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Abstract 

This dissertation presents and explains methods for the dynamic modeling of robot 
like mechanisms. These mechanisms can have multiple degree of freedom joints and 
contain closed-chains. 

A new kinematic notation is proposed. The algorithms, including those used for 
the inverse and direct dynamics, are all based on spatial notation and a general joint 
model, providing a quite general, integrated and complete method for solving the 
dynamics of simple closed-chain mechanisms. 

Opsomming 

Hierdie verhandeling toon en verduidelik metodes om die dinamika van robot tipe 
meganismes te modelleer. Hierdie meganismes kan skarniere met veelvoudige grade 
van vryheid bevat, asook geslote kettings. 

'n Nuwe kinematiese notasie word voorgestel. Die algoritmes, insluitend die vir 
die inverse en direkte dinamika. maak almal gebruik van ruimtelike notasie en 'n 
algemene skarniermodel, vat 'n redelik algemene, geintegreerde en volledige metode 
daarstel vir die oplos van die dinamika van eenvoudige geslote-ketting meganismes. 
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Chapter 1 

Introduction 

Therefore, 0 students, study mathematics, and do not build without 
foundations. 

Leonardo da Vinci 
Quaderni d'Anatomia I 13v.1 

No matter how much we abstract our world or how deep we delve into the depths 
of Cyberspace, virtual reality, finance and economy, the human race can never escape 
the fact that its existence and survival is irrevocably dependent on its interaction with 
the physical world we live in (in this world, at least). It is a world where objects have 
mass, energy and chemical and nuclear properties. By interacting with this world, 
we must find food, shelter, and companions. 

There will always be the need to manipulate physical objects, which in the most 
basic form would be to move objects in space. This is exactly what we do when we 
sow seeds in order to raise crops, put one brick on top of another to build a house, 
assemble parts to manufacture a car, or walk/sail/drive/fly to the vicinity of another 
human being in order to interact with it. 

As we abstract our world, human physical labour becomes less acceptable — so-
cially and economically. Even now, it is frequently better to let machines do the 
physical work. It might not only be cheaper, more accurate and reliable, but it frees 
workers from boredom in repetitive work. Often it is morally unacceptable to let 
humans perform certain tasks due to the danger involved in it. In such instances one 
has no option but to use a mechanical manipulator. 

Examples where such manipulators, or robots, are used, include the following: 

• In industry: 
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Spray painting 

Welding 

Materials handling and warehousing 

Machine loading 

Assembly 

Measurement 

Handling of toxic waste 

Cleaning the pipes of nuclear power plants 

In science: 

Manipulating equipment in space 

Performing hazardous experiments 

Assembly in clean rooms 

Multi-legged vehicles 

In medicine: 

Precision surgery 

Actuated prostheses 

The list of current and future applications involving robotic systems might sound 
like science fiction, but the reality remains that we are dependent on systems that 
can manipulate objects, and we will become even more dependent on such systems 
in the future. 

Such systems usually consist of jointed structures - to allow the motion of one 
part with respect to another - and actuators to exert a force, in a certain direction, 
on the parts joined at the joint. Some control system is also required to control the 
forces and ultimately the positions of the parts of the structure. Not all systems of 
this type are associated with such glamorous applications as cited above, but com-
mon cranes on construction sites and on quays, and machines in a production process 
which fills a container with some substance or which sticks a label on an assembly, 
also forms part of these systems. 

Such systems must be designed - both mechanically and electronically, and their 
control systems must be actualized - then built, tested and operated. At the concep-
tual design stage, the designers must know what the system must do, in this case, 
How it must move and how it must manipulate the environment. They must have a 
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good idea of what forces the structure will experience in operation. These forces can 
be measured after the system has been built, but it is advisable and more economic 
to design the system before building it. In order to determine the behaviour of the 
system before it is built, one needs to construct a mathematical model of the system. 
Both the mechanical behaviour of the structure and the working of the control system 
can be modeled mathematically. The model for the mechanical behaviour is called 
the dynamic model' of the structure, and can be used to determine what forces the 
structure will experience if moving in a certain way, and how it will move if certain 
forces are applied to it. The designers can then optimize these models and iteratively 
reach an acceptable concept. 

When the mechanical design has matured and a concept control system has been 
designed, the control system can be tested by using its control outputs as inputs to 
the dynamic model, and the states of the dynamic model as inputs to the control 
system. Immediately a distinct advantage of a dynamic model should be clear: all 
the state variables are at hand. In a physical system it might be very difficult and 
impractical to measure all the state variables. This should aid control designers con-
siderably in optimizing the performance of the system. 

If the control system designer happened to choose some form of adaptive con-
trol, this control system can be trained on the dynamic model of the system, before 
installing it in the physical system. In this way they can avoid possible damage 
to the mechanical structure of the system, caused by a control system that cannot 
yet adequately control the physical system. For very difficult control tasks, training 
the controller on the mathematical dynamic model may be the only way of doing it 
because of the very large number of training iterations needed. 

In tele-operated systems' - where the controller or operator is so far from the 
controlled system that there is an appreciable time delay for the closing of the feed-
back loop, it might not be possible to control the system based on its state a few 
seconds ago. In this case one would have to simulate how the system is expected to 
react, and at any time base the present control actions on the estimated state of the 
system at the future point - as given by the simulation. The simulation can then 
itself be fine tuned when the state feedback arrives, to make it more accurate. 

From the discussion it can be seen that a mathematical model for the dynamic 

1 A model that relates the general forces on a manipulator to the first and second time derivative 
of the general position of the structure. The general position can either be the position of the end 
effector, or the joint positions of the joints in the manipulator. 

2 A manipulator on a spacecraft that is being controlled by an operator on earth is an example 
of a tele-operated system. 
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Dynamics of systems of rigid bodies 

Simple Coed-C,hain 

(mechanical) behaviour of a manipulation system is helpful or even indispensable in: 

the design of the mechanical structure of manipulators and similar equipment; 

the design of control systems for such equipment; 

the testing of such conceptual systems complete with a controller; 

the control of tele-operated systems; 

and it has been shown how such a model fit into the greater scheme of things in the 
struggle for survival and improvement of quality of live, of the human race. 

1.1 Dynamics of robotic structures and mechanics 
in general 

The investigation of dynamic behaviour of robot manipulators forms part of the gen-
eral field of Mechanics (see Figure 1.1). As described by Truesdell [1], (Rational) 
Mechanics is the part of mathematics that provides and develops logical models for 
the enforced changes of position and shape which we see everyday things suffer. 

Figure 1.1: The field of robot dynamics in mechanics. 
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Mechanics does not study natural and man made things directly, but instead 
considers bodies. Bodies are mathematical concepts that are designed to abstract 
common features of natural things. The features that are abstracted can include 
the geometry, motion (kinematics), inertial properties, forces, elastic properties, and 
energy of bodies. Mechanics is thus a finite class of mathematical models for certain 
aspects of nature. Kinematics forms an important part of the foundation of mechan-
ics. 

For a clarification of the concepts of bodies, the event world, frames of reference, 
motions, forces and energies, the reader is referred to the first chapter of [1]. 

Within the field of mechanics, one finds the branch concerned with the study of 
rigid body systems. The system consists of a set of bodies, as defined by the analyst, 
whose behaviour is investigated. Everything external to this set is the environment 
of the system. The bodies, which are the objects of this set, are objects whose prop-
erties have been abstracted to spatial geometry, inertial properties, and forces acting 
on them. The deformation of the bodies are neglected. This is a small branch of 
mechanics in general. Because of the exclusion of deformation and energy (and thus 
temperature) from the properties of bodies, the substantial branches of mechanics 
concerned with the study of thermodynamics and fluid dynamics is excluded from 
this branch. 

In robotic structures (see Figure 1.2), the deformation of the link can often be 
neglected, depending on the structure itself and the object of the modeling of this 
structure. If this can be done. the manipulator can be viewed as a special case 
of a system of rigid bodies. This dissertation is exclusively concerned with the 
mathematical modeling of such systems with the object of making predictions on 
their behaviour. 

If the structure of a manipulator is such that it is relatively flexible and that the 
deflection of its links under working conditions can have a significant effect on the 
position of the end effector, this manipulator can not be treated as a system of rigid 
bodies. In such cases the analyst would often be concerned with the vibrations of 
the structure. Such problems are still part of mechanics, but not of the specialized 
field that this dissertation is concerned with. 
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Joint 	
End effector 

Link 

Figure 1.2: The main components of a robot manipulator. 

1.2 The dynamics of robotic manipulators in par-
ticular 

In the dynamics of systems of rigid bodies in general, the relationship between gener-
alized positions, forces and torques, and time is usually sought. This usually involves 
describing the relations between forces and torques and the second time derivative 
of the generalized positions. Time is thus treated as the independent variable'. 

Even at this stage, it can be seen that the problem can be viewed from two per-
spectives: the forces and torques are known and the accelerations are sought, or the 
required accelerations are known and the torques and forces needed to achieve this 
motion is sought. These two problems are termed the direct dynamics and the in-
verse dynamics problem. The direct dynamics problem is usually encountered when 
simulations are done, while the solution to the problem is often used in the develop-
ment of control systems. It will later be shown that elements of both solutions can 
be used to advantage in either of the problems [2]. 

In this dissertation, a robotic manipulator (see Figure 1.2) will be defined as a 
system of interconnected rigid bodies. The bodies are connected by hinges which 
can transmit a combination of forces and torques between the bodies they connect. 
These hinges' can also constrain the relative motion of these bodies with respect to 

'The validity of this philosophy will not be discussed in any depth. 
'The hinges need not be "physical" hinges, bodies can interact with each other through grav-

itational, electrostatic, electro-magnetic and other forces and constraints. The effect of all these 
interactions will be represented by hinges between bodies. 
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each other. 

The interactions between any pair of bodies will always be represented by a 
single hinge or joint. Any body can however have more than one hinge, that is, it 
can interact directly with more than one other body. In many mechanical systems 
one encounters a body whose motion is either prescribed or not influenced seriously 
by the other bodies, although it influences them (eg. a very massive body like earth 
when the movement of small bodies on its surface is considered). This body will be 
termed the base. 

How the interconnection of bodies is described, is determined by the structure 
of the system. If all of the bodies in the system has at most two hinges, the system 
is described as a serial chain of bodies. Most robotic manipulators fall into this 
class. If only one body in this serial chain interacts with the base, this class is called 
open chain mechanisms. The manipulator illustrated in Figure 1.2 is an example 
of a open serial chain. If the two bodies on the opposite ends of a serial chain is 
connected to a base (not necessarily the the same base), this is called a closed chain 
mechanism. This is often encountered when the end-effector of a manipulator makes 
contact with its environment, as illustrated in Figure 1.3. The interconnection of 
bodies in a serial chain can simply be described by numbering bodies consecutively, 
starting at a base. Some confusion can arise as to the effect of gravity. The earth 
can be seen as a body that interacts with all the bodies in the system, by exerting 
a force on them all. This approach unnecessarily complicates analyses, as no serial 
chain with more than one body in a gravitational field would exist. The effect of 
gravity can rather be seen as giving the reference frames fixed relative to earth an 
upward acceleration, which of course makes them non-inertial frarnes5 . 

When the system has at least one body with more than two hinges. the mechanism 
is branched. Such a system is also called a multiple chain mechanism, because the 
branches can each be seen as a serial chain. See Figure 1.4. If the structure is 
such that one can move from one body to the other across hinges in one direction 
and visit one or more bodies more than once. there are loops in the system. This is 
illustrated in Figure 1.5. For such systems as the above, also called systems with tree 
structure, the interconnection structure can be described by interconnection matrices, 
as introduced by Wittenburg [3]. 

A multiple closed-chain mechanism is a branched mechanism with more than two 

'A frame of reference in which the Newton-Euler laws of motion appear not to be valid if the 
variables are measured in this frame. A frame that has an acceleration or angular velocity relative 
to an inertial frame, will be a non-inertial frame. 



ts m2'"4"'*? atiftw  
' 

Fixed object 

Unknown contact force 

Figure 1.3: A robot manipulator that is in a serial closed chain configuration. 

Figure 1.4: A multiple chain mechanism. 

Figure 1.5: A mechanism with one internal loop. 
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of the bodies in contact with a base. If all the closed chains in the system can be 
broken by the removal of a single body and the chains that remain are all serial, the 
original mechanism is called a simple closed chain mechanism. 

1.3 Dynamic formalisms 

A dynamic formalism is a set of equations that describe the laws of nature that 
relate to the dynamics of a single body. Historically several formalisms have been 
developed. They include: 

Vector formulation of Newton's second law together with Euler's equation for 
rotational motion [3]. 

The Lagrange-Euler formulation [4]. 

The Recursive Lagrangian formulation [5]. 

The Generalized D'Alembert formulation. 

Hamilton equations. 

Kane's equations [6]. 

Appel's equations [7]. 

All of these formalisms have been applied successfully to multi-body systems. The 
Newton-Euler equations are perhaps the most widely used and easiest to give a 
physical interpretation to the results of the analyses. 

1.3.1 Choice of formalism 

The Lagrange-Euler and Newton-Euler equations have been used most extensively 
in the robotics field. For years there has been a debate as to which formalism leads 
to the most efficient algorithms. Intuitively, one would expect all the formalisms to 
lead to the same or equivalent algorithms and solutions. 

The debate was finally settled by Silver [8], who showed that all the formalisms 
can lead to the same algorithms. The difference between the efficiencies are largely 
due to the different representations of rotational motion. Balafoutis and Patel [9] 
also shows how the same algorithm for the inverse dynamics can be derived by using 
either the Newton-Euler. the Euler-Lagrange or Kane's formalisms. 
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The choice of which formalism to use is therefore largely a matter of personal 
taste, although many people prefer the Newton-Euler formalism for its simple equa-
tions and direct physical interpretation. 

1.4 Efficiency of simulation algorithms 

Because solving for the dynamic behaviour of a multi-body system involves numerous 
calculations, the efficiency of the proposed algorithm is very important when real-
time simulation is sought. It is generally difficult to do real-time simulation of even 
simple systems without resorting to prohibitively expensive computers'. Because of 
this there is an ongoing quest to the improvement of the computational efficiency of 
algorithms. 

It should be realized that there may be other considerations that outweigh the 
need for computational efficiency, for example ease of application, simplicity and 
generality, and which may be more important today because of the increased per-
formance of even low cost computers. 

The computational efficiency of an algorithm is greatly influenced by the repres-
entation of the physical and kinematic quantities appearing in the equations of motion 
(for example inertia, rotational motion etc.). In the Euler-Lagrange formalism these 
quantities are frequently expressed as sets of scalars, while the representation of 
kinematic and dynamic quantities as vectors is more natural in the Newton-Euler 
formalism. The use of angular velocity in particular contributes greatly to the effi-
ciency of the Newton-Euler derived algorithms. Balafoutis and Patel [9] has shown 
that the representation of many of these quantities as Cartesian Tensors is even 
more efficient. Further, the computational efficiency is also influenced by the mod-
eling scheme used. The modeling scheme used by most algorithms considers each 
body as a separate rigid body and the chain as an ideally connected chain of rigid 
bodies. Another modeling scheme is to use the concept of generalized and augmented 
bodies [2, 3, 9]. 

Whether the algorithms are formulated using explicit or recursive equations per-
haps has the greatest influence on computational efficiency. Often recursive formu-
lations are more efficient. When recursive equations are used, there are intermediate 
variables involved. These intermediate variables can be chosen in such a way so 
as to minimize recalculations and the number of calculations involving intermediate 

'With the current rate of change in electronic technology, affordable computers with the necessary 
speed can soon be a reality. In that case one can argue that computationally efficient algorithms 
should still be sought so as to avoid the unnecessary increase of entropy in the universe 
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variables. This ties in closely with the concept of organizing the structure of com-
putations in the most efficient way. 

When the Newton-Euler formalism is used, the choice of in which frame of ref-
erence to express the dynamic equations can also influence the efficiency of the ah. 
gorithm. Expressing the equations for the rigid bodies in the chain in their respective 
body fixed frames, greatly improves the efficiency of the resulting algorithm. This 
step has been taken by Lull, Walker and Paul [10]. 

Customization involves the simplifying of algorithms for special cases such as 
manipulators with only a single degree of freedom revolute joint or 90 0  angle of 
twist. This results in considerable computational savings, but at the cost of a loss 
in generality. The computational time can also be reduced by implementing parallel 
processors and optimizing the algorithms for such implementations [2, 11, 12, 13, 14]. 
Frequently different formulations of the equations of motion and other formalisms 
are used. Formulations that are efficient for serial computation are not very useful 
for parallel computation, but can be reformulated to improve efficiency, although 
formulations developed for parallel implementation from the onset can be much more 
efficient [14]. 

1.5 Reference frames 

For numeric simulation, kinematic quantities must be measured with respect to some 
reference frame.' Such a quantity is then represented by the components of a co-
ordinate matrix. 

Many different frames can be used, such as rectangular Cartesian, cylindrical, 
spherical and curvilinear systems. If Newton's second law is obeyed in a frame, such 
a frame is called an inertial reference frame. If the frame has an acceleration or 
angular velocity relative to an inertial frame, it is a non-inertial frame. Early in the 
development of the dynamics of multi-body systems, the equations for each body in 
the system were expressed in inertial reference frames. The more efficient modern 
approach is to fix coordinate frames to each body in the system and to express the 
dynamic equations in these non-inertial frames [10]. Expressing the equations in 
these body-fixed frames is computationally more efficient, but virtual forces (Cent-
ripetal and Coriolis) appear in the related dynamic equations. There are no such 
forces in the equations if the equations are expressed in an inertial frame. 

7 lieep in mind that all the kinematic and dynamic quantities and variables exist even when no 
reference frame is defined. 
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The three dimensional space with the definition of the dot product as inner 
product, is a nonzero inner product space. It can be proven that every nonzero 
finite-dimensional inner product space has an orthonormal basis [15]. To simplify 
descriptions, the coordinate frames used NVill be orthonormal Cartesian systems. The 
alternative curvilinear coordinate type systems lead to complex functions that relate 
kinematic quantities to the generalized coordinates. 

1.6 Representation of positions, velocities and trans-
formations between coordinate frames 

1.6.1 The position of a point in space 

The position of a point in space relative to a reference frame is always expressed as 
a function of some generalized coordinates. The complexity of this function depends 
on the kind of reference frame used. The functions in curvilinear frames are more 
complicated than those in linear frames. In the robotics field the reference frames 
used are usually 3D Euclidean space frames (rectangular, cylindrical or spherical 
Cartesian). The position of a point is thus completely specified by point coordin-
ates, which are functions of the generalized coordinates. The transformation of point 
coordinates between coordinate frames are identical to the transformation of vectors 
between coordinate frames, therefore vectors can be used to identify points in space. 

1.6.2 The configuration of an object in space 

With configuration is meant the position and orientation of an object. As is well 
known, an unconnected rigid body has six degrees of freedom. The configuration 
can thus be described in terms of six generalized coordinates in a reference frame. If 
this configuration is described by a vector, this vector should have six components 
and it is not a vector of physical space. The configuration space for a single body is 
not an Euclidean space and is six dimensional. 

By assuming a vector description of this six dimensional configuration quantity, 
one has to use curvilinear reference frames, which leads to complex functions for 
relating the generalized coordinates to the configuration. 

This can be dealt with in a number of ways. Frequently a vector is used to de-
scribe the position of a point on the body and three orientation parameters is used. 
Commonly used orientation parameters are the Euler angles and the roll, pitch and 
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yaw angles. The three components of the position veCtor and the three orienta-
tion parameters can be seen as the six components of an "orientation vector". This 
quantity is not a vector as it does not obey the rules of vector transformati9ns. 

To implement a system for describing the configuration of a body in space, a 
coordinate frame is fixed to this rigid body. The position of the body is now spe-
cified by the position of the origin of the body-fixed frame relative to a reference 
frame. The orientation of the body is described by the orientation of the body-fixed 
frame relative to an intermediate frame that has the same orientation as the reference 
frame, but with an origin that coincides with the body-fixed frame. 

The relative orientation of two Cartesian coordinate frames with a common origin 
can be described by a linear transformation that maps the base vectors of one base 
onto the base vectors of the other base [15]. The linear transformation relates the 
components of a vector in the reference frame to the components of the same vector 
in the other (body-fixed) frames. If the coordinate systems are orthonormal, the 
linear transformation will be an orthogonal transformation. Note that orthogonality 
is defined with respect to a specific definition of the inner product for the vector 
spaces, in this case the so called dot or scalar product. The linear transformation is 
proper and represents a rotation. The 3 x 3 matrix representation of the rotation in 
a coordinate frame contains six redundant components. Another representation for 
rotation without any redundancy would be advantageous. 

The rotation transformation satisfies the equation ft = R, where 4) is a second 
order skew-symmetric tensor. Orthogonal differentiable tensors also obey this equa-
tion. It is not proven here, but the rotation is indeed a orthogonal tensor [9]. The 
linear transformation that describes relative orientation can be accomplished by tak-
ing the dot product with the second order tensor called the rotation tensor. From 
this follows that rotation can be described by the second order rotation tensor. In 
3-D Euclidean space, this rotation tensor has a real orthonormal 3 x 3 matrix repres-
entation relative to an orthonormal basis. The entries of this matrix are the direction 
cosines that relate the axes of the two coordinate systems. A set of nine direction 
cosines, which satisfy six orthogonality relationships, completely specify the rotation 
between any two Cartesian systems. The use of the direction cosines in the rotation 
tensor permits the use of Cartesian coordinate systems in describing the orientation 
of a rigid body [9]. 

8 The transformation can also be seen as relating the components of a vector in some frame to 
the components of this vector after it has been rotated, but still expressed in the same frame. The 
rotation is in the opposite direction to the change of orientation from one frame to the transformed 
frame (if the transformation had been seen as transforming coordinate frames). 
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The 3 x 3 matrix representation of the rotation in a coordinate frame contains 
nine components. If the three-dimensional rotation group can be represented by a 
set of less than nine parameters, then the linear transformation system is equivalent 
to a system with less than nine scalar equations, which is a worthwhile simplifica-
tion. Steulpnagel [16] has shown why it is impossible to have a global 3-dimensional 
parameterization for the rotation without singular points. In fact, Hopf showed in 
1940 that five is the minimum number of parameters needed to represent the rotation 
in a global one-to-one manner. Steulpnagel points out that the "quaternion method" 
of parameterizing the rotation group in a one-to-two way, using four parameters is 
sufficient for practical purposes, and discusses it and some three-dimensional para-
meterizations as well as Hopf's method. 

There exists no one-to-one global representation of the rotation matrix in terms 
of three generalized coordinates. In practice, a sequence of rotations about axes are 
used as parameters - which are not generalized coordinates, and these are used as 
components of an "orientation vector", as mentioned previously. Mathematically, 
this "orientation vector" is not a valid representation for rotation, since: 

1. Rotation is a second order tensor - that is not skew-symmetric - and therefore 
cannot be represented by a vector. 

9 . The generalized angle components does not form a vector because the compos-
ition of rotations is associative, but not commutative, while the cross-product 
is not associative and the vector addition is commutative. 

The configuration of a rigid body can thus be described by the position vector of its 
origin and a second order rotation tensor. 

1.6.3 The displacement of one body relative to another 

In this dissertation, displacement will have the broader meaning of including both the 
difference between two position vectors for a point on a rigid body in different loca-
tions in physical space, and the difference between the two orientations of the same 
rigid body. These displacements can be described by homogeneous transformations 
- that may change the orientation and position of a coordinate frame - analyzed 
in terms of homogeneous coordinates. These are discussed in some detail later. It 
can also be described by separate linear and rotational displacements, which is more 
efficient but results in less compact equations. 
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1.7 Objectives and motivation 

The field of robot dynamics is well researched, and solutions to many important 
problems have been proposed by numerous researchers. However, a practitioner 
who wants to construct and use a dynamic model of a robotic structure for simu-
lation or control purposes might find it very difficult to do so from the accessible 
literature. The literature that considers applications is usually of limited generality, 
while the literature that describes general enough methods lacks some important de-
tail regarding the application of their methods. These details might be obvious to 
seasoned workers in the field, but to others it can represent great obstacles. 

Another problem encountered is that although most problems have been solved, 
many of them has been solved in isolation, using different kinematic notations, dy-
namic models and joint models. Integrating the different methods in one complete 
model is not easy. 

The inverse dynamics problem for serial open chains has received a great deal 
of attention and has progressed to the stage where real-time solutions are possible. 
Methods based on various dynamic formalisms has been implemented successfully. 
Recursive methods based on the Newton-Euler formulation are common [10]. The 
direct dynamics problem for closed-chain serial mechanisms has received less atten-
tion, but is also well developed. 

The purpose of the author's research and this dissertation is to integrate some 
of the existing methods and derive new methods where necessary, and to shed some 
light on the details of applying such methods, in order to propose a scheme for mod-
eling robot dynamics that is reasonably general and easy to apply. Models for both 
the forward dynamics and inverse dynamics are based on the same notations and 
modeling scheme. A practitioner should be able to use this scheme to model most 
robotic mechanisms, including manipulators with multiple degree-of-freedom joints, 
closed chain mechanisms (as encountered in assembly amongst others), and multiple 
closed chain mechanisms like walking machines and dextrous hands. The schemes 
are not customized and takes full account of gravity and other bias forces. 

Special attention will be given to developing a kinematic notation that can be 
used with a joint model [17, 18, 2] that allows up to six degrees-of-freedom joints, 
and is particularly meaningful from a physical point of view. In many cases, this 
notation is easier to apply than the Denavit-Hartenberg notation [19]. 

The numerical implementation of the proposed models will be clarified. The 
reasons for singularities and the handling of them will be discussed, so as to enable 
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effective simulation of robotic systems. 

1.8 Preview 

This dissertation presents and discusses methods that can be used to model most 
robotic mechanisms, specifically with the aim of simulating the behaviour of such 
mechanisms. The main contents of the remaining chapters are as follows: 

Chapter 2 This chapter discusses the forward kinematic modeling of robotic manip-
ulators, and introduces a new kinematic notation that is suitable for use where multi 
degree of freedom joints are encountered. A suitable joint model is also discussed. 
Throughout, the spatial notation is used for the configuration analysis. 

k 

Chapter 3 This chapter introduces the dynamic aspects of rigid body motion, based 
on the Newton-Euler formalism. Cartesian tensors are used in this analysis. It will 
be shown that tensor representations of angular velocity and acceleration can be very 
advantageous for the Newton-Euler dynamic formulation, and some background on 
the use of tensors will be included. 

