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1. Introduction
Biodegradable and/or biobased polymers are widely
studied to replace petroleum-based materials with
the aim of contributing to higher sustainability of
plastics. However, in many cases these new prod-
ucts still do not meet economical or functional
requirements to be competitive in commodity appli-
cations. Polylactide (PLA) is one of the polymers
which can potentially enter high volume markets,
mostly in the food packaging [1–3] or textile [4]
sector. Polylactide is a biobased and compostable
polymer [5–7] issued from polymerization of lactic
acid produced by fermentation of starch, potatoes or

beets [7, 8]. Although it has been known before [9],
production cost reduction in the 1990s and 2000s
thanks to breakthroughs in the polymerization tech-
nology [10, 11], made it economically competitive
with petroleum-based materials. PLA offers many
interests such as a glass transition higher than room
temperature, ease of processing, high transparency,
printability, glossy aspect [1, 12, 13]. However, its
mechanical properties still remain an obstacle for
many applications. In fact, PLA features high tensile
strength and modulus but also high brittleness [14].
In order to enhance the PLA ductility, melt-blending
with rubbery materials as poly(ether)urethane [15,
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16], polyamide elastomer [17], acrylonitrile-butadi-
ene-styrene copolymer, or various impact modifiers
[18–26] is effective. Furthermore, plasticizers such
as citrate esters [27–37], polyethylene glycols [27, 33,
38–44] or manifold other molecules [29, 43, 45–48]
can be used. Unfortunately, impact modifiers are
often not biodegradable nor biobased and plasticiz-
ers are generally derived from fossil resources,
degrading one important environmental advantage of
employing PLA. Therefore biobased and biodegrad-
able additives have been and are investigated for
toughening PLA. Chemically modified vegetable oils
have received important research interest, because
ester or epoxy groups can be degraded by micro-
organisms [49], maintaining the biodegradability of
blends with PLA. Polymerized soybean oil deriva-
tives prepared by crosslinking double bonds of
alkyl chains afforded ductility increase after melt-
blending with PLA and using a compatibilizer [50].
Improvements were also obtained with conjugated
soybean oil which was reactively compatibilized
with PLA by unsaturated triglycerides [51]. Epoxi-
dized soybean oil [52–55] and epoxidized palm oil
[56–58] also showed some positive effects on PLA
toughness. Another approach consists in using rigid
particles, which usually increased stiffness but is inef-
fective, or even detrimental for the ductility. Nonethe-
less, NatureWorks [59] reported the use of EMforce®,
a mineral additive, able to change the polymer fail-
ure mode from brittle to ductile. In fact, the efficient
crack initiation in glassy PLA, which was provided
by the well-dispersed additive with good interfacial
adhesion to the matrix, enhanced the PLA elonga-
tion at break.
Expertise from plasticizing polyvinylchloride teaches
that mixtures of different plasticizers are efficient
for increasing toughness, because they make use of
different mechanisms available for ductility improve-
ment [49]. For example, a mixture of tributyl citrate
(TBC) and a block copolymer PLA-g-polyethyl-
eneglycol yielded a material with high elongation at
break and satisfying stress at yield [30]. Al-Mulla et
al. [55] successfully used modified nanoclays in com-
bination with epoxidized soybean oil to increase
stiffness and ductility. The combination of PLA with
rubber and compatibilizers has also been investi-
gated by several authors, showing important gains
in ductility, with an elongation at break of up to
160% for high rubber concentrations [60] or bicon-
tinous phases [61], and up to 200% when using

compatibilizers [62, 63]. However, these solutions
often require the inclusion of several additives,
chemically modified and costly components that
increase the price of the final formulation, which is
inappropriate for a large volume production. Find-
ing a low cost biobased and biodegradable toughen-
ing agent would therefore help PLA to conquer new
markets.
Vegetable oils contain a number of potentially inter-
esting molecules for PLA toughening and the refin-
ery of vegetable oils gives rise to several by-prod-
ucts. Among those, oil deodorization condensates
represent a high-volume by-product, which is chem-
ically close to the vegetable oil. They are obtained
by distillation in the aim of purifying the raw oil
from odorous compounds, which are negative for
the sensorial properties of vegetable oils. Deodor-
ization condensates contain free fatty acids, glyc-
erides and unsaponifiable molecules. The objective
of this study was to use vegetable oils and the by-
product deodorization condensate as produced for
toughening PLA. The individual molecules which
make up oils and deodorization condensates were
tested on the mechanical properties and several
vegetable oils were screened.

