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Abstract Smoluchowski kinetic equation governing the
time evolution of the pair correlation function of rigid spher-
ical particles suspended in a Newtonian fluid is extended
to include particle migration. The extended kinetic equa-
tion takes into account three types of forces acting on
the suspended particles: a direct force generated by an
interparticle potential, hydrodynamic force mediated by the
host fluid, and the Faxén-type forces bringing about the
across-the-streamline particle migration. For suspensions
subjected to externally imposed flows, the kinetic equation
is solved numerically by the proper generalized decomposi-
tion method. The imposed flow investigated in the numeri-
cal illustrations is the Poiseuille flow. Numerical solutions
provide the morphology (the pair correlation function), the
rheology (the stress tensor), and the particle migration.
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Introduction

Physical systems under consideration in this paper are
semidilute isothermal suspensions of rigid spherical parti-
cles in Newtonian fluids. Externally imposed flows induce
in such suspensions a fine-scale collective ordering and
migration. The collective ordering manifests itself in the
emergence of pair correlations and the migration in the
emergence of spatial inhomogeneities in the distribution of
suspended particles. Both the ordering and the migration
as well as the resulting complex rheological behavior are
investigated in this paper in the framework of kinetic the-
ory. The same type of investigation, but without migration,
has been reported in Zmievski et al. (2005) and Maı̂trejean
et al. (2012). In the rest of this section, we shall describe
the strategy that we use in this paper to derive kinetic equa-
tions and recall the previously developed approaches to the
investigation of the migration.

Multiscale theories of macroscopic systems

There are two distinct paths that can be followed in theo-
retical investigations of macroscopic systems. One, which
we shall call bottom-up path, starts with a detailed micro-
scopic description. The point of departure on the second
path, which we shall call top-down path, is the require-
ment of agreement of solutions of the governing equations
with results of certain basic experimental observations. Both
paths are complementary and should be followed simultane-
ously. A combination of both paths then constitutes in fact a
third path.
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In the case of the macroscopic systems investigated in
this paper, the microscopic analysis involved in the bottom-
up path consists of a detailed microhydrodynamic analysis
of the time evolution of all the suspended particles. Such
analysis begins with identification of all the forces act-
ing on the suspended particles and continues with writing
down the corresponding Newton’s equations and equations
describing the time evolution of the fluid in which the par-
ticles are suspended. At this point, the path bifurcates into
two branches. On the first one, called here direct simula-
tion branch, the microscopic governing equations are solved
with the assistance of computers. The final output is a set of
trajectories of all suspended particles. An additional insight
is then needed to reduce this complete microscopic informa-
tion to the macroscopic information that can be compared
with the information coming from macroscopic experimen-
tal observations. On the second branch, called here Liouville
branch, the microscopic governing equations are first trans-
formed into the Liouville equation that is then reduced to
the Smoluchowski-type kinetic equation and to an expres-
sion for the extra stress tensor. The reduction processes on
both branches consist of, in principle, a recognition of an
overall pattern in the output of the complete microscopic
analysis (that is the set of particle trajectories on the direct
simulation branch and the set of solutions of the Liouville
equation on the Liouville branch). Due to the lack of knowl-
edge of the complete microscopic picture as well as due to
the enormous difficulties involved in the process of pattern
recognition, an additional insight and approximations are
needed to make the micro–macro reductions. This is clearly
a weak aspect of the bottom-up path. Its strong aspect is
a very clear point of departure and a very clear micro-
scopic meaning of the parameters entering the microscopic
description.

On the top-down path, the governing equations are con-
structed as particular realizations of a mathematical struc-
ture guaranteeing that solutions to the equations possessing
it have the required properties. By a particular realization,
we mean that all the abstract elements of the structure
(we call them modules) acquire a concrete meaning (as for
example abstract elements of a group become matrices in
group representations). Independently of what concretely is
the mathematical structure (we shall discuss this question
in the next paragraph), we see that the weak aspect of the
top-down path is the phenomenological nature of the param-
eters entering the realizations and the strong aspect is the
guaranteed intrinsic consistency and a very clear macro-
scopic meaning of the resulting governing equations. The
bottom-up path and the top-down paths are thus indeed
complementary.