Chapter 4 Manipulator inverse dynamics, for manipulators with general joints, 
is derived in this chapter. It is based on the method of Luh, Walker and Paul [10], 
but with the general joint model and some Cartesian tensors. An illustrative example 
of the use of this algorithm is given and discussed. 

Chapter 5 A direct dynamics algorithm for single closed chain mechanisms, as 
used by Lilly [2], is introduced and discussed. A few illustrative examples are given. 

Chapter 6 A modeling method for simple closed chain mechanisms is described. 
The numerical implementation of this method is also discussed in some detail, be-
cause singularities are frequently encountered for small systems. An example is also 
given in the hope of clarifying the use of this method. 

Chapter 7 Some aspects of simulating a robotic system are briefly discussed, in 
particular the interaction of the elements of the simulation and the updating of the 
configuration of the system. 

Chapter 8 The application of the dynamics algorithms to the solution of a rather 
complex problem is demonstrated and results given. 

Chapter 9 Conclusions are presented and some further work that can be done 
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in this field is described. 
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Chapter 2 

Kinematic description of 
manipulators 

Even logic must obey physics. 
Dr Spock, USS Enterprise 
The Undiscovered Country 

2.1 Introduction 

To describe the structure of manipulators, we need to describe the relative positions 
and orientations of the parts of the respective bodies in the manipulator, called links. 
Unlike a general system of rigid bodies, these links cannot move in an arbitrary man-
ner with respect to one another. The links are connected to other links with joints, 
and each of these joints constrain the relative motion of the two links it connects. 
If we fix a coordinate frame to each link in the manipulator and describe the relat-
ive positions and orientations of these frames, we have implicitly also described the 
structure of the manipulator. Because of the joint constraints, using position vec-
tors and orientation transformations to describe the structure of the manipulator can 
result in many unnecessary parameters. In this chapter we seek a notation that will 
conveniently describe the structure of a manipulator. We will consider only serial 
chains and combinations of serial chains' - in practice, these are the most common. 

One of the requirements that the structural modeling notation has to fulfill, is 
that the orientation transformations and position vectors must be obtainable from 
the parameters in a unique way. However, the inverse is not necessary. It would also 
be necessary to obtain the relative velocities and accelerations of the links from the 

'Many complex systems can be divided into serial chains. 

is 



time derivatives of these parameters. What modeling notation is deemed as the most 
suitable will be influenced by how the velocities and accelerations are modeled. In 
this chapter the representation of such quantities will also be addressed. 

2.2 Links, joints and frames 

We will use the convention that the body fixed to the base is called link 1, and 
the joint that connects link 1 to the base is called joint 1. The coordinate frame 
fixed to this body (link) is called frame 1, and is connected to the part of the link 
closest to joint 1 and thus the base. The other links, joints and frames, are numbered 
consecutively from link one to the last link in the serial chain. The above can be 
generalized as: joint n connects link n — 1 and link n, and coordinate frame n is 
fixed to the near end of link n. This is illustrated in Figure 2.1. 

Figure 2.1: Diagram of manipulator to demonstrate the numbering conventions used. 

2.3 Representation of kinematic and dynamic quan-
tities 

In the rest of this dissertation, the Newton-Euler dynamic formalism will be used. 
The vector representation of kinematic quantities is well suited for use with this form-
alism. However, by using the spatial representation of these quantities, the equations 
of motion can be written even more compactly. Apart from this, using this notation 
has definite advantages in the computation of such quantities as the Jacobian of the 
manipulator, and makes the use of a simple but quite general joint model possible. 
Computing the relative velocities of links becomes simple and very compact, as the 
reader will soon see. The use of this notation is extremely powerful, and the full 
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consequences can only be appreciated after using it fof a while. 

The theoretical basis for spatial notation is given by Featherstone [20].Corres- . 	. 
ponding linear and angular vectors are combined in a single vector. The components 
of this vector relative to a base is represented by a 6 x 1 column matrix'. Generally 
the first three rows of a spatial vector are the components of a line vector, and the 
following three rows are the components of the corresponding free vector. In this 
way, the spatial velocity of link i can be written as: 

vi = (2.1) 

where (wi ) s , (wi ) y  and (wi), are the components of the angular velocity of link i 
about Xi, Sfi and"Z. i, respectively. The other three components represent the linear 
velocity of the ith coordinate origin, resolved along its own axes. The vector vi is 
thus expressed in the ith frame. In the same way the spatial acceleration of link i 
may be expressed as: 

(ai). 
(ct.i ) y  

(ai)z (2.2) 
(a i ) s  
(a i ) y  

_ (a i ), _ 

where the first three rows correspond to the resolved angular acceleration, and the 
last three rows to the linear acceleration vectors. 

The generalized force, f, exerted on link i, has the following form: 

= (2.3) 

  

2 In the following, when referring to a spatial vector, it will also refer to its representation relative 
to some coordinate frame. 
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where the first three components represent elements of a three-dimensional moment 
vector, and the last three are the elements of a three-dimensional force vector. 'Be-
cause of the way in which it is defined, it is not a spatial quantity like velocity 
and acceleration. Accordingly, it does not satisfy the transformation equation given 
later (equation 2.5). The definition of a spatial force that does satisfy the general 
transformation equation, is given by [20] as: 

= (2.4) 

Linear force is a line vector and moment is a free vector. In the work that follows, 
the general force definition (equation 2.3) will be used for uniformity (i.e. the first 
three components of any 6 x 1 vector will be associated with rotation). 

2.3.1 Transformation of spatial vectors 

Similar to ordinary vectors, if the components of a spatial vector relative to some 
coordinate system is known, its components relative to another coordinate frame can 
be calculated. This is accomplished by pre-multiplying the known components with 
a transformation matrix: 

i+1„ 	i+i-v-. 
P — 	pi, 

where ipi is a vector associated with link i that is expressed with respect to the i-th 
coordinate system, i+lp i  is the same vector expressed in the (i 1)-th coordinate 
system, and i+ l Xi is the 6 x 6 spatial transformation matrix. This matrix is a function 
only of the link and joint parameters, and can be defined as: 

0 _= i+iAz. £141  
i+lAi  • (2.6) 

i+ 1 A; is the 3 x 3 rotation transformation between the two coordinate systems, and 
13 +1  is the 3 x 1 position vector from the origin of the ith coordinate frame to the 
origin of the origin of frame (i 1), with components expressed in frame i. 131 +1  
is the skew-symmetric tensor dual of the vector 131 +1 , with its component matrix 
defined by: 

Cl 

(2.5) 

C2 	, 

C3 

(2.7) c= 
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E 

0 

C3 

- C2 

-C3 

0 

C1 

C2 

-CI 

0 

(2.8) 

2.4 Joint model 

As stated previously, a joint represents the physical interaction between two rigid 
bodies in a robotic structure. 

When considering the simulation of closed chains, a general joint model that al-
lows up to 6 degrees of freedom is very useful. Such a model is described by Lilly [2, 
p. 14-18] and was also used by Roberson and Schwertassek [17], and Brandl, Johanni 
and Otter [18]. It can model any constraint and even allows the free motion of two 
bodies in space to be seen as two bodies that are connected by a 6 degree of freedom 
joint. 

The location of link coordinate frames are the same as described previously when 
single axis joints are considered. The generalized minimal coordinates that describe 
the relative motion of body i with respect to body (i — 1), are the n i  degrees of 

freedom of joint i. The joint position vector for joint i is now defined as the n i  x 1 
vector qr. For a simple revolute joint qr is just the scalar rotation about the joint 
axis, and for a prismatic joint it is the scalar displacement along the joint axis. 

Now the relative velocity of body i with respect to body (i —1) is a linear function 
of Ch*. Likewise the spatial relative acceleration of body i with respect to body (i—i) 
can be expressed as: 

ar = QAT + j 	 (2.9) 

where j is a function of joint position, velocity and time (Coriolis, centripetal, grav-
ity and other effects which arise with the use of non-inertial frames). 

The 6 x n i  matrix j represents the free modes of joint i. Its columns make up 
a basis for this free vector space, also referred to as the motion space of joint i. 
Because ¢i  is resolved in the ith coordinate frame, it is frequently constant'. A 6 x 6 
matrix can be constructed as: 

[ 

	

(2.10) 

where the six columns form a basis for R 6 . The columns of form a basis for the 
constrained modes of joint i and is therefore linearly independent of the columns of 

'It is always constant for joints with less than two rotational degrees of freedom. For physical 
joints with two or three rotational degrees of freedom, it is a function of the joint rotations. 
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A second dual basis may be constructed as follows: 

onT = 	pfl - 1 (2.11) 

From the above definition we have the following relationships: 

(0i) T0i 	= 	1 (2.12) 
(c/) 7- 1/4 	= 	0  (2.13) 

(On T Oi 	= 	° (2.14) 

(c/4)7.0 	1 (2.15) 

where 1 and 0 are the identity and zero matrices of the appropriate dimensions. Note 
from the above that 14 is a 6 x (6 — ni) matrix which is orthogonal to ¢ i . Therefore 
7,1)f represents the constrained modes of joint i, and its columns form a basis for 
this vector space — the constraint space of joint i. Similarly, it can be seen that O i  
represents the free modes of joint i. 

Bodies i and (i — 1) can interact through a joint or contact. This interaction 
can be described by a resultant force and moment: a generalized force, f , is exerted 
on body i by body (i — 1) and body i exerts the reaction of equal magnitude but 
opposite direction on body (i —1). This force vector can be resolved into components 
in the motion space and constraint space. This can be done using either the bases 
of eq. 2.10 or their dual bases. Using the dual bases, one gets: 

fi = 	+ 	'Tic 	 (2.16) 

where r: is the n i  x 1 vector of applied driving forces, and Tic is the (6 — n i ) x 1 
vector of constraint forces of joint i. When solving the Direct Dynamics problem, 
the driving forces are known. The unknowns to be found are the joint accelerations, 
El, and the constraint forces, T c (if desired). 

2.5 Kinematic notations 

2.5.1 Traditional kinematic notation 

Several ways of describing the structure of manipulators have been developed. The 
most common approach was developed by Denavit and Hartenberg [19]. It makes 
use of four parameters, and basically describes the angle of twist between successive 
joints, the rotation around one axis (the z-axis) or displacement along one axis (the 
z-axis), the perpendicular distance between joint axis. Implicitly it is assumed that 
only one rotation (for rotational joints) or one displacement (for prismatic joints) 
is possible. The z-axis is always aligned with the axis of the joint, as shown in 
Figure 2.2. The parameters are as follows: 
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ai = the perpendicular distance along R 1 _ 1  between 	and j. 

di  = the perpendicular distance along j  between 	and X i . 
the angle about 	between 	and 

O i = the angle about 2; between 	and X i . 

Joint i 

Figure 2.2: Assignment of coordinate frames and link parameters. 

From the above it should be clear that this notation is not suitable for use with 
joints with more than one degree-of-freedom. As all the algorithms in the rest of this 
work will be aimed at being general in the sense that complex joints with multiple-
degrees-of-freedom can be used, a different way of describing the structure of ma-
nipulators is needed. 

2.5.2 Six degree-of-freedom (SD OF) kinematic notation 

We are seeking a kinematic notation from which the relative positions and orienta-
tions of the body fixed coordinate frames of a manipulator can be found. It would 
be very helpful if these parameters can easily be found from the displacements of 
the joints. These joints must allow up to three rotational degrees of freedom and 
up to three linear displacement degrees of freedom. A further requirement is that 
the relative velocities and accelerations of the body fixed coordinate frames must 
be easily determined from the joint velocities and accelerations. In many robotic 
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systems, the joints are not actuated ball joints (it is hard to imagine such a joint). 
Many joints have only one degree of freedom. Those joints that do have two or more 
rotational degrees of freedom, usually consist of two perpendicular joint axes. The 
two joint axes usually has independent actuators. These two joint axes can either 
intersect or not. If they do not intersect, this is actually two joints connected by 
a link of finite length and has to be treated as such. In the case that the axes do 
intersect, the joint cannot be seen as two joints connected by a mass-less link of 
zero length for dynamic analyses. This leads to singularities in the inertia matrix 
for the system. The notation described in this section was specifically developed to 
handle joints with many intersecting axes and to fulfill the above requirements. The 
notation was developed with the integration of it with the general joint model and 
spatial notation in mind. 

This notation can be very easily applied to many physical systems, and allows 
up to six degrees of freedom. It also models real joints more accurately in the sense 
that the rotation axis for joints with more than two rotational degree of freedom does 
not stay perpendicular. This notation can easily be extended to include joints where 
the joint axes are not perpendicular, but it will not be done here since many prac-
tical systems with multiple degree of freedom joints have perpendicular joint axes. 
A very important conceptual similarity of this notation with the previous Denavit-
Hartenberg mutant is that the coordinate frames are fixed to the near end of the links. 

The notation is based on seeing each joint and link together as a gimbal structure 
with a three degree-of-freedom prismatic joint connected to the inner ring of the 
gimbal. The prismatic joint determines where on the link the rotational joint and 
thus the previous link is attached. The coordinate frame is fixed to the link itself 
at the intersection of the six joint axis. It has the same orientation as the inner 
frame of the gimbal. A schematic representation of how a joint is seen is illustrated 
in Figure 2.3. The rotational degrees of freedom of the joint is now defined as a 
sequence of three rotations around the three axes of the gimbal: 

Rotation about the x-axis (Rot(x)). 

Rotation about the transformed y-axis (Rot(y)). 

Rotation about the twice transformed z-axis (Rot(z)). 

The rotation of the outer frame is the first rotation, the rotation of the frame 
inside that represent the second rotation. and the rotation of the inner frame is the 
third rotation. A prismatic joint with three perpendicular axis is fixed to the inner 
frame of the gimbal. The three axis of this prismatic joint is assumed to be aligned 
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Figure 2.3: The kinematic notation used to describe the structure and geometry of 
links and joints of structures with multiple degree-of-freedom joints (SDOF kinematic 
notation). The displacements in the y- and z-directions are not shown. 

with the axis of the link coordinate frame 4, which is determined by the orientation 
of the inner frame of the gimbal. The link coordinate frame is fixed to the near end 
of the prismatic joint, and has the same orientation as a frame that was fixed to 
the inner frame of the gimbal in the default position and has undergone the three 
rotation tranformations. The displacements of this prismatic joint is simply the 
position vector of the position of the next link frame's origin relative to the previous 
link's frame origin. The six parameters describing the joint and link geometry of the 
i-th link is arranged in a column matrix as: 

= 

Rot(x) i  
Rot (y) 
Rot(z) i  

Disp(x) i  
Disp(y) i  

_ Disp(z) i  

(2.17) 

  

The i-th coordinate frame thus has the same velocity as the i-th link. The i-th link 
can move relative to the imaginary gimbal frame due to the displacements of the 
prismatic joint. That implies that the link frame can move relative to the gimbal. In 
order to simplify the dynamic algorithms, we use the convention that the link frame 

4This does not have to be the case and this notation can be used without modification when the 
prismatic axes are not aligned with the link frame axis. Naturally the motion space for the joint 
would be different. 
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has the same velocity and acceleration as the link, but at each simulation time step 
it is repositioned at the intersection of the joint axes of the link. In the next chapter 
it would soon be clear that the use of this notation together with the general joint 
model greatly simplifies the dynamic analysis and its algorithmic implementation. 

2.6 Rotation matrices and displacement vectors in 
terms of the link parameters 

2.6.1 Denavit-Hartenberg parameters 

When using the modified Denavit-Hartenberg notation, the rotation transformation 
from the frame fixed to the i-th link to the frame fixed to the (i 1)-th link, is 
simply [2]: 

2 + 1 A,  = 
cos Oj 

— sin O i+i  
0 

sin Oi+i  cos ai-Fi 
cos Oi+i  cos cti+i 

— sin cri+i 

sin 0i4. 1  sin o i+1  
cos Oi+i  sin ai+i  

cos ai+i  
(2.18) 

Further, the position of the origin of the (i + 1)-th coordinate frame relative to the 
i-th frame is given by: 

[a
i+i  

13 2+1  = 	—di+1  sin ct i+1 	. 
d2+1  cos ai+i 

(2.19) 

2.6.2 Six dof kinematic parameters 

The first three parameters of this notation describes a sequence of three simple 
rotations that accomplishes the rotation between successive link frames. The rotation 
transformations for rotations by an angle of 0 around the x, y and z-axes respectively 
is given by: 

1 	0 	0 
0 	cos 0 	sin 0 	 (2.20) 
o — sin 0 cos 0 

cos 0 0 — sin 0 
0 	1 
	

0 	 (2.21) 
sin 0 0 cos 0 

— sin 0 cos 0 
cos 0 	sin 0 

0 	0 

	0 I 
0 	 (2.22) 
1 

Rot(x, 0) = 

Rot(y, 0) = 

Rot(z, 0) 
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0 1  

0 

- sin 0, 
0 

cos O, 

1 
0 
0 

0 
cos Ox  
- sines  

0 
sin Ox  

 cos 0,. 

1 

. 

Let 

Os  = Rot(x)i + i, (2.23) 

0, = Rot(y) +i , (2.24) 

0, = Rot (z ) +1 . (2.25) 

Because of the structure of the joint used to describe the first three parameters of the 
six degree of freedom kinematic notation, the rotations are performed in the order 
x — y — z. The combined transformation is then: 

i+ l Ai  = Rot(z,0,)Rot(y, 0y) Rot(x. OA 	 (2.26) 

cos 0, 	sin 0, 0 	cosOy  
. 	— sin 0, cos 0, 0 	

o  

0 	0 	1 	sin 0 

= 

_ 
COZCOy 

—s0,c0, 

_ 	sO, 

COZSOySOX + S OZCOS 

—30,30,30 5  + cO,c0x  
—c0,s0 5  

.. CO Z SOyCOX + sO, sOx  
zO,c0,c0 5  + cO,s05  

cO,c05  

(2.27) 

(2.28) 

The rotation transformation is thus quite simple to calculate, but because of the 
author's lack of confidence in his symbolic matrix multiplication abilities, and the 
difficulty of coding equation 2.28 in a computer algorithm, the rotation transforma-
tion is rather calculated using equation 2.27 in the actual algorithms. The position 
of the origin of the (i + 1)-th coordinate frame relative to the i-th frame is simply 
given by the last three components of the link parameters of joint i: 

[Disp(x)i 
b1+1  = 	Disp(y), 	 (2.29) 

Disp(z)i 

2.6.3 Illustrative example of the application of the six degree 
of freedom notation 

In order to clarify exactly how to use the six degree of freedom kinematic notation, 
and to illustrate some of the advantages of using this notation, its application to a 
"Stanford" type manipulator will now be demonstrated. The manipulator is sketched 
in Figure 2.4. The manipulator is fairly simple: it has rotary and prismatic joints, 
some joints with two degrees of freedom. and has six degrees of freedom in total. 
For simplicity, it is assumed that the base coordinate frame (frame 0) coincides with 
the first frame. 
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Figure 2.4: The anatomy of a "Stanford manipulator". 

When using the SDOF kinematic notation, one can think of it in the following 
way: you have the necessary number of joint-link units, connected in series, and 
with all their parameters set to zero. How can the parameters be changed to deform 
this serial chain into the given system? In general, there will be many parameter 
combinations which would satisfy this, and this is one of the advantages of using this 
notation. One has some freedom in choosing how to model the system. When this 
approach is used, one will always be able to model the system with this notation. 
One can also use a more traditional approach for determining a set of joint para-
meters, as in the next paragraph. 

No matter what kinematic notation is used, the first step in determining the kin-
ematic parameters is to assign coordinate frames to the various links. The orientation 
of the respective coordinate frames can be chosen as any convenient orientation. In 
this example, it looks convenient to choose the coordinate frames as in Figure 2.5. 
Notice how easy and convenient this choice is. If the Denavit-Hartenberg notation 
was used, one would have to spend some time to determine how to align the co-
ordinate frame axes: the z-axis has to coincide with the joint axis, the x-axis has to 
point to the next frame etc. One would also need two more coordinate frames for 
the system since the D-H notation can handle only one degree of freedom per joint. 
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Modeling the system using fewer links has many advantages: it is not only simpler, 
but can result in computational savings in the dynamics algorithms, where the num-
ber of calculations needed to determine some quantities are super-linear functions of 
the number of links in the chain. 

Figure 2.5: The assignment of coordinate frames to the manipulator (not a unique 
choice). 

Determining the joint parameters are now almost trivial. Nonetheless, it will be 
discussed. Consider the first joint. Since coordinate frame 1 has the same orientation 
as the base frame, the three rotations of the imaginary gimbal structure are all zero. 
The displacements of the imaginary prismatic joint joining joint-link 1 to joint-link 2 
is simply the components of the relative position of the origin of frame 2 in frame 1: 
OR'  h5r1  — oi l . Joint 1 has only one degree of freedom: rotation about the y-axis. 
The joint-link parameters and joint space for link 1 is thus: 

0 
0 
0 
0 
11 

— o _ 

(2.30) 
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-(2.31) 

The second joint-link structure is slightly more interesting. It has a rotary and 
prismatic joint with intersecting axes. The rotations can take place around the z-
axis, while the displacement of the prismatic joint takes place along the x-axis. Once 
again the three imaginary rotations are all zero for this position. The displacements of 
the imaginary three degree of freedom prismatic joint is simply nl 2 . The parameters 
and joint space for link 2 is: 

0 

2 	- (2.32) 

0 

0 0 - 
00 

02 
1 	0 
0 	1 

(2.33) 

00 
00 

The third joint also has two degrees of freedom, but this time both are rotational. 
This joint looks like the gimbal structure of Figure 2.3, which support the previous 
claim that many real systems can be modeled by such joints. Coincidentaly, joint 2 
uses exactly the first two rotations of the more general gimbal joint. The joint-link 
parameters and joint space follows: 

(2.34) 
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0 - 

0 
(2.36) 

0 
0 

1 - 

0 
0 
0 
0 _ 

- 
(2.37) 

- 1 0 
00 
0 1 
0 0 
00 
0 0 

(2.35) 

  

The last joint in the structure is a simple one degree of freedom joint characterized 
by: 

Notice that an extra coordinate frame was fixed to the tip of the chain. This frame 
is placed where the interaction with the environment is expected to take place. One 
might reason that this position is already specified by the joint parameters of joint 
4. It is indeed so, but the frame is fixed there in any case since a convenient choice 
for its orientation can be made, which simplifies the description of the interaction 
with the environment (directions of constraint etc.). 

2.6.4 Other considerations 

With any joint that has more than one rotational degree of freedom (excluding ball-
and-socket joints), the joint space of the joint (expressed in the coordinate frame of 
the particular joint) is not a constant base, but it is a function of the joint parameters 
(specifically the rotations). Only the upper three rows of the joint space is affected 
because the displacements of the prismatic joints has no effect on the orientation of 
any coordinate frame in the system. 

The above implies that a transformed joint space has to be calculated for each 
joint position where the current joint space is needed. Fortunately, this is not difficult 
with the kinematic notation we are using. Given the joint space in the default position 
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of the joint (the first three joint parameters all zero), the joint space corresponding 
to any set of joint parameters can be found as follows: the direction of the third 
rotation axis of joint i is not affected by the three rotations of joint i, since the last 
rotation corresponds to a simple transformation. The direction of the second axis . of 
joint i is only affected by the third rotation and simply transforms to: 

0 
Rot(z,0,.) 

0 

which is simply the second column of Rot(z, O r ). The direction 
frame i is affected by both the second and third rotation: 

1 (2.38) 

of the first axis in 

Rot(z,0,)Rot(y,O y ) (2.39) 

  

which effectively involves only one rotation transformation, being the rotation around 
z of the first column of the rotation transformation around y. All these rotation 
transformations are known. The calculation of the transformed joint space therefore 
uses at most nine multiplications and 14 additions per joint. 

2.7 Advantages of the SDOF kinematic notation 

Some of the advantages of the six degree of freedom kinematic notation should now 
be apparent: 

1. It can describe joints with up to six degrees of freedom. 

2. Has an easy physical interpretation. 

3. Is easy to apply to most physical systems. 

4. Fewer joints and links in systems with joints with more than one d.o.f. than if 
Denavit-Hartenberg notation were used: 

Conceptually simpler. 

Computational savings in dynamics algorithms. 

5. If Denavit-Hartenberg notation were applied to systems with multiple degree 
of freedom joints, massless links would have to be created in the system, to 
accommodate more degrees of freedom at a joint without affecting the inertial 
properties of the structure. This can lead to singularities in the inertia matrix 
of the system (joint space inertia matrix). 
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6. There is a direct relationship between the joint positions and the kinematic 
parameters, which greatly simplifies the calculation of the rotation transform-
ations and relative position vectors for different joint positions. 
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Chapter 3 

Cartesian Tensors in dynamics of 
rigid-body systems 

In Chapter 1 it has been shown that rotations can be represented by the rotation 
tensor. Here it will be shown that tensors can be used extensively in the dynamic 
equations for rigid bodies, and that they develop quite naturally from the dynamic 
analysis. 

3.1 Angular velocity tensor 

The orientation of a body in three dimensional Euclidean space as a function of time 
is described by the rotation tensor, R E R(t). The kinematic analysis of the pure 
rotational motion of a rigid body can be analyzed by only considering R and it's first 
and second time derivatives. To introduce the angular velocity tensor, we consider 
the following theorem concerning the time derivative of orthogonal tensors: 

Theorem 1 Any differentiable orthogonal tensor Q 	Q(t) satisfies the following 
first order differential equation: 

	

= 43 Q 	 (3.1) 

where 4> is a second order skew-symmetric tensor. 

The proof of this can be found in [9]. Since R is an orthogonal tensor, as a corollary 
to the above theorem, R satisfies the differential equation 

	

R=R 	 (3.2) 

where (I) is still a second order skew-symmetric tensor. When the rotation tensor, R, 
is defined in a 3-D Euclidean space, it describes the orientation of a rigid body, and 
it's first time derivative describes the time rate of change of it's orientation. We now 
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call the skew-symmetric tensor 4) that relates the time rate of change of orientation 
to the orientation, the angular velocity tensor, and denote it by 1): 

(3.3) 

Equation 3.3 can be rewritten as 

	

(.7) = 1.1.11T 	 (3.4) 

which can be used as the definition of the angular velocity tensor. The fact that 
R is orthogonal can be used to ensure that R-1  = RT . Because c7) is defined in a 
3-D Euclidean space and it is skew-symmetric, it has a unique dual vector, c.,), which 
is the angular velocity vector of classic vector mechanics. A complete treatment of 
vectors and their duals can be found in [9]. 

