domain crossings may occur';

2. A profile for an entity which specifies which items are required to take
part in handling a request and/or which items are not allowed to take
part when accessing this entity; and

3. A validator to compare collected baggage to t he accessed entity's
profile.

In SECDB, to fit the object-oriented model, the profile data (containing
the allowing and prohibiting contexts) and the validator have been merged
into a single profile object.

Although PCM may be used to protect non-object-oriented databases,
the object-oriented model is more appropriate, because

• Of the similarity between messages in the two models;

• Of the ability to store data, methods and security information as one
coherent unit; and

70 CHAPTER 6. SECDB

• In the case of the object-oriented model it is possible to consider se
curity implications at any abstraction level-specifically it is possible
to implement role-based security; in the case of other models one can
usually only make decisions on whether a subject is allowed to read
and/or write specific data records or fields.

In an object-oriented database messages can originate from objects in
side the database or from external sources. Although not the primary
goal, SECDB can be used to ensure that requests follow an approved route
through the database: some objects are for internal use only, or for use by
specific other objects; it is simple to add restrictions to SECDB profiles to
ensure that a request only comes via an acceptable predecessor helping to
ensure the integrity of the database.

6.8 Implementation considerations

We do not address the implementation considerations in detail in this chap
ter. However, it must be admitted that a straightforward implementation
of the model could be inefficient. Here we point out five areas where opti
misation shows promise.

Firstly, an object protected by multiple profiles requires extensive check
ing. If some of the associated profiles have stricter requirements than other
associated profiles, the less strict profiles may be ignored. The ordering
imposed on profile subclasses stated that a subclass has stricter access re
quirements than its superclass(es). This means that if a profile from some
where low in the hierarchy has granted access, the profiles from higher in
the hierarchy (instances of ancestor classes) need not be asked for their
permission.

Secondly, checks that messages sent inside the environment conform
to the profile restrictions can often be done statically (at compile time or
system configuration time).

Thirdly, the need for a profile to send a message to its superclass'
GRANTACCESS can also be eliminated in some cases: if it is possible to
check statically that the access requirements set by a profile class are in
deed at least as strict as the requirements set by its superclass.

Fourthly, it is unnecessary to tag a profile to a message if the specific
profile (or an instance of a descendant class) is already tagged to the mes
sage.

Lastly, it may be expensive if every object, down to the primitive objects
such as numbers, may be protected. However, access checking will only take
up time if such- objects are indeed protected; if profiles are not associated

6.9. COMPARISON WITH OTHER MODELS 71

with such entities there is no reason for access to them to be slower than
the case in an unprotected database.

It is also worth pointing out that the association of a profile with an
object is not expensive: this association can be done by having a pointer
(often from the class and not the individual objects) to the relevant profile.
This will not require much more memory than a simple sensitivity level
would have taken.

6.9 Comparison with other models

One promising model for a secure object-oriented database system was
proposed by Keefe, Tsai and Thuraisingham [Kee89,Kee90]. Their model,
known as SODA, assigns a classification (sensitivity) level to a protected
object. Every message which travels through the system, carries with it a
current classification level and a clearance level. The current classification
level is adjusted whenever an object with a higher classification is accessed.
Rules, based on the current classification level and the clearance level and on
an object's classification level, determine whether access should be granted
to an object.

It can be shown that SODA is similar to a special case of SECDB: Define
baggage to consist of

1. The clearance level of the sender of a message; and

2. The sensitivity level of any information accessed

and define profiles to contain the sensitivity levels of objects they protect.
Note however, that the primary concern in SODA is the protection of vari
ables and objects, whereas methods are the primary concern in SECDB,
with variables and objects secondary.

The access control language of Mizuno and Oldehoeft [Miz90] is based
on extended access control lists (ACLs): a four-tuple ACL entry

1. Specifies which user may activate a method;

2. Through which class the request may come;

3. Through which specific object (class instance) the request may come;
and, lastly

4. Names the protected method.

72 CHAPTER 6. SECDB

SECDB is more general; however note that SECDB does not consider
classes encountered on the route of the request, but rather objects-ie in
stances of classes.

Two other methods which may be used to ensure that a request follows
an acceptable internal route through the database have been suggested
in the literature: views [Hai90] and a law-based approach [Min87].In
the case of views, an object may define different views--or interfaces
for different objects. A profile in SEC DB can specify which objects may
access the protected object and also which methods are available to those
objects, similar to the view concept. However, this specification in SECDB
is not limited to the immediate predecessor object involved in a request.
In the law-based approach a set of Prolog rules or laws may be specified
to manage the exchange of messages in the system. This is a very general
(and powerful) mechanism, enabling (and aimed at) the specification of
basic properties, such as inheritance.

Various models for secure object-oriented databases will.be encountered
again in chapter 7. It will also be possible to compare the models thoroughly
after the taxonomy for such models have been described; see for example
appendix B.

6.10 Further research

Research still remains to be done in the following areas before SECDB will
be practical:

1. Automated profile generation and automated validation of profiles
(for consistency):

2. Identification of unnecessary baggage in order to keep baggage as
small as possible;

3. Implications of multiple inheritance on the model;

4. Designing a notation for specifying security constraints (especially in
real-world systems); and

5. The model should be applicable to distributed systems where requests
may come from many sites, often not even directly connected to the
database site; note that the distributed systems may operate concur
rently, and the effects of this on the model should be investigated.

6.11. SECDB IN PERSPECTIVE 73

6.11 SECDB in perspective

Object-oriented systems are based on the premise that objects are self
contained entities consisting of data and code. It is meaningful to expect
that objects should also have the responsibility to protect themselves. Fur
ther, protection in object-oriented systems must fit as cleanly as possi
ble into the generally accepted object-oriented paradigm. In this chapter
we have proposed a model, SECDB, for supporting security in an object
oriented database, which satisfies these criteria.

SECDB is based on the Path Context Model (PCM), which means that
the entire access path is taken into account when it is decided whether
a request should be allowed to proceed. This information collected while
traversing the access path, is known as baggage. Two concepts are added to
the object-oriented paradigm: profiles and gates. Profiles contain criteria
for restricting access to an associated object. Gates are mechanisms which
will compare baggage accompanying a request to the relevant profile(s), and
then either allow or disallow the request to proceed. Profiles are objects
themselves. They are also designed to be inherited by a subclass similar to
the way instance variables are inherited.

Although SECDB is based on PCM, properties of traditional security
models such as the Bell and LaPadula model can still be supported. ·We
illustrated this by indicating how SECDB can emulate SODA, a model for
a secure object-oriented database based on the Bell and LaPadula model.

In the next chapter we start with the discussion of the taxonomy for
secure object-oriented databases. SECDB plays a central role in the dis
cussion of the taxonomy.

74 CHAPTER 6. SECDB

Chapter 7

A Taxonomy of Secure
Object-oriented Databases

Models for secure object-oriented databases may differ in a num
ber of respects. Our taxonomy identifies eight major design pa
rameters every designer of a multilevel secure object-oriented
database must consider. These eight parameters are grouped
into three categories.

Chapter 7 gives the background information on which the tax
onomy is built. Amongst other, it joins the discussion of object
orientation in chapter 3 by introducing the notation that will
be used in the taxonomy for the various object-oriented con
cepts. It further joins the discussion of security and object
orientation in databases in chapter 4 by describing examples of
secure object-oriented databases.

Chapters 8, 9 and 10 each discusses one of the three categories
of design parameters mentioned earlier, after which chapter 11
discusses some unresolved issues.

75

76 CHAPTER 7. TAXONOMY

L 'embarras des richesses.
The more alternatives, the more difficult
the choice.

Abbe D'Allainval
Title of comedy

7.1. INTRODUCTION

7.1 Introduction

77

A number of models for multilevel secure object-oriented databases have
been proposed in the literature. The variety exhibited by the proposed
models is an indication of the great number of possibilities that exist. It is
necessary to compare the proposed models in a structured way to highlight
the real differences. This allows one to determine what the effects of specific
choices are on the rest of the model. It also allows researchers to focus on
specific issues, rather than on a whole model at a time.

Unfortunately, classifying such models is not an easy task. As Sandhu
put it [San90]: "The underlying assumptions adopted by each one and their
motivating forces are somewhat different. This makes a relative compari
son difficult since different assumptions and motivations inevitably lead to
different design trade-offs."

The paper by Varadharajan and Black [Var91] follows a similar approach
to ours: they indicate some issues that are relevant when designing a secure
database model and also consider some of the alternatives that are available
for each issue. However, their approach is less formal and less general than
ours.

Both the appeal and concerns regarding security of object-oriented data
bases are mentioned in [Sp089]. On the positive side object-orientation sup
ports encapsulation, the possibility to model security in real-world terms
and the potential of inheritance. On the negative side the main problem
occurs when a class and its superclass have different sensitivity levels: this
may allow information to flow from a higher sensitivity level to a lower
level.

This chapter serves as a background for the taxonomy: it describes
the approach we follow1 the assumptions we make about object-orientation
and the various existing models for secure object-oriented databases. The
taxonomy is described in chapters 81 9 and 10 while chapter 11 discusses
aspects of secure object-oriented databases not addressed in the taxonomy.
A summary of the taxonomy is contained in appendix A and examples of
the use of the taxonomy in appendix B.

7.2 Approach

Our goals are twofold. Firstly we want to give a classification structure
that will enable one to compare different models for secure object-oriented
databases. Secondly, we want to indicate some implications of possible
choices.

78 CHAPTER 7. TAXONOlvfY

To realise the first goal, we give a number of design parameters-issues
one should consider when designing a model. We give eight such design
parameters that represent the major issues for consideration. These eight
parameters are grouped into three categories:

Xl Labeling semantics: Underlying model and Protection interpretation
(see chapter 8);

X2 Structural labeling: Proieciable entities, Label instantiation and Re
lationship restrictions (see chapter 9); and

X3 Dynamic labeling: Authorisation flow, Sensitivity flow and Informa
tion flow restrictions (see chapter 10).

For most of these design parameters we list a number of alternatives that
are available.

Implications of choosing a specific alternative for a design parameter are
given as theorems. Some proposed models already describe restrictions to
their models [Thu89,Lun90a]; often it is not clear whether a model imposes
such restrictions because they simplify the model in some way, or because
they are necessary to ensure that security is not compromised. Further, it is
not clear from those models how generally applicable such restrictions are,
in other words do the restrictions still apply if some aspects of the model
are modified? To address these problems, our assumptions are given as
axioms; for theorems the circumstances under which they apply are given.

In order to classify and analyse models, the meaning of terms have to be
clear; we describe the important terms as definitions. It is important to note
that we do not claim that our definitions are the only proper definitions
of the terms; nor do we claim that our classification structure gives the
final word on secure object-oriented database classification. We do claim
that if our definitions fit a given model, that model may be classified using
the described classification structure and, also, that the given theorems are
valid for such a model. We also hope that our definitions and classification
structure will prompt researchers to investigate models that do not fit these
definitions or the classification structure.

We now define a secure database for the purposes of this discussion.

Definition 7.1 (Secure database) An object-oriented database is secure
if

1. No subject is able to obtain information without authorisation;

2. No subject is able to modify information without authorisation;

7.3. OBJECT-ORIENTATION 79

3. No mechanism exists whereby a subject authorised to obtain informa
tion can communicate that information to a subject not authorised to
obtain it; and

4. No subject is able to activate a method without authorisation.

This definition does not allow any covert channels-neither storage, nor
timing channels-which may mean that it is too strict for practical use.
However, these points cover the four primary issues addressed by models
for a secure database. Issues (1) and (3) are normally addressed by models
to enforce mandatory security, while issues (1), (2) and (4) are usually
addressed by models to enforce discretionary access control (see section
11.4).

7.3 Object-orientation

See chapter 3 for an introduction to the object-oriented paradigm. Our view
of this paradigm comes from the Smalltalk programming language [GoI83].
We now list the relevant assumptions we make about object-orientation.

An object 0 is a set of facets (methods, instance variables, etc)-ie if m
is a method of 0, we will denote it by m E 0; similarly, the fact that 0 has an
instance variable v, will be denoted by writing v E o. The system consists
of a set of objects. We will refer to this set as U. (More precisely, v is the
name of the corresponding variable, m is the siqnature of the corresponding
method and 0 additionally contains a unique identifier that distinguishes it
from all other objects in the system U.)

Remember that classes are also objects (they are instances of meta
classes) and are therefore also members of U. They also have facets (class
methods and class variables) that behave like their object counterparts.
However, some facets of a class are not intended to be used directly, but
serve as templates to be used when creating an instance of the class (or
of one of its subclasses). To reflect this dual nature of a class we divide a
class into an 'object section' (containing the class methods and variables)
and a 'template section' (containing the template which is used when new
objects are instantiated); every 'class object section' corresponds to exactly
one 'class template section'. The term class in this taxonomy is used to re
fer to the 'template section' of a class, unless stated otherwise. (Everything
said about objects, also apply to the 'object section' of any class.)

Let C be the set of all classes. (More precisely, C is the set of all
'template sections' of classes.)

80 CHAPTER 7. TAXONOlvfY

For any object 0 E U we will denote the class of 0 by classlo}, with

c1a33 : U -- C

For any class c E C, we will denote the set of superclasses of c by sup]c),

3UP: C -- PC

where PC is the powerset of C. In the case of single inheritance, 3Up(C)
will consist of a single element.

The assumptions we make about object-orientation are now stated as
a...noms.

Axiom 1 If an object 0 is in the 3y3tem, then the class of 0 is a130 in the
system; formally

o E U.-+ cla3s(0) E C

Axiom 2 Any facet x of an object 0 E U is also a facet of the class of 0;
formally

x E 0 -- x E class (0)

Axiom 3 If a class C has a [aceix, any -in"tance 0 of c will also have the
facet x; formally

(x E c) 1\-(30 E U)[c = class(o)] -- x E 0

Axiom 4 If a class c is in the system. then all the superclasses of care
also in the sy"tem; formally

c E C -- (Vd E sup(c»[d E C]

Axiom 5 For any class c E C, if x i" a facet of a superclass of c, then x
is inherited or re-defined by c; formally

s « sup(c) 1\ xEd -- x E c

These axioms do not model polyinstantiation-we will return to polyin
stantiation later (see section 11.6).

7.4. SECURITY IN OBJECT-ORIENTED DA.TABASES

7.4 Security in object-oriented databases

81

The following security models serve as examples for our discussion. Here we
only mention the models; specific issues will be addressed when the design
parameters are discussed.

• SODA [Kee89,Kee90] is a model for a secure database based on a
general object-oriented model. Objects or instance variables are as
signed ranges of sensitivity levels. Subjects are assigned clearance
levels. Every message that travels through the system, carries with
it a current sensitivity level and a clearance level. The current sensi
tivity level is adjusted whenever an object or variable with a higher
sensitivity is accessed. Rules, based on the current sensitivity level
and the clearance level of a message and on an object's or variable's
sensitivity level, determine whether the method should be permitted
access to an object or variable.

• SORION [Thu89] is based on the ORION object-oriented data model.
Entities in the system (subjects, objects, variables, messages, etc)
are assigned security levels. An extensive list of properties is given
constraining assignment of levels to entities. A given security policy
constrains access to protected items based on these. security levels.

• Lunt has given some initial properties for a multilevel object-oriented
database system [Lun90a]; here we will refer to these properties as
the Lunt model. The properties specify minimum requirements for a
secure database based on a general object-oriented data model.

• Views [Hai90] allow an object to display different "views" of itself to
other objects. This is done by restricting from which other objects any
given method may be invoked. An alternative approach for defining
views is given in [Shi89]: multiple interfaces may be defined for a
single object. A 'client' object may then decide through which view
it wants to access the object. The first approach is more applicable
for our purposes since it is precisely specified through which interface
a given client object is permitted to access the protected object. Note
that the use of views in relational databases for security is well-known,
see for instance [Lun90b].

• The access control language of Mizuno and Oldehoeft [Miz90] is based
on extended access control lists (ACLs): a four-tuple ACL entry spec
ifies

....:.. Which user may activate a method;

82 CHAPTER 7. T.4.XONONfY

- Through which class the request may come;

- Through which specific object (class instance) the request may
come; and, lastly

- Names the protected method.

• SECDB (see chapter 6) is based on the Path Context Model (PCM)
[Bos89a,Bos89b,Bos90]; see also chapter 5. A profile object is asso
ciated with every protected entity. A request collects baggage as it
moves through the system. Before a request is allowed to access an en
tity, the baggage carried by the request is considered by the entity's
profile object; based on this baggage, the request is either allowed
to proceed, or rejected. When a protected entity is accessed, that
entity's profile is tagged to any messages subsequently sent. Rules
specify how the protection of other entities are influenced when they
are accessed by a message that has such associated profiles.

• In the law-based approach as proposed by Minsky [Min87] a set of
Prolog rules (or laws) may be specified to manage the exchange of
messages in the system. This approach is intended to describe general
aspects of object-orientation such as inheritance; it can be used to
describe security restrictions, but is too general to be practical for
this application. We include it nonetheless because the ability to give
constraints based on logic rules is useful, amongst other to control
the assignment of sensitivity levels and to ensure integrity in general.

7.5 Design parameters

The design parameters considered in this taxonomy are grouped into the
three categories:

• Labeling semantics;

• Structural labeling; and

• Dynamic labeling.

In accordance with the rest of this work, we will use the term entity to
refer to an item that may be accessed in a computing system; we will use
the term object with the meaning usually associated in the object-oriented
environment. The term subject is used to refer to an active item. Referring
to the mathematical notation introduced earlier, an entity can be any object

7.6. THE TAXON01vIY 83

in U; it can be any class in C; it can also be any facet of such an object or
class; formally the set of entities E is defined as follows

E = UU {(x,o}lx E 0/\0 E U} uCU {(x,c}lx E c/\ c E C}

Note that not all models allow all entities to be protected (see parameter
X2.1 in chapter 9).

In a security model subjects normally send requests to entities. In the
object-oriented environment an object is both the target for requests (ie
it acts as an entity in the security sense) and an object is the issuer of
requests to other objects (ie it acts as a subject). Consider any message.
We will use the term subject to refer to the object that sent the message
under consideration or, depending on the model, to refer to the sequence
of objects that were involved in the sending of the sequence of messages
prior to the message under consideration; the first item in such a sequence
is usually the human 'object' that initiated the chain of messages; the other
items are normal objects that received a message and then sent messages
to other objects. vVe expand on this description when we discuss the un
derlying model (parameter X1.1 in chapter 8) and the flow of authorisation
(parameter X3.1 in chapter 10). Although the precise definition of subject
depends on the specific security model, we will assume that it is defined
and that a set S of all such subjects exists; the exact composition of Swill
be discussed later. The term entity refers to an object, method or variable
(or other facet) in the role of receiving the message under consideration.