Now, we turn to the mathematical structure involved in
the top-down path. As we have already mentioned, we look

for a mathematical structure that guarantees that solutions
to equations possessing it agree with results of certain basic
experimental observations. What are such observations?
They are of two types: mechanical and thermodynamical.
The former refers to observations of general consequences
of Newton’s law (as for example conservations of mass
energy and momentum), and the latter refers to observations
constituting the experimental basis of classical equilibrium
thermodynamics (externally unforced macroscopic systems
are seen to reach states, called thermodynamic equilibrium
states, at which their behavior is seen to be well described
by equilibrium thermodynamics). Two types of the mathe-
matical structure have arisen in mesoscopic mechanics. First
is the structure of local conservation laws (i.e., time deriva-
tive of a field equals divergence of a flux) originating in
the Euler pioneering investigation (Euler 1755), and the sec-
ond is the Hamiltonian structure originating in the Clebsch
(1859) reformulation of the Euler equations into the Hamil-
tonian form. The former structure has been extended to
include the thermodynamic observations in nonequilibrium
thermodynamics (see, e.g., De Groot and Mazur 1984) and
in Godunov (1961), Friedrichs and Lax (1971), Friedrichs
(1978), and Godunov and Romenskii (2003) and the lat-
ter in Dzyaloshinskii and Volovick (1980), Grmela (1984a,
b, 2010a, 2012a), Kaufman (1984), Morrison (1984), Beris
and Edwards (1994), Grmela and Öttinger (1997), Öttinger
and Grmela (1997), and Öttinger (2005). The disadvantage
of the structure of local conservation laws is its limitation
to settings that involve only partial differential equations,
while its strong point is that the thermodynamic extension
brings automatically a statement about mathematical regu-
larity of the formulation (Godunov 1961; Friedrichs and Lax
1971; Friedrichs 1978; Godunov and Romenskii 2003). The
strong point of the Hamiltonian structure is its applicabil-
ity in a general setting (including, in particular, the setting
of kinetic theory discussed in this paper) and its very clear
thermodynamic interpretation (Legendre transformations,
leading to the maximization of entropy, are made by the time
evolution—see Grmela 2010a, 2012a). Among the recent
applications of the structure, we mention dissipative quan-
tum mechanics (Öttinger 2010), quantum fluids (Grmela
2010b), and chemical kinetics (Grmela 2012b; Klika and
Grmela 2013).

In this paper, we derived the governing equations (see
the Appendix) by using the top-down path based on
the Hamiltonian structure. Every element of the struc-
ture (every modulus) is derived separately. Some of
the modules, in particular the kinematics of state vari-
ables, are derived by following the bottom-up path.
Some modules remain however to be specified only phe-
nomenologically with only a partial support coming from
microhydrodynamics.
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Pair correlations and migration in suspensions

In the “Governing equations” section, we present the
governing equations and then investigate their solutions.
The derivation of governing equations is presented in the
Appendix. Here, we only briefly describe the essence of the
physics involved in the derivation.

Experimental observations of suspensions of particles in
simple non-Newtonian fluids show a complex rheological
behavior and migration of particles from high to lower shear
rates. If the particles are such that their shape and/or orienta-
tion can be influenced by imposed external flows, then this
type of changes, characterized by changes in one-particle
distribution function, plays a dominant role in determining
the rheological responses. In addition, external forces can,
at least in principle, induce a collective fine-structure order-
ing of the particles described by a pair correlation function
and migration of particles creating inhomogeneity in their
spatial distribution. An emergence of pair correlations and
of their role in rheology of suspensions of fibers has been
recently investigated in Grmela et al. (2012). If, on the other
hand, the particles are spherical and rigid, it is only the
flow-induced collective fine-structure ordering that can be
responsible for the observed rheological complexity and the
migration.

We shall first discuss the physics behind the pair correla-
tions and then the physics behind the migration.

When following the bottom-up path, the microhydro-
dynamic origin of the flow-induced correlations among
spherical particles is well understood (Batchelor and Green
1972; Batchelor 1977; Brady and Morris 1997) (for a recent
review, see Nott et al. 2011). The hydrodynamic interactions
(i.e., the interactions among suspended particles mediated
by the host fluid), calculated by solving the correspond-
ing Stokes problem, are responsible for the flow-induced
correlations and consequently for the complex rheological
behavior. In this paper, we arrive at flow-induced pair cor-
relations of spherical particles by following the top-down
approach. We show (in the Appendix) that the hydrody-
namic interactions enter the top-down analysis as friction
forces participating in driving the relative velocity of two
particles to zero and the overall velocity to a uniform veloc-
ity. This type of derivation of the classical Smoluchowski
equation governing the time evolution of the pair correlation
function is the first original contribution of this paper.