3.2 Angular acceleration tensor 

In order to arrive at a definition of the angular acceleration tensor, we seek the 
functional relationship between the second time derivative of the orientation relative 
to an inertial frame, R, and R. It follows from the following theorem: 

Theorem 2 Any differentiable orthogonal tensor Q Q(t) satisfies the following 
first order differential equation: 

	

= WC? 	 (3.5) 

where ‘11 is the second order tensor defined by 

(3.6) 

(3.7) 

with 4., the angular velocity tensor, defined by 

= QQT 
 

and the square of 4) is the dot product of 4) with itself. 

As a corollary to this theorem, the second order rotation tensor R satisfies the dif-
ferential equation 

= 	 (3.8) 

where 	is the second order tensor defined by equation 3.6. This is valid for or- 
thogonal vectors in n-D Euclidean space. From equation 3.8 we have the functional 
relationship between the zeroth and the second time derivative of the orientation 
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tensor. For the particular case of 3-D Euclidean space, the following notation can be 
introduced: 

	

= AR. 	 (3.9) 

By using the angular velocity for 3-D Euclidean space, (1.), equation 3.6 is written as: 

A = + 	 (3.10) 

which defines the angular acceleration tensor A. Equation 3.9 can also be used to 
define the angular acceleration tensor: 

	

A = fiR T 	 (3.11) 

(I) is skew-symmetric and 4) 2  is symmetric, from which it follows that ill (and also 
the special case A) is neither symmetric nor skew-symmetric, since it is the sum of 
the above. In the 3-D case, since the tensor 'cDcZ, is symmetric, the vector invariant 
of the angular acceleration tensor A is simply the vector invariant of (.7..), which is the 
angular acceleration vector. From the above, it follows that there does not exist a 
one-to-one relationship between the angular acceleration vector and tensor. 

3.3 Linear velocity and acceleration in terms of an-
gular tensors 

To arrive at the relationship between the first and second time derivatives of vectors in 
general, we consider the special case of the position vector. Consider two coordinate 
systems — an inertial coordinate system and a body coordinate system which is 
denoted by {e} and {e'} respectively (Figure 3.1). As always, the body frame is 
fixed to the rigid body and moves with it. Consider a point on the rigid body, 
denoted by p. Let the position vector of p be r 1  relative to the origin, o, of the 
inertial frame, and r 2  relative to the origin, o', of the body fixed frame. Let s be the 
vector from o to o'. The vectors are related by 

r1  = s r2 	 (3.12) 

The orientation of the moving coordinate system relative to the inertial system is 
specified by the rotation tensor R. Let r'2  denote the position vector of point p 
relative to o', expressed in {el. Then 

	

r2  = Rr'2 	 (3.13) 

and equation 3.12 can also be written as: 

= s Rr'2 	 (3.14) 
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Figure 3.1: The use of inertial and body fixed coordinate frames. 

The absolute linear velocity of point p is defined as the first time derivative of its 
position vector relative to the inertial coordinate system. This can be computed with 
equation 3.14: 

= + kr/2 
	 (3.15) 

where the time derivative of R4 is simply ite2  because F2  = 0 because 1-'2  is con-
stant in the body coordinate system when the body is rigid. Substituting R from 
equation 3.3, and using equation 3.13, we arrive at an elegant expression for the 
linear velocity: 

6 = 	:r2 	 (3.16) 

In a similar way, the second time derivative of equation 3.14 defines the vector of 
absolute linear acceleration of point p. With the use of equation 3.9 it can be 
simplified as: 

= 	Ar2 	 (3.17) 

The time derivatives of vectors that are constant relative to the body coordinate 
frame is written as: 

= 6.-T2 
	

(3.18) 

and 

F2 = Ar2 
	

(3.19) 

from equation 3.13 and equations 3.3 and 3.9 respectively. The velocity and ac-
celeration vectors as expressed above can easily be seen to be equivalent to their 
expressions in terms of vectors, where C .,: is equivalent to c,,, x (the cross product of 
with whatever follows). 
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3.4 Rigid body inertia tensor 

The rigid body inertia tensor emerges naturally when the angular momentum or 
kinetic energy of a rigid body is evaluated [3]. From these analyses, the inertia 
tensor around a point o is defined as: 

= 	(r • r1 — r 0  r)677, 	 (3.20) 

where r is the position vector of the point cbri. from the point o, and r 0  r is the 
tensor product of r with itself. The above is used in the vector treatment of New-
tonian dynamic analysis. For the Cartesian tensor analysis of dynamics, a different 
definition of is used. The Euler tensor is defined in [1] as: 

	

Jo  = I r0 rcbn 	 (3.21) 

It will later be seen that the Euler tensor leads to more efficient expressions in tensor 
dynamic analysis than the inertia tensor. The inertia and Euler tensor both describe 
the same property of a rigid body and they should therefore be equivalent. The 
equivalence can be proven as follows (as in [9]): equation 3.20 can be written as: 

I. = Hdrn (3.22) 

The tensor product of two vectors can be written in terms of their dot product and 
the dot product of their dual tensors as: 

v eu -= IN+ (v •u)1 	 (3.23) 

The dot product of two vectors can be found from the dot product of their duals as 
follows: 

	

u • v = --
1

tr[iicr] 	 (3.24) 
9 

With the help of the above two equations, equation 3.21 can be manipulated as 
follows: 

	

r • ri) dm, 	 (3.25) 

1 f 	— —tr[ii]drn 	 (3.26) 

	

- -t7If 	1 	 (3.27) 
9 m  

1 
=- 	+ 	 (3.28) 
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The relationship between the inertia and Euler tensor is thus: 

1 
J. = —

2
tr[I0 ]1 — 10  (3.29) 

and similarly 
I. = tr[J.]]. — J. 	 (3.30) 

In practice, the inertia tensor is determined experimentally. This is easiest to do 
when it is evaluated around the center of mass of the body — yielding I. For dynamic 
analyses the inertia around a point other than the center of mass is required. This 
can be calculated from I, with the parallel axis theorem: 

Io = Ic 	17/ [r, r e l 	re  0 re ] 	 (3.31) 

where r e  is the position vector of the center of mass relative to point o, and rn is the 
mass of the body. Equation 3.31 can also be written more compactly as: 

Jo = le  — 	 (3.32) 

Proof of the parallel axis theorem can be found in [3]. It can be expected that a 
similar theorem exists for the Euler tensor. Such a theorem indeed exists and proof 
of it can be found in [9]. 

Theorem 3 (parallel axis theorem): When the Euler tensor of a rigid body around 
its center of mass, Jc , is known, then the Euler tensor about any other point o, Jo , 
is given by: 

	

rrirc 	rc 	 (3.33) 

where rc  is the position vector of the center of mass relative to point o. 

This can be proven by using the parallel axis theorem for the rigid body inertia 
(equation 3.31) and equation 3.29. 

The inertia and Euler tensor is described relative to a coordinate frame by a set 
of components called the moments of inertia and the products of inertia. If these 
components are described in an inertial frame and the body is moving, these com-
ponents will be time dependent. The description of these tensors relative to a body 
fixed frame leads to time independent components — which is advantageous, but also 
introduces the need to be able to transform the description of these tensors between 
coordinate frames. 

If le  is the description relative to an inertial frame and Ii is the description of 
the inertia tensor relative to the body fixed frame and R is the rotation tensor from 
the inertial frame to the body frame, these descriptions are related by: 

= Ric/R.7' 	 (3.34) 
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This transformation holds for all tensors. The above equation can be used to write 
the time derivative of any tensor, and specifically the inertia tensor, in terms of the 
tensor and the angular velocity tensor: 

	

ic = 	+ ROT 	 (3.35) 

(.2)Ic ,FLT  + RI,RTT 	 (3.36) 

	

= 	+ Ic Cv 	 (3.37) 

c7.1, — 	 (3.38) 

where the fact that le  is time independent and c1' is skew-symmetric has been used. 
From equation 3.29 it follows that I. = (the trace of a tensor is a scalar invari-
ant). 

3.5 Angular momentum tensor 

In order to investigate the angular momentum tensor, we first consider the angu-
lar momentum vector around the origin, o, of an inertial coordinate system — L.. 
Angular momentum is defined in an inertial reference frame. In classical vector 
mechanics [3], this vector is defined by: 

L. = s x [S +1.4) x re]m rc  x kn+I„,w 	 (3.39) 

where o' is a point fixed on the rigid body, s is the position vector of o' relative to 
o, r, is the position of the center of mass relative to o', and I., is the rigid body 
inertia tensor about point o', and w is the angular velocity vector of the rigid body. 
Equation 3.39 reduces if o' is fixed in space = 0), or if the center of mass is used 
as the reference point o' (re  = 0). The middle term in equation 3.39 then vanishes 
and the rest of the equation can easily be interpreted. The first term is the angular 
momentum due to the translation of the center of mass, while the last term is the 
angular momentum clue to the angular velocity of the body. 

To simplify the following analysis, we assume that the body has no translational 
motion W, and that the inertial coordinate system has its origin at the point o'. 
Equation 3.39 then becomes: 

	

L. = I0w 	 (3.40) 

When the center of mass is also the center of rotation, equation 3.40 is written as: 

	

= Icw 	 (3.41) 

If the center of rotation is not the center of mass, it is still useful to write the angular 
momentum vector in term of the angular momentum around the center of mass, as 
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this is more convenient to calculate: 

Lo 	 (3.42) 

= [I, — mr-cfc]w 
	

(parallel axis theorem) 	. (3.43) 

= Lc  — mr-cfew 
	

(3.44) 

= L+rnf 
	

(3.45) 

The angular momentum vector can be written in terms of the Euler tensor by sub-
stituting equation :3.30 in equation 3.40: 

1 
Lo  = —Jow — tr[Jo ]w (3.46) 

Since there is a one-to-one relationship between a vector and its second order skew-
symmetric Cartesian tensor dual, the angular momentum can also be described by 
a skew-symmetric tensor by simply applying the dual operator on the angular mo-
mentum vector: 

Lo  = dual(L0 ) 	 (3.47) 

The skew-symmetric tensor L o  is called the angular momentum tensor about the 
point o. 

Equation 3.47 provides an indirect definition of the angular momentum tensor 
through the use of the angular momentum vector. It is possible to define the angular 
momentum tensor directly in terms of the inertia tensor and the angular velocity 
tensor. To do this, we proceed from equation 3.47 with L o  defined by equation 3.40: 

L o  = dual(10 w) 
	

(3.48) 

and use the following proposition that is proven in [9]: 

Proposition 1 Let S be a symmetric tensor and v any vector. Then the dual 
tensor, dual(S • v), satisfies the following equation: 

dual(S v) = —[SCT 	tr[S]i% 	 (3.49) 

Since the inertia tensor I o  is symmetric, the angular momentum tensor can be ex-
panded from its dual definition as: 

	

L o  = —[I0 L-4)+A0 ]+ tr[I 0 ]c7) 	 (3.50) 

Io LV T  — :Jo 	tr[lo ] 	 (3.51) 

= [(Dio ] T  — c:1 0 	tr[L]cD 	 (3.52) 

4 2 



which defines the angular momentum tensor directly. Equation 3.52 can also be 
written in terms of the Euler tensor — which is indeed more compact. If we substitute 
equation 3.30 into equation 3.52 we get: 

L. = [tr[Jo ]L — ,J 0 1 7.  — [t1[J 0 11,  — 	+ 2tr[J 0 ](;) 	(3.53) . 

= —tr [J (3.1") 	— r [J 0 ]1, 	'Jo  2tr[J0]L 	 (3.54) 

= J0(:). 	 (3.55) 

= Jo cD — [JoL]' 	 (3.56) 

When the rigid body is rotating around its center of mass, the subscripts o can simply 
be replaced by c. From the above it can be seen that the angular momentum vector 
has a simpler expression when expressed in terms of the inertia tensor, while the 
angular momentum tensor has a simpler expression when the Euler tensor is used. 

3.6 Equations of motion 

As stated before, the equations of motion establishes the relationships between the 
motion of a body and the forces and torques acting on it. The motion of a rigid 
body can be decomposed into two independent motions: a pure translational motion 
of a point on the body (usually its center of mass), and the rotational motion of 
the body around that point. The Newton-Euler formalism makes use of this logical 
decomposition and uses two sets of equations to describe the rigid body motion. The 
translational motion is described by Newton's second axiom as: 

d 	. 
Fe  = —dt (mrc)  

where the position vector is measured in inertial space. The rotational motion is 
described by Euler's axiom. Euler's axiom of rotational motion relates the time rate 
of change of angular momentum to the torque vector (in inertial space): 

	

MO '=" LO 	 (3.58) 

It is derived from Newton's second axiom, where a body is considered as a finite 
set of point masses and the distance between these point masses is assumed to be 
kept constant by internal forces. The most important assumption made is that the 
internal forces do not cause a resultant moment. These assumptions should be kept 
in mind when applying Elder's axiom. 

Not much is gained by writing Newton's axiom in terms of tensors. One can use 
the angular acceleration tensor to express the linear acceleration' of the point c in 

'In rigid body mechanics, a basic assumption is that the mass of the bodies remain constant, 
thus Newton's axiom simplifies to F c  = mj:c• 

(3.57) 
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terms of its position in a body fixed frame and the linear acceleration of the body 
fixed frame relative to an inertial frame. A tensor formulation of Euler's axiom has 
more advantages and will be considered. 

If a body rotates around it's center of mass, Euler's axiom can be written and 
expanded as: 

Mc  = lac 	 (3.59) 

—
d 

(I cw) 	 (3.60) 
dt 

	

= icw +161) 	 (3.61) 

But it has been shown that the time derivative of the inertia tensor can be expressed 
in terms of the angular velocity and inertia tensor (equation 3.38): 

ic = Cac — IcC4) 	 (3.62) 

Therefore 

M = 	— LLD] w IcCo 	 (3.63) 

= IcCo (3.64) 

which is similar to the expression found in vector mechanics. If the rotation is 
not around the center of mass, the following relationship can be used to rewrite 
equation 3.64: 

Mo = Mc + rc  x Fc 	 (3.65) 

where Fe  is the total force caused at the center of mass of the rigid body due to its 
rotational motion. After some manipulation [9, chapter 4], it can be shown that the 
vector M o  satisfies the equation 

Mo = IoL c7)I0w 	 (3.66) 

By substituting equation 3.30 the moment vector can be expressed in terms of the 
Euler tensor: 

Mo = [JoL.,) + Z'Job)] + tr[Jo]i 	 (3.67) 

The torque tensor can now be defined from the torque vector by using the dual 
operator: 

IC4 0  = dual (r -40) (3.68) 

It would be advantageous to be able to arrive at a definition of the torque tensor 
without having to resort to vector mechanics. This is indeed possible. It follows 
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from Euler's axiom. The dual operator can be applied to both sides of equation 3.58 
to yield: 

fcli 0 	 • (3.69) .  

The angular momentum tensor, L., has already been defined by using other tensors 
(equation 3.52), and can be substituted into equation 3.69: 

M-  = 	+1.4.] — 	+ CO1 0 ] tr[I,,]L 	 (3.70) 

where the trace of a tensor (and thus I o ) is a scalar invariant, thus not time dependent. 
Equation 3.38 for rotation about o can be substituted for the time derivative of the 
inertia tensor: 

iio = VDT. + CocHo  — CoI
0

(.7,1 — VA °  + L:IL7)1 0  C-A ojd tr[I0]:7, 	(3.71) 

= 	La-o)I.] — [(J., 	)1o ] + [LTA 0 ■;17.  — [1.10 (.7)] 	tr[I.]L (3.72) 

= [(L 	— [(c") 	 tr[I„]:D 	 (3.73) 

= [AI.] — AI. + tr[Io lL 	 (3.74) 

which defines the torque tensor without using vector mechanics. The torque tensor 
can be defined more efficiently if the Euler tensor is used instead of the inertia tensor. 
By following the same principles as above, the result is: 

= AJ. — [ALI T 	 (3.75) 

Equation 3.75 is the tensor formulation of the generalized Euler equation of rigid 
body rotational motion. 
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Chapter 4 

Inverse dynamics of manipulators 

Space, time, and force are a priori forms; they can be derived only from 
contemplation and from general principles of research. Their common 
relation to each other in mechanics must be regarded as something in-
spired indeed by experience but in its generality fixed by convention. 

Hamel 
Elementare Mechanik (1912) 

4.1 Introduction 

The inverse dynamics problem is concerned with determining the joint forces' when 
the joint positions, velocities and accelerations are given. In other words, it is 
concerned with determining the necessary applied joint forces needed to attain a 
prescribed manipulator motion. From a kinematic point of view, one can always 
determine the motion of any link in the manipulator when the joint positions, velo-
cities and accelerations are given'. The inverse is unfortunately not true, that is the 
joint velocities and accelerations of all links cannot always be determined in a unique 
way if the position, velocity and acceleration of the end of the manipulator is given'. 
Since it seems so logical to determine the link motions from the joint motions, one 
can just as well take the next step and apply Newton's second axiom to each link 
and solve for the forces that should be acting on the link. One can of course use 
any dynamic formalism of your choice to solve the inverse dynamics problem, and 

'When referring to forces, it will usually include the linear forces and rotational moments, 
especially if used in any context where the spatial notation and general joint model is used. 

2 This is called the forward kinematic problem 
'Notice that we talk as if any manipulator or structure has an end. This is because any multi-

chain manipulator can be broken into separate serial chains and these serial chains considered for 
forward kinematic and inverse dynamic analyses. To some extent, this is also true for the forward 
dynamic analyses. 
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one is guaranteed to be able to arrive at similar algorithms with exactly the same. 
computational costs [8, 9]. Because of the direct physical insight when using the 
Newton-Euler formalism, and the easy integration of the general joint model, spa-
tial notation and SDOF kinematic notation with this formalism, the Newton-Euler 
formalism is preferred by the author and is the one that will be used in this chapter. 

It was mentioned before that the structure of the algorithms and the repres-
entation of quantities has a direct influence on the efficiency of the algorithms. A 
recursive algorithm will be derived. A forward recursion (from the base to the tip) 
will be used to calculate the accelerations of the links in the manipulator. Newton 
and Eulers' axioms will be used to calculate the forces acting on each link with a 
backward recursion (from the tip of the chain to the base). From the resultant force 
that acts on each link, the joint forces can easily be determined during the backward 
recursion. The accelerations and dynamic quantities will be represented in the re-
spective link coordinate frames, and the equations of motion will also be expressed 
in these link coordinate frames [10]. Spatial notation [20],with the slight modification 
as discussed before, will be used. The resulting algorithm should be very similar to 
an algorithm proposed by Featherstone [21]. 

4.2 Spatial inertia 

The components of the spatial inertia of a body is expressed as a 6 x 6 matrix. It 
is expressed in the local link coordinate frame and is defined from the mass, inertia 
tensor and position of the center of gravity as: 

171. 	I 
(4.1) I 	m  " i,  

where M i  is the 3 x 3 diagonal matrix of the mass of link i: 

mi 0 	0 1 
[ M1= 	0 7-n i  0 

0 	0 in 
(4.2) 

and Ij is the 3 x 3 inertia. tensor of link i about the origin of the ith coordinate frame. 
The 3 x 3 matrix hi is defined by: 

fli = 
	

(4.3) 

where s i  is the position vector of the center of gravity of link i from the origin of 

coordinate frame i. Because the coordinate frames are fixed to their respective links 
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and the links are rigid, the inertia matrix I i  is constant for all link orientations. 

The transformation of a spatial inertia matrix to an adjacent coordinate fra - me 
can be done as follows [2, 20]: 

— 	i + 1I 	i + 1Xi i+1 — 

4.3 The motion of links in a manipulator 

The motion of one link relative to another is constrained by the joint that connects 
them. As such, the relative velocity and acceleration of two links is only a function of 
the joint space and joint velocity and acceleration of this joint. Since the motion of 
the base is known, the velocity of the first link can be determined if the joint velocity 
of the first joint is known, and similarly the acceleration. If the first link's motion is 
known, and the relative motion of the second link is a function of the joint velocity and 
acceleration of the second joint, the motion of the second link can be determined. By 
continuing in this way to the last link, the motions of all the links can be determined. 

Let us first consider the relative motions. The spatial velocity of link i relative 
to link (i — 1), expressed in the i-th coordinate frame is simply: 

(4.5) 

where 47 is the joint velocities of joint i and ¢i  is the motion space of joint i. The 
spatial velocity of link (i — 1), which is expressed in link frame (i — 1), can be 
transformed to frame i to find the spatial velocity of frame i due to the velocity of 
link (i — 1): 

(4.6) 

where v i _ 1  is the spatial velocity of link (i — 1) (the spatial velocity of link frame 
(i — 1)), and ji  is the spatial transformation from frame (z .  — 1) to frame i. Given 
the spatial velocity of link (i — 1) and the joint velocity of joint i, the spatial velocity 
of link i, expressed in frame i is: 

= 	 (4.7) 

The spatial transformation already accounts for the linear velocity of the i-th frame 
due to the angular velocity of frame (and link) i. To show this, equation 4.7 can be 
expanded and rewritten: 

I_ 
 i-1 
1.A. i .._ 1 (1; i ) 7' 	i 	

+ cb .  
i-ki_ i  1 [ ui-i 1 	z(i  

v i   

+ I.Ai_ i (4)i_ i  x bi + ui-1/) 	1  ' 

(4.4) 

(4.8) 

(4.9) 
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The spatial acceleration of link i can also be written as the sum of the relative 
acceleration due to joint i and the spatial acceleration of link (i — 1), but one has 
to add another term to account for the bias accelerations since the i-th coordinate • 
frame is not an inertial one. Let ( i  be the spatial bias acceleration vector. A recursive 
relationship to determine the spatial acceleration of link i from the spatial acceleration 
of link (i — 1) and the joint acceleration of joint i is then simply: 

== 	-F 	d- (i 	 (4.10) 

Consider the bias acceleration vector. As is well known, for non-inertial systems, the 
bias linear acceleration consists of the centripetal and Coriolis accelerations. The 
centripetal acceleration (linear) of the origin of the ith link frame relative to the 
origin of frame (i — 1) is given by: 

acentripetat = 'Ai-1 	x (wi_ 1  x b i )} , 	 (4.11) 

[ i _ 1 (Co i _ 1 13 i )] , 	 (4.12) 

where the tensor dual of angular velocity is used to accomplished the cross product. 
The Coriolis acceleration (linear) of frame i is: 

	

acorio i i, = 2 2 A i _ 1 	x 	, 	 (4.13) 

	

= 2 2 A_ 1 	, 	 (4.14) 

where tei is the linear velocity of frame i relative to frame (i — 1), which is only 
non-zero if joint i has a prismatic degree of freedom. The relative linear velocity is 
given by the last three components of oi 47 and it can be written as: 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
0 
0 

0 
1 
0 

0 - 

1 
0 (4.15) 

The bias spatial acceleration can also have rotational components. If the angular 
velocity of link (i-1) and link i is not parallel, there exists a. bias angular acceleration: 

	

• bias = 
	 X 
	

(4.16) 

	

= 	Ai-1CL'i-1W 7; • 
	 (4.17) 

is the angular velocity of link i relative to link (i — 1) and is given by the first 

three components of (j.A!': 

1 
0 
0 

0 
1 
0 

0 
0 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

(4.18) 
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a;  = iX;_ ai- 	+ 	0 

By using the above equation that describes the components of the bias acceleration 
vector, the spatial acceleration of link i becomes: 

03x1 
1(r: + 2 `A,_1' 	

ó,q, 	
IA.,_1(:)i_1(1),-ib, 	• 

(4.19) 
If the SDOF kinematic notation is used, equation 4.19 becomes: 

= 
2'A 1 _, 

° 3x3 

0 3x3 

03 x 3 1 'ri-1.  
(4.20) 

4.4 The forces acting on links in a manipulator 

In order to determine what forces act on each link in the system, each link can be 
considered as a free body, and Newton and Euler's equations of motion applied to 
these free bodies. From these equations the resultant spatial force on each link can 
be found. The only forces that can act on the links (excluding the last link) are the 
forces that neighbouring links exert on them'. In a serial chain, the inner links thus 
has two unknown forces acting on it of which the resultant is known. There exists 
infinite solutions for these two forces that will have the required resultant. Applying 
the equations of motion to an arbitrary link in the chain can thus be interesting, but 
not useful by worldly standards. The obvious solution is to first apply the equations 
of motion to the last link in the serial chain (or subchain) 5 . The forces acting on 
the last link can only be the force exerted on it by the previous link and the force 
exerted on it by the environment'. There is only one solution for the force exerted 
on the last link by the previous link that will satisfy the resultant force requirement. 
This unique solution can be found, and the image of this force on the motion space of 
the joint is the joint forces. Since the force that the i-th link exerts on the (i — 1)-th 
link is exactly opposite to the force that the (i — 1)-th link exert on the i-th link, one 
of the forces acting on the previous link is known. The other force can be calculated 
using the equations of motion. In this way the procedure can be iterated towards 

4 Gravity also exerts a force on each link. Calculating the force exerted on each link to take the 
influence of gravity into account is not very efficient (although it is optimally effective). A more 
efficient way is to give the base of the system an acceleration equal but opposite to gravitational 
acceleration. 

5 Remember that multiple chain mechanisms can be divided into parts that are serial chains. 
'If the chain was part of a bigger chain, this environment would be the connection with the rest 

of the mechanism. The force in this connection is not known, but one can choose an appropriate 
value for this force, or in the case of a simple closed chain mechanism. this force can be calculated 
as in Chapter 6 since the required acceleration of the reference member is given. 
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the base of the chain until all the joint forces have been calculated. 

The equations of motion are combined into a. single equation with the use of 
spatial notation. The equation of motion for the i-th link at the link frame origin
and expressed in the link frame is [2]: 

Lai 	 (4.21) 

si is the position of the center of mass of link i relatiN e to the origin of link frame i, 
with components expressed in frame i. Now we will express the resultant force on 
link i in terms of the two forces acting on the link. Force 11 +1  is exerted on the near 
end of link (i 1), and the reaction acts on the far end of link i. The sum of this 
force, transformed to the near end of link i, and the force acting on joint i (in both 
the constrained and unconstrained directions) is the resultant force acting on link i. 
Unfortunately, our definition of the 6 x I force vector does not satisfy the general 
spatial transformation given in equation 2.5. The transformation used below should 
be easy to verify. The resultant force is thus: 

j A• ' -!-1 	= 4-1 	(—f-1+1 ) . 	 (4.22) 
0 	zA i+1  

This is the resultant force used in the equation of motion (equation 4.21). Equa-
tion 4.22 can be rearranged and the resultant force calculated with equation 4.21 
substituted into it to obtain the force on the near end of link i: 

- 	• A 
= 	

jAi+1 1,  
(4.23) 

0 

As mentioned before, the components of f1 that lies in the joint space of joint i is the 
joint force for joint i. The other components is the constraint force in joint i. Thus, 

7-2*  = oTfl (4.24) 

If friction is present in the joint, the friction force has to be added to the above 
equation: 

= °Tfi =TVIN, 	 (4.25) 

where ,T depends on the type of friction that is modeled and can be a non-linear 
function. For viscous friction. it would simply be: 

= b i ()7, 	 (4.26) 

where bi  is a vector of (positive) friction components for the free axis of the joint. 