2. Experimental
2.1. Materials
PLA 4060D was supplied by NatureWorks (U.S.A.)
and consists of 89±1% L-lactic acid and 11±1% D-
lactic acid units, making it unable to crystallize
under common conditions [1, 64]. The glass transi-
tion temperature (Tg) obtained from differential scan-
ning calorimetry (DSC) measurements was 56°C.
Average molecular weights obtained from size
exclusion chromatography (SEC) measurements
were Mw = 236 800 g·mol–1, Mn = 103 700 g·mol–1

and dispersity Mw/Mn = 2,28.
Hydrogenated palm oil (HPO), Hydrogenated Copra
Oil (HCO), Rapeseed Oil Deodorization Conden-
sate (RODC), Soybean Oil Deodorization Conden-
sate (SODC), Olive Oil Deodorization Condensate
(OODC) and Palm Oil Deodorization Condensate
(PODC) were supplied by ITERG (Bordeaux,
France).
Palmitic acid (purity >98%) i.e. hexadecanoic acid
(C16:0), oleic acid (purity >96%) i.e. 9-octade-
cenoic acid (C18:1), squalene (purity >98%) i.e.
(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethylte-
tracosa-2,6,10,14,18,22-hexaene, and alpha-toco-



pherol (purity >96% ) i.e. (2R)-2,5,7,8-tetramethyl-
2-[(4R,8R)-(4,8,12-trimethyltridecyl)]-6-chromanol,
were supplied by Sigma-Aldrich (France).

2.2. Film fabrication
Prior to melt-blending, PLA pellets were dried at
60°C for 24 h under dried air using a SOMOS 60L.
Relative humidity of dried pellets was controlled to
be lower than 350 ppm using an Aboni FMX Hydro-
tracer (France). Melt-mixing of PLA with or with-
out additives was carried out using a twin screw
extruder (Thermo Haake Ptw 16-40D, France), hav-
ing a screw diameter of 16 mm and a length to diam-
eter ratio (L/D) 40:1. A temperature of 180°C was
used to process by twin-screw extrusion the PLA
pellets as reference material, while the temperature
profile of the 7 heating zones decreased from 180 to
about 150/130°C along the extrusion flow, depend-
ing on the nature and the amount of additive. Screw

speed was 300 rpm. The exact temperature profile
for each formulation is given in Table 1. To properly
control the feed rate of additives, which are solid at
room temperature, a home-made apparatus consist-
ing in a heated syringe was used. Obtained pellets
were stored into hermetic sealed metalized bags to
avoid PLA rehydration.
Films of about 0.8 mm thickness containing palmitic
acid, oleic acid, hydrogenated palm oil, hydro-
genated copra oil, squalene, !-tocopherol and some
combinations of these products were obtained using
a single screw extruder (Scamex Rheoscam, France),
mounted with a screw of 20 mm diameter and a
length to diameter ratio (L/D) 12:1 and a flat die of
40 mm width and 1 mm thickness. Films were
stretched and cooled with chill rolls. Due to the
short length of the screw, an increasing temperature
profile from 180 to 195°C over the 3 heating zones
was used for PLA, while it was decreasing from 180

Table 1. Processing conditions of melt-mixing twin screw extrusion

Formulation Temperature profile
[°C]

Neat PLA 175/180/190/190/190/190/180
PLA + 10 wt% C16:0 175/180/180/170/170/170/170
PLA + 10 wt% C18:1 175/180/180/170/170/170/170
PLA + 10 wt% [50 wt% C16:0 + 50 wt% C18:1] 175/180/180/170/170/170/170
PLA + 10 wt% [95 wt% (50 wt% C16:0 + 50 wt% C18:1) + 5 wt% HPO] 175/180/180/170/170/170/170

PLA +
5 wt% HCO
10 wt% HCO
15 wt% HCO

175/180/180/180/180/170/170
175/180/180/180/180/170/170
175/180/180/180/170/170/160

PLA +
5 wt% HPO
10 wt% HCO
15 wt% HCO

175/180/180/180/180/170/170
175/180/180/180/180/170/170
175/180/180/180/180/170/170

PLA +
5 wt% !-tocopherol
10 wt% !-tocopherol
15 wt% !-tocopherol

175/180/180/180/180/180/180
175/180/180/180/180/180/170
175/180/180/180/180/170/170

PLA +
5 wt% squalene
10 wt% squalene
15 wt% squalene

175/180/180/180/180/180/180
175/180/180/180/180/170/170
175/180/180/180/180/170/170

PLA +

5 wt% RODC
10 wt% RODC
15 wt% RODC
20 wt% RODC

175/180/180/180/180/175/170
175/180/180/180/180/170/160
175/180/180/180/180/170/160
175/180/180/180/170/160/150

PLA +

5 wt% SODC
10 wt% SODC
15 wt% SODC
20 wt% SODC

175/180/180/180/180/175/170
175/180/180/180/180/170/160
175/180/180/180/180/170/160
175/180/180/180/170/160/150

PLA +

5 wt% OODC
10 wt% OODC
15 wt% OODC
20 wt% OODC

175/180/180/170/170/170/170
175/180/180/170/170/170/170
175/180/180/170/170/160/160
175/180/180/170/160/150/150

PLA +

5 wt% PODC
10 wt% PODC
15 wt% PODC
20 wt% PODC

175/180/180/180/180/175/170
175/180/180/180/170/160/155
175/180/180/180/170/160/150
175/180/180/170/160/150/135



to about 170°C for blends. The specific tempera-
tures depending on the nature and the amount of
additive are given in Table 2.
In the case of the deodorization condensates of the
vegetable oils (RODC, SODC, OODC, PODC), the
available quantity was insufficient for carrying out
a single screw extrusion in the aim to obtain films.
In that case PLA sheets of 1 mm thickness were
thermo-moulded by compression at 220 bar (Labo-
ratory Press Gibitre Instruments 20 tons, Italy). For
this, pellets were pre-melted at 180°C without pres-
sure during 180 seconds then heating plates were
closed with progressive increase in pressure during
120 seconds to eliminate air bubbles.