The physics behind the microhydrodynamic origins of
the migration is much less known (for a recent review, see
Nott et al. 2011). An interesting new insight into this sub-
ject has appeared in Lhuillier (2009) (see also Nott et al.
2011 where this new insight is put into the context of pre-
vious investigations). Lhuillier has suggested that the Faxén
forces are among the forces that drive the migration. Faxén

forces arise in microhydrodynamics in attempts to carry the
standard analysis of the Stokes problem to situations involv-
ing large inhomogeneities in the shear rate. These forces
are proportional to the second derivatives of the flow veloc-
ity with respect to the position coordinate. Lhuillier has
included Faxén forces in a continuum mechanics formula-
tion in which the suspension is seen as a two-phase fluid. In
this paper, we include the Faxén forces in a kinetic theory
formulation developed by using the top-down approach. We
show that:

1. In the context of this approach to kinetic theory, the
Faxén forces enter as friction forces, participating in
bringing to zero the difference between the transla-
tional velocity of the center of mass of two particles
and the overall velocity of the suspension and in bring-
ing the overall velocity to a velocity with a uniform
gradient.

2. The Faxén forces indeed cause particle migration
observed in experimental observations.

The latter result appears in numerical solutions (see the
“Results” section) of the Smoluchowski equation modified
by the presence of Faxén forces. We make no contribu-
tion in this paper to the way the Faxén forces arise in
microhydrodynamics and to their connection (inside the
microhydrodynamic analysis) with particle migration.

Numerical method

Having the kinetic equation, we have to solve it in order
to be able to obtain results that can be compared with the
results of experimental observations and results arising in
other theoretical approaches. Since the distribution function
(the function that we look for as a solution of the kinetic
equation) is a function of seven independent variables in
3D (five in the case of 2D), the task of solving the kinetic
equation appears to be prohibitively difficult with standard
numerical methods. The recently developed proper gener-
alized decomposition (PGD) method (Ammar et al. 2006,
2007, 2009; Chinesta et al. 2010, 2011) makes the task fea-
sible as it has already been demonstrated in Maı̂trejean et al.
(2012). The method can be seen as a numerical version of
the method of separation of variables.

Governing equations

In this section, we set up the kinetic theory of moder-
ately concentrated suspensions of hard spherical particles.
The new physics that is put into the governing equations is
the physics behind the Faxén forces causing migration of
suspended particles. Without the Faxén forces, the kinetic
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equation arising in this paper is exactly the same as the clas-
sical Smoluchowski equation investigated in Zmievski et al.
(2005) and Maı̂trejean et al. (2012). In order to see clearly
how the new physics expressed in Faxén forces modifies the
kinetic equation, we present its derivation in the Appendix.

Kinetic equation

The Smoluchowski-type kinetic equation, expressing math-
ematically in this paper the physics of suspensions of rigid
spherical particles, is presented as follows:

∂g

∂t
= − ∂

∂rj

(
g�uj

)

+ ∂

∂rj

[
g
(
κ
(I)
ij Y(I)j + κ

(II)
ij Y(II)j + κ

(III)
ij Y(III)j

)]

− ∂

∂Rj

(
gRk

∂�uj

∂rk

)
+ ∂

∂Rj
(gλjkRlDkl)

+ ∂

∂ri

(
gκij

∂�g

∂rj

)
+ ∂

∂Ri

(
g�ij

∂�g

∂Rj

)
. (1)

g(r,R, t) denotes a pair correlation function, r ∈ R
3 stands

for the position vector, R ∈ R
3 is the vector connecting two

suspended particles, and t is the time. The pair correlation
function is normalized so that

∫
dRg(r,R, t) = np(r, t) (2)

where np(r, t) is the number density of suspended particles.
The other symbols appearing in Eq. 1 have the following

meaning: Dij = 1
2

(
∂�ui
∂rj

+ ∂�uj
∂ri

)
, Y(I)i = R2Djji,Y(II)i =

RjRkDijk , and Y(III)i = RiRkDjjk , where the symbol Dijk
stands for Dijk = 1

3

(
∂Djk
∂ri

+ ∂Dik
∂rj

+ ∂Dij
∂rk

)
; � is a free

energy specified below; and λ,�, κ, κ (I), κ (II), and κ(III) are
material parameters that are also specified below. We use
hereafter the following shorthand notations: �ui = ∂�

∂ui (r)

and�g = ∂�
∂g(r,R)

. For the sake of the simplicity of the nota-
tion, we use the symbol ∂ for the usual partial derivatives
and also for the functional derivatives. We also use in this
paper the Einstein summation convention.

The first term on the right-hand side of Eq. 1 expresses
passive advection in the r-space, the second term expresses
the advection also in the r-space due to Faxén forces, and
the third and the fourth terms represent advection in the R-
space due to hydrodynamic interaction. Finally, the fifth and
the sixth terms represent dissipation, with the fifth term rep-
resenting the standard Fickian diffusion in the r-space and
the sixth term representing the diffusion in the R-space.