The algorithm for determining the joint forces required to achieve a prescribed 
manipulator motion is summarized below: 
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4.4.1 Recursive algorithm for solving the inverse dynamics of 
manipulators with multiple degree-of-freedom joints 

Given: vo  and ao  
Initialize: I' = [] 

Forward equations: 

ai = iXi- i 

Backward equations: 

i = 1, 2, ... 

vi = 

0 

i = N, 

Fi  = 

= F i  + 

, N 

N — 1, 

Lai 

• 
A1+1 

0 

OTfi 

F = 

2 1 .A1_1-1 

+ 0147 

0 

. 	. 	. 	, 	1 

micoi  

i A 
r-ks i 

T(47) ,  

+1 
fi+1 

03x1 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

0 3x1 The usual base conditions are: v o  = 0 and ao = 	1, where g is the gravita- 

tional tional acceleration vector. 

4.5 Worked example 

Here we consider the application of the inverse dynamics algorithm to the "Stanford 
manipulator". We now have to give the manipulator dimensions and inertial prop-
erties. The dimensions are chosen as in Figure 4.1. 

The manipulator's structure and kinematic properties is described by the SDOF 
joint parameters and the joint spaces. The joint parameters can be found as explained 
in Chapter 2. We have already described the joint spaces. The joint parameters and 
joint spaces are summarized in Table 4.1. 

The inertial properties of the links will now be assigned. We have to specify the 
mass of each link, the position of the center of gravity of each link relative to the 
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Link i Joint parameters -/i  Joint space o i  

1 

- 	0 
0 
0 
0 

0.3 
—0, 15 

- 

_ 

- 0 - 
1 
0 
0 
0 
0 

9 

- 	0 	- 
0 
0 

0,8 
0 
0 	_ 

0 	0 
0 	0 
1 	0 
0 	1 
0 	0 
0 	0 _ 

:3 

- 	0 	- 
0 
0 

0, 9  
0 
0 

- 0 -
0 
1 
0 
0 

_ 0_ 

4 

- 	0 
0 
0 

0.05 
0 
0 

- - 1 -
0 
0 
0 
0 

_ 0 _ 

Table 4.1: The SDOF joint parameters and joint spaces of the Stanford manipulator. 

3:3 



7' 

0,2 m 

Figure 4A: The dimensions of our Stanford manipulator. 

link coordinate frame, and the inertia tensor of each link around its center of gravity. 
From this we can calculate the spatial inertia of each link around their respective 
link frame origins. The positions and orientations of the link frames are still as in 
Figure 2.5. Let the first link have a mass of 2 kg, a center of mass 0,3 m above the 
base and 0,07m, to the left of the base: 

mi = 2 kg (4.33) 

0 
Si 	= 0,:3 771 (4.34) 

_ —0.07 _ 

The inertia tensor is: 
0,1 0 	0 

0 0,02 	0 kg m 2  (4.35) 
0 0 	0,1 

The other links' dynamic properties are summarized in Table 4.2. For all the links, 
the inertia tensor around the link frame origin can be calculated by using the parallel 
axis theorem. For link 1 this is done as follows: 

-11 = 	— 	 (4.36) 
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Link Mass 
Position 
of center 
of mass 

Inertia Tensor 

0,002 0 0 	- 

9 9 0 0 0,25 0 
0 0 0 0,25 _ 

0,12 0,002 0 0 - 
3 0,8 0 0 0,008 0 

_ 	0 	
- - 	

0 0 0,008 
- 

0,05 0,001 0 0 - 
4 0,5 0 0 0,004 0 

0 0 0 0,004 _ 

Table 4.2: The inertial properties of links 2 to 4. 

7. 

Now the spatial 

	

0,1 	0 

	

0 	0,02 

	

0 	0 

0,2898 
0 
0 

inertia 

I 

0 
0 

0,1 

0 
0,0298 
0,042 

of link 

Ii 
Tflll 

0,2898 
0 
0 
0 

0,14 
0,6 

-2 

0 
0,042 
0,28 

1 can 

777113x3 

0,0298 
0,042 
-0,14 

0 

0 
0 

be 

-0,07 
-0,:3 

0 	0,07 	0,3 
0 	0 
0 	0 	_ 

calculated: 

,  

	

0 	0 
0,042 	-0,14 

	

0,28 	-0,6 
-0,6 	9  

	

0 	0 

	

0 	0 

0,14 

0 
-0,07 
-0,:3 

0,6 
0 	0 
0 	0 
0 	0 
9 	0 
0 	9  

0,07 	0,3 
0 	0 
0 	0 

(4.37) 

(4.38) 

(4.39) 
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The spatial inertias of the other links are as follows: 

- 

= 

13= 

14 	= 

0,002 
0 
0 
0 
0 
0 

- 0,002 
0 
0 
0 
0 
0 

0,001 
0 
0 
0 
0 
0 

0 	0 	0 	0 	0 	- 

	

0,4:3 	0 	0 	0 	—0,6 
0 	0,43 	0 	0,6 	0 
0 	0 	9 	0 	0 
0 	0,6 	0 	2 	0 

	

—0,6 	0 	0 	0 	9  

	

0 	0 	0 	0 
0, 019.52 	0 	0 	0 

	

0 	0.01952 	0 	0,096 

	

0 	0 	0,8 	0 

	

0 	0.096 	0 	0,8 
—0,096 	0 	0 	0 

	

0 	0 	0 	0 
0,00525 	0 	0 	0 

	

0 	0, 00.525 	0 	0,025 

	

0 	0 	0,5 	0 

	

0 	0.025 	0 	0,5 
—0,025 	0 	0 	0 

0 	- 
—0,096 

0 
0 
0 

0,8 

0 	- 
—0,025 

0 
0 
0 

0,5 

(4.40) 

(4.41) 

(4.42) 

All the inertial properties of the manipulator are now known. Now we can consider 
the motion that the manipulator has to undergo. To make the example interesting, 
we will let joint one and the prismatic joint both have a constant velocity. This will 
demonstrate the centripetal and Coriolis effects, as well as the influence of gravity. 
Joint three and four will also be given rotational joint velocities, leading to interesting 
effects that will be discussed later. The vector of joint velocities' is assigned as: 

1,5 
0 

= 	0.4 	 (4.43) 
1 
3 

To illustrate only inertial and gravitational effects, all the joint accelerations are set 
to zero: 

= (4.44) 

   

'For rotational degrees-of-freedom the joint velocities are expressed in radian per second, and 
for the prismatic components in meters per second. 
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The inverse dynamics algorithm of Section 4.4.1 can now be applied. For the cur-
rent configuration of the manipulator, all the rotation transformations are identity 
matrices: 

A 
1 0 0 
0 1 0 
0 0 1 

, for i  =  1, 	,4. 	 (4.45) 

   

   

The spatial transformations are: 

1 0 0 0 0 0 - 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

1 	0 	0 	0 0 0 

	

0 	1 	0 	0 0 0 

	

0 	0 	1 	0 0 0 

	

0 	—0.15 —0,5 1 0 0 

	

0,15 	0 	0 	0 1 0 

	

0,5 	0 	0 	0 0 1 

	

_1 	0 	0 	0 0 0 -- 

	

0 	1 	0 	0 0 0 

	

0 	0 	1 	0 0 0 

	

0 	0 	0 	1 0 0 

	

0 	0 	0,8 0 1 0 

	

0 —0.8 	0 	0 0 1 

1 	0 	0 	0 0 0 - 

	

0 	1 	0 	0 0 0 

	

0 	0 	1 	0 0 0 

	

0 	0 	0 	1 0 0 

	

0 	0 	0. 9  0 1 0 

	

0 —0, 9 	0 	0 0 1 

lx0  = 

2x1= 

3X2  = 

4x 3  = 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

Equation 4.27 is used to calculate the spatial velocities of the link, while equation 4.28 
is used to calculate the spatial accelerations of the links. The results are as follow: 

 

o 

 

0 - 
0 
0 
0 

9.81 
0 

 

v i  = 
1,5 

,a1  = (4.50) 
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V2 = 

V3 = 

V4 = 

- 	0 
1,5 

0 
0,175 

0 
0 

0 
1.5 

1 
0, 175 

—1,2 

3 
1,5 

1 
0,175 

0, 9  
—1,5 

, 	a2 = 

, 	a3  = 

a4  = 

0 	• 
0 
0 
0 

9.81 
_ —0 869 5 

1.5 
0 
0 

—1,8 
9,81 

—0,8625 

1.5 
3 

—4,5 
—2,45 
9,81 

—0, 8625 _ 

• 	(4.51) 

(4.52) 

(4.53) 

Note that each link has a linear acceleration component in the y-direction. It is due 
to the acceleration we gave the base to take gravity into account. The last com-
ponent of a2  is the centripetal and Coriolis acceleration of the coordinate frame of 
link 2 (the Coriolis acceleration is much larger and in the opposite direction to the 
centripetal acceleration). It has a centripetal acceleration since coordinate frame 2 
does not lie on the axis of joint 1. The spatial acceleration of link 3 is very inter-
esting. None of the joints have rotational acceleration components, yet link 3 has an 
angular acceleration of 1,5 around the x-axis. This is because the rotational axes of 
joint 2 and 3 are not parallel. As seen in equation 4.17, this results in an angular 
acceleration: the direction of the rotation axis of joint 3 changes as joint 2 rotates - 
hence an angular acceleration. Link three also has this angular acceleration, but in 
addition to that it also has angular accelerations in the y and z-directions because 
the resultant angular velocity of the end of link 3 has components in z (due to joint 
2 and 3) and y (due to joint 1), while joint 4 rotates about its x axis. Again these 
rotations are not parallel, leading to the additional angular acceleration. 

The acceleration of all the links, expressed in their respective link coordinate 
frames (which, by coincidence. are all parallel) are now known. Equation 4.29 can 
now be used to calculate the resultant spatial forces on the links, also expressed in 
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the respective link coordinate frames. These forces are: 

0,0015 

O. 0245625 
0.24075 

—1,30625 
4.905 
0.4:3125 

- 0,003 - 
0,0828 

O. 94176 
1, 752 

7,84S 
0.69 _ 

0 	- 
0,5175 
5,886 

1,35 
19,62 
1,725 _ 

1,4679 - 

0 
0 

19,62 
_ 0.315 _ 

F4 = 

F3= 

F2 = 

F 1 = 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

No force is applied to the tip of the manipulator. The spatial force applied by 
joint 4 on link 4 must thus equal the resultant force calculated above. By using a 
backward recursion, the forces on the near end of the links (closest to the base) can 
be calculated (equation 4.30). The components of these forces that lies in the motion 
space of the joints are the applied joint forces (equation 4.31). The calculated forces 
and joint forces are given below: 

f4 = 

- 0.0015 
0,0245625 

0,2407.5 
—1,30625 

4,905 
—0.43125 

, 	= [ 0,0015 , 	 (4.58) 
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f3  = 

f.,= 

fl  

- 	0, 0045 
0.1936125 

2,16351 
—3,05825 

12, 753 
—1,12125 

0,0045 	- 
1,6081125 
18,25191 
—4, 40825 

32,373 
-2,84625 

- 	4,905225 
2, 26935 

20,456035 
—4,40825 

51,993 
—2,53125 

72 = 

- 

, 

[ 2,16351 

18, 25191 
—4,40825 

[ 2,26935 

, 	 • 	(4.59) 

(4.60) 

. 	 (4.61) 

ri* is largely due to the Coriolis acceleration of link two. The first component of 7 2*  

is due to gravitational forces of links 2 to 4. The second component is purely due to 
the centripetal acceleration of links 2 to four, which is a result of the joint velocity 
of joint 1. Both .1-; and r is due solely to bias angular accelerations. The vector of 
required applied joint forces are thus: 

2,26935 
18, 25191 

= —4,40825 	 (4.62) 
2,16351 
0,0015 

Now one can appreciate the complexity that arises when rigid bodies are connected 
to one another. The motion of any one of them can have an influence on all the 
other bodies in the system. The forces that result from these interactions (especially 
the bias forces) are often hard to see intuitively. Often these bias forces are large in 
magnitude — even for relatively slow motions — and cannot be ignored. 

4.6 Solution example 

We would now like to apply our imaginary Stanford manipulator to something one 
can imagine to be useful. We want the manipulator to do the following: 
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On ground level (the level of the base coordinate frame), at 0, 5 m from the, base 
in the z-direction, there is a tap that the manipulator has to close by half a turn. 
First, the manipulator has to position itself so that the gripper fits over the tap 
handle. The axis around which the gripper can turn has to be vertical. Because of 
the current position of the tap handle, the gripper also has to turn 90° clockwise 
before it can engage the tap handle. Next, the manipulator must turn the handle 
(and thus its gripper) 180' clockwise. It has been determined that to overcome the 
resistance of the tap handle to being turned requires 5 Nm. The gripper thus has 
to exert a moment of 5 Arm (clockwise) on the tap handle to turn it. It is assumed 
that the rotational moments of inertia of the tap handle and connected parts is small 
compared to the inherent friction in the tap mechanicals. 

We know the manipulator position at the start and end of the task, but we need 
to know what forces must be applied to the joints to accomplish the task. The 
manipulator motion has not been completely specified yet, only the manipulator po-
sitions at three instants have been given. Consider the first motion from the initial 
position to the position on the tap handle. We would like the manipulator to have 
no velocity at the start of the motion to the work position, and at the work position. 
An interpolation function that can satisfy these requirements is a simple third order 
polynomial. For all the joint positions we will fit a third order polynomial between 
the initial and work position states. Let the manipulator accomplish this motion in 
one second. We will do the same for the motion of the manipulator while turning 
the tap, but allow only half a second for turning the tap through 180°.A graph of 
the joint positions is given in Figure 4.2. Once these joint position functions has 
been calculated, the joint velocity and acceleration functions can also be calculated. 
The results are shown in Figures 4.3 and 4.4. The motion of the manipulator has 
then been sufficiently (actually completely) specified. The force that the end effector 
(gripper) has to exert is also known as function of time (Figure 4.5). The inverse 
dynamics algorithm can now be applied to determine the joint forces. Friction in the 
manipulator will again be ignored. 

The detail concerning the application of the inverse dynamics algorithm will not 
be given here (see previous section), but only some important points will be high-
lighted. The first is that the position of the center of mass of link two is not constant 
relative to the link frame, but it a function of the displacement of the prismatic joint. 
It is a simple linear function of the displacement of the prismatic joint and is easily 
calculated. Let the link be a simple beam of length /, with the position of its center 
of mass relative to the near end given by cg. The relationship between the position 
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Figure 4.3: The joint velocities of the manipulator whilst performing the prescribed 
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Figure 4.2: The joint positions as functions of time that are needed to accomplish 
the task (closing a valve by half a turn). 

Joint velocities as function of time 

task. 
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Joint accelerations as function of time 
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Figure 4.4: The joint accelerations of the manipulator whilst performing the pre-
scribed task. 

Moment exerted by gripper as function of time 
6.0 

5.4 - 

4.8 - 

4.2 - 

Z 3.6 - 

cg 3.0 

0 

Time (S) 
-0.10 
	

0.07 	0.24 	0.41 	0.58 	0.75 	0.92 	1.09 	1.26 	1.43 	1.60 

	 Joint 4 
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of the center of mass and the prismatic displacement is then simply: 

s 2  = ([0 1]q: —1) 
1 

0 	± cg. 	 (4.63) 
0 

  

For each time step, the new position of the center of mass of link 2 relative to link 
frame two has to be calculated, and from this the spatial inertia of link two around the 
link frame has to be recalculated. An implementation of the solution to the motion 
problem described here is the Scilab [22] executable stanford_moving.exe, which is 
listed in the appendices. The joint forces needed to accomplish the task is calculated 
by the algorithm and the results are given in Figure 4.6. Notice the change in joint 
forces the moment the gripper starts applying a force to the tap. Another insight one 
can gather from the graph is the influence bias forces and forces due to the interaction 
of the links. The joint forces look considerably different to the joint accelerations of 
Figure 4.4. 
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Figure 4.6: The joint forces required to perform the prescribed task. 
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Chapter 5 

Direct dynamics of serial chains 

5.1 Introduction 

The direct dynamics problem, also called the forward dynamics problem,' is con-
cerned with determining the joint accelerations in a robotic system when the applied 
joint forces are given. The solutions of the direct dynamic problem is most frequently 
applied in the simulation of robotic systems for the testing of control systems and 
the training of adaptive controllers, and for providing state feedback in tele-operated 
systems. In this chapter we will only consider single serial chain manipulators. It is 
the simplest sub class of manipulators that the direct dynamic problem can be solved 
for, but the importance of these solutions must not be underestimated for several 
reasons: 

Many real systems can be modeled as single serial chains. 

The results for serial chains can be used extensively in the analysis of more 
complex systems (see Chapter 6). 

Single closed chains are divided into two classes: open-chains and closed-chains. 
When only one end of a serial chain is connected to, or in contact with a base, this 
manipulator is in a. serial open-chain configuration. If the other end is also connected 
or in contact with a base, the manipulator is in a closed-chain configuration. In this 
chapter the spatial notation will be used in the dynamic analyses. Much work has 
been done by other researchers, and the analysis methods that follow are mostly a 
summary of the work by Lilly [2], with some comments and explanations. 

'This is different to the kinematic problem where the forward problem of kinematics corresponds 
closer to the inverse problem of dynamics. 
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5.2 Equations of direct dynamics 

Various methods can be used to derive the equations of motion for serial manipulat-
ors. The most commonly used in robotics are the Lagrange-Euler and the Newton-
Euler methods. With these methods dynamic equations can be formulated in terms 
of either the operational space' or the joint space'. 

The operational space formulation is useful when only the motion of the end 
effector needs to be studied. \\Then  the operational space formulation is used, the 
dynamic behavior of the manipulator is described in terms of its end effector. The res-
ulting equations can be manipulated to have the following form for an open chain [2, 
chapter 4]: 

F = A(x)K p(x, X) p(x) 	 (5.1) 

where 

6 x 1 operational force vector, 
A(x) = 6 x 6 operational space inertia matrix, 

6 x 1 vector of end effector coordinates, 
X, X = 6 x 1 spatial vectors of end effector rates and accelerations, 

,u(x, X) = 6 x 1 vector of centripetal and Coriolis forces, and 
p(x) = 6 x 1 vector of gravity forces. 

A is an inertial quantity which combines the properties of the entire chain and 
projects them to the tip or end effector. 

In a similar way, the joint space dynamic equations of motion for a single open 
chain with N degrees of freedom may be written as: 

= H(q)ii C(q, CIA G(q) 	 (5.2) 

where 

N x 1 joint force vector, 

	

H(q) 	N x N joint space inertia. matrix, 
N x 1 vector of joint coordinates, 

	

q 	x 1 vectors of joint rates and accelerations, 

	

C(q, 61 ) 	N x 1 vector of centripetal and Coriolis force terms, and 
G(q) = N x 1 vector of gravity forces. 

When a closed chain is considered, only one term needs to be added: 

F = H(q)E1 C(q, 	G(q) J eTud (q)f 	 (5.3) 

2 The vector space of end effector variables. 
3The vector space of joint variables (typically rotations of joints). 
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where J rrend  is the 6 x N Jacobian matrix, expressed in end effector coordinates, and 
f is the 6 x 1 vector of external forces and moments exerted by the last link, also 
expressed in the end effector coordinates. 

Several authors consider the dynamic simulation of manipulators, but few con-
skier closed dynamic chains. Most authors concentrate on the solution to the inverse 
dynamic problem [23, 11, 4] — that is — determining the forces and torques needed to 
attain a prescribed motion. Few authors use the same method of assigning kinematic 
parameters, which make the integration of algorithms from different authors into the 
same computer program difficult. 

Vukobratovi6 and Kireanski [24] derive an algorithm that solves for certain forces 
necessary in the upper extremities of a biped robot — to maintain balance — when the 
motion of the legs are prescribed. In another book VukobratoviC and Kir6anski [23] 
derive an efficient algorithm for the computation of the Joint Space Inertia Matrix, 
Coriolis effect matrix and gravity loading matrix, but this algorithm is not considered 
suitable for the simulation of a closed chain, because it does not give the Jacobian 
matrix as byproduct. Both methods for obtaining the joint accelerations due to the 
constraint on a closed chain, as derived by Lilly [2, chapter 5], uses this matrix'. 
Because the methods and algorithms by Lilly are the most complete ones found that 
can be used to simulate both open and closed chains, it was decided to base the 
algorithm to be used in this thesis on those algorithms. Lilly refers to other works 
that demonstrate algorithms for the efficient computation of C and G. 

We will now derive a suitable direct dynamics algorithm to be used in this work. 
It is not the most efficient algorithm known, but is a compromise between under-
standability/clarity and efficiency. The solution method will first be shown, then the 
calculation of the constants are discussed. 

5.2.1 Additional notation 

The following is useful when considering the concept of successively adding links to 
a manipulator: 
The number Ni is the total number of degrees of freedom of an i-link manipulator, 
while n i  is the number of degrees of freedom for link i only. The Ni  x 1 vector Eli 
represents the complete joint acceleration vector for an i-link manipulator. Let 
be the 71i X 1 vector of the joint accelerations about and/or along the axes of joint i. 

4 0ther approaches for solving closed chain problems makes use of Lagrange multipliers to solve 
a linear system that includes the dynamic equation of the manipulator and the tip constraints. 
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Then these vectors are related, as follows: 

- 

Cli-1 

cl; 
.(5.4) 

  

(5.5) 

A similar relationship exists for the joint force vector: 

- 1 = 

The 6 x N Jacobian matrix, J1 , for an i-link manipulator is related to the 6 x 
Jacobian matrix, J i _ 1 , of an (i — 1)-link manipulator as follows [IS]: 

= [ 
	

(5.6) 

where ci) i  represents the free modes of joint i. Note that any Jacobian is expressed 
in a particular coordinate frame. The convention used here is that Ji is expressed 
in the ith coordinate frame. This, together with the use of spatial notation and the 
joint description, greatly simplifies the evaluation of the Jacobian. 

5.2.2 Joint accelerations for open and closed chains 

From the equations of motion of a single N degree-of-freedom chain, 

F = 	C(q,q)4 G(q) J Tei,d (q)f 
	

(5.7) 

where f is the 6 x 1 vector of contact forces and moments exerted by the last link, 
it can be seen that if f is known, the mechanism may be treated as an open chain 
— with an additional known input torque or force at each actuator as a result of the 
contact force vector. Note that here the Jacobian matrix transforms f to joint space. 

The Jacobian matrix for a N-link manipulator, expressed in the end effector 
coordinates can be found from: 

'Tend = end)(NJN 
	 (5.8) 

where "dXN  is the transformation from the coordinate frame of the last link to the 
end effector frame, and 	has been calculated recursively using equation 5.6. 

The joint acceleration vector can be partitioned into the difference of two terms. 
The first term corresponds to the chain in the open configuration (contact force re-
moved) while the second term is a function of the contact force vector. This makes 
it possible to find a partial solution for the closed-chain joint accelerations before the 
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contact force is explicitly known. 

The partitioning may be done with the use of equation 5.3. Solving for the vector 
of joint accelerations of the closed chain, 

= 	11 -1 (T — Cj— G — J eTudf) (5.9) 

11-1 ( -  — 	G) 	(14-1-TeTi1d)f (5.10) 

qopen 	qconstrained (5.11) 

It can also be shown [2, chapter 4] that 

= (5.12) 

relates the joint acceleration vector and the operational force vector in the absence 
of bias terms. With this, equation 5.10 can be rewritten: 

= qopeji — lf 
	

(5.13) 

5.2.3 End effector acceleration 

One can solve explicitly for the end effector acceleration from equation 5.1, but this 
will involve the calculation of the vector of centripetal and Coriolis force, p(x, X), 
and the vector of gravity forces, p(x), for the end effector formulation. To avoid this, 
it is desirable to find a relationship between the joint accelerations, as found through 
the joint space formulation, and the acceleration of the end effector. It will later be 
shown that it is necessary to know the inverse operational space inertia matrix, A', 
in order to find the force on the tip of the last link due to a constraint. A method 
to calculate this from the inverse joint space inertia matrix will be developed later on. 

The relationship between joint accelerations and end effector acceleration follows 
from the definition of the Jacobian matrix. Using the Jacobian, the end effector 
velocity is: 

= Jend(4 	 (5.14) 

Then its time derivative is: 

= Jenc14 denc14 	 (5.15) 

The above with equation 5.10 can be used to partition the end effector acceleration 
into terms involving the open chain solution and the tip force: 

Jend 1 (7 — CI — G) denA — Pondli-lJeTnag 	(5.16) 

PendH -1  ( 	G) (iend Jend11 -1  C )q] 	 (5.17) 

	

je11dH -1 jiTudj 	 (5.1S) 

Klopen 	Kconstrained 	 (5.19) 
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It can be shown [2, chapter 4] that 

Id 11-1 JLI:1d 
	 (5.20) 

where A -1  is the inverse operational space matrix for a single chain. 5  Then 

	

— Ropen  — A i f 
	

(5.21) 

5.2.4 Tip constraints 

The contact occurs between the last link, body N. of the manipulator, and body N+1 
- the rigid body in the environment. The joint between these is therefore joint N+ 1. 

Let us assume that the two dual bases we use to partition the spatial acceleration 
and force vectors at the tip are the same. Thus, 

ON4. 1  = vector space of free (unconstrained) directions for the contact, [6 x (6 — 

ON+1  = vector space of constrained directions for the contact, [6 x 

where n, is the number of degrees of constraint at the tip. 

As was proved earlier, the two vector spaces defined for the contact are ortho-
gonal. 

Now the end effector acceleration and general contact force vector can be resolved 
in the two orthogonal vector spaces of the contact: 

	

= c3N-{-1g OcN-Fi gc 	 (5.22) 

f = ON+1 h 	) v+1 11 c 	 (5.23) 

where g and h are the (6 — n c ) x 1 vectors of unconstrained acceleration and force 
respectively, and gc and fic are the n x 1 constraint acceleration and force vectors re- 
spectively. f is literally fN +1  and h and 1-ic correspond to 7- +1  and 7-1+1  respectively. 