2.3. Chemical and physical chemical
characterization of vegetable oils and
deodorization condensates

Glyceride composition of fats was determined
according to the IUPAC 6.002 and EN 14105 stan-
dards using a Shimadzu GC-2010 Plus gas chro-
matograph (France) equipped with a Zebron ZB 5
HT Inferno (15 m, 0.25 mm, 0.1 "m) column and a
flame ionization detector set at 380°C. The vector gas
was H2 at a flow rate of 1.17 mL·min–1. Both the
injector and the oven temperature were set at 60°C
for 3 min, then raised to 370°C at 10°C·min–1 and
held at 370°C for 12 min. Direct on-column injec-
tion was performed.
Fatty acid composition was determined according
to the ISO 12966-2 standard using a Shimadzu GC-

2010 Plus gas chromatograph (France) equipped
with a BPX70 (50 m, 0.22 mm, 0.25 "m) column,
and a flame ionization detector set at 250°C. The vec-
tor gas was H2 at a flow rate of 0.32 mL·min–1. The
oven temperature was set at 60 C for 2 min, raised
to 170°C at 20°C·min–1, held at 170°C for 25 min,
raised to 230°C at 4°C·min–1 and held at 230°C for
10 min. The injector temperature was set at 250°C
and a split ratio of 200 was used.
Acid value was determined according to the ISO
660 standard using a mixture of ethanol 95% and
diethylic ether as solvent, potassium hydroxide
0.5 mol·L–1 in ethanol 95% as titrant and alkali blue
6B as indicator.
Saponification value was determined according to
the ISO 3657 standard. Samples were saponified with
potassium hydroxide 0.5 mol·L–1 in ethanol 95%
boiled under reflux during 2 h. Hydrochloric acid
0.5 mol·L–1 was used as titrant and alkali blue 6B as
indicator.
Water content was measured using a Mettler Toledo
HB43 S Halogen Moisture Analyzer set (France) at
103°C.
Melting point of free fatty acids was determined
from literature [65]. Estimation of mono, di- and tri -
glycerides average chemical structure of oil deodor-
ization condensates was based on the averages
unsaturation number and the alkyl chains length of
the corresponding free fatty acids composition pro-
file (Table 3). Average glycerides melting point was
estimated calculating a weighted average of the

Table 2. Processing conditions of cast films extrusion

Formulation Temperature profile
[°C]

Die temperature
[°C]

Neat PLA 180/190/195 185
PLA + 10 wt% C16:0 180/180/175 170
PLA + 10 wt% C18:1 180/180/175 170
PLA + 10 wt% [50 wt% C16:0 + 50 wt% C18:1] 180/180/175 170
PLA + 10 wt% [95 wt% (50 wt% C16:0 + 50 wt% C18:1) + 5 wt% HPO] 180/180/175 170

PLA +
5 wt% HCO
10 wt% HCO
15 wt% HCO

180/180/180
180/170/170
180/170/170

180
170
170

PLA +
5 wt% HPO
10 wt% HPO
15 wt% HPO

180/180/180
180/170/170
180/170/170

170
170
170

PLA +
5 wt% !-tocopherol
10 wt% !-tocopherol
15 wt% !-tocopherol

180/180/180
180/180/180
180/175/170

180
180
170

PLA +
5 wt% squalene
10 wt% squalene
15 wt% squalene

180/180/180
180/180/175
180/180/170

180
170
170



specific melting points of the contained molecules
taken from references [65–67]. Physical properties
of molecules are given in Table 4.

2.4. Calculation of solubility parameters
Molar volumes and molar attraction constants of
polylactide and additives were determined accord-
ing to the van Krevelen and Hoftyzer atomic group
contribution method [68]. Average molar volumes
and average molar attraction constants of mono, di
and triglycerides of oil deodorization condensates
were estimated based on average chemical struc-
tures previously determined.
Hansen Solubility parameters were calculated using
Equations (1), (2) and (3) [69, 70]. Used molar con-
stant values [68] are presented in Table 5:

(1)

(2)

(3)

where !d is the dispersion component of the solubil-
ity parameter in J1/2·cm–3/2, !p the polar component
of the solubility parameter in J1/2·cm–3/2, !h the hydro-
gen bonding component of the solubility parameter
in J1/2·cm–3/2, Fd the dispersion contribution of the
molar attraction constant in (J1/2·cm–3/2)·mol–1, Fp
the polar contribution of the molar attraction con-
stant in (J1/2·cm–3/2)·mol–1, Eh the hydrogen bonding
energy contribution of the molar attraction constant
in J·mol–1 and V the molar volume contribution of the
chemical group involved in cm3·mol–1.
The solubility of the molecules in PLA (Table 4)
was assessed using the HSP Relative Energy Differ-
ence (RED) from Equations (4) and (5):