7.6 The taxonomy

This chapter introduced the concepts that will be used in the taxonomy.
The next chapter describes the first group of design parameters for the
taxonomy.

84 CHAPTER 7. TAXONOlvIY

Chapter 8

Taxonomy: Labeling Semantics

)
i

This chapter describes the first two of the eight design param
eters used in this taxonomy. These two parameters answer the
questions: "How is an entity protected?" and "What does it
mean if an entity is protected?"-hence the 'heading labeling
semantics.

Note that the two parameters described here are applicable for
any type of database-not only object-oriented databases. The
remaining two groups of parameters (described in chapters 9
and 10) are linked closely to the object-oriented paradigm.

85

86 CHAPTER 8. TAXONOlvIY: LA.BELING SE1vfANTICS

You see it's like a portmanteau-there are
two meanings packed up into one word.

Lewis Carrol
Through the Looking-Glass,ch.6

8.1. INTRODUCTION

8.1 Introduction

87

We use the term labeling to refer to the assignment of a security category to
an item. In the case of a subject a clearance is usually assigned. In the case
of an entity a 3en3itivity or classificaiioti is usually assigned. If a subject
attempts to access an entity, the system will use the clearance label of the
subject and the sensitivity label of the entity to decide whether the subject
should be allowed to access the entity; the exact way this decision is made
depends on the underlying securi ty model.

The first design parameter we consider is consequently the underlying
model used by the secure database model. Some of the possibilities for an
underlying model that we encountered in previous chapters are the lattice
security models (see chapters 2 and 5) and the Path Context Model (see
chapter 5).

The second design parameter considers the question exactly what is
protected if an entity is labeled. On the one end of the scale an unau
thorised subject is simply not allowed to retrieve information from such a
protected entity (or to modify such an entity); on the other end of the scale
an unauthorised subject is not even allowed to know (or infer) that the
protected entity exists. It will be shown in the next chapter that this issue
does indeed have major implications for the rest of the database security
model.

8.2 Labeling semantics

We now describe the two concerned parameters:

(Xl.I) Underlying model; and

(Xl.2) Protection interpretation.

8.2.1 (Xl.1) Underlying model

The model on which labeling is based falls in one of three broad categories,
or a combination of some of these categories:

• Explicit levels: sensitivity levels are assigned to entities and clearance
levels to subjects. These levels are normally integers. Rules determine
when a subject may access an entity; often a subject may read an
entity if the subject's clearance level dominates the entity's sensitivity
level. In general, the level labels need not be integers-as long as the
~ relation is defined for (some of) the labels associated with the

88 CHAPTER 8. TAXONOlvIY: LABELING SEjWANTICS

subjects and the entities. In many models the same label act as an
indication of an item's clearance when viewed as a subject and its
sensitivity when viewed as an entity.

• Access control lists (ACLs) are lists associated with entities, contain
ing the identities of subjects that are authorised to access the entity.
Extensions of ACLs have been proposed that do not only contain the
identity of authorised accessors, but also the path such a request has
to follow: see for example [Bos89a,Miz90].

• Capabilities are non-forgeable identifiers possessed by subjects. Such
a capability is similar to a key for a padlock: a subject will be allowed
to access a protected entity only if it presents an acceptable capability.

A combination of the first two approaches is popular: Entities are clas
sified using a sensitivity level and a category. Only subjects with a proper
clearance level and belonging to the specified category are allowed to access
the entity. Classifications thus form a (partially ordered) lattice. However,
most models based on this combination ignore the category aspect of the
classification, and only address the (fully ordered) classification levels when
developing the model.

With the underlying models in mind. we can consider the set of subjects
S again. The following are examples of subjects (ie elements of S) that may
be authorised to access an entity e:

• An object with a clearance level that dominates the sensitivity level
of e;

• An object in possession of a capability to access e;

• An object listed in the access control list of e: or

• An acceptable access path (as defined in PCM [Bos89b] or Mizuno
and Oldehoeft's extended access control lists [Miz90]) via which a
request may reach e.

Whichever underlying model is used, it js often necessary to ensure that
one entity is 'more protected' than a second entity, implying that only .a"
subset of the authorised users of the less protected entity is allowed to
access the more protected entity. In such a case we will say that the 'more
protected' entity has a higher classification, even if we are not using explicit
levels as the underlying model. \Ve will also say that the classification or
clearance of an item dominates that of another item, meaning that the first
has a higher (or equal) classification or clearance than the second item. To

8.2. LABELING SENIANTICS 89

formalise this, let sub](e) be the set of all subjects authorised to access e,
with

sub] : E ---.. PS

where PSis the powerset of 5 and E the set of all entities that may be
accessed (as defined in chapter 7).

Note that the definition of subj represents a generalisation of the simple
security property of the Bell-LaPadula model [BeI76].

Without defining the sensitivity of an entity formally, we will denote
the sensitivity of an entity e by L(e).

Clearly, if all the subjects authorised to access an entity et are also
authorised to access an entity e2, then the sensitivity of et can be no more
than the sensitivity of e2. We will indicate this by writing L(ex) ~ L(e2)'
Formally

L(ex) ~ L(e2) ¢:> subj (ex) :2 sub](e2)

Let L 10 1JJ indicate the sensitivity of an entity that may be accessed by all
subjects in the system and Lhigh indicate the sensitivity of an entity that
may be accessed by no subject in the system. Then, for any entity e E E,

L10 tJI ~ L(e) < Lhigh

Because this inequality holds for any entity, the least upper bound and the
greatest lower bound of any set of sensitivities are defined. (In mathematical
terminology, L(E) is a lattice.) We will denote the least upper bound of
a sequence of entities ell e2,e3, ... , en by rell e2,e3, ... , en1, and the greatest
lower bound by Lell e2, e3, ... , enJ.

The function sub] returns the subjects that may access a given entity. It
is also useful to define an 'inverse' function, indicating which entities may
be accessed by a given subject. For any subject s E 5 let ent{s) be the set
of all entities that may be accessed by s. Formally, ent is a function

ent : S ---.. PE

where P E denotes the powerset of E and, for all s E S

ent(s) = {e EEls E subj(e)}

8.2.2 (X1.2) Protection interpretation

The second aspect regarding labeling semantics is the question exactly what
is protected if an item is labeled. Some models attempt to protect the fact
that an item exists, while others protect the contents of an item; we will
refer to the first category as existence protection and to the second category

90 CHAPTER 8. TAXONOMY: LA.BELING SEMANTICS

as access protection. Note that, in the case of access protection, users may
know that a variable or method exists. but will get 'access denied' error
messages when they try to activate a method or to read or modify an
instance variable without authorisation.

Definition 8.1 In an existence protected model the fact that a labeled
entity exists is hidden from unauthorised subjects.

In an existence protected model, if the existence of one entity implies
the existence of a second entity, then the sensitivity of the first entity must
be at least as high as that of the second-s-ie

Lemma 1 In an existence protected model, if

(el E E) 1\ (e2 E E) 1\ (e3 E E) 1\ •.• 1\ (en E E) - fEE

and S E subj(Ei) for every i then s E subj(f).

o
If this were not the case then a subject cleared to access every e., but not

f, will be able to infer that f exists, contrary to the definition of existence
protection. This fact, together with the axioms given earlier, leads to a
number of interesting theorems-see later.

To illustrate existence protection, suppose that a class EMPLOYEECLASS
has a protected method INCREASESALARY; unauthorised subjects will sim
ply not 'see' this method in the class. Since an unauthorised subject cannot
determine that this method exists, it cannot possibly access it. Similarly,
this class may have instances JOHN and JAMES. A subject cleared to ac
cess JOHN's information, but not that of JAMES, will simply not know that
JAMES exists.

One advantage of existence protection is illustrated by the following ex
ample: If a subject can see that EMPLOYEECLASS has a GETUNDERCOV
ERASSIGNMENT method, the user will be able to infer that some employees
have undercover assignments even if the user is not able to activate that
method.

A disadvantage of existence protection is that a subject that does not
know that an object already exists, may create it; in the example above,
a subject that does not know about JOHN's existence may insert a JOHN
object into the database-if the create request is rejected, the user will
infer that the object existed, contrary to the labeling interpretation. This
interpretation therefore necessitates polyinstantiation with its associated
problems (see section 11.6). A similar problem occurs when a subject de
fines a class that already exists without the class knowing.

8.2. LABELING SEMANTICS 91

Conjecture 1 An existence protected model must support polyinstantia
tion.

Lunt (amongst others) uses existence protection. Property P3 of SO
RION also appears to have this objective.

In some cases existence protection is not practical. One example is when
sensitivity cannot be pre-determined; for example when it depends on

• Content;

• Context; and/or

• Time.

In the case of content-dependent sensitivity the sensitivity varies according
to the content of the item: a salary may be classified secret if it is below
$100 000, but top-secret if it is above that amount. Context-dependent
security addresses the aggregation problem: the sensitivity of a combination
of entities are often higher than that of the individual entities. As an
example, the list of employees in a firm may be unclassified, the list of
salaries earned may be secret, but the list of employees with the salary
each earns may be top-secret. An example of time-dependent sensitivity
is a military database entry containing the date on which the enemy will
be attacked-it will be top-secret up to that date but unclassified after
that. In these cases existence protection may be meaningless: if a subject
is allowed to access a SALARY variable in one object and the SALARY field
does not exist in another similar object, it is easy to infer that the particular
variable does in fact exist, but is classified. Thuraisingham [Thu89] gives
some solutions to this problem, but it still does not solve the problem that
the existence of hidden items may be inferred.

Definition 8.2 In an access protected model, an unauthorised subject is
not allowed to access a protected entity; 'not allowed to access' means that

• Any unauthorised message sent to a protected object will fail;

• Any unauthorised message sent to a protected method will fail; and

• Any method attempting to access (read or write) an instance variable
illegally will/ail.

Note that 'accessing an object' does not include passing that object as a
parameter; a message that is not authorised to access an object may pass
it as a parameter when it sends a message to another object.

92 CHAPTER 8. TAXONOMY: LABELING SEAIANTICS

Some underlying models we mention are only aimed at preventing an
unauthorised subject from obtaining information from a protected entity
(compare the simple security property of Bell-LaPadula [Be176]). Infor
mation flow restrictions (see parameter X3.3 in chapter 10) then restrict
the locations where information may be sent or written (compare the *
property of Bell-LaPadula). To accommodate these models, we allow a
weak form of access protection where access means obtaining information
with the aid of a method or reading a variable.

Some remarks on message failing: Note that failing does not only occur
in access protection: In an existence protected model, an object may re
ceive a message from an authorised subject and activate the corresponding
method. If this method now

• Sends a message to an object that does not exist as far as the original
subject is concerned;

• Sends a message to another method that does not exist as far as the
original subject is concerned; or

• Accesses a variable that does not exist as far as the original subject
is concerned

then, in any of these cases, can the message sent by this subject not com

plete.
For consistency, if a message fails for security reasons, we will assume

that it behaves exactly as when it fails in the case where the object, message
or variable really does not exist. One possibility is to return a special value
nil whenever a variable is read that does not exist (or is hidden) and to
ignore any attempt to write a value to a non-existent (or hidden) variable.
Similarly, messages to such non-existent (or hidden) methods may just
be ignored, and the value nil may be returned by any such message from
which a return value is expected. This solution could be dangerous because
errors in the database software could be overlooked; other solutions should
be investigated.

Note that neither existence protection, nor access protection implies
that the contents of an object can never be accessed by a subject that
is not authorised to access the object: in the case of a composite object
a constituent part may be independently accessible and have a different
(lower) classification; it is then possible that the part may be accessed
by subjects not authorised to access the composite object. This may, for
example, occur where the relationship between to entities is more sensitive
than the contents of the entities themselves. This aspect will be mentioned
again in the next section and discussed in the section on aggregation.

8.3. LABELS AND OBJECT-ORIENTED DATABASES 93

Further note that existence and access protection are not the only pro
tection models. Other protection models worth consideration include the
following:

• Use existence protection for objects, but hide classes totally from or
dinary subjects. Thus no ordinary subject can gain information from
the class and, from there, infer information about the instances of
the class. In this case the model will not attempt to limit conclusions
about the class, but will attempt to limit the inferences one can make
about one instance of a class by accessing another instance.

• Use access protection for classes (and therefore do not attempt to
hide the structure of objects), but do hide the fact that an instance
exists from a subject not authorised to access the instance.

We do not consider these possibilities further in this work.

8.3 Labels and object-oriented databases

This chapter considered the 'format' of the security labels and the intention
with which such a label is associated with an entity. In the next chapter
these parameters will be used to indicate how the various entities in an
object-oriented database can be protected. The implications that specific
choices for these two parameters have on the labeling of related entities will
also become clear in that chapter.

94 CHAPTER 8. TAXONOMY: LABELING SElvIANTICS

Chapter 9

Taxonomy: Structural
Labeling

An object-oriented system consists of a non-homogeneous set
of entities (objects, methods, variables, etc). These entities are
related through mechanisms such as inheritance and encapsu
lation. The three design parameters described in this chapter
address the implications that the structure of an object-oriented
system has on the protection of the system.

In the previous chapter we considered the wayan entity can
be protected, and what it means when an entity is protected.
However, not all object-oriented systems allow all entities to be
protected; the first parameter considered in this chapter deals
with the entities a specific model does protect. The second pa
rameter considers the way the initial security labels are assigned
for any protectable entity; this initial assignment of labels often
stems from the way the system is structured. The third parame
ter considers the restrictions that the relationships between the
entities place on their security labels.

This chapter considers the implications that the (relative static)
structure of an object-oriented system has on its protection.
The next chapter considers the implications that the (dynamic)
activities in an object-oriented system, such as message passing,
have on the protection of the system.

95

96 CHAPTER 9. TAXONO~MY: STRUCTURAL LABELING

o let U3 love our occupations
Bless the squire and liis relations,
Live upon our daily ration",
And alway", know our proper stations,

Charles Dickens
The Chimes, 2nd Quarter

9.1. INTRODUCTION

9.1 Introduction

97

This chapter considers the influence of the structure of the data on the
labeling of entities.

The object-oriented model has a rich variety of entities with relation
ships between such entities. For example, an object is an instaniiaiioti of a
class; an object may be an aggregation or composition. of other objects; ob
jects contain variables and methods; etc. These entities and relationships
describe the structure of an object-oriented data model.

The first aspect we consider is the question on which entities may be
labeled. Possibilities include objects, classes, methods and instance vari
ables. If entities such as instance variables and methods may be labeled, a
finer grain of protection is available; however, in such a case the resulting
model may be more complex than a model which only allows objects to be
labeled.

The second aspect we consider is the initial assignment of security labels
for newly created entities. Often such labels are inherited from the class of
the newly created object; a number of alternatives exist.

The third aspect considered in this chapter is the restrictions that exist
for the labeling of related entities. It is, for instance, shown that in many
cases an instance of a class is at least as sensitive as the class itself. Such a
restriction is, of course, related to the first aspect we mentioned: if a class
cannot be labeled, the previous restriction does not make sense; however,
in such a case an alternative restriction may make sense.

9.2 Structural labeling

We now describe the three concerned parameters:

(X2.1) Protectable entities;

(X2.2) Label instantiation; and

(X2.3) Relationship restrictions.

9.2.1 (X2.1) Protectable entities

A model for a secure object-oriented database must specify which entities
may be protected. In this section we consider some possibilities and indi
cate implications of allowing certain entities to be protected. Examples of
protectable entities are objects, methods, instance variables, classes, class
methods, class variables, etc.

9S CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

If only objects are allowed to be labeled, the whole object has the same
sensitivity; we will refer to such an object as a single level object. If portions
of an object (ie methods and instance variables) may be labeled individu
ally, it provides finer granularity from a security viewpoint. Because the
sensitivity of portions of such an object may be different, we will refer to
such an object as a multilevel object.

Models that only support single level objects and models that sup
port multilevel objects have been proposed and both types seem practical
[LunS9,Gar90,Lun90a,Gar91]. Models supporting only single level objects
have the benefit of being simple; also many of the relationship restrictions
given later (X2.3) are trivial in such a case. On the other hand, it seems
quite natural to label the query and update methods of the same object
differently, because there is an inherent difference between the sensitivities
of these two methods. Similarly, it seems natural to label the SURNAME
and SALARY instance variables of an EMPLOYEE object differently, also
supporting the case for multilevel objects. .

Multilevel objects present the multilevel update problem [ThuS9]: sup
pose that some variables are classified higher (or merely different) than
other variables of the same object. The problem to be answered is at what
clearance level must a subject be to update the object. If the subject is
at the high level, and writes variables with a lower sensitivity, then the
subject has 'written down' possibly compromising security. If the subject
is at a lower level, it is not authorised to access the more sensitive vari
ables anymore. The only solutions are to either log out and log in for every
concerned sensitivity or to polyinstantiate some variables (or the whole ob
ject). As Thuraisingham points out, neither of these solutions are desirable.
Note that this problem only occurs when instance variables are allowed to
have a different sensitivity than the containing object; methods may differ
without any adverse effects.

Classes also have entities that may be protected. Remember that classes
are objects themselves; they have methods (known as class methods, such
as CREATE), they have variables (known as class variables) and they are
instantiations of metaclasses. Therefore any remarks about labeling of ob
jects or their facets also hold for the 'object section' of a class. Note that
a class variable must be labeled in the class because it is available to all
instances of the class (although the sensitivity in a particular instance may
be higher than the sensitivity specified in the class-see X2.3 later). It is
also possible to label the 'template section' of classes (including methods
and variables defined there) with the intention that the given sensitivity
label should apply to all instances of the class, rather than to protect the
class itself-we address this below (X2.2).

9.2. STRUCTURAL LABELING 99

The protectable entities of SODA are instance variables and objects;
however SODA allows either the entire object to be labeled, or the individ
ual instance variables, but not both.