For every kind of contact, a unique (.5 N+1  and (* +1  can be specified. Also, 
for every unknown component of the contact force vector, there is a corresponding 
known value of the relative angular or linear acceleration of the end effector in the 
same direction. This is the result of the constraint. From the known components of 
acceleration and contact force vector, one must find the unknown force components. 
To facilitate this, contacts can be divided into two classes with reference to their 
properties: 

5 This will be proven later. 
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1. Class I contact 

gc and h are completely specified, 

g and hc are unknown. 

2. Class II contact 

gc is completely specified, 

g and hc are unknown, 

h is linear function of hc. 

For the problem at hand, we have a Class I contact. Note that body X +1 need not 
be stationary, its motion must just be completely specified. 

Calculation of the unknown contact forces (Class I contact) 

The dynamic equations of motion expressed in the operational space can be com-
bined with the tip contact model to solve for the unknown force components he. 

gc and h are known. From equations 5.21 and 5.22: 

= Xopen 	 (5.24) 

= (:),v + ig + 	 (5.25) 

This can be combined with equation 5.23 to give: 

ON+ g + 	Ropen A-1  (0N +1  h O v+i hc) 
	

(5.26) 

But, NOT() = 1 and ()T(0) = 0. The unknown quantity g can be eliminated 

from equation 5.26 by pre-multiplying with ()T: 

ge  = 	 — (ctv+I )TA -1 (0N+i h OcAr +1 1c) 	(5.27) (0.cv-i-J TRopen  

The only unknown in the above equation is he. A solution for he can be found from 

the following linear system: 

[(0-F1) T A -1 ( 0 4-1)1 hc 	[(th+1)TRopen 	
(c:) ,72v+1  ) T A -1 c:x+iti 	 (5.28) 

An explicit solution for it can be found: 

- 1  
= [(O cNi- 1 ) T A -1 (0°N+1)]

1 
 [(c5c,v +i  ) Tx** open  — (c5",v+ 1 )

T A-- c5N +1 11 — (5.29) 
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However, this solution can only be found if (cA... 1.1 ) TA -1 (6"v+i  ) is not singular.. This 
matrix product must therefore have full column rank. In order to fulfill this require-
ment, the column space of Ociv+i  must be a subspace of the column space of J ena, 
since A -- ' = JendH-1 jTend and H has full column rank. This implies that one should 
not constrain the end of a manipulator from movements that are already constrained 
by the joints of the manipulator if the exact solution is sought. This might not al-
ways be possible, and the solution procedure for such cases is discussed later. 

If hc is known then f is completely specified: 

= 	9&_0 1-i e 	 (5.30) 

5.2.5 Calculation of the joint space inertia matrix H 

The way in which the Lagrange-Euler or Newton-Euler equations are manipulated 
into the form of equation. 5.3 results in certain algorithms for the calculation of H, C 
and G. Not all the resulting algorithms are computationally equally efficient. Some 
of the more efficient algorithms [2] for the computation of H are the: 

Structurally Recursive Method [2], 

Inertia Projection Method [2], 

Modified Composite-Rigid-Body Method [2, 25, 20] and 

Spatial Composite-Rigid-Body Method [2]. 

Because of its simplicity, the Structurally Recursive Method will be used. Its deriva-
tion is based on the concept of successively adding individual links to the free end of 
a serial chain. The forces acting on the added link can be projected onto the motion 
space of the augmented manipulator, which eliminates some unknown forces. The 
derivation can be found in Lilly [2, p. 23-27] and will briefly be discussed here. In 
the derivation that follows, it will be assumed that all joint velocities are zero and 
that there is no gravity acting on the manipulator, in order to prevent bias terms 
from entering into the equation, and thus making the identification of the joint space 
inertia matrix easier. Consider a manipulator with only one link. The free body 
force equation for this single link can be written as: 

	

= f1  — 2XTf2 	 (5.31) 

where a l  is the 6 x 1 spatial acceleration vector of link 1 (recall that it includes both 
linear and angular acceleration), f, is the spatial force (moments and linear forces) 
applied by the base to link I, and f 2  is the spatial force applied by link 1 to the next 
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link (or any body it contacts) at the origin of coordinate frame 2, and measured in 
it. The inertia matrix I I  has been defined earlier. These terms are quantities in 
Cartesian space. If the above equation is transformed to joint space, the joint space 
inertia matrix can be identified. 

In order to transform the last equation to joint space, each term can be projected 
onto the motion space of the manipulator by taking the clot product of each term 
with column vectors that form a base for the motion space of the manipulator. The 
columns of the Jacobia.n matrix are basis vectors for the motion space, and the 
projection can thus be performed by pre-multiplying each term with the transpose 
of the Jacobian matrix of the single link manipulator: 

	

JTIi al  = JT3.  _Jf 2xTi  f2 	 (5.32) 

With this operation, the unknown constraint forces and moments at joint 1 has been 
eliminated, and the projection of f 1  onto the motion space of the first joint is simply 
71 . Because all joint velocities are zero, a l  = J 1 C1 1 . Now equation .5.32 becomes: 

= 	jTi  2xTi  f2 	 (5.33) 

By comparing this with equation 5.3 it can be seen that the joint space inertia matrix 
of a single link manipulator is: 

= (JTI 1 .1 1 ) 
	

(5.34) 

and the dynamic equation can be written as: 

H1 ,-21 	7_1  _ J-T 1  2x-ri f2 	 (5.35) 

Now consider an (i — 1) link manipulator for which the joint space inertia matrix is 
known. Add a. link to the free end to form an i link manipulator. We will now try 
to establish the relationship between the known 111_ 1  and Hi. This will lead to a 
recursion for determining H for the whole manipulator. The dynamic equation for 
the (i — 1) link manipulator is given as: 

	

H1-141-1 -= 71-1 — J 11± 1  iXir 
	

(5.36) 

The free-body force equation for the ith link can be written as: 

= 	— i + 1 X.;r fi +1 	 (5.37) 

The i-link Jacobian matrix can be found from the (i — 1)-link Jacobian matrix a.s: 

Ji 	[ 	 (5.38) 
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Tr 
JTfi  = 	 + 71-1 (5.42) 

This i-link Jacobian can now be used to project the force terms onto the motion 
space of the augmented manipulator: 

TTT ai .= j 	- I- 1 x fi 	 (5.39) 

The projection of the force f i  onto the motion space of the manipulator can be written 
in terms of the projection on the motion space of link i, and the projection on the 
motion space of the first (i — 1) links by using equation 5.38: 

TT 	{ i Xir  i fi 
dj 

_ 
or fi  

With the use of equation 5.36 and 

(5.40) 

(5.4 1) 

the expression for the projection onto the motion space becomes: 

The dimensions of H i _ 1  is Ni _ 1  x 	where Ni _ 1  is the number of degrees of 
freedom of the (i — 1) link manipulator. Let us define the Ni  x N matrix Hr_ j_ as: 

Then, 

— Hi-1  ° — 	0 0 
(5.43) 

= — 	Eli 	Ti 	 (5.44) 

Equation 5.39 can be combined with equation 5.44, and the relationship ai = Jq 
used to rewrite the projection of the force equation as: 

	

= — 	i+1 Xir f1+1 	 (5.45) 

From this, the joint space inertia matrix is identified as: 

Hi = 	 (5.46) 

This is the basic recursion, and can be used with the definition of 11_ 1  and the 
fact that H o  is an empty matrix, to determine the joint space inertia matrix of a 
complex manipulator recursively. 
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5.2.6 Calculation of the operational space inertia matrix .A 1  

The inertia matrices are not dependent on whether the manipulator is a closed or 
open chain. From equation 5.2 the joint accelerations can be expressed as: 

	

4 = Iry - C - G) 	 (5.47) 

The generalized force vector, r, is the projection of the operational force vector, F, 
onto the motion space of the manipulator. and is given by: 

= JLd (q)F 	 (5.48) 

This can be substituted into equation 5.47: 

= ( 1-1-1 JeTild)F — 11-1 (C4 + G) 	 (5.49) 

= 	— B 4 ( q,) 	 (5.50) 

where 
Il = ( 1-1 -1 .frend ) 
	

(5.51) 

relates the joint acceleration vector and the operational force vector in the absence 
of bias terms, and where I31(q, 4) is the joint space bias vector, which is only a 
function of the present state. 

From the definition of the Jacobian, the acceleration of the end effector is: 

	

= Jend(q)E1+ jenc14 
	

(5.52) 

When this is combined with equation 5.49, the spatial end effector acceleration may 
be expressed as: 

= (Jendli 1JeTnd)F  Jend11-1  ( 	G) jend4 	(5.53) 

= (Jendli-l JTend)F Bk (x, 
	 (5.54) 

where Bk(x,X) is a bias vector that is also only a function of the present state. Now 
one can solve for F: 

F = (JendH-1 JTendr 1  + Pencill -1 JeTnd) -1 BR(x, 	(5.55) 

= (Jend 11-1 -1.Tend) -13  + B F (x,k) 	 (5.56) 

where BF(x, X) represents the bias forces. By comparing the above equation with 
equation 5.1 the operational space inertia matrix can be identified as: 

A(x) = A(q) = Pend(q)H -1 JeTna(q)] -1 
	

(5.57) 
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Thus the operational space inertia matrix is a function of position only, and is always 
a 6 x 6 matrix, irrespective of the number of degrees of freedom, N, of the manip-
ulator. It is very important to note that A is only defined if the bracketed 'term is 
not singular, thus only if 

A -1 (q) = Pend(q) 11-1 JLd(q)] 	 (5.58) 

has a rank of 6. Since H has a rank of N (because it is symmetric and positive 
definite) and is thus always invertible, while J is a 6 x N matrix for which the rank 
varies with the position of the manipulator, the rank of the above product depends 
solely on the Jacobian. If the manipulator has less than six degrees of freedom, 
A -1  is always singular. If the manipulator has six or more degrees of freedom and 
the columns of the Jacobian span the rank of J and the above product will be 
six and the inverse (and thus A) will be defined. A sufficient condition for A' to 
be invertible is thus that the Jacobian must have a full column rank of six. If the 
column rank of the Jacobian is less than six, there are directions in which the tip of 
the manipulator can not move - because of its structure - and the operational space 
inertia in these directions are infinite. From this it can be concluded that the inverse 
operational space inertia matrix, A', is always defined, while the operational space 
inertia matrix, A is only defined explicitly for manipulators with 6 or more degrees 
of freedom. 

5.2.7 Computation of the gravity load vector G, and Coriolis 

and centripetal force vector C 

Both G and C can be calculated explicitly. Methods have been found in Paul [4], 
Zomaya [11] and Vukobratovie [23], but these cannot be implemented directly. These 
methods are also rather complex. An easier and very efficient way to calculate the 
terms due to gravity and Coriolis and centripetal effects is to use the inverse dynamics 
algorithm: with the joint accelerations set to zero, but with the joint velocities and 
positions as they are at that moment, the calculated joint force vector is exactly 
equal to the forces due to the effect under consideration. 

F = H(04 + C(q,(4)4 G(q) 	 (5.59) 

but 
= 0 	 (5.60) 

therefore 
F = C(q.4)C1+ G(q) 	 (5.61) 
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5.2.8 Calculation of the time derivative of the Jacobian mat-
rix 

From the foregoing it should be clear that the first time derivative of the Jacobian 
matrix is needed if one wants to compute the acceleration of the end effector from the 
joint accelerations. The acceleration of the end effector can be solved for from the 
operational space dynamic equation (equation 5.1) as well, but this would introduce 
a great deal of extra computations. Apart from the fact that another linear system 
has to be solved, the equivalent end effector bias forces also has to be calculated. In 
order to do this from the joint space bias forces, the time derivative of the Jacobian is 
needed in any case. To see this, one simply has to examine equation 5.53. From this 
equation the relationship between the operational space bias vectors and the joint 
space bias vectors is: 

ii(x, 5c) 	p(x) = JI-1 -1 (CCI 	G) 	 (5.62) 

Thus, unless we want to calculate the operational bias force vectors from scratch and 
then solve a linear system with six unknowns, we need to know the time derivative of 
the Jacobian matrix. In a simulation a simple approximation would be to calculate 
it from the previous and current Jacobian: 

J — J j 	t 	t-i 

Jt 
(5.63) 

Unless small simulation steps or other special techniques are used, this might not 
be accurate enough. Let us attempt to calculate the time derivative of the Jacobian 
from its recursive definition: 

Ji = 	 c5i1 • 	 (5.64) 

The time derivative of the above equation yields a recursive definition of the time 
derivative of the Jacobian: 

di = 	+ 

By examining the definition of the spatial transformation, its 

 o 
i1 

=
. • 	 T 
Ai_ibTz 	Ai_ibi 	Ai-i 

To calculate the time derivative of the rotation transformation might 
a problem, but by using the results of Chapter 3 it can easily be calculated: the 

(5.65) 

time derivative follows: 

(5.66) 

seem to be 
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rotation transformation is in fact a orthonormal second order tensor, and as such its 
time derivative is given by: 

= 'A - relative i A 
—1"i t (5.67) 

The time derivative of the tensor dual of the relative position vector is trivial to 
calculate: it is the tensor dual of the relative linear velocity of the two frames, which 
is only a function of the prismatic joint velocity of joint i. The time derivative of the 
spatial transformation can thus be calculated. The only other unknown quantity in 
equation 5.65 is the time derivative of the joint space, j. 

For all joints with only one rotational degree of freedom, ci) i  is constant and its 
derivative is thus zero. For joints with two or more rotational degrees of freedom, the 
joint space is a function of the joint velocity. and is not constant. The calculation 
methods when the SDOF notation is used will now be discussed. As the current 
joint space is calculated in parts (see Section 2.6.4), its time derivative will also be 
calculated in parts. As discussed earlier, the part of the joint space that corresponds 
to the first rotation of the gimbal, is given by: 

Rot(z,0,)Rot(y,O y ) 

and the time derivative is simply: 

1 
cDRot(z,0,)Rot(y, Oy) 0 

(5.68) 

(5.69) 
0 

Similarly, the part of the joint space that correspond to the second rotation of the 
gimbal is given by: 

Rot(. 0„,) (5.70) 

  

and its time derivative is simply: 

  

j.:Rot(z. 1 (5.71) 

   

In the above, w is the part of the angular velocity due to the rotations around the z- 
and y-axes, or the z-axis, respectively. The part of the joint space that corresponds 
to the third rotation of the gimbal is not a function of the joint positions of joint i 
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and as such the part of the time derivative of the joint space that corresponds to it 
is zero. The prismatic joints have no contribution to the time derivative of the joint 
space. • 

After considering the above results, one may well decide to live with the error 
of using the approximation to the time derivative. However, the accuracy of the 
time derivative used is equal in importance to the accuracy of the Jacobian itself. 
A simple test done on the system described later in this section quickly showed 
this. The magnitude of the contributions of the terms containing the Jacobian and 
the time derivative of the Jacobian respectively towards the open chain operational 
space acceleration (equation 5.52) is shown in Figure 5.1. In this figure the parts of 
the acceleration due to each of the terms are of the same order. Despite this, the 
numerical approximation was used in the implementation of the algorithms, and the 
performance proved to be very satisfactory. 

Comparison of the magnitudes of terms in operational acceleration 

1 	 1 

1 	2 

First term 
Second term 

3 
	

4 
	

5 
	

6 
	

7 
	

8 
	

9 
	

10 

Time (s) 

Figure 5.1: The magnitudes of the two terms in equation 5.52 during the simulation 
of the four link mechanism described later in this chapter. 
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5.3 Simulation algorithm 

To simulate the dynamic behavior of the robot, the following algorithm can-be used: 

1. Given: 

Oi  and I j  for i = 1, . . . N 

0-N-3-1 

h and gr 

J o  is empty 

Ho  is empty 

The force vector, T. 

Calculate spatial transformations 'xi_ i for i = 1, . . . , N 

Calculate H, G and C 

Ji = 

Hi = 	Hr_,) 
P = C(q, 4)4 G(q) as calculated with the inverse dynamics algorithm 

4. Calculate SI and A' 

Jend = endXN Jr•I 

Calculate J e„d 

11  = H-1JTe1d 

A-1. = J' endl2  

5. Open chain solution 

Clop. = 11 -1 (r — C — G) 

6. Calculate the unknown contact forcc vector 

Koper' = JendElopen Jendq 

he  = [(OTA -1 ( 7 -1-1)1 -1 	[(0V-i-i) T open 	(OcN+1) T A -1 0N-1-1h 	gc ] 

f = 6,v+1 11 

7. Closed chain joint accelerations 

- Elopen 

S. Integrate to the next state. 

SO 



5.4 Some detail relating to the application of. al-
gorithms 

5.4.1 Tip constraints 

The constraint directions of the interaction of the tip with the environment is ex-
pressed in the tip coordinate frame. If this frame is fixed to the last link, it orientation 
will continually change as the joint positions of a manipulator changes. In this case 
the tip constraints continually change — even though g5"\- is constant. This is like 
having the source of the constraints rotate with the last link. There may be cases 
where such constraints actually occur, but usually the constraints are exerted by an 
environment that is fixed relative to the base frame of the system. The constraint 
directions thus remain constant relative to the base frame. To implement such con-
straints, the tip frame can be fixed to the last link and the tip constraints transformed 
to this frame, or the tip frame can have the same orientation as the base frame - with 
the origin at a fixed point relative to the last link. The second proposal is favoured by 
the author. In the dynamic algorithms, the spatial transformation from frame N to 
the tip frame is needed. The rotation transformation from frame N to the tip frame 
is a function of the orientation of the last link and continually changes. However, 
this rotation can easily be calculated from the other rotation transformations that 
have already been calculated. To show this, simply consider that the result of the 
successive rotation transformations from the base to the tip has to be the identity 
transformation: 

endANNAjvi . 	= 1 	 (5.72) 

From this we find the rotation from frame N to the tip frame (remember that the 
inverse of a rotation matrix is the transpose of this matrix since it is orthonormal): 

endA N  = 1A0T 2ATI 	NAT 

N 	2 	1 = AN-1 	A 1  A0  
(5.73) 

(5.74) 

5.4.2 Integration error 

One can use sophisticated integration techniques to minimize integration error, but 
in this kind of system, the integration errors compound abnormally fast (especially 
for the joint positions) because of the strong coupling between the variables. What 
happens is that small integration errors cause displacements of the tip of the manip-
ulator from its constraint position. This is not due to an inaccurately calculated tip 
force, but only integration error. Now the constraint has actually changed and the 
solutions in the following time steps are calculated for this different system, and not 
the original system. 
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To minimize this compounding effect, one can try to restore the system so that 
the position of the tip constraint remains the same. The difference between the 
calculated position of the tip and its constraint position is known explicitly. The 
problem is now how to distribute this displacement error to errors in the respective 
joint positions. Kinematically this can be a singular problem. A more sensible 
solution is to make use of the dynamics of the system to distribute the error between 
the joints in the system. This can be done by adding a small "corrective" force to the 
tip force at the end of the manipulator. This force can simply be a linear function 
of the velocity and position discrepancies [2]: 

fcorrective -= Kr (5C c  — X) + K p (x, — x), 	 (5.75) 

where X, and x, are the constrained end effector position and velocity vectors, and 
and K p  are the rate and position feedback gains. 

5.5 Worked example 

We Nv i 1 1 now work through a simple example step-by-step for the first time step in 
the simulation. 

5.5.1 Problem definition 

The system we will consider is not very complex: it is a single serial chain with four 
links, with all the joints having only one degree of freedom,' as in Figure 5.2. Once 
again we will use the SDOF kinematic notation since it is so convenient. We will 
include joint friction in the system. In order that the calculation of the contact force 
in closed chain mechanisms can be illustrated, let us also constrain the tip of the 
manipulator (the end of link four). 

There are many ways in which one can constrain the acceleration of the tip. We 
might want to constrain its linear motion to moving in some straight line, or con-
strain it from rotating etc. Further, the constraint is expressed in the tip frame of 
the manipulator. If the tip frame is fixed to link four, very interesting constraints 
can be constructed, such as constraining the motion of the tip in its instantaneous 
z-direction — which is always changing. More often the motion of the tip is con-
strained relative to the base. We vill constrain our manipulator in this way: the tip 

6 This manipulator happens to be a planar mechanism, but this is immaterial as all the algorithms 
used are for general 3D mechanisms that can have any finite number of links and multiple degree 
of freedom joints. Although kinematic singularities are more likely to occur in three dimensional 
structures, these singularities has no influence on any of the dynamics algorithms. 
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Figure 5.2: A simple serial chain mechanism that is used in the worked example. 

is constrained from moving in the base x- and z-directions. 

The coordinate frames are assigned as in Figure 5.3. The structure and dynamic 
properties of the manipulator can now be defined. The joint parameters and joint 
space are as in Table 5.1. The inertial properties of all the links are given in Table 5.2. 

5.5.2 Calculation of spatial inertias 

For all the links, the inertia tensor around the link frame origin can be calculated 
from the inertia tensors around the respective centers of mass by using the parallel 
axis theorem. For link 1 this is done as follows: 

	

I I  = I I  — migigi 	 (5.76) 

	

1 0 0 	0 —101 - 0-10 
= 	0 1 0 	— 2 1 0 

	

0 0 0,1 	0 	0 

	

[ 3 0 	0 1 
= 	0 3 	0 	 (5.77) 

0 0 0.1 

Now the spatial inertia of link 1 can be calculated: 

(5.78) 
1/2 1 1 3x3  

0] 1 0 0 
0 _ 0 0 0 

8:3 



Link i Joint parameters -y i  Joint space p i  

- 0 -  0 - 

0 1 

1 
0 
0 

0 
0 

0 0 
9 0 _ 

- 0 - 0 - 
0 1 

9 0 0 
1 0 
0 0 
0 0 _ 

- 0 -  0 - 
0 1 
0 0 
0 0 
0 0 
1 _ 0 _ 

- 0 -  - 0 - 
0 1 
0 0 

4 
1 0 
0 0 

- 0 0 _ 

Table 5.1: The SDOF joint parameters and joint spaces of the four link manipulator. 
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Figure 5.3: The assignment of coordinate frames to the four link manipulator. 

Link Mass 
Position 
of center 
of mass 

Inertia Tensor 

0 1 	0 	0 
1 9 0 0 	1 	0 

1  0 	0 	0,1 

0,5 0,02 	0 	0 	- 
9 1 0 0 	0,2 	0 

0 0 	0 	0,2 _ 

0 0,2 	0 	0 	- 
:3 1 0 0 	0,2 	0 

0,5 0 	0 	0,02 _ 

0,5 0,02 	0 	0 	- 
4 1 0 0 	0,2 	0 

0 0 	0 	0.2 _ 

Table 5.2: The inertial properties of the four link manipulator. 
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The spatial inertias of the 

13 

14 = 

	

- 	3 	0 	0 	0 
0 	3 	0 	9  
0 	0 	0,10 	0 
0 	9 	0 	9  
-9 	0 	0 	0 
0 	0 	0 	0 

other links are as follows: 

	

- 0,02 	0 	0 	0 

	

0 	0.45 	0 	0 

	

0 	0 	0,45 	0 

	

0 	0 	0 	1 

	

0 	0 	0,5 	0 

	

0 	—0,5 	0 	0 

	

- 0,45 	0 	0 	0 

	

0 	0,4.5 	0 	0,5 

	

0 	0 	0.02 	0 

	

0 	0,5 	0 	1 
—0,5 	0 	0 	0 

	

0 	0 	0 	0 

- 

	

0,02 	0 	0 	0 

	

0 	0,45 	0 	0 

	

0 	0 	0,45 	0 

	

0 	0 	0 	1 

	

0 	0 	0,5 	0 

	

0 	—0,.5 	0 	0 

	

- 9 	0 - 

	

0 	0 
0 

	

0 	0 

	

9 	0 

	

0 	9  

0 

	

0 	—0,5 
0,5 

0 
1 
0 

—0,5 
0 
0 
0 
1 
0 

0 

	

0 	—0,5 
0,5 

0 
1 
0 

0 	- 

0 
0 
0 
1 

0 
0 
0 
0 
0 
1 

0 	- 

0 
0 
0 
1 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

The inertial properties of the links have now been completely specified. The initial 
conditions can now be specified. 