(5)RED 5
Distance
Radius

dh 5
"gEhigVi

dp 5
"gFPi

2

gVi

dd 5
gFdtgVi

dd 5
gFdtgVi

dp 5
"gFPi

2

gVi

dh 5
"gEhigVi

RED 5
Distance
Radius

Table 3. Composition of hydrogenated vegetable oils and vegetable oil deodorization condensates

Type HPO HCO RODC SODC OODC PODC

G
ly

ce
rid

e 
co

m
po

si
tio

n
[%

]
Free fatty acids
Monoglycerides
Diglycerides
Triglycerides
Sterols (!-tocopherol)
Hydrocarbons (Squalene)
Unidentified

0.0
0.2

10.6
88.9
0.0
0.0
0.3

0.0
0.0
0.0

100
0.0
0.0
0.0

39.0
11.2
2.7

12.2
25.7
0.0
9.2

43.1
2.9
9.0

16.8
9.8

13.8
4.6

39.2
2.0
8.4

33.5
1.6

13.0
2.3

95.4
1.7
2.2
0.7
0.0
0.0
0.0

Acid value [mg KOH·g–1]
Saponification value [mg KOH·g–1]
Water content [%]

0.1
198.6

0.11

0.1
255.2

0.10

65.3
125.1

0.55

68.4
157.9

0.34

47.7
162.2

0.37

201.0
205.7

0.16

Fa
tty

 a
ci

d 
co

m
po

si
tio

n
[%

]

Caproic acid C6:0
Caprylic acid C8:0
Capric acid C10:0
Lauric acid C12:0
Myristic acid C14:0
Palmitic acid C16:0
Palmitoleic acid C16:1
Stearic acid C18:0
Oleic acid C18:1
Linoleic acid C18:2
Linolenic acid C18:3
Arachidic acid C20:0
Eicosenoic acid C20:1
Behenic acid C22:0
Lignoceric acid C24:0
Unidentified

0.0
0.0
0.0
0.5
1.2

43.6
0.0

53.8
0.0
0.0
0.0
0.5
0.0
0.1
0.1
0.5

0.5
6.8
5.7

47.5
18.1
9.4
0.0

10.8
1.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.0
7.4
0.0
3.4

27.3
42.4
1.5
0.5
0.3
1.0
0.5
0.2

0.0
0.0
0.0
0.8
0.4

12.3
0.0
4.1

21.7
49.7
6.4
0.3
0.2
0.5
0.2

15.7

0.0
0.0
0.1
0.0
0.0

11.3
0.0
2.5

69.5
10.9
0.6
0.4
0.4
0.0
0.1

13.4

0.0
0.0
0.0
0.4
1.3

49.8
0.2
4.1

35.2
7.8
0.3
0.3
0.1
0.0
0.0
4.2

Average alkyl chain carbon quantity
Average alkyl chain unsaturation quantity

17.1
0.0

13.0
0.0

17.9
1.4

17.7
1.5

17.8
1.0

16.9
0.5

(4)Distance 5 "41ddmolec
2 ddPLA

22 1 1dpmolec
2 dpPLA

22 1 1dhmolec
2 dhPLA

22Distance 5 "41ddmolec
2 ddPLA

22 1 1dpmolec
2 dpPLA

22 1 1dhmolec
2 dhPLA

22
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where !d, !p, and !h are the components of the solu-
bility parameter of the molecules and the PLA
obtained from Equations (1), (2) and (3), where the
radius value is the maximal distance obtained from
[71] beyond which the molecules are not miscible
anymore with the polymer. Therefore, the closer the
RED value to zero, the better the compatibility. A
RED value higher than 1 means a theoretical non-
miscibility of the additive with PLA.

2.5. Physical-chemical characterization PLA
blends

Differential Scanning Calorimetry (DSC) analyses
were performed using a Mettler Toledo (France)
DSC1 STARe System under nitrogen atmosphere
(50 mL·min–1) in 40 "L standard Aluminum pans
(Mettler). Calibration of the device was done using
Indium and Zinc standards. Calorimetric scans of
additives were performed from –80 to 220°C at a
heating rate of 2°C·min–1. Experiments were car-
ried out in duplicate. Calorimetric scans of blended
PLA samples were done at a heating/cooling rate of
10°C·min–1. The first heating scan for sample reju-
venation was performed from 25 to 75°C with an
isotherm at 75°C during 2 min. Then, the cooling
scan was from 75 to –20°C and the second heating
scan from –20 to 100°C. The glass transition tem-
perature (Tg) was taken at the midpoint of the sec-
ond heating scan. Experiments were done in tripli-
cate.
Tensile properties were investigated at 23°C, rela-
tive humidity (RH) 50±10 % and cross-head speed
of 25 mm·min–1, using an universal tensile machine
(Instron model 4301, France) equipped with a load
cell 1000±1 N and without extensiometer. The dog
bone shaped samples (ISO 527-2, type 5A) were
directly cut from the materials. Prior to tensile test-
ing, samples were conditioned at 23°C and 50±10%