In addition to the usual protectable entities SECDB also allows 'layers'
of objects to be labeled: The class of an object may have many superclasses.
Portions of an object are therefore defined in a number of (super) classes.
These portions form layers-the innermost layer defined in the 'highest'
superclass, while the outermost layer is defined in the (immediate) class
of the object. Protecting the outermost layer corresponds to protecting
the entire object in other models; labeling any other layer protects those
portions of the object that were defined in the corresponding superclass
and any of its superclasses.

9.2.2 (X2.2) Label instantiation

An object-oriented system is a dynamic system: objects are instantiated
and destroyed continually. In order not to compromise security, newly
created (instantiated) objects must be protected immediately. The initial
sensitivity of an entity reflects the inherent sensitivity of the entity. For
example, it can be predetermined which subjects will be allowed to invoke
the INCREASESALARY method of an EMPLOYEE object. Normal database
activities will have no influence on the sensitivity of this method. Similarly,
the inherent sensitivities of the instance variables of such an object may be
predetermined reflecting the sensitivity of the value of such a variable or the
sensitivity of the relationship between the object and the contents of that
variable. However, some models allow the sensitivity of such a variable to
be increased dynamically if a particularly sensitive value is stored in that
variable. Stated differently, the initial sensitivity of a variable reflects the
sensitivity of the 'container'; in some cases the 'contents' of the variable
will be more sensitive than the 'container' itself, and at that point the
sensitivity of the variable may be higher than its initial sensitivity. Here
we are only interested in the initial sensitivity; see dynamic labeling later
for details about relabeling of entities.

Three primary possibilities exist for determining the initial sensitivity
of an object.

1. The class must be labeled and the label(s) specified for the class must
apply for all instances of the class;

2. Every object (and possibly its variables and methods) must be explic
itly labeled when or after the object is instantiated; [Var91] proposes

100 CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

that the method that instantiates a new object may specify the sen
sitivities of the interface variables (parameters) from which the class
of the new object may then derive the sensitivities of all instance
variables; or

3. Constraints may be specified-ie separate (logic) rules that determine
the sensitivity of a newly instantiated object and then ensures that
the entity is sensitivity labeled immediately.

Of course, a combination is also possible with default labels derived from
the class and individual labels given after instantiation where the default
labels do not suffice.

Since it is unreasonable to trust normal methods to sensitivity label a
newly instantiated object, and since constraints fall outside the scope of
this work, the mechanism that will be used here for labeling of newly in
stantiated objects is inheritance: mechanism (1) above. SODA and SECDB
use this mechanism.

9.2.3 (X2.3) Relationship restrictions

The third parameter described in this chapter-on the labeling restrictions
of related entities-leads to some interesting results. The relationships to
consider are:

• Composition: object - facet (name, instance variable, method);

• Instantiation: class - object;

• Inheritance: class - subclass; and

• Data structure membership: data structure (such as a list) - member
of the data structure; also members amongst themselves.

Relationship restrictions may be divided into compuz.,ory and additional
restrictions. Compulsory relationship restrictions are those restrictions that
a model must enforce as a result of design choices made elsewhere or as a
result of the inherent object-oriented structure. Additional relationship re
strictions are other restrictions a model may prescribe because they simplify
the model or have some other benefit. We discuss compulsory relationship
restrictions first.

The first relationship restrictions we consider, are imposed by the com
position of an object. An object encapsulates everything inside it. This
implies that a facet thus encapsulated cannot be accessed by a subject that

9.2. STRUCTURAL LABELING 101

is not allowed to access the encapsulating object in the first place. This
holds whether the model uses existence protection or access protection.

Lemma 2 (Encapsulation corollary) The sensitivity of a facet of an
object dominates the sensitivity of the object itself, ie L((x, o}) 2:: L(0) for
every facet x of any object 0. Similarly, the sensitivity of a facet of a class
dominates the sensitivity of the class itself, ie L((x, c}) 2:: L(c) for every
facet x of any class c.

Proof: Clearly, if a subject is not authorised to access 0, that subject is
also not authorised to access any facet x of 0. Formally,

s rt subj(o) -+ S rt subj«(x, 0)
=> S E subj«(x,o}) -+ S E subj(o)

=> subj«(x,o}) ~ subj(o)

=> L«(x,o})2::L(o)

The proof for the second part of the lemma is similar. 0

This lemma is similar to the facet property (property 3) of Lunt.

Our second group of relationship restrictions are imposed by instantia
tion: the relationships that exist between a class and its instances.

If the model uses existence protection, both inheritance and instantia
tion restrict labeling: If (part of) a class is existence protected, that (part
of the) class does not exist as far as an unauthorised subject is concerned.
However, if such an unauthorised subject is authorised to access a subclass
or an instance of the protected class, this protected information becomes
visible to the subject (even if not accessible by the subject): from the sub
class the subject can 'see' the names of methods, instance variables and
even the composition of the superclass; similar information can be gath
ered from an instance about the concerned class. This motivates the next
theorems.

Lemma 3 In an existence protected model, the sensitivity of an instance
must dominate the sensitivity of its class ie

(Vo E U)[L(o) 2:: L(class(o»]

A13o, the .sensitivity of a facet in an instance must dominate the sensitivity
of the facet in the class and also dominate the sensitivity of the instance
itself, ie

(VoE U)(Vx E o)[L«(x,o}) 2:: rL«(x,class(o»)),L(o)l]

102 CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

Proof: From axiom 1 we know that 0 E U -+ class(o) E C. Since U ~ E
and C ~ E, it follows that, for every 0 E U,

o E E -+ class (0) E E

Applying lemma 1 proves that L(o);::: L(class(o».
From axiom 2 (x;o) E E -+ (x,class(o)} E E. Applying lemma 1

to this proves L((x,o}) ;::: L((x, class(o)}). From lemma 2 follows that
L((x, o}) ;::: L(0) and therefore

(Vo E U)(Vx E o)[L((x,o});::: rL((x, class(o)}),L(o)l

o

From the discussion on label instantiation above (X2.2) we may assume
that similar restrictions exist for the access protected model. We state this
as an axiom.

Axiom 6 In an access protected model, if a class (including variables and
methods defined in that class] iJ Jensitivity labeled, the intention is that
such labels should apply for all inJtantiationJ of the class; in other words,
the sensitivity of an instance mwt dominate the JenJitivity of ib class; and
the sensitivity of any facet of an instance should dominate the sensitivity
of that facet as defined in the class.

From lemma 3 and axiom 6 above we have

Theorem 4 (Instantiation restriction) The senJitivity of an instance
must dominate the senJitivity of its class, ie

(Vo E U)[L(o);::: L(class(o»]

Property 2 of Lunt (when interpreted for classes and instances) and
property P7 of SORION are the same as our instantiation restriction (the
orem 4).

Theorem 4 constrained the sensitivity of an instance of a class. The
following theorems constrain the sensitivity of a facet of such an instance.

Theorem 5 In an exiJtence protected model, the Jensitivity of a facet x of
an object ° is given by

L((x,o}) = rL((x,clasJ(o)}),L(o)l

9.2. STRUCTURAL LABELING 103

Proof: Let c = class(o). From lemma 3, L((x,o}) ~ rL((x,c}),L(o)l
Thus subj((x,o}) ~ subj((x,c}) n subj(o). Let s E subj((x,c}) n subj(o).
Then s E subj((x,c}) and s E subj(o). From axiom 3, since ° E U and
c = class(0) and x E c, the fact that x E ° is implied. According to lemma
1, s E subj((x,o}). Therefore subj(o)nsubj((x,o}) ~ subj((x,c}). As indi
cated earlier, subj((x,o}) ~ subj((x,c})nsubj(o). Therefore subj((x,o}) =
subj((x,c}) n subj(o), and thus

L((x,o}) = rL((x,class(o)}),L(o)l

o

The practical implication of this theorem is given in the following corol
lary.

Corollary 6 In an existence protected model, the sensitivity of a facet x
of an object ° may only be changed from its inherited sensitivity

L((x, class(o)})

by increasing the sensitivity of the entire object 0.

o

Theorem 7 In an access protected model, the sensitivity of a facet x of
an object ° dominates both the sensitivity of the facet in it" class and the
sensitivity of the object itself, ie

L((x,o}) ~ rL((x,class(o)}),L(o)l

Proof: From lemma 2, we know that L((x, o}) ~ L(0). From axiom 6
follows that L((x,o}) ~ L((x,class(o)}). 0

Our next group of relationship restrictions are imposed by inheritance:
the relationships that exist between superclasses and their subclasses.

Lemma 8 In an existence protected model, the sensitivity of a subclass
must dominate the sensitivity of its supercla3s(es}, ie for any class c E C

(Vd E sup(c))[L(c) ~ L(d)]

Proof: This proof is similar to the proof of the first part of lemma 3. 0

104 CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

Axiom 7 In an access protected model: if a class (including variables and
methods defined in that class) is sensitivity labeled, the intention is that
such labels should be inherited by all its subclasses (unless the variable or
method is redefined, in which case it may be relabeled); in other words, the
sensitivity of a subclass must dominate the sensitivity of its superclasstes};
and the sensitivity of any facet inherited from a superclass should dominate
the sensitivity of that facet in the superclass.

Note that this axiom does not apply to SECDB: if a class is labeled in
SECDB, the intention is that that label should be applied to the corre
sponding layer of any instance of that class or of any instance of some
(eventual) subclass of the labeled class. Results based on this axiom will
thus not hold for SECDB.

From lemma 8 and axiom 7 above we have

Theorem 9 (Inheritance restriction) The sensitivity of any subclass
must dominate the sensitivity of its superclass]es}, ie for every class c E U

(Vd E sup(c))[L(c) ~ L(d)]

o
Property 2 of Lunt (when interpreted for superclasses and subclasses)

and property P9 of SORION are the same as our inheritance restriction
(theorem 9).

Lemma 10 In an existence protected model, if any class c E U inherits a
facet x from a superclass d' E sup(c) or redefines a facet x that occurs in a
superclass d, then

L«(x,c}) ~ rL«(x,d'}),L(c)l

Proof: This proof is similar to the proof of the second part of the lemma
3. 0

Property 4 of Lunt (when interpreted for superclasses and subclasses)
is the same as lemma 10.

Theorem 11 In an access protected model, if any class c E U inherits a
facet x from a superclass d' E sup(c), then

L«(x,c}) ~ rL«(x,d'}),L(c)l

Proof: This proof is similar to the proof of the second part of the lemma
4. 0

9.2. STRUCTURAL L.4.BELING 105

Multiple inheritance is supported if the data model allows a class to,
simultaneously, be a subclass of more than one superclass. In general,
if multiple inheritance is supported it is necessary to specify which facet
(variable or method) will be inherited if it is defined in more than one
superclass. In the case of existence protection problems may occur: Assume
that a subject is cleared to access facet F in class c 1. Assume further that
class c3 is a subclass of both classes cl and c2. If the subject does not see
the facet F in c3 it implies that facet F is inherited from c2. The subject can
therefore infer that facet F exists in both c2 and c3, although the subject
is not cleared to know about the facet's existence. This is addressed by the
following theorem.

Theorem 12 (Facet inheritance restriction) If, in an existence p-ro
tected model, x is a facet of a class e and x also appear" in (at least) one
superclass of e, then the sensitivity of (x, c) is bounded as follow", for every
superclass d E sup(c) that h.as a facet x

L(e) s L«(x,c}) s rL«(x,d}),L(e)l

Further, if x is inherited from a specific superclass d' E sup(c), then, for
every superclass d E sup(e) that has a facet x

rL«(x,d'}),L(e)1 ~ L«(x,e}) s rL«(x,d}),L(e)l

Proof: The fact that L(e) ~ L((x, e}) was stated in lemma 2. The fact
that, if x is inherited from a specific superciass d', then rL«(x,d'}),L(e)l ~

L((x, e}) was stated in lemma 10.
To prove the rest of the inequality, ie to prove

L«(x,e}) ~ rL«(x,d}),L(e)l

select any dE "up(e) such that x e d. Let s E "ubj«(x,d}) n "ubj(e). From
axiom 5 and lemma 1 follows that s E "ubj((x, e}). Therefore subj((x, d}) n
subj(c) ~ "ubj«(x,c}) and thus L«(x,c}) ~ rL«(x,d),L(e)l. 0

This theorem makes a number of statements about inherited (and re
defined) facets in an existence protected model. Some of these statements
are given in the next corollary.

Corollary 13 In an existence protected model

1. If a class e-inherits a facet (x,e), the sensitivity of,(x,e} may only
be different from its "en"itivity in the superclass when L((x, e}) =
L(e); in other word", the only way to increase the "en"itivity of an
inherited facet (x, e), i" by increasinq the "en"itivity of the entire class
e. (Corollary 6 made a similar remark about insiances.}

106 CHAPTER 9. TAXONONfY: STRUCTURAL LABELING

2. The sensitivity of a redefined facet (x,c) must be dominated by that of
every like-named facet in any superclass of c, whenever the sensitivity
of the like-named facet dominates the sensitivity of c.

9. If a facet is defined in only one superclass of a given class c (or
the class c has only one superclass, or the object-oriented model only
allows single inheritance), that facet may be inherited without any
problems; the sensitivity of the inherited facet will be the least upper
bound' of its sensitivity in the superclass and the sensitivity of the class
c.

4. The sensitivity of an inherited facet (x, c) must be dominated by the
sensitivity of all like-named facets in superclasses of c, whenever the
sensitivity of the like-named facet dominates the sensitivity of c. 0

The last point of the corollary above indicates two strategies an exis
tence protected model may follow to prevent the problems presented by
multiple inheritance:

1. Ensure that the like-named facet with the lowest sensitivity is always
inherited; or

2. Ensure that the sensitivity of the class is an upper bound for the
sensitivities of all concerned facets in superclasses.

Strategy 1 is only feasible if a facet with a lowest sensitivity does indeed
exist; if the sensitivities are partially ordered the existence of such a facet
is not guaranteed. Of course, a model may also solve these problems by
disallowing multiple inheritance.

Property 5 of Lunt requires that the facet with the lowest sensitivity
must be inherited-ie strategy I above. Properties P15 and PI6 of SO
RION require that the facet with the highest sensitivity must be inherited
contradictory with this theorem.

We conclude our discussion of compulsory restrictions with a few re
marks about restrictions imposed by data structure membership. In an
array-like structure it is usually possible to infer the structure of one ele
ment from that of another. This indicates that all members of the array
must have the same sensitivity in an existence protected model. Of course,
if the elements of such a data structure are not necessarily homogeneous,
this requirement may be dropped. We do not address the sensitivity of ele
ments of data structures in detail in this chapter, but give one last example:
property P4 of SORION specifies that the sensitivity of a 'set object' is the
least upper bound of the sensitivities of the element objects.

9.2. STRUCTURA.L LABELING 107

The restrictions on labeling of related entities described above are nec
essary because security will be compromised if the restrictions are not en
forced; some models have additional restrictions because they simplify the
model or enhance security in some other way. We briefly look at one of
these. Some models (eg Lunt property 1 and SORION property P2) spec
ify that basic objects (or system objects) must have a system-low sensitivity
(L 1ow) . If a model includes such a specification, the model has to specify
exactly what is meant by basic objects or system objects. If such a require
ment is not included, the system security officer and/or the database system
has to define the sensitivity of all objects supplied with the database.

Theorem 4: L(0) 2: L(classi 0)) for every object ° E U

Theorem 5: L((x, o}) = rL((x, classt.o)}), L(0)1 for every object ° E
U and every facet x of °

Theorem 9: L(e) 2: L(d) for every class e E C and every superclass
dE .mp(e)

Theorem 12 : L(e) ~ L({x,c}) ~ rL({x,d}),L(c)l for every class
e E C' and every superclass dE JUp(c) of c that has a
facet x;
rL({x,d'}),L(e)l s L({x,c}) s rL({x,d}),L(c)l if e
inherited the facet x from d' E Jup(e)

Table 9.1: Relationship restrictions for an existence protected model.

Theorem 4 L(0) 2: L(class(0») for every object 0 E U

Theorem 7 L({x,o) 2: rL({x,claJJ(o»),L(o)l for every object ° E
U and every facet x of °

Theorem 9 L(e) 2: L(d) for every class e E C and every superclass
dE Jup(e)

Theorem 11 L({x,c}) 2: rL({x,d'}),L(e)1 where e E C is any class
and x a facet that c inherited from a superclass d' E
s'up(c)

Table 9.2: Relationship restrictions for an access protected model.

108 CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

Property 1 L(c) = L/ow for every system-defined class c

L(0) = L/ow for every system-defined object 0

Property 2 L(c) 2: L(d) for every class c and every superclass d E
sup(c)

L(0) 2: L(class(0» for every object 0

Property 3 L((x,e}) 2: L(e) for every facet x of any class c
L((x,o}) 2: L(o) for every facet x of any object 0

Property 4 L((x, e}) 2: L((x, d'}) for every facet x of any class c
where (x, e) is inherited from a superclass d' E sup(c)

L((x, o}) 2: L((x, class(o)}) for every facet x of any
object 0

Property 5 L((x, d'}) ~ L((x, d}) for every d E sup(c) whenever
any class e inherits a facet x from a superclass d' E
sup(c)

Property 7 L(e) 2: L((x,d}) --+ L((x,e}) ~ L(c) for every super-
class dE sup(c) of any class c that has a facet x

L(o) 2: L«(x, cla.M(o)}) -+ L«(x,o) ~ L(o) for every
facet x of any object 0

Table 9.3: Relationship restrictions imposed by the Lunt model.

The relationship restrictions imposed on existence protected models are
summarised in table 9.1. The restrictions imposed on access protected
models are summarised in table 9.2.

The relevant restrictions from the Lunt model (in our notation) are given
in table 9.3. Property 6 does not appear in that table because it deals with
run-time access restrictions, which we discuss under the heading dynamic
labeling later-see equations 10.8 and 10.9. Also note that, since Lunt does
not distinguish between a subclass and an instance of an object, we have
interpreted most of the Lunt properties for subclasses and for instances.
Remember that the Lunt model uses existence protection and, therefore,
table 9.3 has to be compared to table 9.1. Lunt's property 2 is identical
to our theorems 4 and 9. Nothing in [Lun90a] necessitates Lunt's property
1, and therefore it falls in the additional relationship restriction category.
Lunt's properties 3, 4 and 7 are easily derived from our theorems 5 and 12,
but the converse is not true. Lunt's property 5 is stricter than necessary;
for those situations where it is required, it can be derived from our theorem

9.3. BEYOND THE STA.TIC STRUCTURE

12.