5.5.3 Initial conditions 

The base is given a linear acceleration of 10 ms -2  upward to account for the influence 
of gravity. The initial joint positions have already been defined implicitly by the joint 
parameters as: 

q = (5.83) 
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For this example we also put the initial joint velocities to zero: 

61 (5.84) 

   

5.5.4 Repetitive calculations 

The following steps all have to be repeated for each time step in the simulation. We 
start by calculating the bias joint forces -- which includes Coriolis, centripetal and 
friction effects. These forces are calculated by using the inverse dynamics algorithm 
for the current state and no joint accelerations. The calculation is not shown here, 
but the result is: 

rbias = 

30 - 
30 

—5 _ 

(5.85) 

  

We are using viscous friction, and at this stage it has no influence since the joint 
velocities are all zero. We also need to calculate the spatial transformations between 
the successive links in the manipulator to apply the direct dynamics algorithm. Be-
cause of the convenient choice of link frames made possible by the use of the SDOF 
notation, all the orientation transformations are identity transformations: 

== 1 3 , 3 , for i 	1,2,3,4. 	 (5.86) 

The spatial transformations are calculated from the definition of the spatial trans-
formation. The results are: 

 

1 0 0 0 0 0 - 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 

_0 0 0 0 0 1 

- 1 	0 0 0 0 0 - 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 9  0 1 0 0 

0 0 0 1 0 
0 0 0 0 0 1 

 

lxo  (5.S7) 

2 x l  (5.8$) 



1 xo  

1 	0 0 0 0 0 - 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 1 0 1 0 
0 —1 0 0 0 1 

1 	0 0 0 0 0 - 
0 	1 0 0 0 0 
0 	0 1 0 0 0 
0 	1 0 1 0 0 
—1 0 0 0 1 0 
0 0 0 0 0 1 

(5.89) 

  

1 xo  (5.90) 

   

Now we will iteratively calculate the Jacobian and joint space inertia matrix using 
the Structurally Recursive Method [2]. First we consider only link one. The Jacobian 
is simply the joint space of joint one: 

Ji = [1 X0J0:61] 	 (5.91) 

(Jo is empty). 	 (5.92) 

The joint space inertia matrix for the single link manipulator is simply the moment 
of inertia of link one around the link frame y-axis: 

1 

0 

H 1  = (JTI 1 J 1  I-1 ;) 

= [o l 00 0 0] 

(5.93) 

3 0 0 0 — 9  0 0 - 
0 3 0 9  0 0 1 
0 0 0,10 0 0 0 
0 9  0 9  0 0 0 

(Ho* empty) 

— 9  0 0 0 9  0 0 
_ 	0 0 0 0 0 9 0 

= [3 ] 

	

(5.94) 

Now the augmented chain with two links is considered. The Jacobian for it is given 
by: 

= [2 X1J102] 
	

(.5.95) 

00 



1 
0 
0 
0 

—2 
0 

0 	0 - 
1 	1 
0 	0 
9 	0 
0 	0 
0 	0 

0 
1 
0 
9  

0 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
1 
0 

0 - 
0 
0 
0 
0 
1 •  

1 

o _ 

0 - 
1 

(5.96) 

(5.97) 

The Jacobian has a simple physical interpretation. The meaning of J2 is that a unit 
rotation of the first joint causes a unit rotation around the y-axis and two units linear 
displacement in the x-direction at the second link frame origin. A unit rotation of 
the second joint only causes a rotation around the y-axis. The joint space inertia of 
the two link manipulator is: 

H2 	- 	 (gI2J2 1-1; ) 

0.02 
0 

0 
0,45 

0 
0 

0 
0 

0 
0 

0 	- 
—0,5 

	

- 0 	0 - 

	

1 	1 

(5.98) 

0 1 0 2 0 0 0 0 0,45 0 0,5 0 00 
0 1 0 0 0 0 0 0 0 1 0 0 20 

0 0 0,5 0 1 0 00 
0 —0,5 0 0 0 1 0 	0 

+ 
0:3  0°  

- ,45 0,45 
0,45 0,45 

From this joint space inertia matrix for the two link manipulator, it is clear that the 
inertia around the joint axis of joint one includes both the inertia of link 1 and the 
inertia of link 2 transformed to the first joint. This has to be so, since a rotation of 
joint 1 also displaces link 2 linearly. The above should clarify the calculation of the 
respective partial Jacobians and joint space inertia matrices sufficiently. The results 

(5.99) 

(5.100) 
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for three and four links are as follow: 

J 3 	= 

H 3  = 

= 

H4 = 

- 	 0 	0 	0 - 
1 	1 	-1 
0 	0 	0 
9 	0 	0 
0 	0 	0 

—1 	—1 	0 

14,9 	2. 9 
2,9 	1.9 
1,45 	0.45 

- 	0 	0 	0 
1 	1 	1 
0 	0 	0 
:3 	1 	1 
0 	0 	00 

—1 	—1 	0 

- 26.35 	8.35 
8,35 	5,35 
5,4 	2,4 

_ 	0,95 	0,95 

1, -15 
0,15 
0,45 

0 - 
1 
0 
0 

0 

5,4 
2,4 
1,9 

0,45 

0.95 - 
0.95 
0,45 
0,45 

(5.101) 

(5.102) 

(5.103) 

(5.104) 

We can easily find the Jacobian of the manipulator at its tip by transforming J g  to 
the tip frame: 

end 	— 

endy T 
-,‘-.40 

0 
I 
0 
3 
0 

— 9  

4 • 
0 
1 
0 
1 
0 

— 9  

0 
1 
0 
1 
0 

—1 

0 
1 
0 
0 
0 

—1 

(5.105) 

(5.106) 

For the other time steps we will need to know the time derivative of the Jacobian, 

Jend, but since the joint velocities are all zero at this stage, it is not needed. It 
is obvious that J e„d is a 6 x 4 matrix of zeros since the angular velocities of all 
the links are zero. From the quantities calculated above, it is easy to calculate the 
inverse operational space inertia, matrix: 

f2 = 	end 
	 (5.107) 
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26,35 	8,35 	5,4 	0,95 

	

8,35 	5,35 	2,4 	0,95 

	

5.4 	2.4 	1,9 	0.15 

	

0,95 	0,95 	0,45 	0,45 _ 

0 	1 
0 	1 
0 	1 
0 	1 

0 	3 	0 	-9 - 

0 	1 	0 	-9  
0 	1 	0 	-1 
0 	0 	0 	-1 _ 

(5.10) 

0 0 0 	-0.0078131 	0 0 
0 
0 

-0.556.5103 
0.58(35103 

0 	0,0078431 	0 
0 	0.7055824 	0 

0,0556510 
-0,0556510 

(.5.109) 

0 2,8739003 0 	-0. 7055824 	0 -2,287:39 

end (5.110) 

0 0 	0 0 
1 1 	1 1 - 0 	0 0 	-0,0078 0 0 	- 
0 0 	0 0 0 	-0.5865 0 	0, 0078 0 0,0587 _=. 
3 1 	1 0 0 	0, 586.5 0 	0, 7059 0 -0, 05S7 
0 0 	0 0 0 	2,5739 0 	-0,70.59 0 -2,2874 _ 
- 9  -9 	-1 -1 

- 0 0 0 0 0 0 
0 2, 87:39003 0 0 0 -2,28739 
0 0 0 0 0 0 

(5.111 ) 

0 0 0 0,69019610 0 
0 0 0 0 0 0 
0 - 9 . 9 87:39 0 0 0 99 87:39 	_ 

The open chain joint accelerations and operational space acceleration can now he 
calculated: 

Elopen 	H - 1(r - "bias) 	 (5.112) 

0.11:37 -0,2:3.5:3 	0,2:353 -- -30 - \ 
0,6416 -0.2926 -0,8218 	-30 

(5.113) 
0, 2926 	1,704:3 	-0, 5900 	-5 

-0.8218 -0, 5900 4,0.504 	\ 	-5 _ / 

(5.114) 

The operational space acceleration (expressed in the tip coordinate frame) follows 
from the joint accelerations: 

34)pen = JenclElopen 	j'en(1 61 
	

(5.115) 

0,11:37 
-0, 1137 
-0, 2353 
0,2:35:3 

0 
10, 26:39296 

-10,26:39296 

-0, 2932.551 _ 
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- 	 0 	0 	0 	0 	- 
1 	1 	1 	1 0 
0 	0 	0 	0 
:3 	1 	1 	0 

10, 26:39296 
—10,2639296 

(5.116) 

0 	0 	0 	0 —0.2932551 
_ 	- 9 	-1 -1 

—0,29325510 
0 (5.117) 
0 

—9,97067/15 

We have now come to the essence of the closed-chain solution: calculating the con-
straint force on the tip of the manipulator. We want the Cartesian position of the end 
of the manipulator to stay fixed relative to the base. To implement this constraint, 
the tip frame has to have a constant orientation relative to the base coordinate frame, 
for instance having the same orientation as the base coordinate frame. The rotation 
transformation from the fourth link frame to the tip link frame changes as the manip-
ulator moves, but can easily be calculated - indeed for the current state it is trivially 
the 3 x 3 identity matrix. 

The constraints on the tip of the manipulator should be specified with all the 
other definitions of the manipulator structure and properties, but it has deliberately 
been postponed until' now since some finer points of this have to be discussed. In 
essence, the tip will have only one degree of freedom: rotation around y. One can 
thus constrain the other five independent motions of the link. However. this is not 
necessary since the tip of the link cannot move in the y-direction (planar mechanism), 
nor can it rotate around the x- and z-directions. It is a result of the structure of the 
manipulator. Constraining these motions as yell, leads to redundant constraints on 
the tip of the manipulator. It will lead to singular inertial matrices in the operational 
space dynamic equation for the tip motion (equation 5.28), but the system can still 
be solved. 

Although one can avoid this problem, for complex systems it might not be clear 
from the onset which motions the tip of the manipulator are not capable of, or the 
manipulator can move into a singular (kinematic) position at some stage - leading 
to the formation of redundant constraints that did not exist at the onset of the 
simulation. It is thus essential that the constraint force can be solved for systems 
with redundant constraints as well. To elaborate on how to handle such a system, 
the tip of the manipulator will be subjected to the live constraints mentioned above 
and the solution procedure demonstrated. The motion space and constraint space 
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(5.118) 

is: 

= 

1 0 0 0 0 - 
0 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 _ 

( 5. 11 9 ) 

  

The acceleration of the tip in the constrained directions has to be zero, since we want 
the tip to stay fixed relative to the base: 

^ 

0 

gc= (5.120) 

We will not apply any forces in the free directions of the tip, thus the moment around 
y is set to zero: 

h = [0] 	 (5.121) 

In order to determine the forces in the constrained directions at the tip, we have to 
solve the 1,,:owirp.1 !blear system: 

[ +1 )TA-1( c5cv+1 )] hc 	[(ociv+i )TK open 	(ociv+i ) TA - l ov+i h 
— gc] . 	(5.122) 

The system is in the urm Ax = b. The first term, representing A is: 

A = 	jcv+i) TA -1 (9:v+  ) 1 (5.123) 

0 	0 	0 	0 	0 	0 

0 2. 87:39003 0 	0 	0 —2,28739 

0 	0 	0 	0 	0 	0 

0 	0 	0 0, 69019610 0 

0 	0 	0 	0 	0 	0 

0 — 9 . 9 8739 0 	0 	0 9 , 99 8739 

1 0 0 0 0 0 .- 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

9:3 



1 0 0 	0 	0 
0 0 0 	0 	0 
0 
0 

1 
0 

0 	0 	0 
1 	0 	0 

(.5.124) 

0 0 0 	1 	0 
0 0 0 	0 	1 

0 0 0 	0 0 
0 0 0 	0 0 
0 0 0,6901961 	0 0 (5.125) 
0 0 0 	0 0 
0 0 0 	0 9 .2 9 8739 

A represents the image of the inverse operational space inertia in the constraint 
directions of the contact. Because three of the constraints specified are redundant, 
A does not have full column rank but has rank equal to two. The right side term of 
the linear system is: 

[(CicN+1)T5.(0Pen 	
(th ,cv+1  )TA-1 0x+  h 	gc] 	 (5.126) 

0 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

1 0 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
0 0 0 0 0 

0 
0 

0 	0 	0 
0 	0 	0 
0 —2,2874 0 

0 	0 	0 
0 	0 —2, 2874 
0 	0 	0 

0,6902 0 	0 
0 	0 	0 
0 	0 2, 2287 

0 
—0,29323510 

0 
0 

—9, 9706745 

0 	0 
0 2. 8739 
0 	0 

[0] 

(5.127) 

 

0 
0 
0 
0 

—9, 9706745 

(5.128) 

  

  

This represents the difference between the open chain operational space acceleration 
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and the required closed chain acceleration of the tip. We can now proceed to solving 
the linear system. We have a system of dimension five. but \vith only two leading 
variables (in the third and fifth rows). The other three variables are free variables. 
The system can be solved by applying Gauss-Jordan elimination on the augmented 
matrix of the system. The general solution is now the sum of the homogeneous solu-
tion and a particular solution [2, 15]. The particular solution depends on the values 
chosen for the free variables. The free variables represent the components of the tip 
force in the redundant constraint directions. The magnitudes of these components 
has no effect on the motion of the manipulator: the inertia of the manipulator in 
these directions is infinite. In the system of equations above, these components are 
all multiplied by zero. One can thus make any convenient choice of values for the free 
variables. A convenient choice would be to let all the free variables be zero. Only 
the homogeneous solution is thus used. The homogeneous solution to the system is: 

= 0 

_ 	• —4.4736842 

(5.129) 

  

This means that only an upward force of 4,4736842 N needs to be exerted on the 
tip of the manipulator to keep it in the current position — to obey the constraints. 
The force the tip exerts on the environment is thus: 

ON-F-1h + 	 (5.130) 

0 
0 
0 
0 

( 5.1 3 1 ) 

0 
—4, 4736842 

At last the closed chain joint accelerations can be determined: 

q 	— 	qope. 	C2f 	 (5.132) 

- 	0 	- 0 0 0 —0,008 0 0 0 
10,264 0 —0.587 0 0,008 0 0.059 0 

—10.264 0 0.587 0 0,706 0 —0,059 0 
—0.293 0 2.874 0 —0,706 0 -2.287 0 

—4,474 _ 
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0 
10.5263158 

—10.526:3158 
—10.5263158 

 

7-ad 	 (5.133) 

This is an exiting result: apart from link one that does not yet need to accelerate, 
the other links all have the same magnitudes of joint accelerations, as one would 
expect from the geometry. 

5.5.5 Simulation results 

The first ten seconds of the response of this system has been simulated', using the 
algorithms discussed in this chapter and previous ones. 

Viscous joint friction has been included. For the simulation, each joint had a 
friction coefficient of 0,25 Ns/rad. Non-adaptive first order Euler integration has 
been used. This is the simplest method. and the accuracy is not good, especially 
in this system that has very high acceleration spikes. For the results that follow 
integration time steps of 0,001s have been used. The simulated joint accelerations 
are shown in Figure 5.4. 

It can be seen that this simple system has a quite complex response. This is 
largely due to the inertial effects and bias forces, and the interaction of the links. 
The joint velocities and positions during the simulation can be seen in Figures 5.5 
and 5.6 respectively. 

By comparing the previous three figures. it can be seen that as the joint velo-
cities die away, the bias accelerations get smaller and more regular. In the limit, 
the oscillations will become simple second order responses. The very sharp acceler-
ation peaks make large contributions to the integration errors — showing why ideally 
adaptive step length integration algorithms should be used. The joint accelerations 
during the first two and a half seconds of the simulation are shown in Figure 5.7 

No matter which integration algorithm is used, the integration error can accumu-
late' — with the effect that the tip of the manipulator moves away from the position 
it is constrained to. This is not due to inaccurate values for the constraint force, but 
integration error. To counteract the effect of these integration errors, a corrective 

`The Scilab executable - four_link_closed.exe accomplishes this. 

8 Especially for the joint positions. 
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joint accelerations are all radl s2 . 
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Figure 5.7: Detail of the joint accelerations. 
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force is added to the correctly calculated tip force to bring the tip of the manip-
ulator back to the position it is constrained to. The position and rate feedbacks 
used were 60 N/m and 40 Ns/m. These values are quite small, but still relatively 
good results were obtained despite the simple integration techniques used. These 
"corrective" forces are plotted in Figure 5.8. The discrepancy between the calcu-
lated position of the tip and the position' it is constrained to. is plotted in Figure 5.9. 

The corrective force on the tip of manipulator 
0.06 	 

0.03 

0.00 

-0.06 
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0 	 I 	 2 	 4 

z component 
C component 
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Time (s) 

Figure 5.8: The corrective force applied to the tip of manipulator to counteract 
integration error. 

The components of the constraint force that the tip exerts on the environment 
are plotted in Figure 5.10. Although the total mass of the system is only seven kilo-
grams, peak constraint forces in the order of 230 N occurs. This is due to the high 
acceleration peaks. which in turn is due to the complex interaction of the links of the 
uncontrolled system. Detail of the tip forces during the first two and a half seconds 
of simulation is given in Figure 5.11. 

g lt is not the position of the end effector that is constrained, but. it acceleration. 
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Figure 5.9: The difference between the calculated position of the tip and the position 
it is constrained to. 

Constraint forces on tip of Mechanism 

Figure 5A0: The constraint components of the tip force of the four link manipulator. 
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Figure 5.11: Detail of the constraint components of the tip force. 
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By comparing Figures 5.8 and 5.10 it is dear that the corrective force is very 
small compared to the actual tip force. 

5.6 Summary 

In this chapter it has been shown how the forward dynamic problem for single serial 
open or closed chains can be solved, using the spatial notation and the Newton-
Euler formalism. An analytical method for the calculation of the time derivative of 
the Jacobian has been proposed. Implementation details like minimizing the effects of 
numerical integration error has also been addressed. Finally the solution for a simple 
four link mechanism ha,s been worked through for the first time step of a simulation, 
and the results for ten simulated seconds given and very briefly discussed. 
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Chapter 6 

Simulation of simple closed chain 
mechanisms 

But if one looks for the motion of several bodies which react 'upon each 

then the question is of a higher order, and the preceding prin-

ciples (i.e. those known before 1742.) art insufficient to solve it. 

Lagrange 
1788 

6.1 Definition of simple closed-chain mechanism 

Simple closed-chain mechanisms is a. subset of multiple chain robotic mechanisms. 
Such mechanisms are frequently encountered M physical robotic systems. Examples 
of such systems are: 

More than one manipulator handling a common workload. 

Legged walking machines when more than one of the feet are in contact with 
a supporting surface. 

The fingers of a. dextrous hand manipulating an object. 

A single manipulator with more than one link supporting the end-effector (high 
stiffness, low mass manipulators). 

Many non-robotic rigid body systems can also be described as simple closed-chain 
mechanisms. for example the skeletal structure of humans. This can be very usefully 
applied to determine what forces acts on the joints of a human when performing cer-
tain tasks. One can well imagine that this can be applied in sport research, to analyze 
and improve the performance in field events, and to analyze possible new gymnastics 

101 



sequences. What all these systems have in common is a structure characterized by a 
group of actuated chains all supporting a common body, called the reference member. 

' 
As can be expected from the fact that the movement of all the chains are coupled 

by the reference member, the dynamic simulation of such systems is even more dif-
ficult and computationally intensive than that of single closed chains. To solve the. 
behaviour of the system, one has to determine the acceleration of the reference mem-
ber, the forces that the chains exert on the reference member, and the acceleration 
of the individual chains. Fortunately, many concepts used to solve the single chain 
simulation problem can be extended to simple closed-chain mechanisms. 

Many schemes to solve this problem have been proposed. Many of the first meth-
ods proposed were difficult to apply or computationally inefficient. The method 
described by Oh and Orin [26] is applicable to simple closed-chain mechanisms with 
in chains of N links each A large system of linear algebraic equations is formed by 
combining the equations of motion for each chain, the motion equation for the refer-
ence body, and the kinematic constraint equations for the interactions between the 
chains and the reference member. The approach is straightforward, but the size of 
the linear system that has to be solved gives this approach a complexity of 0(in 3 N3 ). 

Brandi, Johanni and Otter [27] developed an algorithm for the simulation of 
multi-body systems with kinematic loops. This algorithm makes use of a. general 
joint model and is quite general. Its computational complexity is linear in the total 
number of bodies in the system. 

A connection between filtering and smoothing theory and rigid body dynamics 
has been established [28]. The use of linear operator methods [29, 30] has made 
further progress in reducing the computational load, and is a general and powerful 
mathematical tool. However, the intuitive physical interpretation of these equations 
is difficult because of the algebraic manipulation techniques used. 

6.2 A model for simple closed-chain mechanisms 

The structure of simple closed-chain mechanisms consists of m actuated chains which 
support a single common reference member [26]. The supporting chains are serial-
link chains and therefore free of internal closed loops. If the reference member is 
removed, all closed loops in the system are broken. 

The k—th chain (k = I. 	in) may have an arbitrary number of links, general 
joints, and Nk degrees of freedom (where the number of degrees of freedom of the 
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interaction between the k—th chain and the reference member is excluded from N k ). 
The number of degrees-of-freedom of the k—th chain can then be less than, equal to, 
or greater than six. Every chain in the system can have a different number of links 
and different joints. 

The reference member is called member r. The interaction between the k—th 
chain and the reference member is also described by the general joint model described 
earlier. Thus both powered and unpowered contacts can exist at the interactions. 
The part of the k—th chain that interacts with reference member is called the tip of 
the k—th chain. The opposite terminal link of each chain can interact with a support 
surface. This link is called link number one of chain k. The general joint model is 
also used to describe the interaction with the support surface. This joint is called 
joint number one on the of chain k. The links and joints are thus numbered from 
the support surface towards the reference member. The link that interacts with the 
reference member is called link N. and its far end is thus the tip of chain k. The 
interaction with the reference member is not included as a joint of the k—th chain. 
The motion of the support surface is assumed to be known. In many cases it is 
actually prescribed. 

Depending on the nature of the interactions between die chains and the refer-
ence member and between the chains and the support surface(s), simple closed-chain 
mechanisms can be divided into two basic types, called Type 0 and Type 1 respect-
ively [26]. A Type 0 mechanism is one where the first link of each chain is connected 
to the support surface by an actuated joint, while the tip of each chain interacts with 
the reference member through an unpowered contact. Multiple manipulators manip-
ulating a common load and dextrous hands are examples of such mechanisms. On 
the other hand, in a Type 1 mechanism the first link of each chain interacts through 
an unpowered contact with the support surface and the last link is connected to the 
reference member by an actuated joint. Multi-legged vehicles can be modeled as 
Type 1 mechanisms. Both Type 0 and Type 1 simple closed-chain mechanisms are 
modeled in the same way, and both can be simulated by the dynamics algorithms 
described later in this chapter. 

Details such as the location and orientation of coordinate frames can be applica-
tion dependent, and attention to this will be given in a later section of this chapter. 
For now, the general problem is studied at a higher analytical level, which leads to 
better physical insight. 
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6.3 System dynamic equations 

6.3.1 Equations of motion for each chain 

Even though each chain is connected to the reference member, the dynamic equation 
for each chain is the same as for a single closed chain. The force the tip of each chain 
exerts on the reference member completely accounts for the influence the reference 
member has on all the chains. These forces are not known at this stage, but the 
dynamic equation for the k—th chain, in the joint space, can still be written as: 

Fk =11kElk + C. Gk JTfk 	 (6.1) 

All the symbols have been defined in chapter 5. Remember that Jk is the Jacobian 
matrix for the k—th chain, evaluated at its tip. and fk is the spatial force (6 x 1) that 
the tip of the k—th chain exerts of the reference member. For the direct dynamics 
problem the unknowns in equation 6.1 are the joint accelerations, Ci k , and the com-
ponents of the force, f•, that lies in the constrained directions of the interaction with 
the reference member. The other quantities on the right hand side of equation 6.1 
are only functions of the general joint positions and velocities. 4k and olk. 

As shown in chapter 5, both the joint acceleration and the spatial tip acceleration 
vectors of each chain can be partitioned into the open chain solution and a function 
of the tip force: 

qk = 	Elk )open 	2 1.-fk 
	 (6.2) 

Xk = ( 34 )open " 	fk 
	

(6.3) 

(6.4) 

A 1  is the inverse operational space inertia matrix for chain k, which is always 
uniquely defined for each chain, although it is a function of the joint positions of 
the particular chain. As discussed in chapter 5. the open-chain accelerations can be 
uniquely determined from the present state and inertial properties of the chain, the 
applied joint forces and the motion of the support surface (base). In the simulation 
algorithm for simple closed-chain mechanisms. these accelerations can be solved 
using any appropriate open-chain direct dynamics algorithm, one of which can be 
found in chapter 5. il k  and AT' can be determined because the general joint positions 
are known. The only unknown that remains to be solved before the motion of each 
of the chains in the simple closed-chain mechanism can be solved for. are the tip 
forces fk. Intuitively one expects that these forces can be determined by considering 
the inertial properties of the reference member and all the chains. If this is combined 
with the kinematic constraints between the reference member and the tips of the 
chains, and the external forces of the reference member, these forces can indeed be 
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solved for. As the first step towards this, the dynamic equation for the motion of the 

reference member has to be considered. 

6.3.2 Dynamic equation for the reference member 

The dynamic behaviour of the reference member will also be described using spatial 
quantities. This is done by constructing a force balance for the reference body. The - 
resultant force acting on that member is the sum of the tip forces exerted by the 
individual chains on it and any external forces (1i1;e gravitational) acting on it. Since 
spatial force includes both the linear forces and moments, the resultant force can be 

written very compactly as: 
I I t 

	

Fr  = 	rfk 	g,_ 	 (6.5) 
k=1 

where 

F,. 	x 1 resultant spatial force on the reference member. 
7' fk 	x 1 spatial force applied by chain k to the reference 

member, 

g , 

	 x 1 external spatial force acting on the reference mem- 
ber, which must include gravity, where present 

and all the spatial forces in equation 6.5 is measured with respect to the coordin-
ate frame fixed to the reference member (frame r). The relationship between the 
resultant force on the reference member and its acceleration is given by the Newton-
Euler dynamic equations, which reduces to the following single equation when spatial 

vectors are used: 

	

F r  = 	+ b y , 	 (6.6) 

where 

x 

r  LA: 7. X ( l.4), X S 7.  

6 x 6 spatial inertia of the reference member. 
6 x 1 spatial acceleration of the reference member. 
:3 x 1 angular velocity vector of the reference member. 
3 x :3 inertia tensor of the reference member. 

111 7. = mass of the reference member. 
:3 x 1 position vector of the center of mass of the reference 

member relative to the origin of frame r. 
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and all the quantities above (excluding the mass. which is frame independent) are 
expressed in coordinate frame p. Now equations 6.5 and 6.6 can be combined to 
yield the following dynamic equation for the reference member: 

TIE 

E rfk + 	+ hr 	 (6.7) 
k=1 

The unknown variables in equation 6.7 are the acceleration of the reference member, 
a, , and the components of the tip forces, rf k , which lies in the constrained directions 
of the interactions of the chains with the reference member. The above equation is ob-
viously not sufficient to solve for the acceleration of the reference member. However, 
when this equation is combined with the partitioned closed-chain operational space 
dynamic equation, equation 6.4, the whole system can be solved. This is what will 
be illustrated in the following subsection. 

6.3.3 Simulation algorithm for system 

The derivation of a simulation algorithm for simple closed-chain mechanisms presen-
ted by Lilly [2], is briefly summarized below. The system modeling has already been 
described. The first step in the derivation is to derive an explicit relationship between 
the spatial acceleration of the tip of chain k and the spatial acceleration of the refer-
ence member. 

The spatial acceleration of the interaction point of chain k with the reference 
member, which is also the spatial acceleration of the far side (as seen by the chain) 
of the general joint between the chain and the reference member, is the sum of the 
acceleration of the tip of chain k and the relative acceleration between the tip and 
the reference member: 

Krkelative , 	 (6.8) 

where Xrelative is the relative acceleration between the tip and reference body. Con- 
straints are placed on this relative acceleration by the joint between the tip and 
reference member. Thus the relative acceleration is resolved in the constrained and 

- 
free spaces of the joint: 

(6.9) 

where k  and Ock  are the motion and constraint space of the general joint representing 
the interaction between the tip of chain k and the reference member. Similarly, a k 
and ack  are the corresponding components of the relative acceleration. As explained 
in section 5.2.4, for a tip contact Ok, O. and ack  are known. Often ack  is zero. 
Equation 6.9 can be substituted into equation 6.8 to yield: 

ark =5Ck oknk Ock ack 	 (6.10) 

Krkelative 	c5kok 	Ockack, 
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Since the reference member is treated as a rigid body. the spatial acceleration of the 
interaction point of chain k on the reference body can be obtained by transforming the 
spatial acceleration of the coordinate origin of the reference body to the interaction 
point, and adding a bias vector to account for centripetal and Coriolis effects. In 
view of the above, the acceleration of interaction point k can also be written as: 

ar k 	k Xr ar 	(,r,k • 	 (6.11) 

where kX, is the spatial transformation from coordinate frame r to the coordinate 
frame associated with the general joint at the tip of chain k. The 6 x 1 bias vector 
Cr,k is a function of the velocity of the reference member and the position of the 
interaction point (see section 6.4.3): 

03x1 
cr,k 

 
= k Xr 

X (Wr X Pk) 
(6.12) 

By combining equations 6.10 and 6.11 an explicit relationship between Xk and a r  is 
established: 

Xk + Okak 	 = k Xt. 	(-r,k 
	 (6.13) 

The importance of equation 6.13 is that it matches the spatial accelerations at the 
interaction point. The only unknowns are 3ik and ar , the other quantities are known 
from the definition of the simulation problem and the present state of the reference 
member. 