RH for at least 72 h. Each mechanical characteristic
value is an average of 8 measurements.
Uniaxial deformation under an optical microscope
was done in cutting rectangular samples of 20 mm
length, 4 mm width, and 0.8 mm thickness from
blank PLA, PLA + 10 wt% C16:0, PLA + 10 wt%
C18:1 and PLA + 10 wt% PODC films. They were
stretched at 5 mm·min–1 using a homemade tensile
machine placed under an Olympus Japan optical
microscope mounted with WHK 10$/20 L ocular
lens and MD Plan 10 0.25 objective lens. Observa-
tions were performed in optical transmission light
mode using a Sony CCD-IRIS Model DXC-107P
camera (France).
The morphology of the dispersed phase of PLA +
10 wt% C16:0, PLA + 10 wt% C18:1 and PLA +
10 wt% PODC materials before and after being
stretched was observed with Scanning Electron
Microscopy (SEM) (Hitachi 4800 II, France). Obser-
vations were directly conducted on the longitudinal
surface of the dog bone shaped samples without any
previous preparation.

2.6. Principal component analysis (PCA)
PCA was carried out considering the contents of
each free fatty acid, mono, di and triglyceride types,
hydrocarbons, sterols and water, the acid and saponi-
fication values and the measured elongation at
break [%], Young modulus and Tg values of the PLA
formulations tested. PCA was done with XLstat
software.

3. Results and discussion
3.1. Effects of free fatty acids, glycerides,

"-tocopherol and squalene on PLA ductility
Individual components present in vegetable oils,
which could feature toughening ability for PLA, as
free fatty acids, glycerides, and the unsaponifiable

Table 5. Used group contribution molar constants

Group Fd
[(J1/2·cm–3/2)·mol–1]

Fp
2

[(J·cm–3)·mol–1]
Eh

[J·mol–1]
Molar volume

[cm3·mol–1]
–CH3 420 0 0 33.5
–CH2– 270 0 0 16.1
=CH– 200 0 0 13.5
>CH– 80 0 0 –1.0
>C< –70 0 0 –1
=C< 70 0 0 –5.5
–COO– 390 240100 7000 18
–COOH 530 176400 10000 28.5
–OH 210 250000 20000 10
Ring 190 0 0 16



components as !-tocopherol and squalene were
tested. In order to achieve the most efficient formula-
tion, the solubility of a molecule in the polymer
matrix is one determinant for its plasticizing power
[37]. Therefore the Hansen Solubility Parameters
(HSP) of each compound was calculated. HSP
(Table 4) shows low solubility of the different com-
pounds in the PLA matrix. All the obtained values are
close to one, which marks the solubility limit. The
highest solubility (although still modest) was dis-
played by small fatty acids and !-tocopherol. The
mechanical and thermal properties of the corre-
sponding compounds are given in Table 6. The raw
data of typical stress/strain curves of blends are pre-
sented in Figure 1. The DSC thermograms of neat
additives in Figure 2 and of blends in Figure 3 for
further information.

Literature studies on the use of vegetable oil as
toughening agent of PLA showed that generally
chemical modification is required to obtain positive
effects [50, 52–54, 56–58, 72]. Not surprisingly due
to their low solubility in PLA, the impact of the tested
fatty acids (C16:0, C18:1), vegetable oils (HPO and
HCO) and unsaponifiable compounds on Tg was neg-
ligible. However, despite the low solubility of the
compounds, PLA ductility was increased in some
cases. In particular, HCO, which contains mainly tri -
glycerides, but with short chain length, improved
the PLA ductility and lowered the apparent Young
modulus, stress and elongation at yield. HPO, which
mostly contains triglycerides and some diglycerides
with higher chain length did not bring significant duc-
tility enhancement nor Tg decrease. HSP of di- and
triglycerides from HPO and triglycerides from HCO

Table 6. Mechanical and thermal properties of formulations

aapparent Young modulus for comparison reasons obtained without extensiometer

Formulation
Elongation at

break
[%]

app. Young
modulusa

[MPa]

Elongation at
yield
[%]

Stress at yield
[MPa]

Tg
[°C]

PLA (twin screw pellets) 6±1 1760±90 4.2±0.4 64±5 56.3±0.2
PLA + 10 wt% C16:0 4±1 1720±60 3.2±0.1 50±3 49.3±0.1
PLA + 10 wt% C18:1 16±5 1440±50 2.2±0.1 28±2 45.2±0.2
PLA + 10 wt% [50 wt% C16:0 + 50 wt% C18:1] 45±12 1590±80 2.2±0.1 31±2 40.7±0.3
PLA + 10 wt% [95 wt% (50 wt% C16:0 + 50 wt%