9.3 Beyond the static structure

109

It is clear from this chapter that the structure of an object-oriented sys
tem has definite implications for the protection of entities in the system.
This structure is relatively static: Occasionally entities may be created and
deleted, influencing the structure; during normal operation of the system
the structure will remain mostly unchanged.

However, an object-oriented system is all but a passive system. The
fact that code (or methods, or behaviour) is encapsulated with the data to
form an integrated system is an indication that quite the opposite is true.
\Ve consider the implications of this dynamic nature of the system in the
next chapter.

110 CHAPTER 9. TAXONOMY: STRUCTURAL LABELING

Chapter 10

Taxonomy: Dynamic Labeling

This chapter discusses the third and last group of design param
eters considered in this taxonomy. This group of parameters are
intended to ensure that secrecy is not compromised by the (dy
namic) activities occurring in an object-oriented database.

This last group consists of three parameters: Accessing various
entities in the database may have implications on the access
rights of the subject; the first parameter considers such impli
cations. The second parameter specifies the way the sensitivity
of a message is determined-a message exists only for a short
span of time and the rules to label it therefore differs from the
rules used to label the (relatively) permanent entities. The third
parameter has to ensure that information does not flow from a
more sensitive location to a less sensitive location (where it can
be accessed by a subject that is not supposed to access it).

This chapter completes the formal part of the taxonomy. Chap
ter 11 discusses a number of aspects that may b ~ considered for
a future taxonomy; at present they have not received enough
attention in the literature to be included in the current taxon
omy. Appendix A contains a summary of the proposed taxon
omy, while appendix B illustrates the taxonomy by way of a
number of examples.

111

112 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

Two roads diverged in a wood, and I
I took the one less traveled by,
And that has made all the difference.

Robert Frost
The Road Not Taken

So it is in travelling; a man mU3t carry
knowledge with him, if he would bring home
knowledge.

Samuel Johnson

Let's find out what everyone i3 doing.
A nd then stop everyone from doing it.

A. P. Herbert
Let's Stop Somebody

10.1. INTRODUCTION 113

10.1 Introduction

This chapter concerns itself with the flow of authorisation (X3.1), the flow
of sensitive data (X3.2) and the restrictions on such data flows to ensure
secrecy despite such flows (X3.3). Restrictions based on flow of authorisa
tion and flow of information that a model introduces to ensure that security
will not be compromised represent a generalisation of the *-property of the
Bell-LaPadula model [BeI76].

10.2 Notation

The dynamic activities in a system may be modeled by the following simple
productions:

E -+ }vJ (10.1)

M -+ aiT (10.2)

T -+ MT (10.3)

T -+ r (IDA)

T -+ q (10.5)

Here E represents the primary accessor, in other words the (probably hu
man) object that sends the original message to the database. The non
terminal M represents a message; the production E -+ A1 (production
10.1) models the message sent by the primary accessor.

A message causes a method (of a specific object) to be activated; in the
productions above ai represents such an active object (or, more precisely,
method-object pair (m, 0). The 'task(s)' such an active method performs
are represented by T. The production M -+ a.T (production 10.2) indicates
that a specific method (ai) is activated on receipt of a message, after which
that method 'executes' a list of tasks T.

Production 10.3, T -+ AfT, represents the case where a task T con
sists of sending a message, before handling the next task; production 10.4,
T -+ r, represents the task of terminating execution of the active method
and sending a reply to the calling method, while production 10.5, T -+ q,
represents the task of terminating execution of the active method and re
turning control to its calling method without sending a reply to the calling
method.

In order to model access to instance variables, the following two pro
ductions have to be added to those given above:

(10.6)

116 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

However if, in the example above, the salary was not encapsulated in a
SALARY object, but rather stored as a normal real number, the value would
have no natural protection once it leaves the EMPLOYEE object. A similar
problem occurs anywhere where an object provides methods that return
values of instance variables-when the value leaves the protection of the
encapsulated object, security may be compromised.

In the final part of this section we consider restrictions that may be
dynamically applied to information flow through the system to ensure that,
even if such information is removed from the encapsulated object, it will
still not be exposed to unauthorised access. We assume that information
retrieved from a variable or object is as sensitive as the label for that
variable or object indicates and that such information must stay at least as
sensitive wherever it might flow in the system. One cannot reasonably make
this assumption about information obtained via a sensitive method because
another (much less sensitive) method may return the same information. To
avoid such inconsistencies, we only consider restrictions for information
flowing from a sensitive variable or sensitive object. One possibility to
include the sensitivity of methods when considering information flow, is to
ensure that any variable is at least as sensitive as the greatest lower bound
of any method that has access to the variable. We do not investigate this
option in the current work.

Under dynamic labeling we consider three aspects:

(X3.1) Messages act on behalf of a subject and therefore the clearance of
the message depends on that of the subject. A model has to specify
how the clearance (or authorisation) of a message is determined.

(X3.2) Messages also carry information-this information may be sensi
tive, requiring labels. A model has to specify how the sensitivity of a
message is determined.

(X3.3) If some of the sensitive information contained in a message is stored
in variables of the receiving object., it must be ensured that an unau
thorised subject cannot now access the information in this object.
This can be ensured by either relabeling the object or variable with a
suitable label (if the existing labels are not suitable) or by disallowing
information to be saved if the existing labels are not suitable. The
model should indicate any flow restrictions and any conventions for
relabeling.

10.3. DYNAMIC LABELING

10.3.1 (X3.1) Authorisation flow

117

Consider the productions of section 10.2 above. 'Which objects should be
taken into account when the clearance of a message is determined? The
following possibilities exist:

1. Consider only the primary accessor (represented by L':);

2. Consider ail method activations that have been activated since the
original message was sent, but ignore those that have already re
turned control to their calling methods (ie consider all active objects),
including the primary accessor; or

3. Consider all objects on the cccess path of the request, ie every method
activation aj that has been activated since the original message was
sent, whether that method has terminated execution or not, including
the primary accessor.

In SODA the primary accessor determines the clearance of a message
(possibility 1 above).

Property 6 of the Lunt model states (in our notation)

L(8) ~ L((m,o) ~ L(o)

L(M) = L(8)

(10.8)

(10.9)

where 8 E S is any subject, (m,o) is a method of object 0 that 8 wants
to execute and M is a message sent by s to this effect. It seems from
this property is that Lunt denotes the clearance of a subject s by L(s); if
the clearance of the subject dominates the sensitivity of the method to be
activated, the subject is allowed to activate it (10.8). Further, the message
M has exactly the same clearance that its sending subject had (10.9). It
therefore seems that this property indicates that authorisation in the Lunt
model depends only on the primary accessor (possibility 1 above).

SECDB uses the complete access path to determine authorisation (pos
sibility 3 above); however, an individual profile is free to ignore any part
of the access path when it determines whether access should be granted.
As an example why consideration of the entire access path might be useful,
consider a stock control system, where the INVENTORY object may only
be asked to issue stock (decrease its current stock level) if a message have
previously been sent to the CHECKCREDIT method of the requesting object.

In practice, clearances are assigned as follows for the three possibilities
listed above:

118 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

Primary accessor: All messages sent (by any method of any object) on
behalf of the primary accessor have the same clearance-that of the
primary accessor;

Active objects: All messages sent by a method of an object will have
the same clearance for a given activation of the method; that clear
ance depends on the clearance of the object-method pair and on the
clearance of the message that activated the method; and

Access path: The clearance of any message sent depends on all objects
and methods involved anywhere previously in the request.

The clearance of messages are influenced by other objects involved in
the request if either possibility 2 or 3 above is used. As an example, a model
may require that the clearance of a message is not higher than the clearance
of any object involved in the request thus far. To generalise this concept,
we introduce semantic actions to associate a clearance attribute M.c with
every message sent. These rules are given in tables 10.2, 10.3 and lOA.
We also associate a sensitivity attribute e.l with every protected entity e.
The possible values of these attributes depend on the underlying model
(Xl.1): in the case of explicit levels e.l may be an integer indicating the
sensitivity of entity e. (Compare this to L(e) which is an abstract indication
of the sensitivity level of entity e and not directly related to the underlying
model). We give examples of attribute values for the various underlying
models later; for the time being we assume that it is possible to determine
whether message M is permitted to access entity e given the attributes M.e
and e.l. ~.e denotes the clearance of the primary accessor, ai.C denotes the
clearance of an individual method activation and the function clear maps
the clearance of a message and a method activation to their combined
clearance. The use of the .c attributes should be clear after studying tables
10.2, 10.3 and lOA; the use e.l will be illustrated later.

Table 10.2 illustrates the situation where message clearance is only based
on the primary accessor. In this case, the message sent by the primary
accessor gets its clearance attribute from the primary accessor (M.e :=
~.e), every method activation sends its messages with the clearance of the
message that activated it (T.e := M.e) and where a task consists of sending
a message followed by another task, both the message and the other task
have the same clearance as the original task. In summary, every aspect
'inherits' its clearance from the primary accessor.

Table 10.3 illustrates the case where message clearance is based on all
active objects. Here a message gets its clearance attribute from the primary
accessor that Sent it (A'I.e := ~.c) or from the task of which it is part

10.3. DYNAAfIC LABELING

Event Semantic rule
M.c -- ~.c

T.e := M.e

119

J.W --+- PXj

I'll --+- gXj

T --+- !vITI M.e .- T.e
TI·e .- T.e

T --+- r

T --+- q

Table 10.2: Semantic rules to determine message clearance based on the
primary accessor

Event Semantic rule
M.e .- ~.e

T.e := cleari M,c, aj.e)

J.W --+- pXj

M --+- s»,
T --+- kITI J.W.e .- T.e

TI·e .- T.e

T --+- r

T --+- q

Table 10.3: Semantic rules to determine message clearance based on active
objects

120 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

(1vl.c:= T.c); also if a task consists of a message followed by another task,
the second task has the same clearance as the original task (TI.c:= T.e).

The only situation where the clearance changes, is where a new method
is activated (M -+ aiT): Here the clearance of the task performed by
the new method activation (ie all messages sent by it) will depend on the
clearance of the message M and the clearance of the new method activation
ai. The function clear is used to determine the clearance of the messages to
be sent; this clearance depends on the clearance attribute of the received
message and that of the method activation: T.e := elear(Al.c, ai.c). Exactly
how clear combines these two attributes depends on the particular model;
we give some examples later.

Event Semantic rule
~ -+ !v! M.e .- :E.c'-'

M -+ «a T.e .- clear(M.e, ai.C)
M.r .- T.r

M -+ PXj M.r .- M.e

M -+ gXj M.r .- u.«
T -+ MT1 M.e .- T.c

TI·e .- M.r
T.r .- TI·r

T -+ r T.r .- T.c
T -+ q T.r .- T.c

Table 10.4: Semantic rules to determine message clearance based on the
access path

Table 10.4 indicates how a model operates that uses the entire access
path to determine the clearance of a message. It introduces another at
tribute .r; it is used to take the influence of an activity on the clearance
of subsequent messages into account when the activity terminates (or re
turns to its caller). For example, if a task consists of a message followed
by another task (T --+ MT.) the clearance attribute of the second task
depends on the clearance 'returned' by the method which has just termi
nated (TI.c := M.r). Note that when a method terminates (T --+ r or
T --+ q), the clearance with which it 'returns'is the last clearance the task
had (T.r := T.e). We do not discuss determining the clearance of messages
based on the entire access path further here; an example of it using SECDB
will be given later in this section.

10.3. DYNAlvIIC LABELING 121

From the preceding discussion, it is clear that any secure database model
must not only specify which approach it uses to determine the authorisa
tion of a message, it also has to specify up to four additional pieces of
information:

• The format of the clearance attributes (~.c, ai.c and AI.c);

• The format of the sensitivity attribute (e.l);

• For which values of M,«: and e.l message M may access e; and

• How clearances are combined, ie define clear.

Having given rules to determine the clearance of a message we will now
consider how the clearance attribute may be used to specify when a given
message is authorised to access an entity. As stated earlier, this depends not
only on the clearance attribute of the message, but also on the sensitivity
attribute of the entity.

/ The entities that need protection are methods and instance variables.
J, (The object-oriented model does not allow direct access to other entities at
I all.)
L,. It is easy to attach semantic actions to the productions M -+ a.T;

M -+ PXi and M -+ gXi (productions 10.2, 10.6 and 10.7) to let the message
fail when access rights are insufficient; table 10.5 contains an example of a
complete specification of authorisation flow for a model based on explicit
levels and using the complete access path to determine the clearance of a
message. Note the semantic rules to fail a message if its clearance attribute
is not sufficient (compared to the sensitivity attribute of the entity to be
accessed) to allow the message to proceed. Remember that these semantic
rules will be different if an alternative underlying model is used.

Some concrete examples of the security attributes denoting the clearance
of a subject and the sensitivity of an entity are now given. Note that specific
models may differ from these examples.

Explicit levels: The clearance attribute will typically be an integer in
dicating the clearance level of the primary accessor (E.c), individ
ual method (ai'c) or a message (M.c). The sensitivity attribute
e.l for an entity e will also be an integer. A message M will be
allowed to access an entity e if A1.c ~ e.l. The combination of
two clearance levels may be the greatest lower bound of the two,
ie clear(M.c, ai.c) = L~Vf.c, ai.cJ.

Access control lists: The clearance attribute will typically be the iden
tity of the primary accessor (E.c), the identity of the individual

122 CHAPTER 10. TA.:<ONOrvIY: DYNAMIC LABELING

---=
Event Semantic rule

" .-. M M,«: := E.c"-'

lvt -? aiT T.c := lai'c, .M.cJ
M,» := r-
if M.e < Qj.l then fail

ill .-. PXj M.r := M.l
if M.e < xj.l then fail

M .-. q x, Atf.r := 1\1.1
if M» < xj.l then fail

T .-. MT1 M.e := T.c
Tt·c := M.r
T:,. := T1·r

T .-. r T:,. := T.c

T .-. q i» :::::: T.c

'fable 10.5: Example of access checking rules for a specific model

method (Oi.C) or the collected identities associated with the message
(M.e). The sensitivity attribute e.l will be an access control list, giv
ing the identities of subjects permitted to access the entity. (The
access control list may be given explicitly as a list; SECDB, for ex
ample, gives it as a formal grarnmac.) A message M will be allowed
to access an entity e if the identities collected in M,« appear in the
access control list el. The combination of two clearance attributes
may be the concatenation of the two, ie clear(M.c, ai'c) = M.cllai'c
where II denotes concat enation.

Capabilities: 'The clearance attribute IQay contain the capabilities pre
sented by the primary accessor (!:.c), the capabilities presented by
the individual method (Oi'C) or the capabilities collected by the mes
sage (M.e). The sensitivity attribute e.l may contain the capability
necessary to access entity e. A tne5sage M will be allowed to access
an entity e if the capability e.l appears in the list of capabilities M.e
presented by M. The -cornbinatien of two clearance attributes may
be the union of the two, ie clea.rU.I.c, aj.c) = M.c U {ai'c},

As an example, SECDB builds a. string representing the access path
which is subsequently used to verify access restrictions. Therefore the
'clearance" of the primary accessor (~.c) and the methods (ai.c) are baggage

10.3. DYNAMIC LABELING

vectors, representing

1. The identity of the object;

2. The method;

123

3. The domain (processor) on which the object resides; and

4. The integrity state (or mode) the domain uses while executing the
method.

These vectors are concatenated to form strings; the clearance combination
function clear concatenates its arguments, ie clear(M.e,ai.e) = M.ellai. e.
The sensitivity of any entity e E E, represented by e.l, is a profile. The
profile is given as a formal grammar; M may access e only if M.e is derivable
in the grammar associated with e.l,

Although the informal notion of the set of subjects S used thus far
is sufficient for our purposes, we are now in a position to formalise it: a
subject is any sentential form ending with an M obtainable by a leftmost
derivation from 2; using the productions from section 10.2 above:

S = {wM E V-IE I:: wM}

where V represents the alphabet of the grammar. This definition is only
given for completeness; it is not used again in this work.

10.3.2 (X3.2) Sensitivity flow

A message carries information. Some of that information may be explicit
values in the form of parameters. The mere fact that a message has been
sent, is implicit information about the contents of the database. This
information-both explicit and implicit-might be sensitive. Nobody can
access this information while it is carried by the message; however, the re
ceiver of the message may assign the information to an instance variable
where it is possible to access it. It is therefore necessary to keep track
of the sensitivity of information contained by a message. We will use the
notation L(M) to indicate the sensitivity of any message M with the same
meaning that L(e) has for any entity e. Later (see X3.3) we will discuss
how the current sensitivity of a message will be used to prevent information
from being assigned to a variable that is not as least as protected as the
information contained by the message.

The following rules may be used to keep track of a the sensitivity of a
message:

124 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

1. The initial message from the primary accessor has low sensitivity
(L1ow) because it does not contain any information;

2. A method starts execution with the sensitivity of the message that
activated it;

3. The sensitivity of the method activation is adjusted whenever it re
ceives a reply after sending a message-the sensitivity is adjusted to
the least upper bound of its current sensitivity and the sensitivity of
the reply;

4. All messages sent by a method activation has the sensitivity currently
associated with the activation; whenever the sensitivity of the method
activation is adjusted, all subsequent messages will be sent at the new
sensitivity level; and

5. If the method sends a reply to its calling method, the reply has the
last 'current' sensitivity of the method activation.

For the purposes of sensitivity flow, access to variables is modeled in terms
of messages: writing to a variable is done by sending a message to the
variable and reading by sending a message and receiving a response.

The rules are formalised in table 10.6. The suffix .1 again represents
the sensitivity of an entity; for example M.l is an attribute representing
the sensitivity of message M. The suffix .u is used to keep track of the
sensitivity of information received by a method that was returned as the
result of a message. The value llow is the attribute value that corresponds
to the lowest sensitivity L low •

These rules correspond largely to rules 2.1 to 2.4 of SODA. SODA fur
ther requires (in its rule 2.3) that the current sensitivity of a method activa
tion must be increased when a value is written (or "added to a polyinstan
tiated set") at a higher sensitivity level. This restriction is not necessary:
any messages that will be rejected because of this restriction subsequent
to such a write may be avoided by reordering the statements (messages) in
the concerned methods. Of course, nothing prevents a model from includ
ing such a specification; it may be included by changing the semantic rule
for A1 -+- PXi to M.u := xi.l' where xi.l' denotes the initial sensitivity (see
X2.2) of variable Xi.