The next step in solving the simple closed-chain problem is to find an explicit 
relationship between the spatial force exerted by the tip of chain k on the reference 
member, fk, and the spatial acceleration of the reference member. In equation 6.4 we 
already have the relationship between the tip force and the spatial acceleration of the 
tip, and equation 6.1:3 relates the spatial acceleration of the tip to the acceleration of 
the reference member. We are almost there. The only problem is that equation 6.13 
also has the unconstrained joint acceleration as an unknown. In the same way as with 
single closed chains, this acceleration can be eliminated by projecting equation 6.13 
on the constraint space of the tip: 

(c.k )T [54 + kak 	Ocka ck] 	(Pk 
c )T r  

a + C,r.k] • (6.14) 

Because the motion and constraint spaces are by definition orthogonal for the general 
joint, (0 k̀ ) Tc5k = 0 and (.) T c5ck  = 1. The above equation thus reduces to: 

(.(2 .7k) Tiik 	O ck 	(ock)T [ kXa + 	 (6.15) 
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Now we are ready to substitute equation 6.4 in order to establish the relationship 
between the tip-force and reference member acceleration: 

0;5cO T  [ (K) open 	" (0) T  [ k Xrar 	k] 	O ck 
	 (6.16) 

[(6..k )TA il fk  =_ 	
— (OJ T  k (OJ T  ( 34)openi 

— 

	 T k<r 	 (6.17) 

The components of fk  that lies in the free space of the interaction are given for the 
simulation problem. We are thus interested in finding the relationship between the 
unknown force components that lie in the constrained directions of the general joint 
at the tip. In the same way as the relative acceleration, the tip-force spatial vector 
can also be resolved in the motion and free spaces of the general joint at the tip of 
chain k: 

fk = Okhk, + pck l-Ck , 	 (6.18) 

where h k  is the vector of known force components in the free directions, and lic k  is 
the vector of unknown force components in the constraint directions. The above 
equation and equation 6.17 can be combined and an explicit relationship between 
the unknown components of the tip-force and the spatial acceleration of the reference 
member results: 

(C5 ) TA -k i  kbkhk Ockhn  =[ack — WTC,,k () T ( 5.(k)oped 
_ { (k) T kxd 

ar 

[(ekl) TAVock ] h k̀ 	{(11 — 	kr.k + (Kdop€n + A k7 1 (5khd} 

— 	k X,.] a, 

Mh = Sk — ko ck) T  kXr] a1 , 

where Mk and Sk are known. 

(6.19) 

(6.20) 

(6.21) 

If n c , k  is the number of degrees of constraint for the general joint at the tip of 
chain k, then MT I  is the n c ,k x coefficient matrix for hck  in the linear system of 
equation 6.21. 1\4' may be singular, in which case equation 6.21 does not have a 
unique solution. This happens when the base for the column space of 6 (which is 
simply the columns of ) is not contained in the base for the column space of AZ'. 
The implications of this and the solution of the system in such cases vill be dis-
cussed in the next section on numerical implementation. Physically, Mk is the part 
of the inertia of chain k, as seen at its tip, that is reflected across the general joint 
at the tip to the reference member. The pre- and post multiplication of the inverse 
operational space inertia matrix by cf)ch, accomplishes this as only the components of 
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the operational space inertia matrix that corresponds with the constrained directions 
of the general joint can be reflected across the joint. If the tip of chain k is rigidly 
attached to the reference member. d7:, is the 6 x 6 identity matrix. and MT' will be 
exactly equal to the inverse operational space inertia matrix for chain k. 

Even though W I  may be singular. a solution to equation 6.21 can be found. A 
lick  (it may not be unique) can thus be written as a function of a r . We will represent 
this fact on an analytical level by rewriting equation 6.21 as: 

h k̀  = MkSk — [mk(ock) T kxd 	 (6.22) 

even though Mk may not be the inverse of NIT'. Given the general solution for lick  
in the above equation, one can write the tip-force vector fk as: 

fk = Okhk 	 (6.23) 

= [Ok c ckMkSk] — [O ckMk(O`k k X,1ar. 	 (6.24) 

= Pk Rkar . 	 (6.25) 

Pk and Rk are of dimension 6 x 1 and 6 x 6 respectively and both can be calculated 
from the foregoing. 

The third step in solving the simple closed-chain problem can now be taken. 
In equation 6.25 we have related the tip-force of chain k, f k , to the acceleration 
of the reference member, ar . This can now be used with the dynamic equation 
(equation 6.7), to eliminate the tip force. and the resulting equation has only a, as 
unknown and the system can be solved. First, rewrite equation 6.7 as: 

where 

771 

12(  k )( , ) T fk  gr = I r a, + 
k=1 

r  fk = r  X k • fk 
= 	

•
x7.) T fk,  

(6.26) 

(6.27) 

(6.28) 

has been used. Then equation 6.25 can be substituted into equation 6.26 to obtain: 

771 

E(kx 7.)T(p, — Rka,.) = 	— g,.. 	 (6.29) 
k=1 

Collecting terms with a,. yields: 

[I, 

 

4
2 (  k )(,) Titk l a,  = 

k.=1 
( 'X i.) T P k  — b r 	. 	(6.30) 
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Equation 6.30 has only the spatial acceleration of the reference member, a,-, as un-
known. One can find a solution from the set of linear algebraic equations. .An explicit 
analytical solution for a, can be written: 

[Jr 	i:( k ,) T 4] -1  )( 	11 	[i:( k )(,) 7)?k — 13,4-gr] 	 {6.31) 
k=i 	 k=1 

The inversion (which is always 6 x 6) can always be calculated, but if M k-1  does not 
have a rank of six, the results would be meaningless. This and the solution procedure 
is discussed in the next section. 

By expanding the above equation, one can obtain more physical insight: 

ar 	[Jr E(  kxr) Tockmk(0) 7,  kxr 1 	E(  kxr) T pk 	gr  

k=1 	 k=1 

(6.32) 

The first term on the right of the above equation represents the combined inertial 
properties of the reference member and all the chains. The inertial properties of the 
chains that are reflected across the joints is transformed to the reference body frame 
before being added to the inertia of the reference member. This term thus represents 
the effective operational space inertia of the simple closed chain, defined at the origin 
of frame r. The second term is the sum of all the spatial forces acting on the reference 
member. 

After the spatial acceleration of the reference member, a r  has been determined, 
the spatial forces exerted by the tips if the chains on the reference member can be 
calculated from equation 6.25, which is repeated here for convenience: 

fk = Pk Rkar • 	 (6.33) 

The fact that fk  is known allows us to treat chain k as a single closed chain with a 
known tip force. The single closed-chain joint acceleration has been partitioned into 
terms containing the open chain acceleration and tip force, and the closed-chain joint 
accelerations for each chain k can be determined from equation 6.4, also repeated 
for convenience: 

Elk = ( 54 )open 	1  fk • 	 (6.34) 

Having computed the spatial acceleration of the reference member, the tip forces of 
each chain, and the joint accelerations for each chain, the system has been solved 
and the next state of the system can be computed by integration. For more detail 
on this, see the next section. The simulation algorithm can be summarized as: 

1. Calculate the open-chain joint accelerations and operational space inertias for 
each chain. 
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Calculate the spatial acceleration of the reference member. 

Calculate the spatial tip forces exerted by the chains on the reference member. 

Calculate the closed-chain joint accelerations for each chain. 

Integrate to the next state. 

6.4 Details of numerical implementation 

Many important details have been ignored in the previous section, which can make 
the implementation of the simulation algorithm difficult. A few of them are addressed 
below: 

6.4.1 The transformation between the reference member fra-
me and tip frames 

The coordinate frame associated with the general joint at the tip of chain k that 
represents the interaction of the chain with the reference body can either be fixed 
to the end of the last link in the chain, or on the far side of the joint (nearest to 
the reference body). In order to maintain consistency with the single-closed chain 
algorithm, let us choose to fix it to the tip of chain k. For the simulation algorithm, 
we need to know the spatial transformation from the reference body frame to the 
frame fixed to the tip of each chain k. 

First let us consider the 3 x 3 rotation transformation. The base frame for the 
system is called frame 0. The rotation transformation from the base frame to the tip 
frame of chain k can be written as: 

tipAo k  = tipAN ) k 	2A 1) k (1 A c ) k, 	 (6.35) 

by making all the transformations between the coordinate frames of chain k. This 
transformation can also be written by making the transformations to the reference 
member and then to the tip of chain k: 

tipAd k 	kA r  rA o. 	 (6.36) 

From the above equation, the transformation from the reference frame to the tip 
frame of chain k can be calculated from other rotations which have to be known or 
calculated for the simulation in any case: 

kAr  

= 
= 

tipAo k ( rA 0 )-1 (6.37) 

tiPAO)k( rAO) T 	 (6.38) 
{( tipA l ) k 	2A 1 ) k ( lAo k ] 	rAoT 	 (6.39) 
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The interaction position of the tip of chain k with the reference member, is described 
by the position vector, pk, of this point relative to the origin of frame r, and is 
expressed in the reference body frame. This position vector is always constant. 
Since the rotation transformation from frame r to the tip frame of chain /c,. and the 
position of the origin of the tip frame is known, the spatial transformation is simply: 

kA r 	0 
k Xr — 	kA7.151; kAr  • 	 (6.40) 

6.4.2 The position of the reference body 

The orientation of the reference body and the position of a point on it is known at 
the start of the simulation. At each time step in the simulation, the present state 
of the system is known. The spatial velocity of the reference member is thus also 
known. The spatial acceleration of the reference member is also calculated in this 
time step, and from this the next state spatial velocity can be found. The first three 
components of the spatial velocity is the angular velocity: 

wr vr = 	. vr 
(6.41) 

From the angular velocity of the reference member, an instantaneous rotation axis 
for it can be found: 

(6.42) 

and a rotation speed can also be found: 

Or = IIrIL 	 (6.43) 

In a similar way an instantaneous direction of linear motion and speed can be 
found from the linear velocity (see Figure 6.1). In the simulation problem, the 
movement of the reference member in each time step can be approximated as rotation 
around some instantaneous axis by an angle, and movement in an instantaneous 
direction by some distance. The rotation axis can be approximated as the mean of 
the present state axis and the next state axis: 

+st — kt  k = 	 (6.44) 
St 

The rotation angle can be approximated as: 

O r  = (67.,t+s t 	Or,t) —(5: 
	

(6.45) 
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Figure 6.1: Description of the motion of the reference member. 

Exactly the same can be done for the linear velocity. To arrive at more compact 
expressions, let us define the spatial velocity direction as: 

= (6.46) 
II 	II 

.1),. • 

(6.47) 

The rotational and linear speeds are also combined as: 

_ 
• 

(6.48) 

With the above definitions, the approximation for the direction of the spatial velocity 
for simulation purposes is given by: 

St 
— 

	

(6.49) 

and the approximation for the distance traveled by the reference member in the 
simulation time step, is given by: 

d = (dt+s t  + (10 61: 
	

(6.50) 

(6.51) 
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The change of orientation of the reference member is represented by the 3 x 3 rotation 
matrix '+'5 '.4 t . This is approximated as a general rotation around a fixed axis. The 

first three components of IC (the components of is called o, oy  and o,.. The 
rotation is then given by: 

orox v0 c0 o y or v0 — oz s0 oz o,v0 + .900 
t+stAt  = ox oy v0 o z s0 	o y o,v0 c0 	o z oy v0 — ors° , 	(6.52) 

ox oz vO — oy s0 oy o,v0 ox s0 o z o,v0 c0 

where v0 = vers 0 = (1 — cos 0), sO = sin 0 and c0 = cos O. Given the rotation 
transformation from the base frame to the reference frame at a time step t, the 
rotation transformation from the base frame to the reference body frame at the next 
time step can be obtained: 

	

rA 0 f+st  = t+StA t  r4 0 	 (6.53) 

The above rotation transformation completely describes the orientation of the ref-
erence member in the next time step of the simulation. The linear position of the 
reference member is described by the position of the origin of frame r, which is given 
by: 

	

Pr It+st — Pr It + Sf/r• 
	 (6.54) 

6.4.3 Calculation of the bias acceleration vectors (r, k, 

The bias spatial acceleration vector, cr,k, is expressed in the tip frame of chain 
k. However, it is easier to calculate it in frame r and then transform this. The 
centripetal acceleration of the interaction point of chain k with the reference member, 
expressed in frame r, is simply: 

	

acentripetal = Wr x (wr  x 	Pk) 
	

(6.55) 

The position of the interaction point is usually fixed relative to frame r, and then 
has no velocity relative to frame r. Therefore, the interaction point has no Coriolis 
acceleration relative to frame r. The bias acceleration vector is then simply: 

[
03 x 1 

(,r ,k = k  X i. 
X (Wr  X p k ) ' (6.56) 

6.4.4 Singularities in IVI /; 1  

As stated earlier, 1\4T. 1  is singular if the base for Ock  is not contained in the base for 
A'. This follows from the definition of M IV: 

1\4 1,7 1 	OCk  )7' A 	OCA: 	 (6.57) 
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Recall that n e , k  is the number of constraint directions of the general joint at the tip 
of chain k, and that the dimension of MT' is n c , k  X n c , k : Let us further clarify when 
Mk-1  is singular. If AT' has full column rank, namely six, the base for ç& will always 
be contained in the column space of A k-1 , and M IT' can not be singular. A necessary, 
but not sufficient condition for MT' being singular, is thus that A k-1  rrillS. t have a 
rank less than six. 

The physical interpretation of Ak-1  having a rank less than six, is simply that the 
end effector cannot be moved in all directions, and/or rotated in all directions. In 
certain directions, the magnitude of a force applied to the tip of the chain has no 
effect on the motion of the chain. This can be seen as the chain having an infinite 
inertia in those directions. If the constraint space of the general joint at the tip 
of chain k includes more than zero of these directions in which the tip of chain k 
cannot move, this infinite inertia in those directions is reflected across the joint to 
the reference member. The inertia of the k-th chain as felt by the reference member 
is therefore also infinite in some direction(s) - the reference member cannot move in 
that direction(s) - and M k' does not have full column rank and must be singular. 
The condition stated in the first paragraph of this section is therefore sufficient for 
determining whether M k-1  is singular or not. 

For the simulation algorithm, we still need so be able to compute M k S k . If we 
set the reference member acceleration, a,., equal to zero in equation 6.21, and solve 
for tick , the solution would be exactly M k S k . If M IT' is singular, there would not be 
a unique solution to h k̀ . The system can be solved with a linear system solver (e.g. 
Gauss-Jordan reduction of the augmented matrix). The solution would express the 
leading variables as linear functions of the free variables [15]. The general solution for 
hck  is then the sum of the homogeneous and a particular solution. The free variables 
would be the forces corresponding to the directions in which the reference member 
cannot move. They have no influence on the motion of the system and can thus take 
on any value. This is consistent with the mathematical solution of the linear system. 
The simplest solution is obtained by setting the homogeneous solution to zero. This 
is a valid solution and it is perfectly logical to set the forces that has no influence on 
the motion of the mechanism equal to zero. The particular solution of: 

M-k-l h k̀  = Sk 	 (6.58) 

can thus be used as M k S k  in the simulation algorithm. 

Another quantity needed in the simulation algorithm, [M k (0) 7. k X,.], can also 
be calculated from equation 6.21, after MkS k  has been calculated. This can be done 
by solving the equation with all components of a,. set equal to 1, except those cor-
responding to the directions in which the reference body cannot move due to chain 
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k. If b is the base for the column space of M k-1 , and rk = rank(M 1 ) then a r  can 
be set equal to a,. = bi rkxi  for finding the solution. 	• 

However, a different approach may be easier to use. Instead of determining 
Mk S k , one can determine M k  and calculate the other quantities by multiplication. 

Mk can simply be determined by solving the following systems: 

= columni (b), 	 (6.59) 

and reconstructing Mk as: 

rk 

1\4;7 1  = 	x i  (column i (b)) T  . 
i=1 

All the other quantities in the coefficients of equation 6.30 can now be determined. 

6.4.5 The calculation of the reference member acceleration 

In order to determine the reference member acceleration, equation 6.30 must be 
solved. It is repeated here for convenience: 

m 
E (  kxr) TRkl ar  [E (  kxr)Tpk by. gr  

k=1 	 k=1 
(6.61) 

As mentioned earlier, the coefficient of a,. in equation 6.30 can always be inverted to 
solve for the reference member spatial acceleration, but this may not lead to valid 
results. The effective operational space inertia of the system at the reference member 
is the sum of the inertia of the reference member and the inertias of the chains that 
are projected to the reference member: 

Ieff  — L. + 	xr) 7'cizmk(o ck) T kxr. 	 (6.62) 
k=1 

If M k-, 1  does not have full column rank, its inverse does not exist. The Mk calcu-
lated by other methods, has only correct components in the directions that chain k 
allows the reference member to move. The others were implicitly set to zero in the 
calculations. As discussed in the previous section, these components should actu-
ally be infinite, but manipulating matrices where some entries are infinite is usually 
avoided, and therefore we used zeros. When the spatial inertia of the reference 
member is added, the effective inertia has full column rank. However, some of its 
components should have been infinite because the reference member is constrained 
from movement in some directions by the chains. The system cannot be solved as 

(6.60) 
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is. An easy way of rectifying this, is to calculate the image of the applied spatial 
force on the motion space of the reference member, and then solve the linear system 
with this image as the applied force. The image of the components of the applied 
force that does not lie in the motion space of the reference member will be zero, and 
the solution to the new system will be a correct solution for the reference -member 
acceleration. The motion space of the reference member is simply the base for the 
column space of Erkn....1 ( FRk:  

b = base E( k X,.) T R k  . 	 (6.63) 

The new applied force is calculated as: 

= 
 b (

b T  [E( k X,-) T Pi, —br + sr]) 	 (6.64) 
k.i 

and then the following system can be solved in order to obtain the correct acceleration 
of the reference member: 

Ieff ar  = f'. 	 (6.65) 

One the reference member accelerations are known, the correct tip forces can be 
calculated using it. 

6.5 Illustrative example 

How to apply the simulation algorithm to a simulation problem might not be clear 
yet. To assist the reader, a simple problem will now be solved step by step. A lot of 
insight can be gained by having real numerical values for the system variables and 
seeing how they interact. The problem chosen is simply two similar links suspending 
a load, as in figure 6.2. This is perhaps the simplest system that can be treated 
as a simple closed-chain mechanism. It has only two chains, each with only one 
link. The beauty of this system is that it can also be treated as a single closed-chain 
mechanism, and the results of this section can thus be verified with the algorithms 
developed for single closed-chain mechanisms. 

6.5.1 Definition of the structure and initial conditions 

In order to have a system with an interesting response, we will give the system an 
initial displacement by rotating the two links 45 0  counterclockwise and studying the 
response under the influence of gravity. The coordinate axes are defined as in fig-
ure 6.3. The properties of the links are now defined. 
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0 , 8 

Figure 6.2: A simple closed-chain system. 

Zo 

Figure 6.3: The assignment of coordinate frames for the system. 
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Each link has only one degree of freedom at the interaction with the base, in 
order to allow rotation of the links in the plane of the •paper. The joint space for 
joint one of both chains' is: 

1 

011 = c521 = (6.66) 

and the constraint space is thus: 

- 1 	0 	0 	0 	0 - 
0 	0 	0 	0 	0 

cvki = 0 	1 	0 	0 	0 
0 	0 	1 	0 	0 

(6.67) 

0 	0 	0 	1 	0 
0 	0 	0 	0 	1 

We will use the general six degree-of-freedom kinematic notation developed in an 
earlier chapter. The rotation of the proximal end of the first joint of both chains is 
taken as zero. The position of the first joints in the base frame, is given as: 

0 

PI' = 0 (6.68) 
0 

and 
0,8 

P21 ol, 	 (6.69) 

respectively. The position of the tip coo -dinat€ frames are also described with the 
general six degree-of-freedom kinematic notation. The resulting joint variables are 
the same for both chains and are summarized in table 6.1. 

Both chains have the following dynamic properties: 

m k1  = 1 kg 	 (6.70) 

'The variables and parameters belonging to certain chains will be distinguished from those of 
other chains by using double subscripting where necessary. The first subscript will always identify 
the chain, and the second the link. Because of the symmetry of the problem, many quantities will 
have the same value for both chains. When this happens, the chain will be identified as k, where 
k =1,2, implying that the corresponding quantities are identical for both chains. 
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Joint variable Joint 1 Tip of chain 
Rot(x) 0 0 
Rot(y) 7r/4 0 
Rot(z) 0 0 

Disp(x) 1.5 0 
Disp(y) 0 0 
Disp(z) 0 0 

Table 6.1: The joint variables for both chains (identical). 

0,025 	0 0 

= 0 	0,25 0 kg m 2  (6.71) 
0 	0 0,25 

0,75 
Ski 0 7/". (6.72) 

0 

From the above properties, the inertia tensor of each link around the origin of the 
coordinate frame can be calculated by using the parallel axis theorem: 

T i == (6.73) 

The result is: 
0,02.5 	0 0  

= 0 	0, 8125 0 kg m 2  . (6.74) 
0 	0 0,8125 

The spatial inertias of the links are calculated from the definition of spatial inertia: 

- 0,025 	0 	0 	0 	0 	0 	-- 
0 	0,8125 	0 	0 	0 	—0,75 

= 
0 	0 	0.8125 	0 	0,75 	0 

(6.75) 
0 	0 	0 	1 	0 	0 
0 	0 	0,75 	0 	1 	0 
0 	—0,75 	0 	0 	0 	1 

Now we consider the reference body. Its dynamic properties are as follows: 

m,. 	= 	5 kg 	 (6.76) 

0,5 	0 	0 

Jr 	= 0 	0,5 	0 kg m 2 	 (6.77)  
0 	0 	0,5 
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Sr = 0 (0.78) 
0 

The inertia tensor around the reference coordinate frame origin is identical to the 
tensor around the center of mass, since the frame origin coincides with the center of 
mass. The spatial inertia is simply: 

r  

- 0,5 	0 	0 	0 0 0 	- 
0 	0,5 0 	0 0 0 
0 	0 	0,5 0 0 0 
0 	0 	0 5 0 0 
0 	0 	0 0 5 0 
0 	0 	0 0 0 5 

• • 

(6.79) 

The interactions of the two chains with the reference member is defined by the para-
meters that follow. The only motion allowed between the tip of the chains and the 
reference member is rotation around one axis, which is an axis parallel to the y-axis 
of the tip frames (see Figure 6.3). The general joint between the tip of the chains 
therefore has only one degree of freedom each: 

(72)k 1, (6.80) 

1 	0 0 0 0 - 
0 	0 0 0 0 

Ock = 
0 	1 
0 	0 

0 
1 

0 
0 

0 
0 

(6.81) 

0 	0 0 1 0 
_0 	0 0 0 1 

- 0 
1 

cbk (6.82) 

The interactions are not completely defined yet. The relative accelerations in the 
constraint directions of the general tip joints must also be specified: 

k 

 

(6.83) 
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The movements allowed at the interactions of the chains with the reference body 
member has now been described, but we still have to describe where the chains 
interact with the reference member. This is described by the position 
the origin of the reference member frame to the interaction points: 

vectors from 

- —0,4 

Pi 	= 0 (6.84) 
0 

0,4 

P2 	= 0 	I . 	(6.85) 
0 

The structure and properties of the mechanism has been completely specified. Now 
the initial conditions and applied forces can be defined. To account for the effect of 
gravity on the two chains, we give the base frame an acceleration of 10ms -2 . The 
initial joint velocities are all set to zero. In order to study the natural response of 
the system, all applied joint forces are also set to zero: 

	

(r) k = [0]. 	 (6.86) 

The unconstrained forces for the general joint between the tips of the chains and the 
reference member are also set to zero: 

	

= [0]. 	 (6.87) 

6.5.2 Open-chain accelerations for the chains 

Using the methods described in the section on simulation of single open chains, the 
Jacobian matrices for the two chains, at their last joints and tips respectively are 
simply: 

= (6.88) 

  

_ —1,5 

(6.89) = 

(6.90) 
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The physical interpretation of this is that a unit movement of the first joint (a unit 
rotation in this case) have the effect of rotating the tip of the chain one unit around 
the y-axis of the tip frame, and moving the tip one and a half units in the direction 
opposite to the instantaneous 

The joint space inertia matrix for both chains can be calculated as: 

Hk  = [0, 8125] . 	 (6.91) 

This means that the moment of inertia of the whole chain (without the reference mem-
ber) around the axis of joint one is 0, 8125 kg m2 . From this the inverse operational 
space inertia follows: 

 

= irk.tipHi-c  1 Jk,tip 

0 	0 	0 0 0 	0 	
- 

0 	1,2307692 	0 0 0 —1,8461.538 
0 	0 	0 0 0 	0 
0 	0 	0 0 0 	0 
0 	0 	0 0 0 	0 
0 —1,8461538 0 0 0 2,7692308 _ 

(6.92) 

It k  also follows: 

 

(6.93) 

(Hk-1 jkT) 	 (6.94) 

= [ 0 1,2307692 0 0 0 —1,8461538 . 	(6.95) 

The inverse dynamics algorithm, with the joint accelerations set to zero, can be used 
to determine the bias forces on the chains: 

C 1 41  + G 1  = [-5, 3033009] . 	 (6.96) 

In order to balance the effect of gravity on the chains, we would have to apply a mo-
ment of about —5, 3 Nm to the first joint of each chain. The open-chain acceleration 
for both chains can now be calculated because the joint space inertia and applied 
forces are known: 

(iopen)k = Il k ' [(r)k — Ck(41( + 
	

(6.97) 

= 6,5271395 	 (6.98) 

The open-chain operational space acceleration of the tip of the chains can also be 
calculated. It can be done from the inverse operational space inertia matrix, but 
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then the bias forces in the operational space have to be calculated. It can rather be 
calculated from the open-chain joint accelerations: 

34,open = Jk,tip(Elopen)k +ik,tip(4open)k, (6.99) 

0 
6,5271395 

0 
0 
0 

—9.7907093 

(6.100) 

  

6.5.3 The excelmvapri of the reference member 

We have to calculate S k , Mk , Pk and Rk, with k = 1,2, before the reference member 
acceleration can be determined. The bias accelerations of the interaction points, (k, 
are all zero since the reference member has no spatial velocity at this stage. In 
the next steps in the simulation, it can have a velocity and these bias accelerations 
of the interaction point would not be zero. S k  can be calculated directly from the 
parameters and variables that has already been calculated or given: 

Sk 
	

{a ck (OW'  kr,k (k)open Ak-1 0khld/1 
	(6. 1 01) 

 

0 
0 
0 
0 

—9.7907093 

(6.102) 

Mic-1  can also be calculated from known quantities: 

mk-i 	(ock )TAk-1( ock),  

0 0 0 0 	0 
0 0 0 0 	0 
0 0 0 0 	0 
0 0 0 0 	0 
0 0 0 0 2.7692308 

1\4 /V is clearly singular. A base for M /7. 1  is: 

(6.103) 

(6.104) 

   

b = 

 

(6.105) 
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= ( [ 0 1 0 	0 	1 	0 

	

0 0 1 	0,707107 0 	0,707107 

1 0 0 1 [ 0,707107 0 —0,707107 1) 

0,7071068 0 0,7071068 

2A r 	= ("4) 	• • • ( 2,402( 1Ao)2] ( ri-1 0) T  

0, 7071068 0 —0, 707106S 
= [ 	0 1 0 . 