C18:1) + 5 wt% HPO] 74±15 1550±120 2.2±0.2 25±4 39.8±0.4

PLA +
5 wt% HCO
10 wt% HCO
15 wt% HCO

9±3
9±6

11±5

1680±70
1540±80
1460±70

3.6±0.2
3.6±0.2
3.8±0.2

51±1
42±2
38±2

54.1±0.2
54.1±0.1
54.8±0.3

PLA +
5 wt% HPO
10 wt% HPO
15 wt% HPO

55±20
85±15
91±14

1610±50
1420±70
1300±80

2.7±0.1
2.6±0.2
2.4±0.1

38±1
26±2
26±1

52.6±0.2
54.4±0.4
53.9±0.3

PLA +
5 wt% !-tocopherol
10 wt% !-tocopherol
15 wt% !-tocopherol

6±2
5±2
8±3

1150±90
1070±60
990±70

3.8±0.2
4.0±0.4
3.9±0.3

41±4
31±3
29±4

51.3±0.2
49.8±0.2
47.1±0.2

PLA +
5 wt% squalene
10 wt% squalene
15 wt% squalene

38±7
51±9
29±7

1180±90
990±60
890±80

3.3±0.4
3.1±0.9
2.9±0.7

36±7
28±3
19±2

51.4±0.2
49.5±0.2
49.4±0.1

PLA +

5 wt% RODC
10 wt% RODC
15 wt% RODC
20 wt% RODC

22±3
55±7
65±15
73±20

1530±80
1490±140
1380±155
1270±150

3.2±0.2
2.4±0.2
2.3±0.3
2.2±0.3

40±3
28±4
23±4
20±4

52.6±0.2
49.1±0.1
48.8±0.1
48.5±0.3

PLA +

5 wt% SODC
10 wt% SODC
15 wt% SODC
20 wt% SODC

29±8
73±18
80±13
52±15

1550±110
1510±90
1340±80
1220±100

3.3±0.3
2.3±0.2
2.2±0.3
2.1±0.4

41±7
25±5
23±3
16±4

50.6±0.1
49.4±0.3
48.7±0.1
47.5±0.1

PLA +

5 wt% OODC
10 wt% OODC
15 wt% OODC
20 wt% OODC

49±6
85±17
88±16
67±16

1430±90
1490±90
1360±70
1370±110

3.1±0.3
2.6±0.2
2.1±0.2
2.2±0.2

34±4
31±2
20±3
21±3

49.5±0.2
49.0±0.1
48.5±0.1
48.7±0.1

PLA +

5 wt% PODC
10 wt% PODC
15 wt% PODC
20 wt% PODC

51±17
132±18
179±15
84±31

1680±110
1460±40
1180±130
1130±60

2.5±0.2
2.1±0.2
2.3±0.3
2.0±0.4

36±2
24±1
18±2
14±3

45.3±0.1
39.2±0.2
35.1±0.2
33.8±0.2



Figure 1. Stress/strain curves of PLA blends with free fatty acids, hydrogenated vegetable oils (HPO and HCO), unsaponifi-
able compounds (squalene, !-tocopherol), and vegetable oil deodorization condensates (palm oil PODC, olive oil
OODC, soybean oil SODC and rapeseed oil RODC);  (—) neat PLA; (== ==) PLA + 10 wt% C16:0; (= =) PLA +
10 wt% C18:1; (== •) PLA+ 10 wt% [50 wt% C16:0 + 50 wt% C18:1]; (== • •) PLA + 10 wt% [95 wt% (50 wt%
C16:0 + 50 wt% C18:1) + 5 wt% HPO]; (— —) PLA + 5 wt% additive; (- - -) PLA + 10 wt% additive; (• •) PLA
+ 15 wt% additive; (— • •) PLA + 20 wt% additive

Figure 2. Thermograms (first heating scan) of free fatty acids, hydrogenated vegetable oils (HPO and HCO), unsaponifi-
able compounds (squalene, !-tocopherol), and vegetable oil deodorization condensates (palm oil PODC, olive oil
OODC, soybean oil SODC and rapeseed oil RODC); (— —) C16:0; (– –) C18:1; ($) HCO; (%) HPO; (&) !-toco-
pherol; (') squalene; (+) RODC; (() SODC; (!) OODC; (!) PODC



were close, while the average molar volume and
molecular weight of triglycerides from HCO are
smaller than the ones from HPO (Table 2). Testing
of single fatty acids with longer chain length
(C16:0, C18:1) showed that they were not able to
increase PLA ductility. This is coherent with exist-
ing literature. For example, Jacobsen and Fritz [73]
studied PLA blends with fatty acid esters. No signifi-
cant ductility improvement was observed. The blend-
ing with the unsaponifiable compound !-tocopherol
showed small gains in elongation at break, which
extends already existing knowledge. It was already
shown that the use of !-tocopherol as a natural
antioxidant in PLA at small quantities (<4 wt%)
induced a slightly Tg decrease [74] but no increase
in elongation at break [75]. Here, no elongation at
break improvement upon was found using greater
!-tocopherol amounts, despite solubility was assessed
to be higher than other molecules (such as HPO and
HCO, Table 4) and a Tg decrease was observed
(Table 3). Squalene, which is a natural tri-terpene
found in vegetable oils, showed some toughening
abilities (Table 6) despite its low solubility in PLA
(Table 4). In fact, the creation of a dispersed phase
promoting crazing was most probably responsible
for this effect [37].
The most interesting result was obtained upon mix-
ing different compounds. A mix of C18:1 and C16:0
fatty acids increased the PLA ductility much more
than using them separately. The Young modulus
and the Tg remained higher than using only C18:1
likely because of its lower content involved, while the
stress and elongation at yield were lessened as