Since Lunt does not distinguish between sensitivity levels and clearance
levels, Lunt's property 6 (see equation 10.9 above) probably also indicates
that the sensitivity of a message is the same as the 'classification level'
(clearance) of the subject that sent it. This 'classification level' of a message
is only defined in that model and then never referred to again.

10.3. DYNAMIC LABELING

Event Semantic rule
~ .- M 1'vI.l [lowi..J .-

Al .- «r T.l .- ra.L, j\;I.l1
u.« .- r2\.1.l, T.ul

lvf .- PXi u.« .- [low

Al .- s», M.u .- xi.l
T .- MT1 1\-1.l .- T.l

T1.l .- u.«
T.u .- T1.u

T .- r T.u .- T.l

T .- q T.u .- L low

Table 10.6: Semantic rules for message sensitivity

An alternative to the rules given above come from [Var91]: They suggest
that it is possible for any method to start execution at the system-low
sensitivity (see our rule 2 above). This may compromise security: method
ml may access a sensitive variable and based on its value decide to send
a message to method m2; if m2 does not access any variable and send a
(non-sensitive) message to m3 then m3 may assign a value an unclassified
variable. If it is known that this sequence of events will only occur if the
sensitive value accessed by ml has a specific (range of) values, it is possible
to infer whether that variable does indeed have such a value by examining
the unclassified variable written by m3, contrary to the information flow
restrictions discussed later (X3.3). Of course, if the composition of methods
is not public knowledge (and cannot be inferred) this strategy is viable.

Note that some secure database models partition the set of entities E
such that any subject s E S is allowed to access all the entities in at
most one partition E, of E, that is, if SI E S and S2 E S then either
ent(sd = ent(s2) or ent(sl) n ent(s2) = 0. Further, these models do not
transform the subject because of authorisation flow (X3.1) or, if it does
transform a subject s, into a subject Si+t when a new method joins the
composite subject, it ensures that ent(s;) = ent(si+d. In such a model a
subject cannot cause information to flow to a less protected location and
it is unnecessary to keep track of the sensitivities of messages or to restrict
information flow based on the sensitivity of the information. A model with
this property is said to support single level subjects.

126 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

10.3.3 (X3.3) Information flow restrictions

Information contained by a message cannot be accessed directly. However,
an object that receives a message, may store the received data in instance
variables. It is then possible that other objects may obtain the information
from this object (by sending messages to this object). Therefore it must
be ensured that sensiti ve information is not stored in variables that may
be accessed by subjects not authorised to access the sensitive information.
This can be done by either ensuring that the variable(s) storing the sensi
tive information may only be accessed by properly cleared subjects, or by
ensuring that the entire object may only be accessed by properly cleared
subjects.

Suppose that a message containing sensitive information arrives at an
object and that the activated method attempts to write information to a
variable. If the sensitivity of either the concerned object or concerned vari
able dominates the sensitivity of the received message no problem occurs:
even if sensitive information is stored in the receiving object will it not be
compromised because it is at least as protected as in its original location.
In other words, any message M; accessing any entity e, must be allowed to
proceed if L(Nt) ~ L(e)-and, of course, if the subject represented by M
is in subj(e). .

Apart from allowing the message to access the protected entity when the
sensitivity of the entity dominates the sensitivity of the message, the model
may also decrease the sensitivity of the variable (or object) if its sensitivity
strictly dominates that of the message. If the sensitivity is decreased, it
must still dominate that of the message. Further, the sensitivity of the
variable (or object) must never be decreased below its initial (inherent)
sensitivity (see X2.2).

If the sensitivity of the object or variable to be accessed does not domi
nate the sensitivity of the received message, security may be compromised.
So, if the message attempts to modify the state of the object, protective
steps must be taken. The following possible strategies exist:

1. Reject the message;

2. Increase the sensitivity of the receiving variable or object; or

3. Polyinstantiate the receiving variable or object.

To formalise the previous remarks we will associate semantic actions
with the production

10.3. DYNAMIC LABELING 127

because information will only be compromised if information is actually
written to a variable; information temporarily 'inside' an object if a message
is just 'passing through' without modifying the state of the object will
not compromise information. We identify four possible behaviours when a
message attempts writing to a variable:

Proceed/Reject: If the sensitivity of the message strictly dominates that
of the variable, reject the write; otherwise the protection of the vari
able is adequate and the write is allowed to proceed. This is accom
plished by associating the following semantic action with the produc
tion M --+ PXi:

if L(1I1) > L(x;) then fail

Increase sensitivity: Here the sensitivity of a variable (or its containing
object) is increased if the information to be written is too sensitive for
the current sensitivity of the variable. If the sensitivity is increased,
it is increased to that of the message; this may be done by either
setting xi.1 or 0.1 (where Xi = (v, 0)) to A1.1. Formally the production
At! --+ PXi has the semantic action

If the level of the entire object is to be adjusted, the then part of the
semantic action has to be changed:

if L(M) > L(x;) then 0.1:= M.I, where Xi = (v, 0)

Note that we are changing the level of a 'terminal symbol'-on a
real system it means that the actual security attributes of the related
entity must be updated.

Modify sensitivity: Here the sensitivity of the variable is adjusted to
reflect the sensitivity of the new value stored in it. This means that
the sensitivity of the variable may be increased or decreased. The
only provisos are that the sensitivity of the variable must never be
decreased below its inherent (initial-see X2.2) sensitivity, or below
the sensitivity of its containing class (see lemma 2). Put differently,
the sensitivity of a variable (v,o) being written to by a message M;
is changed to rL(AtI),L(o)~L'((v,o))lwhere L'((v,o)) is the initial
sensitivity of (v,o). Formally, 1V1 --+ PXi takes the semantic action

if LO\1:) > rL(Oj),L'(xdl then xi.1:= 1V1.1
elseif L(o) > L'(Xi) then xi.1 := 0.1
else Xi.1 := Xi.l'

128 CHAPTER 10. TAXONOMY: DYNA1'vIIC LABELING

where Xi = (v,o), L'(Xi) represents the initial sensitivity of Xi and
Xi.l' is the corresponding sensitivity attribute.

Note that in the case of structured variables (for example array-like
structures) the sensitivity of the entire variable cannot be decreased
if a single low-sensitivity element is written. This is not a problem
if structured variables are objects constructed from the individual
'element' variables. In such a case only the relevant element variable
will be relabeled.

Polyinstantiate: See section 11.6 for a discussion of polyinstantiation.

SECDB takes the option of increasing the sensitivity of the receiving object
or variable. In SECDB the security profiles associated with the message are
attached to the concerned variable. In effect this means that the variable
is relabeled with the least upper bound of its original sensitivity and the
sensitivity of the message-ie the sensitivity of the variable is 'increased'
so that it dominates the sensitivity of the active message.

SODA uses polyinstantiation here-see section 11.6 for a discussion of
polyinstantiation. SODA also specifies a highest sensitivity that may be
associated with any given variable; if the sensitivity of the message exceeds
this maximum, the message will also fail (but in this case the database
will inform the user that the message failed). Formally, if the maximum
sensitivity for a variable Xi is Lma.r(Xi), the semantic action

if L(Atf) > Lma.r(xd then fail (10.10)

associated with M - PXi will ensure this.
We stated earlier that either the sensitivity of the concerned variable or

the concerned object must be increased if the increase JenJitivity strategy
is used. Corollary 6 restricts strategy 2 for existence protected models:
Since the sensitivity of a variable may only be increased by increasing the
sensitivity of the entire object, it is not possible to relabel variables; the
containing object will have to be relabeled. In an access protected model, it
is possible to relabel either the modified variable or the containing object;
it seems that it is better to relabel the variable, since it minimises the risk
that an (authorised) user attempting to access another part of the object,
will be denied, only because this variable contains sensitive information.
SECDB therefore relabels the variable. SODA provides another solution
by allowing either the entire object or its instance variables (but not both)
to be labeled; in such a model the already labeled entity will simply be
relabeled. .

10.4. CONCLUSION 129

10.4 Conclusion

This concludes the description the taxonomy. The next chapter discusses a
number of aspects that may be considered for a future taxonomy-aspects
that, at present, have not received enough attention to be included in the
current taxonomy. Appendix A contains a summary of the proposed tax
onomy, while appendix B illustrates the taxonomy by way of a number of
examples.

130 CHAPTER 10. TAXONOMY: DYNAMIC LABELING

Chapter 11

Taxonomy: Remaining Issues

A taxonomy for secure object-oriented database models such
as the one described in chapters 7 to 10 cannot attempt to
be the final word on classification of such databases since new
models are presently being proposed regularly. Although most
of the new proposals focus on one or more of the aspects covered
by the taxonomy, some proposals do indeed investigate new
areas. It is conceivable that such a new model could introduce
an aspect that should indeed be included in a taxonomy. This
chapter concludes the discussion of the taxonomy by considering
a number of these aspects.

131

132 CHAPTER 11. TAXON01vIY: RE1vIAINING ISSUES

This is not the end. It is not even the
beginning of the end. But it is, perhaps, the
~nd of the beginning.

Winston Churchill
Mansion House, 10 Nov.1942

11.1. OTHER DESIGN PARA1fETERS 133

11.1 Other design parameters

In this chapter we briefly look at aggregation, implementation, discretio
nary access controls and integrity constraints-all aspects that need con
sideration when one defines a secure database model. However, too few
models have addressed them to see any clear alternatives. Further, some of
these issues, such as implementation, are not primary design alternatives,
but must rather be used to evaluate a given model. Polyinstantiation is
an aspect of secure object-oriented databases that may influence the entire
described taxonomy; polyinstantiation is discussed in section 11.6.

11.2 Aggregation

Aggregation is a security problem because the sensitivity of a number of
pieces of information combined is often higher than the sensitivity of the
individual pieces.

A related problem, is the problem of inference. Often, if it is possible
to obtain some portions of information, it is possible to infer the missing
(sensitive) portions. One common example occurs where it is possible to
obtain the average salary of a set of employees-if it is possible to make
that set very small (say only one employee) the salary of an employee is
easily obtainable.

The encapsulation facility of object-orientation provides a natural way
to sensitivity label the relationship between objects higher than the indi
vidual objects: If an object is classified, the composition of that object is
hidden from unauthorised subjects; ie no unauthorised subject will be able
to access the instance variables of the object, and therefore such a subject
will not know about the relationship between them which is encapsulated
in the object. Similarly, if an instance variable is labeled, the fact that the
contents of that variable is related to the rest of the object is protected,
although the contents of that variable may be unclassified. See [Lun90a]
for a discussion. Suitably labeled methods can also be used to protect
information regarding relationships.

11.3 Implementation

Most models do not address implementation. However, an impressive model
that is difficult to implement is not worth much. Here we briefly address
some implementation considerations; a thorough study is necessary before
detailed" comments can be made.

134 CHAPTER 11. TAXONOMY: REMAINING ISSUES

As always one should strive to make security related code as small as
possible-a small section of code is easier to verify, increasing trust and
reliability. This may be done by building the database on a trusted com
puting base (TCB); SeaView [Lun90b] is an example of a secure relational
database making use of a TCB. The database partitions information ac
cording to its sensitivity and stores it in entities (usually files) managed
and protected by the TCB. If the TCB has already been verified, this pro
vides a quick, reliable way to implement a secure database. It also makes
it possible to port a secure database from one computer to another, if the
other supports a comparable TCB.

Lunt [Lun90a] suggested that a secure object-oriented database can be
built on top of a trusted relational database. Much work has been done in
the field of trusted relational databases which makes this option attractive.
Such a database will probably map classes to relations, objects to tuples
and instance variables to tuple entries. However, we feel that protection of
methods is the most exciting possibility offered by object-oriented databases
and, sadly, nothing exists in the relational model to which methods may
directly be mapped.

One interesting possibility is a database where the checking may be done
statically (in other words, before run-time; compare [Var9I]). Consider a
secure database model that

• Is based on explicit levels, and uses the same label to indicate the
clearance and the sensitivity of any labeled entity (Xl.I);

• Labels (at least) methods and variables (X2.I);

• Uses the entire access path to determine the authorisation of a mes
sage (X3.1) where the combination of two security attributes (clear)
is the greatest lower bound of the two;

• Only allows a message to activate a method if the security attribute
of the message dominates that of the method (X3.1);

• Only allows a method to read a variable if the security attribute of
the method dominates that of the variable (X3.I); and

• Only allows such a method to write to a variable if the security at-
tribute of the variable dominates that of the method (X3.3).

In such a model the sensitivity of any message (X3.2) is the same as the
clearance (X3.1) of such a message as computed by the rules in table 10.6.
It is therefore not necessary for such a model to keep-explicit track of the

11.4. DISCRETIONARY ACCESS CONTROLS 135

sensitivity of a message. Obviously such a model employs the proceed/reject
option to restrict information flow (X3.3).

The described model will not relabel variables or objects since a value
will never be written to a variable that is not already sensitive enough.
Therefore the security level of any method will dominate that of all variables
that it may potentially read (and not only those that it actually reads
during a given activation): further the security labels of all variables that
may potentially be written to will dominate the label of the method. This
makes it possible to statically check the security of any object that is added
to the database. In this case an underlying monitor is not necessary to check
access to sensitive information at run-time. It is only necessary to ensure
that the primary accessor (the human operator) only activates methods
this accessor is entitled to-that is

• Methods that have a higher security level than the accessor if the
method will not send a reply to the accessor; ?r

• Methods with the same security level as the accessor if the method
will send a reply to the accessor.

It is relatively simple to implement a view mechanism that will only allow
an accessor to 'see' methods the accessor is entitled to access. In such
a model it is only necessary to trust the message passing mechanism; if
this mechanism does nothing other than passing messages we can trust the
database. However, it needs to be shown that this model is flexible enough
for practical use.

The reader is referred to [Laf90] for a discussion of the classical secure
database implementation strategies.

11.4 Discretionary access controls

Discretionary access controls refer to the rights subjects have to access enti
ties; especially the di"cretionary power they have to decide what restrictions
should apply for entities under their control and the power to grant rights
to other subjects. For instance, the 'owner' or creator of a file often has
the power to grant other users the right to access the file; similarly such
an 'owner' may have the power to revoke the access rights of other users to
the file.

In a database, discretionary access rights are of less concern: a data
base contains information shared by many users and usually owned by the
enterprise. However, a scenario is possible where a central database ad
ministrator or system security officer is not responsible for the security of

136 CHAPTER 11. TA.XONOMY: RE1'IAINING ISSUES

all information contained in the database; in stead a number of 'guardians'
may be appointed to be responsible for various sections of the database.
Mechanisms enable the existence of such 'owners' of information may be
worth investigation; this includes investigation of mechanisms to verify their
actions.

Often access control lists or capabilities are used to implement discretio
nary access control. Note that we included those facilities in our treatment
of mandatory security. Chapter 12 contains a proposal for a discretionary
security model for object-oriented databases.

11.5 Integrity constraints

Ensuring the integrity of information has two aspects:

• Ensuring that an unauthorised subject does not modify information;
and

• Ensuring that an authorised subject does not modify information to
unacceptable values such as values inconsistent with other entries in
the database.

Although we do not address the latter aspect in this work, it is worth point
ing out that some models for secure databases also have definite integrity
benefits in that area.

One such example is security models that include the whole access path
and not only the primary accessor when access rights are determined. In
such a model it is possible to ensure that an (authorised) accessor may
not access an object without following an 'authorised' path. For example,
if a LOCATION object consists of a LONGITUDE and a LATITUDE object,
it is easy for such a model to ensure that LONGITUDE and LATITUDE are
only updated if the request is routed via LOCATION; if the update method
of LOCATION sends messages to both the update method of LONGITUDE

and the update method of LATITUDE, it is impossible to update only one
constituent object, leaving the database in an inconsistent state. An in
consistent state may easily result if a subject is allowed to directly send a
message to update, say, LATITUDE.

Note that the described models do not solve the integrity problems that
arise if an 'impossible' value is inserted into the database by an (authorised)
subject; for example if a person's age is given the value 999 years. This
may be solved by including integrity constraints-logic rules constraining
what values may be inserted into the database.

11.6. POLYINSTANTIATION 137

11.6 Polyinstantiation

Thuraisingham [Thu89] described the many faces of polyinstantiation in an
object-oriented system:

• Different subjects may see differing values (or contents) in the same
object;

• Different subjects may see differing (class) structures for the same
object;

• Different subjects may see a different set of methods supported by
the same object; and/or

• A single method may have a different definition for different subjects.

Abstractly, one may view a database that supports polyinstantiation as
a set of databases that co-exist-one database for every sensitivity level.
Rules then describe which 'databases' must be updated whenever an update
request is received. Similarly, rules describe from what database a query
request must be answered. The axioms and theorems given earlier may be
adapted, based on this view of polyinstantiation. The affected productions
given while discussing authorisation flow (X3.1) are M - a/I', M - px;
and M - gXj. In the case of polyinstantiation more than one aj or x; may
exist. In the first case rules must be given to determine to which method
ai the message must be directed to based on M.e. In the second case rules
must be given to determine which set of variables Xi (often more than one,
but possibly none) must receive the new value. In the third case, rules must
determine from which variable Xi the read must be attempted; in some cases
more than one value is read and the set of values returned. The functions
class and sup and the corresponding axioms about object-orientation also
need adaptation: the class and superclass may depend on which subject
wants to know. The rules for determining the initial sensitivity of a newly
created object may also have to be adapted. We do not elaborate at this
time.

Clearly, polyinstantiation can cause integrity problems: a user who is
not cleared to access a value, may insert it into the database; if the new
value differs from the existing one, it is a good question which value should
be viewed as the correct value-ie the more sensitive value or the more
recent value?

In an access protected model, polyinstantiation is not necessary. In that
case it is possible to introduce a weaker form of polyinstantiation, such as
that suggested by SECDB: Protected entities (primarily methods) may be

138 CHAPTER 11. TAXONOMY: REMAINING ISSUES

replicated in a cascaded fashion. When a request arrives at such a protected
entity, the appropriate access checks are performed; if access is granted, the
request proceeds by accessing the corresponding entity; if access is denied,
access to the next 'polyinstantiated' entity in the chain will be requested.
This process will be continued, until either an entity is found that allows
access, or until the chain of polyinstantiated entities has been exhausted,
in which case the request must be aborted. This form of polyinstantia
tion enables ad hoc entities to be polyinstantiated; it is possible to apply
it without the integrity problems associated with 'full' polyinstantiation;
however, it is not strong enough to support an existence protected model.
As an example where weak polyinstantiation may be useful, consider some
political candidate's database where the VOTESFoRUS object may have a
polyinstantiated method NUMBERExPECTED; this method may return dif
ferent values depending on whether it is invoked by the candidate, by the
candidate's sponsor or by the candidate's press secretary.