0,7071068 0 0, 7071068 

0,7071068 0 —0,7071068 [ 
= 	0 	1 	0 

To determine Mk for simulation purposed, we solve 

T l x = b 	 (6.106) 

The particular solution to the above equation is: 

0 
0 
0 
0 

0.3611111 

and from this Mk is constructed as: 

Mk = 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0.3611111 

(6.107) 

(6.108) 

(6.109) 

The spatial transformations from the reference member frame to the tip frames of the 
respective chains can easily be found. The rotation transformation from the reference 
member frame to the tip frame of chain one can be calculated from equation 6.39: 

iAr  = [( AN)i ... ( 2/101( IA0)1] (rA)T (6.110) 

1 0 0 - 
0 

[ 
1 0 

0 0 1 

(6.111) 

(6.112 ) 

(6.113) 

The position of the interaction points have been specified before, and the spatial 
transformations are simply: 

	

[ lA 	0 
1 X r  = 	

r 
(6.114) 

lA r  
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2x, = 

	

0, 707 	0 	—0, 707 	0 	0 	0 
0 	1 	0 	0 	0 	0 

	

0,707 	0 	0,707 	0 	0 	0 
0 	—0,283 	0 	0.707 0 —0.707 
0 	0 	—0,4 	0 	1 	0 
0 	0,283 	0 	0,707 0 0, 707 

2A r 	0 

2Ar I5T 2Ar 

	

- 0,707 	0 	—0,707 	0 	0 
	

0 
0 	1 	0 	0 	0 

	
0 

	

0,707 	0 	0,707 	0 	0 
	

0 
0 	0,283 	0 	0,707 0 —0, 707 
0 	0 	0,4 	0 	1 

	
0 

0 	—0,283 	0 	0.707 0 0,707 _ 

(6.11.5) 

(6.116) 

. 	(6.117) 

Pk and Rk can now be calculated from known quantities: 

P k 	kbkhk O ckMkSk} 

0 
0 
0 
0 
0 

—3,5355339 

OiMi (0) T 1 Xri 

	

- 0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 
0 0, 1021376 0 0, 25.53-1.11 	0 0,2.553441 

R2 = cbN/1 2(02) T 2 Xri 

	

- 0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 

	

0 	0 	0 	0 	0 	0 
0 —0,1021376 0 0,2553441 0 0,2553441 

(6.119) 

(6.120) 

(6.121) 

(6.122) 

(6.123) 
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TrirC"%r X (L,J r  X S 1 
br  = X IrWr (6.124) 

Since the angular velocity of the reference member is zero, by the definition of br, 

b r  is also zero: 

(6.125) 

 

The only external force acting on the reference member is gravity. The center of 
mass coincides with the origin of the reference frame, therefore gravitational force 
has no moment around this origin. The spatial external force vector is thus: 

gr= 

0 
0 
0 
0 
0 

—50 

(6.126) 

   

All the necessary quantities have now been determined and can be substituted into 
equation 6.30: 

in 
[Tr 	E( kxr )TRd 

m 

( 
k=1 

X r ) T Pk — br 

- 0,5 0 0 0 	0 0 
0 0,5 0 0 	0 0 

I r  E( k Xr  ) T R.k i 	= 0 
0 

0 
0 

0,5 
0 

0 	0 
5 	0 

0 
0 

0 0 0 0 	5 0 
_ 0 0 0 0 	0 5 

- 0 0 0 0 0 	0 
0 0,058 0 0 0 	0 
0 0 0 0 0 	0 
0 0 0 0,361 0 	0,361 
0 0 0 0 0 	0 
0 0 0 0,361 0 	0,361 

(6.127) 

(6.128) 
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[

k Xr ) TPk br + gr] 
k=1 

0,5 
0 	0,558 
0 
0 
0 
0 

= 

0 

0 
0 
0 
0 

0 
0 
0 

—5 
0 

—5 

- 	0 	- 
0 
0 

—5 
0 

—55 

0 
0 

0,5 
0 
0 
0 

0 
0 
0 

5.361 
0 

0.361 

o - 
o 

0 	0 
0 	0 
0 	0 
0 	0,361 
5 	0 
0 	5,361 

—50 

- 

(6.129) 

(6.130) 

( 6.1 31) 

The system of equations has only the reference member acceleration as unknown and 
is: 

0,5 
0 
0 
0 
0 
0 

0 
0,5577778 

0 
0 
0 
0 

0 
0 

0,5 
0 
0 
0 

0 
0 
0 

5.3611111 
0 

0,3611111 

0 
0 
0 
0 
5 
0 

0 
0 
0 

0,3611111 
0 

5,3611111 

0 
0 
0 

—5 
0 

—55 

(6.132) 

Unfortunately ET__ 1 ( k X,) T Rk does not have full column rank, and we have to apply 
the methods discussed in section 6.4.5. We \\Till  transform the current system to the 
system ie ff a,. = f' and then solve this system. We first have to calculate the base for 

EnkL i ( k Xr ) T Rk: 

b = base 

0 
0 
0 
0 
0 
0 

0 
0,058 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0,361 
0 

0,361 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0,361 
0 

0,361 

■ 

(6.133) 
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The new 

Thus, 

applied force 

f' 	= 	b 

we want to 

	

0,5 	0 

	

0 	0,5577778 

	

0 	0 

	

0 	0 

	

0 	0 

	

0 	0 

- 

(ID T  

1 
0 
0 	0,707 
0 

0 

0 
—30 

0 
—30 

solve 

follows: 

0 0,707 

0 
1 
0 

0 

k=1 

0 
0 

0 

the system 

0 
0 

0,5 
0 
0 
0 

[E( k X,.) T Pk 

0 	0,7071068 

0 	0.7071068 

5.3611111 

0,3611111 

0 
0 
0 

0 
_ 

— 

0 	1 
0 	0 

\ 

0 
0 
0 

0 

gr] 	, 

0 	0 	0 
0 	0, 707 	0 	0, 

0 	0 
0 	0 
0 	0 
0 	0,3611111 
5 	0 
0 	5,3611111 

0 
707 

ar= 

0 
0 
0 

—5 
0 

—55 _ 

—30 
0 

—30 

(6.134) 

(6.135) 

(6.136) 

(6.137) 

The particular solution to this system can be found using any linear system solution 
technique (like Gauss-Jordan elimination) as: 

a,. = 

0 
0 
0 

—5,2427184 
0 

_ —5, 2427184 _ 

(6.138) 
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This is also the sought solution for the acceleration of the reference member (at last). 
Notice that this acceleration has no rotational components, as one would expect from 
the symmetry of the problem. Further. the linear acceleration has equal components 
in the x- and L-.7-directions: the reference member is accelerating with an angle of 45" 
to the vertical. This direction is exactly tangent to the arc described by the tip of 
the chains in the current position. 

Finding the tip forces for the two chains is easy: 

fk 	— 	 Pk 	Rkar (6.139) 

- 0 0 0 0 0 0 	- 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 —5,2427184 
0 0 0 0 0 0 0 0 

—3,536 _ 0 ±0,102 0 0,255 0 0,255 _ _ —5,2427184 _ 

0 
0 
0 

(6.140) 0 
0 

—0, 8581393 _ 

One can not be sure that this tip force is the real force in the general joint when Mk 
does not have full column rank. There might be components of this force that do 
not lie in the motion space of the tip. These have implicitly been set equal to zero. 
This has no effect on the calculated motion of the mechanism as a whole, since the 
motion of the reference member has already been calculated by different means, and 
the components of the tip force that lies in the constraint directions of the tip has no 
influence on the motion of that particular chain. 

When the relevant components of the tip-force are known, one can treat each 
chain as a serial chain with a known tip force, and solve for the joint accelerations 
of each chain. Once again, it is identical for both chains: 

	

`4 	
ig 	\ 

	

k 	Vqopen)k Ilkfk 

0 
0 
0 
0 
0 

—0,858 _ 

(6.141) 

= [6,527] —  [  0 1,231 0 0 0 —1,846 
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= [4, 9428824] 	 (6.142) 

The system has now been completely solved. After seeing the amount of effort 
required to solve a simple system, one may w'ell wonder if this method is worth 
using. Fortunately, only the open-chain solution might require more effort for larger 
systems, the rest of the process is similar and requires no extra effort even for large 
systems. 

6.5.4 Verification of the results 

There is not much we can do to check the accuracy of the results, except for checking 
whether the constraints at the interactions of the chains with the reference member 
are satisfied. The acceleration of the tip of both chains (expressed in the tip frames) 
are: 

ak,tip = Jkk 	 (6.143) 

0 
4,9428824 

0 
0 
0 

—7.414:3235 _ 

(6.144) 

 

The rotation around the local y-axis is not constrained, but the linear motion in 
the direction of the z-axis is. The motion of the interaction point on the reference 
member is: 

al 	= 	ar (6.145) 

0, 707 	0 —0, 707 0 0 0 0 
0 	1 0 0 0 0 

0,707 	0 0,707 0 0 0 0 
0 	—0,28:3 0 0, 707 0 —0, 707 —5,243 
0 	0 —0,4 0 I 0 0 
0 	0,283 0 0,707 0 0,707 _ —5,243 _ 

—7,4143235 (6.146) 

The constrained components of the above are exactly the same as the corresponding 
components of the tip acceleration. The constraints are thus satisfied. We can devise 
another simple test that has to be passed. It is also a necessary but not sufficient 
condition that this test has to be passed to verify the correct working of the algorithm. 
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Lets consider the same system with the same initial conditions, except for the 
applied joint forces at the first joint in the respective chains. We will apply moments 
such that static equilibrium is maintained. We can easily determine the magnitude of 
the applied moments necessary to maintain static equilibrium, as shown in Figure 6.4. 
The result is: 

Figure 6.4: An equivalent system when the system is in static equilibrium. 

7r 	 7r 50 
M = —0,75m sin (-

4
) 10A — l,5 in sin ()-

-1 
—
9 

= —31,819805 

(6.147) 

(6.148) 

This will influence the open-chain joint accelerations and operational space tip ac-
celerations. The new values are: 

(Elopen)k = 

(Ropen)k = 

[-32,635698], 

0 	- 
—32, 635698 

0 
0 
0 

_ 48,953546 _ 

(6.149) 

(6.150) 

and if all the necessary calculations are repeated, the acceleration of the reference 
member is found as: 

0 - 
0 
0 

a, = 
0 
0 
0 

1 35 

(6. 1 51) 



The joint accelerations for the two chains are then: 

Elk = [0]. 	 (6.152.) 

The whole system is thus in static equilibrium, just as it should be. This should • be 
quite a relief to all of us who were a bit uncomfortable with all the wild numeric 
tricks we had to use to solve this system with the given simulation algorithm. 

6.6 Summary 

In practical applications, many robotic mechanisms can be treated as simple closed-
chain mechanisms. Simulating the behaviour of simple closed-chain mechanisms is 
an even greater challenge than serial closed chains, although the results for serial 
closed-chains can be used to great benefit in the development of a simulation al-
gorithm for simple closed-chain mechanisms. 

How such an algorithm was developed by Lilly and Orin [31] was summarized 
in this chapter. The basic idea is to identify a central body whose removal will 
break all closed chains in the system, called the reference member, and to project 
the inertial properties of all the chains to the reference member. The forces acting 
on the reference member can be calculated (although not in a trivial way), and since 
the combined inertia of the system at the reference member has been calculated, the 
acceleration of the reference member can also be calculated. Once this acceleration 
is known, the forces exerted by each chain on the reference member can now also be 
calculated, and the chains can effectively be decoupled from the reference member. 
These chains can now be treated as serial chains with known tip-forces. The joint 
accelerations for such systems has previously been partitioned into open-chain and 
tip-force terms, and these results are simply applied to solve for the joint accelera-
tions of each chain. 

Some issues regarding the implementation of these algorithms have been ad-
dressed, and the techniques used were illustrated with a worked example. 
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Chapter 7 

The structure of a simulation 

Simulating the direct dynamics of a complex simple closed chain mechanism involves 
many different functions. In this chapter the interaction of these functions will be 
briefly explained. 

7.1 Functions 

A functional breakdown of the simulation problem results in the identification of all 
functions needed to simulate a system. The main functions the problem is split into 
is the inverse dynamic solution and the direct dynamic solution. These functions 
need a few supporting functions as well. The more important functions are listed 
below, with the name of the Scilab implementation in brackets: 

Simple closed chain solution (multiple_closed_chain). 

Direct dynamics solution for single serial open or closed chain (dir_dyn_cor). 

Inverse dynamic solution for single serial chain (inv_dyn_friction). 

Calculation of rotation transformations and relative position vectors from joint 
parameters (rot_disp for Denavit-Hartenberg parameters and rot_disp6dof for 
SDOF parameters). 

Calculation of spatial inertias from the inertia tensors around link centers of 
gravity (inertia). 

Calculation of current joint space if multiple degree of freedom rotational joints 
are used (rot_disp6dof). 

Calculate the rotation from link frame N to the tip frame (orientation). 
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Calculate the corrective force to be added to the tip force to minimize the 
effects of integration error (correction_force). 

Calculate the positions of the joints relative to the base and sketch the current 
configuration of the manipulator (man_plot). 

Calculate the next state (nert_state). 

Calculate the joint variables for the next state (next_joint_var). 

The updating of the joint variables becomes a trivial task when the SDOF kinematic 
notation is used. The respective joint positions are multipied by the joint spaces, 
and the non-zero components replace the corresponding components of the joint 
parameters. 

7.2 Structure 

The structure of a typical simulation would be similar to that shown in Figure 7.1. 
The dotted lines indicate paths that are only used for the first time step in the 
simulation. 
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Figure 7.1: The interaction of the different functions in a typical simulation program. 
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Chapter 8 

Complex example 

In this chapter the solution to a slightly more complex system than considered in 
the examples used in previous chapters will be given. The mechanism considered 
is shown in Figure 8.1. It can be treated as a simple closed-chain mechanism, and 
contains three serial chains connected by a common reference member. This mech-
anism has been proposed for use in manufacturing, where the reference member can 
contain a machine tool like a milling head. The closed-chain configuration of this 
mechanism gives it superior stiffness and much lower mass - compared to an an-
thropoid manipulator. As such, this mechanism has been coined a "High Stiffness 
Low Mass" mechanism. 

At first glance it should be clear that the effective control of such a mechanism 
is not a trivial task. For this reason, a dynamic model that can be used for the 
simulation of this mechanism, can be most useful in the development and testing of 
a control system. 

8.1 Problem definition 

8.1.1 Structure 

The default configuration of this mechanism is shown in Figure 8.1. There are now 
two ways of defining each chain. Each chain can be seen as consisting of two links, 
the tip of the second link being rigidly attached to the reference member. Alternat-
ively, each chain can be seen as containing only one link, with the tip of this single 
link being attached to the reference member by a joint. In this example, the first 
alternative will be used. 

The first joint of each of the chains, consists of a spherical joint (two rotational 
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1 m 	  

Side view 

Figure 8.1: A High Stiffness Low Mass Mechanism. 
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121 

degrees of freedom) and a prismatic joint (one displacement degree of freedom). The 
second joint of each chain is simply a spherical joint (two rotational degrees of free-
dom). Each chain thus has five degrees of freedom. This mechanism can reach any 
point in space, but not with any orientation. This case is more difficult to solve than 
if each chain had six or more degrees of freedom.' The link frames are attached to 
the links as in Figure 8.2. With the exception of the second component of the joint 
parameters of link one, the kinematic parameters are the same for each chain. The 
joint spaces are the same for each chain. The kinematic parameters and joint spaces 
for the first chain are given in Table 8.1. The dynamic properties of all the chains 

Yo 

Figure 8.2: The assignment of frames to the - High Stiffness Low Mass" mechanism.' 

are also the same. These properties are given in Table 8.2. In the simulation, it is 

'The operational space inertia, and Mk is not uniquely defined. 
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Link i Joint parameters -y i  Joint space c5 i  

0 - - 0 	0 	0 - 
—0,5235988 1 	0 	0 

1 
—1,1669367 

1.0874871 
0 	1 	0 
0 	0 	1 

0 0 	0 	0 

_ 	0 0 	0 	0 

- 	0 	- - 00 
0 10 

9 1,1669367 01 
0,1 00 

0 00 

0- 00 
- 

Table 8.1: The SDOF joint parameters and joint spaces of the "High Stiffness Low 
Mass" manipulator. 

Link Mass 
Position 
of center 
of mass 

Inertia Tensor 

0,5 - [ 

- 	 - 0,05 	0 	0 
1 9 0 0 	0, 5 	0 

0 	_ 0 	0 	0,5 

- 0,05 - 0,00006 	0 	0 
2 0,5 0 0 	0,0006 	0 

- 	0 _  0 	0 	0,0006 - 

Table 8.2: The inertial properties of the links of any chain of the "High Stiffness Low 
Mass" mechanism. 
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assumed that the position of the center of mass of link 1 stays constant. This is not 
a bad assumption, if a hydraulic actuator is used, and the prismatic displacements 
are small — as in this example. The effect on the accuracy of the results are minimal. 
However, there is nothing to prevent one from assigning an arbitrary function to this 
position. 

The positions of the interactions of the respective chains with the reference mem-
ber, expressed in the reference member frame, are: 

P1 

—0,05 	- 
0 (S i) 

—0,025 

0,05 

P2 	= 0 (8.2) 
—0.025 

0 
0 . 	 (8.3) 

0.05 

Many details have not been defined above, as this is not a worked example, but they 
should implicitly be clear from the information given above. 

8.1.2 Control 

For simplicity, the control system used is a simple PID-Controller. The only joints 
that are controlled are the prismatic joint and the second rotational joint of the 
second link of each chain. The controller determines the applied joint forces in these 
joints, given the position of these joints. The gains 2  used in the controller are: 

Kp = 800 	 (8.4) 

= 1000 	 (8.5) 

= 50, 	 (8.6) 

and are the same for the prismatic and rotational joints. 

2 These gains were not determined, but chosen. 
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8.2 Results 

8.2.1 Preliminary checks 

Before any simulation was done, the function of the algorithms were tested by. de-
termining solutions for the following cases 3 : 

No joint forces applied. 

Analytically determined joint forces for static equilibrium applied. 

Gravitational acceleration was taken as 10 nil s 2  - to simplify the interpretation of 
results. For the first case, the application of the algorithms returned a downward 
acceleration of 10, 0286429 m/s 2 , while the force exerted on the reference member 
by each chain included a downward force of 0, 0477382 N. Each chain had identical 
joint accelerations of: 

0 
-:3,6239142 
9, 2218498 	 (8.7) 

0 
3, 62:39142 

It is easy to verify that the above are all consistent. The fact that the reference 
member has an acceleration greater than gravity might seem strange, but is logical. 
If the reference member is removed, each of the chains is an open-chain, and the tips 
of each of these chains will have an acceleration with a downward component greater 
than gravity. 

Consider the second case. A set of analytically determined joint forces are: 

0 
6,3164555 

F= 	-41,113563 
	

(8.8) 
0 

0,25 

For these forces, the algorithms returned no accelerations: the mechanism is indeed 
in static equilibrium. The algorithms thus passed these necessary tests. 

8.2.2 Simulation results 

Two simulations were performed. The first simulation involved the following: the 
mechanism was kept in the default position by a support - no joint forces were ap- 
plied - and a new controller (integrated error equal to zero) was switched on. The 

3 No controllers used. 
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command input for the controller was to keep the mechanism in this position. At 

t = 0 s the support was instantaneously removed. The simulated response is shown 
in Figure 8.3. As expected, the reference member falls at first — because of the 
strong bias in the system and no integrated error — until the displacement (and velo-
city) is large enough to result in a large force due to the proportional (and derivative) 
loop. The mechanism does not fall further, but it takes some time for the integrated 
error to grow enough to bring the mechanism back to its original position. Because 
of the symmetry, the joint forces are identical for each of the three chains, and are 
also shown in Figure 8.3. 

The second simulation involved taking the above system with the mechanism kept 
in the original position by the force signals from the controller, and telling the control-
ler to move the reference member 0, 25 in vertically upward. The simulated response 
is shown in Figure 8.4. There is some overshoot, but the controller proves successful. 

It looks as if the control forces might diverge, but this is a result of the required 
kinematic that corresponds to the required position of the reference member not be-
ing accurately enough specified, leading to slight contradictions. 

Only the prismatic joints of the mechanism needs to be controlled in this mech-
anism. All the other joint positions depend on these positions. A controller that 
only controls the prismatic joint forces has been implemented. The gains used are 
the same as previously. For the same required change in position as for the previous 
case, the results are shown in Figure 8.5. The control forces no longer diverge, since 
there can be no contradictions. This controller seems to work well. 
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Figure 8.3: The response of the controlled mechanism while trying to keep the 
mechanism in the original position. 
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Figure 8.4: The response of the controlled mechanism when commanded to move 
0, 25 m upward. 
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Chapter 9 

Conclusion 

9.1 Conclusions 

In this dissertation compatible methods for modeling the dynamic behaviour of robot 
like mechanisms has been shown and integrated. Spatial notation and a general joint 
model was used in both the inverse and direct dynamic models. An inverse dynamic 
algorithm was derived that is both simple and can handle multiple degree of freedom 
joints. The direct dynamics algorithms shown and discussed are based on those 
proposed by Lilly and Orin. A new kinematic notation has been proposed for use 
with such systems where multiple degree of freedom joints exist. It has been found 
to be very easy to apply and is conceptually simple — and eliminates the need for 
massless links when joints with more than one degree of freedom has to be modeled. 

The methods mentioned above can be (and have been) used together to simu-
late relatively complex systems included in the simple closed-chain mechanism with 
multiple degree of freedom joints class. This includes all single serial closed-chain 
mechanisms (with less than, equal to or more than six degrees of freedom), and many 
multiple closed-chain mechanisms. These algorithms can all be used in a simple ex-
tension to include other branched structures as well. 

The implementation of the dynamics algorithms have also been discussed. This 
included such details as the origin and handling of singularities in the reference 
member (of simple closed chain mechanisms) dynamic equation, the calculation of 
the next state of the reference member, the calculation of the time derivative of the 
Jacobian, and the functional breakdown of a simulation problem, amongst others. 
Most of the methods in this dissertation have been illustrated with simple worked 
examples. All the methods have been coded for a digital computer and used in many 
simulations, and visualized with simple animations. 
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Any engineer should be able to use the methods described in this thesis to model 
rather complex mechanisms — for example by solving the inverse dynamics during 
the design of new mechanisms, or simulation for the testing of control systems. 

9.2 Further work 

All the functions needed for the simulation of manipulators have been written and 
tested. The development of a user friendly graph;cal front end for these functions is 
proposed. It should provide a simple way of defining the system and its properties, 
without sacrificing accuracy or generality. It could be linked to a solid modeler and 
an animator to show the movements of the mechanism. Ultimately, this can be part 
of a larger virtual world. 
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Appendix A 

Glossary of terms 

Inertial properties The mass, position of the center of mass, and inertia tensor of 
a body. 

Body The mathematical abstraction of the properties of a component .  (member) of 
a system in mechanics. This can include the geometrical, inertial and elastic 
properties of a component. 

Link A rigid part in a robotic system between successive joints. It connects suc-
cessive joints. 

Hinge Also called a joint. See the definition of joint. 

Joint A structure that connects two links and constrains the relative motion of the 
two links. Often an actuator is contained in this structure that can exert equal 
but opposite forces on the two links that the joint connects. 

End-effector The part of a robot manipulator that interacts with the environment 
in such a way as to influence it. It is frequently a gripper or tool. In a serial 
chain, it is usually the far end of the last link in the chain. 

Non-inertial frame A frame of reference in which the Newton-Euler laws of motion 
appear not to be valid if the variables are measured in this frame. A frame 
that has an acceleration or angular velocity relative to an inertial frame, will 
be a non-inertial frame. 

Proper transformation A continuous mapping such that the inverse image of a 
compact set is compact. 

Skew-symmetric tensor A tensor T such that TT = —T. 
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Tensor A multilinear differential form with respect to a group off permissible co-
ordinate transformations in fl-Space: an element of a tensor product. A tensor 
of type (r, s) is a member of the product 

T 	. 	 T 	T 	T 	 (A.1). 

of the vector space T with itself r times and with its dual. 'I'. s times. Different 
bases of T lead to different bases of r , and hence to different bases for 
the tensors; however, a component transformation law exists. If we choose 
the basis of T to be orthonormal, we obtain Cartesian tensors. A zero-order 
tensor is a scalar and has no superscript or subscript. A first-order tensor is 
a member of T or T -  (according to whether it is covariant or contravariant), 
and corresponds to a vector; it has one subscript or superscript. A second-
order tensor can be represented by a matrix, and the total of its subscript and 
superscript is two, that is, it is a member of T 2 , T2 , orTl. In this thesis, the 
subscripts and superscripts are not used as from the context it should be clear 
whether second-order Cartesian tensors, vectors, or scalars are implied. 

Elementary transformation A coordinate frame transformation in which one of 
the axis does not change orientation. 

Base A body in space whose motion is known and not influenced by the action of 
other bodies on it. It is usually an immovable object to which a part of a 
manipulator is fixed. 

Jacobian A matrix that relates the joint velocities to the spatial velocity of the end 
effector. 
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