much as adding only C18:1. Mixture made of [95 wt%
(50 wt% C16:0 + 50 wt% C18:1) + 5 wt% HPO] at
a total content of 10 wt% in PLA, further enhanced
the ductility. There was apparently a synergistic effect
between compounds, which can be possibly exploited.

3.2. Properties of PLA blends with vegetable
oil deodorization condensates

Deodorization oil condensates are mixtures of dif-
ferent molecules contained in vegetable oils, the com-
position of which depends on the botanic source
and oil refinery process. Four kinds of oil deodoriza-
tion condensates (RODC, SODC, OODC and PODC)
were blended with PLA, each at four concentrations
(5, 10, 15 and 20 wt%). As shown in Table 3, content
in free fatty acids, mono di or triglycerides, sterols
(mainly alpha-tocopherol) and hydrocarbons (mainly
squalene) was highly variable, as well as unsatura-
tion degree of fatty acids. From the composition, an
average HSP was calculated and is given in Table 4.
As observed in Table 4, the longer and/or more unsat-
urated the alkyl chain is, the lower the solubility in
PLA. However, except for very short fats alkyl chains
and organic compounds as !-tocopherol or squa-
lene, HSP of involved molecules appear to be rather
similar. Mechanical and thermal properties of PLA/
oil deodorization condensates blends are given in
Table 6 and typical curves of raw data are shown in
the Figure 1. Significant increases in elongation at
break were obtained, especially with the PODC.
Addition of too much additive, i.e. about 20 wt%,
induced a stagnation or decrease in the elongation
at break. All the deodorization condensates led to a

Figure 3. Thermograms (second heating scan) of PLA blends with free fatty acids, hydrogenated vegetable oils (HPO and
HCO), unsaponifiable compounds (squalene, !-tocopherol), and vegetable oil deodorization condensates (palm
oil PODC, olive oil OODC, soybean oil SODC and rapeseed oil RODC); (—) neat PLA; (— —) PLA + 10 wt%
C16:0; (– –) PLA + 10 wt% C18:1; (- - -) PLA + 10 wt% [50 wt% C16:0 + 50 wt% C18:1]; (— -) PLA + 10 wt%
[95 wt% (50 wt% C16:0 + 50 wt% C18:1) + 5 wt% HPO]; ($) PLA + 10 wt% HCO; (%) PLA + 10 wt% HPO;
(&) PLA + 10 wt% !-tocopherol; (') PLA + 10 wt% squalene; (+) PLA + 10 wt% RODC; (() PLA + 10 wt%
SODC; (!) PLA + 10 wt% OODC; (!) PLA + 10 wt% PODC



lowering in the stress and elongation at yield. Inter-
estingly, the apparent Young modulus of materials
remained high. The stress/strain curves (Figure 1)
showed that the yielding peak shrunk and flattened
with the increase in additive content, as if the yield
critical stress would tend to meet the plateau value
where the stress remains constant with the strain.
There is thus an important gain of using native mix-
tures of fatty acids present in deodorisation conden-
sates for PLA ductility increase.

3.3. Study of the deformation mechanisms
involved in PLA/oil deodorization
condensates blends

In all samples the Tg remained higher than the meas-
urement temperature, the main deformation mecha-
nism was thus crazing of the glassy polymer [37].
The yield process in glassy amorphous polymers
can be described as a stress induced glass-transi-
tion. In fact, because PLA Poisson’s ratio is less than
0.5 ("PLA = 0.36) [76], the volume of PLA increases
when subjected to tensile stress. Correspondingly,
samples experienced important stress whitening,
which appeared simultaneously with yielding. Stress
whitening is caused by the formation of sizeable
microvoids in the polymer matrix due to cavitation
and crazes [77]. Crazes can also be initiated inside
non-miscible inclusions in the polymer matrix or on
the interface between inclusion and polymer in the
case of low compatibility. The addition of oil deodor-
ization condensates initiated crazes at stress levels
substantially below those of the brittle failure of
neat PLA, which propagated perpendicularly to the
stretching direction. Morphological analysis of the
form and size of inclusions of PODC, C16:0 and
C18:1 was done to help interpretation. Figure 4
shows SEM micrographs of [PLA/C16:0], [PLA/
C18:1] and [PLA/PODC] 90 wt%/ 10 wt% blends.
[PLA/C16:0] blends exhibit rods of about 5 to
10 "m length and 1 to 2 "m width, corresponding to
fatty acid crystals. [PLA/C18:1] showed small spher-