Another 'weak' form of polyinstantiation is the view concept as defined
by [Shi89] where multiple interfaces may be defined for a single object. As
it is described in [Shi89], other 'client' objects may decide through which
view it wants to access the object; however, when it is intended as a form
of polyinstantiation, security constraints may specify through which view
another object accesses the multiview object.

11.7 Conclusion

This chapter indicated a number of ways the taxonomy may be extended.
No doubt, more possibilities exist. However, listing them at this time will
serve little purpose; we rather leave it to the reader to consider the possibil
ities we mentioned, along with any other possibilities, in order to identify
those that deserve attention. If this work prompts someone to address an
aspect of secure object-oriented databases that has been overlooked until
now, this work has served a purpose.

Chapter 12

A Discretionary Security
Model

This chapter proposes an initial discretionary security model
for object-oriented databases. The purpose of the model is to
indicate how results obtained in the taxonomy of chapters 7 to
11 may be utilised when a new security model is defined.

Entities in the database are protected by capabilities. A sub
ject that possesses a capability is authorised to access the corre
sponding entity. Additionally, under certain conditions, a sub
ject may pass the capability on to another subject, authorising
this other subject to access the protected entity. Passing the
capability on to another subject is done at the first subject's
discretion, hence the term diuretionary security. We consider
the restrictions that apply in such a database to the granting
and revoking of capabilities.

139

140 CHAPTER 12. A DISCRETIONARY SECURITY }.{ODEL

Property has its duties as well a3 its riqhis

Thomas Drummond
Letter to the Earl of Donoughmore,

22 May 1838

12.1. INTRODUCTION 141

12.1 Introduction

In this chapter we propose a model for discretionary security in an object
oriented database. \Ve refer to the proposed model as DISCO (DISCretio
nary Object-oriented securits) model).

DISCO uses capabilities to protect entities. A capability is an unforge
able identifier authorising the possessor to access the corresponding entity.
Under certain conditions (for example when the possessor of the capability
is the 'owner' of the protected entity) the possessor may grant access to the
protected entity to other subjects; this is done by giving them (a copy of)
the capability for the protected entity. Similarly, access to an entity may
be revoked by 'taking back' the capability.

The intention of our model is to study the implications that stem from
passing a capability to another subject and to identify the restrictions that
should apply to such transferring of capabilities. These restrictions follow
from results obtained in the taxonomy.

Very little has been published about discretionary security models for
object-oriented databases; [Dit89] is one example, but they do not address
the complete object-oriented model. Much more has been published about
mandatory security for object-oriented databases-see chapter 7 for exam
ples.

12.2 Capability-based protection

A capability is an unforgeable token enabling the possessor to access a
related entity in some way. It is well known in operating systems; see for
example [Sal74].

A subject can, under certain conditions, transfer or propagate a capa
bility to another subject, enabling the other subject to access the protected
entity. If the capability is propagated the original subject will still have a
copy and, therefore, may still access the entity. If the capability is trans
ferred, the original subject "gives it away" to the new subject. The right
to transfer or propagate capabilities is a right that does not exist automat
ically: Capabilities may be viewed as entities themselves and be protected
by, say, other capabilities. In such a case a subject needs a 'transfer' or
'propagate' capability to be able to transfer or propagate a specific capa
bility to another subject. Alternatively (or additionally) a specific subject
may 'own' a given entity; such ownership may entitle the subject to prop
agate capabilities to other subjects.

See chapter 2 for an introduction to capabilities.

142

12.3

CHAPTER 12. A DISCRETIONARY SECURITY MODEL

The new model

DISCO uses capabilities to protect entities. A possessor of a capability is
authorised to access the corresponding entity. In DISCO a subject that
does not possess a capability is not supposed to know (or even infer) that
the corresponding entity exists.

In this section we will use an employee database of some organisation to
illustrate the concepts. We will assume that the personnel manager of that
organisation is the 'owner' of all employee objects; this personnel manager
therefore has the right to pass capabilities for the various entities contained
in the database to other subjects.

12.3.1 Protecting the entities

DISCO enables classes, objects, variables and methods to be protected.
If an object is protected, a subject may not access the object at all if

it does not possess a capability for the object; if there is a JOHN object in
the example database, only those subjects that possess a capability for this
object may access it. Remember that the only way to access an object in
an object-oriented system is by sending a message to it; this means that
any message sent to the JOHN object without the corresponding'capability
will be rejected.

Methods and variables may be protected to provide a finer protection
granularity: If the INCREASES ALARY method of an employee object is pro
tected it means that a subject needs the corresponding capability to invoke
this method. (In addition the subject may require another capability to
access the employee object in the first place.) In our example the personnel
manager may be the owner of this method (in addition to being the owner
of all employee objects).

Initially this personnel manager may be the only subject authorised to
send a message to this method. However, for the duration of the annual
salary review period, the manager may delegate the salary increase func
tion to a personnel clerk; this is then reflected in the database by passing
the capabilities for the INCREASESALARY methods to the personnel clerk.
At the end of the review period, the personnel manager will revoke this
capability from the personnel clerk. This example illustrates the power of
being able to protect individual methods of an object. In older database
models one is only able to distinguish between a number of primitive op
erations such as reading and writing; even in [Dit89] (for a 'structurally
object-oriented database') the methods are divided into read, write, delete
and exist classes-a subject authorised to access such ~ class of operations

12.3. THE NE1V MODEL 143

is authorised to invoke every method in that class.
The provision to protect instance variables is intended as an additional

safeguard that sensitive information is not accidentally disclosed. For in
stance, the SALARY variable of the employee objects may be protected; this
means that a subject will not be able to access the salary variable via any
method if that subject does not possess the capability for SALARY; this
prevents another subject from inadvertently passing a capability for such a
method without also explicitly passing a capability for SALARY.

As indicated, DISCO also allows classes to be protected. Remember
that a class is also an object, an instance of some metaclass. The class
may therefore be protected just like an ordinary object with the aforemen
tioned mechanisms. However, a class also contains descriptive information
(a template or schema) for all instances of the class. This template (or a
specific template for a method or instance variable) may also be sensitive
and may have to be protected; for this reason DISCO allows classes (and
parts of classes) to be protected with capabilities.

12.3.2 Creating and owning entities

To complete the initial picture of DISCO we have to describe how the
protection for an entity is established, in other words how a.subject specifies
that a capability will in future be required for accessing the entity. DISCO
uses the following approach: Whenever a new object is instantiated, the
subject that instantiated the object becomes the owner of that object; the
system creates a new capability, protects the entire object with it and passes
the capability to the owner. The owner may then

• Request the system to generate a new capability and use it to protect
a method, variable or even the entire object;

• Request the system to use a specified capability to protect a method,
variable or the entire object;

• Request the system to 'unprotect' an entity; in other words, to make
the entity available for use to all subjects; or

• Request the system to transfer ownership of an entity to another
subject.

Note that the creator of a new object is initially the only possessor of
a capability to access the object. It is therefore able to set up the access
restrictions for any parts of the object any way it wants to without any other

144 CHAPTER 12. A DISCRETIONARY SECURITY MODEL

subject being able to interfere; similarly, it can do any other initialisation
work, before it allows any other subject to access the object.

In the cases where an entity is protected by a new capability, the old
capability will be deleted if it is not used to protect any other entity.

DISCO will automatically pass ownership of any entity that is protected
with a specified (existing) capability to the subject that owns the other en
tities protected by that capability. Further, if a subject transfers ownership
of an entity to another subject, it must simultaneously transfer ownership
of all other entities protected by the same capability. This means that at
any point all entities protected by the same capability will have the same
owner.

To illustrate the way these rules may be used, consider the employee
database again. The CREATE method of the employee class may include
code to accomplish the following:

• Protect all the methods and variables of the object that need special
protection (such as INCREASESALARV)i these facets will probably be
protected with the same capabilities that are used to protect the
corresponding facets of other employee objects;

• Reprotect the entire object with the same capability that is used to
protect other employee objects; and

• Thereby pass ownership of the new object to the personnel manager
(since the personnel manager owns all the other employee objects
protected by this capability).

The code just presented assumes that all employee objects require the same
protection; ie that the same capability may be used to access any employee
object; similarly, the same capability may be used to invoke the INCREAS
ESALARV method of any employee object. In many cases this is the proper
solution: our earlier example where the personnel manager delegated the
salary increase function to the personnel clerk is best reflected in the data
base if the manager only has to (temporarily) give the clerk the one capa
bility that may be used to increase every employee's salary.

The code further makes it possible that not only the personnel manager
can instantiate new employee objects: if the personnel clerk has a capability
to invoke the CREATE method of the employee class, the clerk is perfectly
capable of instantiating new employee objects; however, the personnel man
ager automatically becomes the owner (ie the one with the discretionary
power) of any employee object that is created-it is not possible for anyone
else to instantiate employee objects for 'private use'. _

12.4. TRANSFERRING CAPABILITIES 145

Note that the discussion above also holds for newly created classes: only
those subjects with appropriate capabilities will be able to send messages
to the metaclasses to create new classes. The creator of the class will own
the class and be able to pass capabilities to access the class to subjects it
chooses. Also, the creator of the class will be able to specify the initial
security actions in the CREATE method of the new class, exactly as was the
case in the employee class above.

12.3.3 Deleting entities

Two major approaches exist to delete objects in an object-oriented system.
The first option is to delete the objects explicitly via an appropriate method.
The other option (used by Smalltalk [GoI83]) is to 'garbage collect' any
objects that have no remaining references to them.

In a DISCO database different parts of an object may have different
owners: one subject may own the JOHN object, while another may own
INCREASESALARY of JOHN. To sidestep the question of which owners are
allowed to delete such an object and how permission is asked from other
owners involved (if permission is indeed to be asked for deletion), DISCO
does not supply a facility for explicit deletion of objects; they will auto
matically be deleted once they cannot be referenced anymore. However,
it is possible that this solution-which is acceptable in the programming
language field-is not sufficient for databases.

12.4 Transferring capabilities

In DISCO only the owner of an entity can pass capabilities for his entities
to other subjects. Similarly, only the owner can revoke rights from other
subjects. However, the owner is not free to grant and revoke rights to any
subject at any time-the model has to limit these powers. These restrictions
are discussed in this section.

12.4.1 Granting rights

A model for a secure object-oriented database may specify security restric
tions that must exist between related entities in the database-see chapter
9. DISCO does not introduce any new restrictions; therefore only the nor
mal restrictions for models such as DISCO apply: a summary of these
restrictions are given in table 12.1-see chapter 9 for details about these
restrictions. If these restrictions are violated some subjects will be able to
make inferences about entities they are not allowed to access (and according

146 CHAPTER 12. A DISCRETIONARY SECURITY MODEL

to our definition of DISCO an unauthorised subject is not even supposed
to know that such an entity exists).

E1: L(0) 2: L(class(0)) for every object 0

E2: L((x, o}) = fL((x, class (o)}), L(0)1 for every object 0

and every facet x of 0

E3: L(e) 2: L(d) for every class c and every superclass d of
e

E4: L(e) ~ L((x,e}) ~ fL((x,d}),L(c)1 for every class c
and every superclass d of c that has a facet Xj

rL((x,d'}),L(c)l s L((x,e}) s rL((x,d}),L(e)l if c
inherited the facet x from a superclass d' of c

Table 12.1: Relationship restrictions for DISCO.

In this table the notation L(ed 2: L(e2) means that entity et is more
sensitive than entity e2 or, in terms of capabilities, every subject that has
a capability to access et must also have a capability to access e2. As an
example, rule E1 specifies that a capability to access an object 0 may only
be passed to a subject that already possesses a capability to access the
class of 0; otherwise the subject will be able to access the object 0 and
make unauthorised inferences about the class of o. Similarly, according to
rule E3, a capability to access a subclass c may only be passed to a subject
that already possesses capabilities to access the superclasses of c.

The notation fit, 1'21 in table 12.1 is used to indicate the least upper
bound of it and 12 • Thus rule E2 states that a subject may only possess
a capability to access a facet (ie a method or an instance variable) of an
object 0 if it both possesses a capability to access 0 itself and possesses a
capability to access the definition of the method or variable in the class
of o. The other implication of rule E2 is even more interesting: A subject
that possesses a capability to access an object 0 and a capability to access a
method or variable x in the class of 0 must necessarily possess a capability
to access x in the object o. To illustrate this, suppose that subject s has
a capability to access INCREASESALARY in the EMPLOYEE class. Suppose
further that JOHN is an instance of EMPLOYEE. If we pass a capability to
access JOHN to s, s will possess capabilities to access JOHN and to access
INCREASESALARY of EMPLOYEE but not to access INCREASESALARY of
JOHN-contraJ;y to rule E2. Similar problems occur if we pass a capability
to access INCREASESALARY of JOHN to s before we pass a capability to

12.4. TRANSFERRING CAPABILITIES 147

access JOHN. vVe therefore need a facility to transfer the capabilities for
JOHN and INCREASESALARY of JOHN simultaneously.

Rule E2 restricts the passing of capabilities for instances of a class; rule
E4 has similar implications for passing capabilities for subclasses of a class.
However all four rules have an influence on one another and should be con
sidered together to determine their influence on the passing of capabilities.
When one does indeed consider all four rules together, passing of capa
bilities becomes very involved and it is necessary to pass great numbers
of capabilities simultaneously. A better solution is to make the following
assumptions:

Al Force the system to check that the subject has the capability for the
concerned object as well as the capability for the method or instance
variable before allowing access to the method or variable (alterna
tively it would have been necessary to check for at most one capability
for every access); and further

A2 Make it impossible for a subject to determine in which classes and
objects any given method or variable is available, even if the subject
possesses a capability for the method or variable; of course, if the
subject already possesses a capability for both the object (or class)
and method (or variable) there is no harm in allowing the subject
to determine that the method (or variable) is indeed available in the
object (or class).

If these two assumptions are enforced, it is only necessary to ensure the
following:

• If a capability is passed that will allow a subject access to an object
o then

Gl.I The subject must already possess a capability for the class of
object OJ and

G1.2 If the subject possesses capabilities for facets (methods or vari
abies) of 0 then the subject must already possess a capability for
that facet in the class of OJ

• If a capability is passed that will allow a subject access to a class c
then

G2.I The subject must already possess capabilities for all the super
classes of the class c (and all their superclasses etc}; and

148 CHAPTER 12. A DISCRETIONARY SECURITY 1vl0DEL

G2.2 If the subject possesses capabilities for facets (methods or vari
ables) of c that also exist in a superclass of c, then the subject
must already possess capabilities for that facet in all the super
classes of c up to the level where that facet was first defined;

• If a capability is passed that will allow a subject access to a facet x
(method or variable) of an object 0 then

G3.1 If the subject possesses a capability for object 0, it must already
possess a capability to access the facet x in the class of OJ

• If a capability is passed that will allow a subject access to a facet x
(method or variable) of a class c then

G4.1 If the subject possesses a capability for class c, and if x is
inherited from a superclass d' then the subject must already
possess a capability to access the facet x in the. superclass of d'
of c;

G4.2 If the subject possesses a capability for a subclass of c then the
subject must already possess a capability for the facet x of that
subclass;

G4.3 If the subject possesses a capability for an instance of c then
the subject must already possess a capability to access x in the
instance.

Rule GI.l is a direct consequence of rule El; similarly rule G2.l follows
directly from rule E3: in these cases the intention is to prevent unauthorised
inferences about the class or superclass of the concerned entity. Rule G1.2
may be motivated as follows: If a subject s did not have a capability to
access an object 0 but had one to access a facet x of 0, it was not permitted
to access x anyway-see assumption AI. Since it now received permission
to access 0 it is now in a position to use its capability to access x; if rule
G1.2 is not ensured, s may be able to make the unauthorised inference
that x is available in the class of o. Note that rule G1.2 and assumption
Al together cater for all the restrictions stated in rule E2. Rule G2.2 is
similarly motivated; compare it to rule E4. Rules G3.l, G4.1, G4.2 and
G4.3 are derived from rules E2 and E4.

To illustrate these rules consider figure I2.1-it is an extension of the
employee database discussed earlier. The EMPLOYEE class has two sub
classes: BLUECOLLAR and WHITECOLLAR. JOHN is an instance of BLUE

COLLAR and JAMES is an instance of WHITECOLLAR. Suppose that the
owner of the JOHN object wants to enable a subject s to access JOHN; it

12.4. TRANSFERRING CA.PABILITIES 149

cannot pass the capability for JOHN to 8 if 8 does not already possess a
capability to access BLUECOLLAR (G1.1); if the owner of JOHN is also the
owner of BLUECOLLAR it can easily first pass a capability for BLUECOL
LAR to 8 (but only if 8 already possesses a capability for EMPLOYEE; G2.1).
This illustrates two points:

• A sequence of steps may be necessary to transfer a capability; and

• Sometimes the right of an owner to transfer capabilities may be re
stricted: if the BLUECOLLAR class is owned by 81 and JOHN by 82

then 82 may only transfer capabilities for JOHN to those subjects that
received capabilities for BLUECOLLAR from 81.

EMPLOYEE

BLUECOLLAR

Instance

JOHN

WHITECOLLAR

Instance

JAMES

Figure 12.1: Example of a database

As a further example, suppose that 81 is the owner of INCREASES ALARY
in JOHN and that 81 wants to pass a capability for it to 82' From the rules
given above, it is clear that 82 must possess capabilities for JOHN and for
INCREASESALARY of BLUECOLLAR before 81 will be allowed to transfer the
required capability.

However, a problem still exists: Suppose 8 already has capabilities for
EMPLOYEE, BLUECOLLAR and JOHN. If the owner of INCREASESALARY
of EMPLOYEE now wants to grant this capability to s, it either has to grant
the capabilities for INCREASESALARY of EMPLOYEE, BLUECOLLAR and
JOHN simultaneously (G4.1, G4.2 and G4.3) or, alternatively, revoke the
capabilities for object JOHN and class BLUECOLLAR, grant the capability
for every INCREASESALARY and then grant the capabilities for object JOHN
and class BLUECOLLAR to s again. If the same capability is used to pro
tect INCREASESALARY in class E~IPLOYEE (where it is defined) and in any

150 CHAPTER 12. A DISCRETIONARY SECURITY MODEL

instance or subclass (that inherits or redefines it), then it is very easy to
grant access rights simultaneously.