ical domains of fatty acids of about 0.5 "m diame-
ters and some aggregates of about 3 to 5 "m diame-
ters. The [PLA/PODC] blend micrograph showed
both rods and aggregates of droplets, where the
droplets appear to be distributed all around the crys-
tals.
Figure 5 shows optical micrographs in transmission
mode of stretched samples under the microscope
taken at different percentages of elongation. Many
small cracks started appear in neat PLA when
approaching the yield peak, which is common for
glassy amorphous polymers. Addition of C16:0, i.e.
rod like crystals, increased both the occurrence and
the length of cracks. Cracks quantity upon stretch-
ing caused the material to become opaque.
Failure of the blend revealed PLA fibrils. C18:1, i.e.
small spherical liquid domains, induced fewer but
much larger cracks as if their extensibility was eased.
PODC, i.e. mostly a combination of C16:0 and C18:1
and some minor constituents, showed a high num-
ber of cracks but with smaller width as if using only
C18:1. The mixture of palmitic acid crystals and
liquid inclusions of oleic acid had thus a synergistic
effect allowing for efficient craze initiation by the
crystals and by cavitation inside the liquid inclu-
sions. The superior performance of the PODC blends
seems thus to be linked to the chemical composition
in fatty acids and the presence of the minor con-
stituents.

3.4. Role of the chemical composition of
deodorization condensates in PLA
ductility improvement

A Principal Components Analysis (PCA) was car-
ried out including composition data and physico-
chemical characteristics of the deodorization con-
densates and of the PLA samples. Figure 6 shows
the principal components projection plot of F1 and
F2 of the data set. Only 50% of the total variance in
these PLA samples is extracted according to F1 and
F2 axes. In fact, scores of formulations containing

Figure 4. SEM micrographs of (a) C16:0, (b) C18:1 and (c) PODC blends with PLA at 10 wt%



squalene, !-tocopherol, HPO, HCO and mixtures of
C16:0, C18:1 and HPO are not discriminated. How-
ever discrimination of PLA samples containing
deodorization condensates of each kind of veg-
etable oils and according to their respective amount
is obtained. Corresponding loadings are plotted in
Figure 7. The positive part of F1 axis appears to be
mainly governed by the elongation at break and as
opposed to its negative part with the Tg. The F2 axis
mostly separates fats as a function of the unsatura-
tion and length of their alkyl chains. Looking at the
elongation at break improvement, unsaturation of
alkyl chains appears to be required, but the lower
the ratio, the larger the enhancement was. Medium
alkyl chain length, i.e. from lauric (C12) to stearic
(C18) acid, also tends to be preferable than the long

Figure 5. Optical micrographs of uniaxially stretched PLA and PLA blends with free fatty acids (C16:0, C18:1) and palm
oil deodorization condensate (PODC) at different strain

Figure 6. Principal components projection plot of F1 and
F2 of the data set



ones as behenic (C22) or lignoceric (C24) acids.
Both the unsaturation and the length of alkyl chains
are main physical factors governing the melting
point of fats. One common point is that unsaturation
decreases melting points while length increases it.
Therefore, efficiency of fats in toughening PLA
appeared to be linked to medium melting point
properties. A mixture of crystalline and liquid fatty
acids at room temperature seemed favorable. This
could explain the ability of HCO triglycerides to
increase the PLA ductility while HPO did not,
although their HSP were similar, as their ability to
depress the Tg of PLA. In fact, due to short alkyl
chains, HCO triglycerides are waxy at room temper-
ature. The DSC thermogram (Figure 2) shows a
broad melting peak going from 8 to 42°C of HCO
while it is beyond 55°C for HPO. Literature shows
that combining liquid and solid additives can some-
times be effective for PLA [78]. Acid and saponifi-
cation values are related to the elongation at break
improvement (Figure 7). Therefore, the higher the
esterified fats and/or the free fatty acid contents, the
better the efficiency of the additive. In opposite,
unidentified compounds, i.e. mostly unsaponifiable
compounds, are not favorable to the ductility
increase. Therefore, the superiority in toughening
abilities of the PODC compared to the alike mixture
made of [95 wt% (50 wt% C16:0 + 50 wt% C18:1)
+ 5 wt% HPO] can be attributed to the complex and
favorable mixture of fatty acids having different
chain length.

4. Conclusions
By-products of the vegetable oils industry, namely
deodorization condensates, were investigated as
biobased additives for ductility improvement of
PLA. The deodorization condensates improved
substantially the elongation at break of PLA up to
180%. The glass transition was merely decreased
which brought ductility to the still glassy polymer.
The deformation mechanism was efficient craze
initiation delaying failure. Most importantly, it was
shown that the industrial by-product of the palm oil
refinery had superior properties compared to mix-
tures of fatty acids and vegetable oils because it
contained a mixture of fatty acids with melting
points below and beyond room temperature. This
makes deodorization condensates efficient and low
price additives for PLA able to be used in commod-
ity applications such as food packaging.
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