If we accept the general rule that the same capability will be used to
protect any facet x

• In the class c where it is defined;

• In any subclass of c that inherits or redefines x; and

• Any instance of c or one of its subclasses

then the restrictions given earlier are much simplified: rules G1.2, G2.2,
G3.1, G4.1, G4.2 and G4.3 fall away, leaving only rules G1.1 and G2.1. In
fact, it seems worthwhile trading the earlier generality for the simplicity
gained by the latter rule. In contrast, many mandatory security models
do allow inherited facets to be relabeled without any apparent problems,
compare (Kee89,Kee90,Lun90a,Var91]; see also chapters 6 and 9.

It is important to note that the mentioned restrictions (or equivalent
restrictions) do not only apply to DISCO: they apply to any similar model,
in other words any model that

1. Hides the existence of an entity from a subject if the subject is not
authorised to access the entity; and

2. Allows objects, classes and methods and/or instance variables to be
protected;

If requirement (1) above is dropped, the required restrictions are much less
strict. We do not go into details at this time.

12.4.2 Revoking rights

The rules restricting the passing of capabilities given above, also restrict
the revoking of capabilities. In general, a capability may not be revoked if
revoking it will leave some subject in possession of a capability that may
not be passed to it if it does not possess the revoked capability.

The following specific restrictions exist:

R1 A capability for a class may not be revoked from a subject if

.1 The subject possesses a capability for an instance of the class; or

.2 The subject possesses a capability for a subclass of the class;

12.4. TRA.NSFERRING CAPABILITIES 151

R2 A capability for a facet (method or instance variable) of an instance
may not be revoked from a subject if the subject possesses a capability
for the instance; and

R3 A capability for a facet (method or instance variable) of a class may
not be revoked from a subject if the subject possesses a capability for
the class;

R4 However, despite rules R2 and R3 it is permissible to revoke a capa
bility for a facet of a class c if access rights for that facet are simul
taneously revoked in all subclasses of c, in all superclasses of c and
in all instances of any of these classes; a capability for a facet of an
object may be revoked if the capability for that facet in its class (and
in the subclasses, superclasses and instances of its class) are revoked
simultaneously.

To illustrate these rules, suppose again that we have the database de
picted in figure 12.1. Suppose that the personnel manager wants to revoke
the right to invoke the INCREASESALARY method (defined in EMPLOYEE)
from some subject s. According to rule R4, this may he easily done by re
voking the capabilities for INCREASESALARY of EMPLOYEE, BLUECOLLAR,
WHITECOLLAR, JOHN and JAMES simultaneously. This is particularly easy
if all those methods are protected by the same capability.

Alternatively, to revoke the capability for INCREASESALARY of Ext
PLOYEE, the owner will proceed as follows: If s has a capability to access
BLUECOLLAR, that capability will first have to be revoked; before doing
that the capability to access JOHN will have to be revoked (if s does pos
sess such a capability). Similarly the capabilities for WHITECOLLAR and
JAMES will be revoked. The capabilities to access INCREASESALARY of
JOHN, BLUECOLLAR, VVHITECOLLAR, JAMES and EMPLOYEE may then
be revoked, after which the capabilities to access JOHN, BLUECOLLAR,
WHITE COLLAR, JAMES and EMPLOYEE may be passed to s again.

12.4.3 Establishment of capabilities

The rules restricting granting and revoking of rights also have implications
for the initial protection of entities: If the owner decides to protect an
entity with a specific capability, DISCO will first determine which subjects
have copies of the old and/or new capability to ensure that these rules will
not be violated. These rules may, for example, be violated if the owner
of a class were allowed to change the capability for a class and leave some
subject in possession of a capability for an instance of the class, but without

152 CHAPTER 12. A DISCRETIONARY SECURITY MODEL

the new capability for the class itself. A related problem may occur if the
owner selects an existing capability to protect an entity: another subject
may already possess the capability and suddenly be authorised to access the
entity; in practice this would not be a problem on its own, since there will
probably be a reason for using an existing capability and a (related) reason
why the other subject already possesses the capability. However, this could
be a problem if the change will enable another subject to access the entity
under circumstances where passing a capability for the entity to this other
subject would have violated one of the given rules. DISCO therefore checks,
whenever the capability associated with an entity is replaced by another
capability, that none of the granting or revocation rules are violated by the
facts that

• All those subjects in possession of the old capability, but not of the
new capability, will no longer be allowed to access the entity (a capa
bility is thus effectively revoked); and

• All those subjects in possession of the new capability, but not of the
old capability, will now effectively be granted the right to access the

. protected entity.

From the preceding discussion, we recommend that the capability nec
essary to access an entity is established as soon as possible after the entity
is created and not modified afterwards. This is illustrated by our exam
ple earlier where we used the CREATE method of a class the establish the
protection of an entity.

12.5 Information flow

Although information flow is usually not considered as part of a discretio
nary access control model, but rather as part of a mandatory access control
model, we will briefly mention the possibility to include it in DISCO. The
main characteristic of a discretionary access control model is the fact that a
user has discretionary power to determine who may access information (or
resources) owned by the specific user. In a mandatory access model users
have no such power; in fact the model ensures that information does not
even flow via an indirect route to a subject not authorised to access it.

One possible reason for including information flow aspects in a discre
tionary access control model is to ensure that information does not flow
unintentionally to a subject not authorised to access it; if the owner does
indeed want that subject to access the information, the owner can easily
authorise that subject appropriately-e-without this explicit action from the

12.5. INFORlvIATION FLOW

• The initial message from the primary accessor has low sensitivity
because it does not contain any information;

• A method starts execution with the sensitivity of the message that
activated it;

• The sensitivity of the method activation is adjusted whenever it
receives a reply after sending a message-the sensitivity is ad
justed to the least upper bound of its current sensitivity and the
sensitivity of the reply; similar action is taken when a value is read
from a variable;

• All messages sent by a method activation has the sensitivity cur
rently associated with the activation; whenever the sensitivity of
the method activation is adjusted, all subsequent messages will be
sent with the new sensitivity level; and

• If the method sends a reply to its calling method, the reply has
the last 'current' sensitivity of the method activation.

Table 12.2: Rules for determining the sensitivity ofa message.

153

owner the owner can rest assured that the information will stay protected
and that another (authorised) subject can not pass the information on to
the unauthorised subject.

For DISCO we use the parameters from chapter 10 to describe this
aspect of the model.

In DISCO the authorisation (parameter X3.1) depends on the primary
accessor only; in other words. the authorisation of the (human) subject is
not influenced by the path the request follows.

Message sensitivity (parameter X3.2) in DISCO is determined according
to the usual rules given in table 12.2-see chapter 9 for details.

DISCO restricts the flow of sensitive information (parameter X3.3) by
rejecting messages that will write information to variables that are not
protected enough. It may be interesting to consider the implications of
using other options for this design parameter.

154

12.6

CHAPTER 12. A DISCRETIONARY SECURITY MODEL

Possible future work

An aspect that DISCO did not address is the possibility to view capabilities
as objects. The capabilities may be instantiated from classes, where the
classes form a hierarchy. If a capability of a given class is required to access
an entity, any instance of a subclass will be sufficient to access the entity.
Anyone authorised to invoke the CREATE method of such a capability class
may create new capabilities, in other words distribute access rights to other
subjects. Implicit in the above discussion is the fad that capability classes
and capability objects may be protected by capabilities themselves.

12.7 Conclusion

See appendix B for a summary of DISCO.
Two aspects of DISCO are especially noteworthy:

• Restrictions that DISCO imposes on the granting and revocation of
rights must be imposed by any similar object-oriented discretionary
security model; and

• The ability to include the setting up of initial security attributes for a
new object as part of the CREATE method makes it possible to include
a significant part of the security policy of a company in the CREATE
methods of the various classes; it may be worth investigating to what
extend the security policy can be encoded in methods, limiting the
freedom of owners to pass capabilities in an ad hoc fashion to other
subjects.

We make the following specific recommendations for security models
similar to DISCO:

• The same capability must be used to protect any inherited facet,
from the point where it is defined, through any subclasses where it is
redefined, up to any instances where it is available; and

• The decision on which capability must be used to protect any entity
must be made as soon as possible after the entity is created; this must
be changed as infrequently as possible.

Chapter 13

Epilogue

This final chapter evaluates the state of the research described
in this work. It also identifies directions in which this research
may be continued.

155

156 CHAPTER 13. EPILOGUE

We "hall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot
Little Gidding, 5

13.1. INTRODUCTION 157

13.1 Introduction

A piece of work hardly ever reaches a point where it cannot be improved.
This work is no different: it can be expanded and refined in many ways.
However, after such expansion or refinement, it will probably still be open
for improvement. One therefore has to decide at what point to stand back
and appraise what has been done. \Ve feel that this work has reached such a
point-a point where the work can be submitted for criticism. \Ve therefore
submit it with the hope that it will draw comments to enable us to evaluate
the current research. May it contribute to the work of others, and may it
stimulate our future research.

13.2 Results

Results from this research have been communicated in a number of papers.
At present the following papers have been submitted for refereeing:

• "Building a secure database using self-protecting objects", based on
chapter 6 (accepted for publication by Computers & Security);

• "An object-based version of the Path Context Model", based on chap
ter 5;

• "A taxonomy for secure object-oriented databases", based on chapters
7 to 11; and

• "DISCO: a discretionary security model for object-oriented databa
ses", based on chapter 12 (accepted for IFIP SEC'92, Singapore).

13.3 Future research

The work described in this thesis may be extended and supported by a
number of future research projects. In this section we consider some of the
questions that may be addressed by such projects. A number of the issues
listed here has been described earlier in the thesis; however, we list such
issues again to present a coherent account.

13.3.1 The taxonomy

Chapter 11 mentioned a number of ways in which the taxonomy may be
extended-the inclusion of any of the 'new' parameters touched upon there

158 CHAPTER 13. EPILOGUE

or the identification of other new parameters may be investigated to this
end.

In addition, the following issues warrant attention:

• Many of the models covered by the given taxonomy seem complex to
implement. However, security models must be simple to implement:
Only if simple implementation strategies exist, will it be possible to
trust that the implementation accurately reflects the model. Fur
ther, the implementation must be economical: if the security model
adds too much overhead costs to the operation of the system, the
model is not practical. The first research issue is therefore to find
implementation strategies that economically implement some of the
more complex models (such as SECDB). Examples of implementation
strategies for conventional databases may be found in [LafOO}.

Such an investigation of implementation strategies for secure object
oriented databases could also reveal additional insights about possible
choices for the various design parameters.

• Most of the work on sensitivity flow use the sensitivity of the variable
or object or the sensitivity of the value contained in such a variable to
restrict such flows to ensure secrecy. We also used this approach, both
in the description of SECDB (chapter 6) and in the taxonomy (chapter
10). However, as mentioned in both those chapters, it is more natural
to determine the sensitivity of methods because methods represent the
activities individuals have to execute as part of their functions in an
organisation. To illustrate the problem, suppose that some (possibly
non-sensitive) information is returned by a very sensitive method. IT
this information is now stored in another location, should

- The receiving variable be marked as sensitive;

- All method3 with access to the variable be marked as sensitive;
or

- Is it possible to determine (or approximate) the actual sensitivity
of the information using all the methods with access to it as a
basis?

The answer is not obvious. Alternatives should be considered.

• It will be worthwhile to examine individual, existing design param
eters. This may be done to discover alternative possible values for
such parameters and to study the influence of such values on other
parameters.

13.3. FUTURE RESE.4RCH 159

• Polyinstantiation should be investigated-an initial discussion is con
tained in section 11.6. It is possible to incorporate polyinstantiation
in the axioms for the taxonomy (chapter 7) and consider its influence
on all the results obtained with the aid of the taxonomy. 'Polyinstan
tiation' may have its usual meaning or it may be one of the weaker
forms described in chapter 11. It is also possible to investigate (math
ematically) what the properties of the weaker forms are.

13.3.2 Discretionary security

Very little has been published on discretionary security; DISCO (chapter
12) is an initial attempt to address this aspect of security. Other aspects
of discretionary security that may be investigated, include the following:

• A discretionary security model for object-oriented databases may be
formulated where the capabilities themselves are objects. Issues that
need addressing in such a model include the role of capability classes,
the influence of inheritance between such classes, the methods that a
capability object must support and the mechanism to transfer capa
bilities.

• DISCO indicated how the CREATE method of a class may be used
to group a number of 'capability operations' (together with normal
operations') in a method. The extent to which the security policy
of an organisation may be reflected by such sequences of capability
operations is unknown.

In a certain sense, direct manipulation of capabilities (such as transfer
and revoke) correspond to direct manipulation of data; benefits are
gained by encapsulating data in objects and only allowing the object's
methods to manipulate the data; it is possible that similar benefits
may be gained by encapsulating capabilities in objects and providing
methods to (exclusively) manipulate the capabilities.

• DISCO uses existence protection to interpret protection (X1.2) and
identifies a number of restrictions that apply to the manipulation
of capabilities; similar, but not identical, restrictions will apply if
protection is interpreted differently. It will be enlightening to identify
restrictions for other protection interpretations.

13.3.3 Distributed databases

If a database is distributed the security problem is more complex than
in the centralised case. Object-oriented databases do map naturally to a

160 CHAPTER 13. EPILOGUE

distributed environment; however object-orientation on its own is not suffi
cient to solve the problem (as [Var91] seems to assume). Aspects of network
security have to be considered when a model for a secure distributed system
is developed.

Models that consider the cccess path (such as SECDB) or the Jet of
active objects to determine the authori3ation (X3.1) have potential benefits
for distributed systems, because it may take the fact that a request comes
from a remote system into account when it determines whether a request
should be allowed to access an entity.

Models that address these issues for secure distributed databases need
to be developed.

13.3.4 SECDB

Chapter 6 identified a number of research questions that have to be an-
swered before SECDB will be practical. These are: .

• Automated profile generation and automated validation of profiles
(for consistency); .

• Identification of unnecessary baggage in order to keep baggage as
small as possible;

• Implications of multiple inheritance on the model;

• Designing a notation for specifying security constraints (especially in
real-world systems): and

• The model should be applicable to distributed systems where requests
may come from many sites, often not even directly connected to the
database site; note that the distributed systems may operate concur
rently, and the effects of this on the model should be investigated.

13.3.5 Security policy

The security policy is a document that prescribes the implementation of
computer security in a particular organisation. A number of research
projects are under way to investigate the link between such a document
and the computer security actually implemented in an organisation-see
for example [Pot9l]. This work referred to a number of issues that may
influence the format of the security policy. We mention some of these:

13.3. FUTURE RESEA.RCH 161

• A security model such as SECDB requires profiles to function. If
the security policy is in an acceptable format, it may be possible to
automate the generation of profiles from the security policy;

• DISCO indicated that it may be possible to combine 'primitive' se
curity operations (such as the passing of capabilities) into methods:
these methods may represent activities described in the security pol
icy, thus offering a higher level of abstraction for security operations;
it may also restrict the extent to which security entities may be ma
nipulated at a primitive level.

162 CHAPTER 13. EPILOGUE

Bibliography

[Aho86]

[Atk89]

[Atw90]

[Aye91]

[BeI76]

[Bib77]

[Bos89a]

[Bos89b]

[Bos90]

AV Aho, R Sethi and JD Ullman, Compilers: Principles, Tech
niques, and Tools, Addison-Wesley, 1986

M Atkinson ei al, "Object-oriented Database System Man
ifesto", Proceedings of the first international Conference on
Deductive and Object-oriented Databases, Kyoto, Japan, De
cember 1989

T Atwood, "The Object-oriented Database System Manifesto:
A Consensus from Academia", Hotline on Object-oriented
Technology, 1, 3, January 1990, 6-9

TR Ayers, DK Barry, JD Dolejsi, JR Galarneau and RV
Zoeller, "Development of ITASCA™'' Journal of Object
oriented Programming, 4, 4, July/August 1991, 46-49

DE Bell and LJ LaPadula, "Secure computer system: unified
exposition and Multics interpretation", Rep. ESD- TR- 75-306,
March 1976, MITRE Corporation

K Biba, "Integrity Considerations for (,ecure Computer Sys
terns", US Air Force Electronic Systems Division, 1977

WH Boshoff and SH von Solrns, "A Path Context Model for
Addressing Security in Potentially Non-secure Environments",
Computers & Security, 8, 1989, 417-425

WH Boshoff, A Path Context Model for Computer Security
Phenomena in Potentially Non-Secure Environments, Ph.D
Dissertation, Rand Afrikaans University, 1989

WH Boshoff and SH von Solrns, "Application of a Path Con
text Approach to Computer Security Fundamentals", Infor
mation Age, 12, 2, April 1990, 83-90

163

164

[Cae90]

[Dat90}

[Dav89]

(Den88]

[Dit89]

(Gar90]

[Gar91]

(GoI83}

[Hai90]

[Har76]

[Kee89]

[Kee90]

[Kim89]

[Kim91]

BIBLIOGRAPHY

W Caelli, Private communication

CJ Date, An Introduction to Database Systems Volume 1, 5th
ed., Addison-Wesley, 1990

JR Davis, "IBM's data management design", Patricia Sey
bold's Office Computing Report, 12, 12, December 1989, 1-12

DE Denning, "Database Security", pp 1-22 in [Tra88], 1988

KR Dittrich, M Hartig and H Pfefferle, "Discretionary Access
Control in Structurally Object-Oriented Database Systems",
pp 105-121 in [Lan89], 1989

TD Garvey and TF Lunt, "Multilevel Security for Knowledge
Based Systems", Proceedings of the Sixth Computer Security
Applications Conference, Tuscon, Arizona, December 1990

TD Garvey and TF Lunt, "Multilevel Security for Knowledge
Based Systems", Technical Report SRI-CSL-9I-0l, Computer
Science Laboratory, SRI International, February 1991

A Goldberg and D Robson, Smalltalk 80: The Language and
its Implementation, Addison-Wesley, 1983

B Hailpern and H Ossher, "Extending Objects to Support
Multiple Interfaces and Access Control", IEEE transactions
on Software Engineering, 16, 11, November 1990, 1247-1257

M Harrison et al, "Protection in Operating Systems", Com
munication" of the ACM, 19, 8, August 1976, 461-471

TF Keefe, WT Tsai and MB Thuraisingham, "SODA: A Se
cure Object-oriented Database System", Computers & Secu
rity, 8, 1989,517-533

TF Keefe and WT Tsai, "Prototyping the SODA Security
Model", pp 211-235 in [Spo90], 1990

VV Kim and FH Lochovsky (eds), Object-oriented Concepts,
Databases, and Applications, Addison-Wesley, 1989

W Kim, "Object-oriented database systems: strengths and
weaknesses", Journal of Object-oriented Programming, 4, 4,
1991, 21-29

BIBLIOGRAPHY 165

[Laf90]

[Lan89]

[Lar90]

[Lun89]

[Lun90a]

[Lun90b]

[Min87]

[Miz90]

[Pfl89]

[Pot91]

[Sal74]

[San90]

C Laferriere, "A Discussion of Implementation Strategies for
Secure Database Management Systems", Compuiers & Secu
rity. 9, 1990, 235-244

CE Landwehr (ed), Database Security II: Siaius and Prospects,
North-Holland, 1989

MM Larrondo-Petrie, E Gudes, H Song and EB Fernandez,
"Security Policies in Object-oriented Databases", pp 257-268
in [Sp090], 1990

TD Garvey and TF Lunt, "Secure Knowledge-based Systems",
Technical Report SRI-CSL·90-04, Computer Science Labora
tory, SRI International, August 1989

TF Lunt, "Multilevel Security for Object-Oriented Database
Systems", pp 199-209 in [Spo90], 1990

TF Lunt, DE Denning, RR Schell, M Heckman and vVR
Shockley, "The SeaView Security Model", IEEE Trans actions
on Software Engineering, 16, 6, 1990, pp 1247-1257

NH Minsky and D Rozenshtein, "A Law-Based Approach
to Object-Oriented Programming", Proceeding" of the Con
ference on Object. Oriented Programming Sy"tem3, Language"
and Application", ACM, October 1987, 482-493

M Mizuno and AE Oldehoeft, "An Access Control Language
for Object-Oriented Progranuning Systems", Journal of Sy,,
terns Software, 13, 1990, 3-12

CP Pfieeger, Security in Computing, Prentice-Hall, 1989

D Pottas, Ph.D Thesis, Rand Afrikaans University (In prepa
ration)

J Saltzer, "Protection and the Control of Information Sharing
in MULTICS", Communication" of the ACM, 17, 7, Ju11974.
388-402

R Sandhu, "Multilevel Object-oriented Databases", 13th Nc
tional Computer Security Conference, Washington DC, 1990,
597-598

166

[Shi89]

[Shr88]

[Sny81]

[Spo89]

[Spo90]

[Thu89]

[Tra88]

[Van70]

[Var91]

[Weg88]

[Weg90]

BIBLIOGRAPHY

JJ Shilling and PF Sweeney, "Three Steps to Views: Extend
ing the Object-Oriented Paradigm" Proceedings of the Con
ference on Object- Oriented Programming Systems, Languages
and Applications, ACM, October 1989, 353-361

B Shriver and P Wegner (eds), Research Directions in Object
Oriented Programming, MIT Press, 1988

L Snyder, "Formal Models of Capability-Based Protection Sys
terns", IEEE Transactions on Computers, 30, 3, March 1981,
172-181

DL Spooner, "The Impact of Inheritance on Security in
Object-Oriented Database Systems", pp 141-150 in [Lan89],
1989

DL Spooner and C Landwehr (eds), Database Security III:
Status and Prospects, North-Holland, 1990

MB Thuraisingham, "Mandatory Security in Object-Oriented
Database Systems", Proceedings of the Conference on Object
Oriented Programming SysteTn3, Languages and Applications,
ACM, October 1989, 203-210

JF Traub et al (eds), Annual Review of Computer Science
Volume 3, Annual Reviews Inc, 1988

AP J van der Walt, "Random Context Languages Symposium
on Formal Languages", Oberwolfach, West Germany, 1970

V Varadharajan and S Black, "Multilevel Security in a Dis
tributed Object-Oriented System" Computers & Security, 10,
1991,51-67

P Wegner, "The Object-Oriented Classification Paradigm",
479-560 in [Shr88], 1988

P Wegner, "Concepts and Paradigms of Object-Oriented Pro
gramming", OOPS Messenger, 1, 1, 1990, 7-87

Appendix A

Taxonomy: Summary

The taxonomy described in chapters 7 to 11 is summarised in
this appendix.

167

168 APPENDIX A. TAXONOMY: SUMMARY

A brief summary of the classification structure proposed in this thesis
follows. Options that we considered for each of the design parameters are
mentioned.

Xl Labeling semantics

Xl.I Underlying model
We considered explicit security levels, access control lists, capabilities

and extensions based on these mechanisms, as well as combinations
of these. Other mechanisms are possible.

Xl.2 Protection interpretation
Only two possibilities were considered: existence protection and ac

cess protection. Other possibilities were mentioned.

X2 Structural labeling

X2.I Protectable entities
Work in this work was based on the premise that any object or

class or any facet of such an object or class may be labeled. Note
our interpretation of the term class. Weaker forms of the restrictions
apply if single-level objects are used.

X2.2 Label instantiation
This work used only one mechanism to label entities: inheritance;

in other words, a class is labeled and the labels are inherited by
subclasses and instances.

X2.3 Relationship restrictions
The compulsory restrictions are summarised in tables 9.1 and 9.2.

Other restrictions a model may require and/or enforce were indicated.

X3 Dynamic labeling

X3.I Authorisation flow
This work indicated how clearance may depend on the primary ac

cessor, the set of active objects or the access path. The relevant at
tributes were also identified. In addition to the method a secure
database model uses, it thus have to specify up to four additional
pieces of information:

1. The format of the clearance attributes p:::.c, ai.C and AI.c);

2. The format of the sensitivity attribute (e.l);

169

3. For which values of M:c and e.l message M may access entity e;
and

4. How are clearances combined, ie define clear.

X3.2 Sensitivity flow
A list of rules was given that may be used to sensitivity label mes

sages; see table 10.6 for a summary. Models may use variations of
these and also additional rules to label messages.

X3.3 Information flow restrictions
Four possible strategies have been identified to prevent information

from being compromised as a result of it flowing through the system,
namely

1. Reject it if the sensitivity of the receiving variable is not high
enough;

2. Increase the sensitivity of the receiving variable or object if nec
essary;

3. Modify the sensitivity of the receiving variable up or down (but
not lower than a fixed lower limit); or

4. Use polyinstantiation.

170 APPENDIX A. TAXONOMY: SUMMARY

Appendix B .

Taxonomy: Examples

This appendix illustrates the taxonomy described in chapters 7
to 11 using a number of examples.

171

172

n.i SODA

A.PPENDIX B. TAXONOMY: EX.AMPLES

Xl Labeling semantics

Xl.I Underlying model: Explicit (numeric) levels.

Xl.2 Protection interpretation: Access protection.

X2 Structural labeling

X2.I Protectable entities: Either the instance variables of an object or
the entire object.

X2.2 Label instantiation: Inheritance.

X2.3 Relationship restrictions: Nothing is specified explicitly; normal
restrictions for access protected models (table 9.2) apply.

X3 Dynamic labeling

X3.I Authorisation flow: Authorisation based on clearance of primary
accessor (table 10.2). Clearance of subjects and sensitivity of entities
are integers (range not specified). A subject with clearance s.c may
access an entity with sensitivity e.l if s.c ~ e.l,

X3.2 Sensitivity flow: The normal ru1es (table 10.6) apply, except that
the production M -+ PXi has the semantic action M.u := xi.l' where
Xi.!' denotes the initial sensitivity of variable Xi.

X3.3 Information flow restrictions: SODA uses polyinstantiation. In
addition, SODA rejects messages that are more sensitive than the
specified upper limit for the concerned variable-see equation 10.10
on page 128.

B.2 Lunt

Xl Labeling semantics

Xl-I Underlying model: Explicit levels.

Xl-2 Protection interpretation: Existence protection.

X2 Structural labeling

X2.1 Protectable entities: Objects and facets of an object (methods
and instance variables).

B.3. SECDB

X2.2 Label instantiation: Not specified.

X2.3 Relationship restrictions: Summarised in table 9.3.

X3 Dynamic labeling

173

X3.I Authorisation flow: Message clearance is based on the primary
accessor according to property 6-see equations 10.8 and 10.9 on page
117 with the accompanying discussion.

X3.2 Sensitivity flow: The sensitivity of a message seems to be equal to
the classification level of the subject that sent it.

X3.3 Information flow restrictions: Not specified.

B.3 SECDB

Xl Labeling semantics

Xl.I Underlying model: Path Context Model (PCM).

Xl.2 Protection interpretation: Access protection, but axiom 7 does
not apply.

X2 Structural labeling

X2.I Protectable entities: Layers of an object, methods and variables.

X2.2 Label instantiation: Inheritance.

X2.3 Relationship restrictions: Nothing is specified explicitly; normal
restrictions for access protected models (table 9.2 on page 107) apply,
except those based on axiom 7.

X3 Dynamic labeling

X3.I Authorisation flow: Authorisation based on complete access path
(table lOA on page 120). Clearance attributes are baggage vectors
identifying the object, method, domain (processor) and processor in
tegrity state. Clearance attributes are combined by concatenating
them. Sensitivity attributes (profile") are (parts of) a formal gram
mar. A subject with clearance attribute s.c may access an entity
with sensitivity attribute e.l if the string s.c is a word of the language
specified by e.l.

174 APPENDIX B. TAXONOMY: EXAMPLES

X3.2 Sensitivity flow: The normal rules (table 10.6 on page 125) apply.

X3.3 Information flow restrictions: Sensitivity of concerned variable
is increased.

B.4 DISCO

Xl Labeling semantics

Xl.I Underlying model: Capabilities.

Xl.2 Proteetioninterpretation: Existence protection (a subject does
not know that an entity exists if the subject is not authorised to
access the entity).

X2 Structural labeling

X2.1 Protectable entities: Objects, methods, variables and classes.

X2.2 Label instantiation: The creator (instantiator) initially has all ac
cess rights for the entire object.

X2.3 Relationship restrictions: No additional relationship restrictions
are specified; the normal restrictions for existence protected models
(tables 9.1 and 12.1) apply.

X3 Dynamic labeling

X3.1 Authorisation flow: Authorisation is based on clearance of pri
mary accessor only.

X3.2 Sensitivity ftow: The normal rules (table 12.2) apply.

X3.3 Information ftow restrictions: Messages that will cause informa
tion to be written to less sensitive variables will be rejected.

List of Figures

6.1 The operation of messages . 56
6.2 Objects are layered entities 60
6.3 Multiple profiles 61
6.4 Tagging profiles to messages . 63
6.5 Example 67

10.1 A sequence of messages 114

12.1 Example of a database. 149

175

176 LIST OF FIGURES

List of Tables

5.1 Notation used to describe PCM 39

6.1 Profiles tagged if the methods of figure 6.4 return results. 64
6.2 Profiles tagged if the methods of figure 6.4 do not return

results " '" 65

9.1 Relationship restrictions for an existence protected model. 107
9.2 Relationship restrictions for an access protected model. 107
9.3 Relationship restrictions imposed by the Lunt model. . 108

10.1 Productions for the events of figure 10.1 115
10.2 Semantic rules to determine message clearance based on the

primary accessor ., 119
10.3 Semantic rules to determine message clearance based on ac-

tive objects " 119
10.4 Semantic rules to determine message clearance based on the

access path . 120
10.5 Example of access checking rules for a specific model 122
10.6 Semantic rules for message sensitivity 125

12.1 Relationship restrictions for DISCO.
12.2 Rules for determining the sensitivity of a message.

177

146
153

178 LIST OF TABLES

Index

*-property, 13, 57,68,113

access control list (ACL),36,
71, 81, 88, 121, 136

acces path (for authorisation flow),
118

access protection, 91

relationship restrictions
for - (parameter X2.3), 107

active objects (for authorisation
flow), 118

aggregation, 31,92,133

see also inference

attribute

c (clearance), 118, 121, 122
1 (sensitivity), 118, 121, 122, 124
llow (lowest sensitivity), 124
r (returned clearance), 120
u (returned sensitivity), 124

authorisation flow (parameter
X3.1), 117, 160, 168

DISCO, 153
Lunt model, 117
SECDB, 117, 122

SODA, 117

availability, 10

baggage

OPCM,49
PCM,37,40
SECDB,55,57,122

179

Baggage Collection Vehicle
(BCV)

OPCM, 47
PCM,39

Bell-Lapadula model, 13,89

see also simple security
property and *-property

Biba model, 14

C (set of classes), 79

capability, 36, 88, 122, 136, 141,
154

category (security), 12

class

in object-oriented system see
object-orientation

set of -es C,79

class (function), 80

class-baserl,20

clear (function), 118, 121, 122

context (for grammar), 41, 43, 50,
58

database, 21

models, 23

object-oriented, 24, 25, 55
secure, 78

DISCO, 139

authorisation flow (parameter
X3.1), 153

180

information flow
restrictions (parameter
X3.3), 153

protectable entities
(parameter X2.1), 142

protection interpretation
(parameter Xl.2), 142

relationship restrictions
(parameter X2.3), 146

sensitivity flow (parameter
X3.2), 153

summary, 174
underlying model (parameter

Xl.1), 142
discretionary security, 11, 26,

36, 135, 139, 159

distributed system, 72, 159

E (set of entities), 83

ent (function), 89

entity (unit of protection), 9, 23, 83,
89

set of -ies E, 83

existence protection, 90

relationship restrictions
for -- (parameter X2.3), 107

explicit levels (underlying
model),87, 121

extended path context grammar,
42,48

function

class, 80
clear, 118, 121, 122
ent, 89
£,89, 123
subj,89

sup,80

INDEX

gate (SECDB), .58, 61

grammar (formal)

extended path context --,42,
48

random context --,41,42,58
guardian, 57

Harrison-Ruzzo-Ullman model, 14

implementation, 12,29,70,133,158

inference, 27, 30, 133

see also aggregation
information flow ~ecurity

models, 13

information flow restrictions
(parameter X3.3), 126, 169

DISCO, 153
SECDB, 128
SODA, 128

inheritance

see object-orientation
mUltiple --, 105

integrity, 9, 13, 27, 136

-- *-property, 14
Biba model, 14
simple integrity property, 14

L (function), 89, 123

label instantiation (parameter
X2.2), 99, 143, 168

SECDB, 68, 100
SODA, 100

lattice, 13,88,89

lattice security models, 13

Law-based model, 72,82

level (security)

see explici_t levels

INDEX

Lunt's model, 81

authorisation flow (parameter
X3.1), 117

protection interpretation
(parameter X1.2), 91

relationship restrictions
(parameter X2.3), 102, 104,
106, 108

sensitivity flOli (parameter
X3.2),124

summary, 172

mandatory security, 11,27

message

in object-oriented system see
object-orientation

SECDB,55

metaclass see obj ect-orientation

method see object-orientation

military security model, 13

multilevel object, 98

multilevel security (MLS), 11,27

multiple inheritance, 105

object

in object-oriented system see
object-orientation

set ot -s U,79
single level, 98

object-based, 20,46

Object-based PCM,46

baggage, 49
Baggage Collection Vehicle

(BCV),47
profile, 48
validator,50

object layers (SECDB), 59

181

object-orientation, 15,55, 79

class, 18
inheritance, 19
message, 18, 113
metaclass, 59, 98
method, 17, 113
object, 15
subclass, 19
superclass, 19

object-oriented database, 24, 25,
55

Object-oriented Database System
Manifesto, 19,23,26

OPCM see Object-based PCM

Path Context Model (PCM), 33, 38,
55, 69

baggage, 37,40
Baggage Collection Vehicle

(BCV),39
profile, 37, 41
validator,38,44

polyinstantiation, 28, 65, 90, 98,
128, 137, 159

primary accessor, 113, 117, 118

profile

OPCM,48
PCK,37,41
SECDB,56,57,58,123

protectable entities (parameter
X2.1), 97, 168

DISCO, 142
SEeDB, 60, 99
SODA, 99

protection interpretation
(parameter X1.2), 89, 168

DISCO, 142
Lunt model, 91
SORION,91

182

random context grammar, 41, 42, 58

relationship restrictions
(parameter X2.3), 100, 168

access protection, 107
additional --, 100
compulsory --, 100
DISCO, 146
existence protection, 107
Lunt model, 102, 104, 106, 108
SORION, 102, 104, 106

role-based security, 61,66, 70

S (set of subjects), 83,88

SECDB, 53, 82, 160

authorisation floil (parameter
X3.1), 117,122

baggage, 55,57, 122
gate, 58, 61
information floil

restrictions (parameter
X3.3),128

label instantiation
(parameter X2.2), 68, 100

message, 55
object-layers, 59
profile, 56, 57,58,123
protectable entities

(parameter X2.1), 60, 99
summary, 173
validator,69

secrecy, 9

secure database, 78

security model, 12

Bell-Lapadula, 13.89
see also simple security

property and *-property
Biba, 14

. Harrison-Ruzzo-Ullman, 14
information floil --s, 13

INDEX

lattice -s, 13
military, 13
take-grant, 14

security policy, 26, 154, 1.59, 160

sensitivity, 89

increase - (information flow
restriction), 127

modify -- (information flow
restriction), 127

sensitivity floil (parameter
X3.2), 123, 169

DISCO, 153
Lunt model, 124
SODA, 124

simple integrity property, 14

simple security property, 13, 68,
89

single level object, 98

single level SUbject, 125

Smalltalk, 17

SODA, 71,81

authorisation floil (parameter
X3.1),117

information floil
restrictions (parameter
X3.3),128

label instantiation
(parameter X2.2), 100

protectable entities
(parameter X2.1), 99

sensitivity floil (parameter
X3.2),124

summary, 172

SORION,81

protection interpretation
(parameter X1.2), 91

relationship restrictions
(parameter X2.3), 102, 104, 106

INDEX

subclass

in object-oriented system see
object-orientation

set of --5 5,83,88
subj (function), 89

subject, 9, 88, 123

single level, 125
sup (function), 80

superclass see
object-orientation

take-grant security model, 14

U (set of objects), 79

underlying model (parameter
xi.n, 87, 168

DISCO, 142

validator

OPCM,50
PCH,38,44
SECDB,69

views, 29, 72, 81, 135, 138

183