We note that if all the parameters κ are equal to
zero (i.e., if the Faxén forces disappear), then the kinetic

equation (1) becomes the classical Smoluchowski kinetic
equation discussed in Zmievski et al. (2005) and Maı̂trejean
et al. (2012).

Stress tensor

In order to be able to address the rheological behavior of
the suspensions, we have to know how the extra stress ten-
sor (observed in rheological measurements) is expressed in
terms of the morphology characterized by the pair correla-
tion function. The formula

σjk =
∫
dR

[
−gRk ∂�g
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− 2
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∂
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3
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∂
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g
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− 1
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∂

∂rj

(
g
∂�g
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)

−1

3
κ(III)RjRm

∂

∂rk

(
g
∂�g

∂rm

)]
(3)

that we use for this purpose in this paper is derived in the
Appendix. By σ , we denote the extra stress tensor.

We observe again that without the terms proportional to
the parameters κ , the formula (3) is the same as the one used
in Maı̂trejean et al. (2012).

Free energy

The free energy � is chosen in this paper to be exactly
the same as in Zmievski et al. (2005) and Maı̂trejean et al.
(2012):

� =
∫
dr

u2

2ρ
+
∫
dr

∫
dRg(r,R)(U(R)

−kBT lng(r,R))

U = UHC + Unl

UHC(R) = 0 for R ≥ 2a and ∞ for R < 2a

Unl(R) = ε

R12
for R ≥ 2a. (4)

R = |R|, a is the radius of the suspended particles, ε is a
small positive constant, kB is the Boltzmann constant, and
T is the temperature (assumed to be constant). The potential
UHC is the hard-core potential and the potential Unl is added
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in order to make the singularity at R = 2a manageable in
numerical calculations. The first term on the right-hand side
of the first equation in Eq. 4 represents the kinetic energy
of the overall motion and the third term represents the
entropy.

We note that the pair correlation function geq corre-
sponding to the equilibrium state (i.e., the state for which

the free energy �g = 0) is geq = Ke
Unl
kBT , where

K is the normalization constant (see more in Zmievski
et al. 2005).

Material parameters

Microhydrodynamic investigations of the hydrodynamic
interaction between two spheres suspended in a host fluid
have led Batchelor and Green (1972) to

�ij = kBT

3πη0a

[
σ1(R/a)

RiRj

R2 + σ2(R/a)

(
δij − RiRj

R2

)]

λij =μ1(R/a)
RiRj

R2
+ μ2(R/a)

(
δij − RiRj

R2

)
(5)

where η0 is the viscosity coefficient of the host fluid and the
coefficients σ1, σ2, μ1, and μ2 are given approximatively
(see Zmievski et al. 2005) by

σ1 ≈ 1 − 3

2

a

R
+ a3

R3
− 15

4

a4

R4
+ 109.0

a6

R6
− 236.0

1

R7
,

σ2 ≈ 1 − 3

4

a

R
− 1

2

a3

R3
− 10.336

a6

R6
(6)

and

μ1 ≈ 5
a3

R3 − 8
a5

R5 + 25
a6

R6 − 423.712
a7

R7 + 907.424
a8

R8 ,

μ2 ≈ 16

3

a5

R5 + 15.317
a6

R6 . (7)

We used these expressions from Zmievski et al. (2005) and
Maı̂trejean et al. (2012).

Phenomenological considerations reported in Lhuillier
(2009) have led us to supplement the thermodynamic forces
X bringing about the hydrodynamic interactions by the
Faxén-type forces Y which bring about the across-the-
streamline migration of the suspended particles (see the
Appendix). For the sake of simplicity, we shall consider the
matrices κ to be just scalars, i.e.,

κ
(I)
ij = κ(I)δij ; κ(II)ij = κ(II)δij ; κ(III)ij = κ(III)δij . (8)

Dimensionless form of the governing equations

The transformation of the governing equations to their
dimensionless forms is chosen to be the same as in Zmievski
et al. (2005) and Maı̂trejean et al. (2012):

t → t/τS; r → r/a; R → R/a; Unl → Unl

kBT
;

u → u/u0; σ → σ

η0γ̇
; � → 3πη0a

kBT
� (9)

where η0 is the viscosity coefficient of the host fluid, τS =
6πη0a

3

kBT
is the Smoluchowski characteristic relaxation time,

and u0 = ρa
τhyd

, where τhyd = (γ̇ )−1 is the hydrodynamic
characteristic time. Moreover, we introduce two dimension-
less numbers: the Reynolds number mathrmRe = u0a

η0
and

the Péclet number Pe = τS
τhyd

. By �g, we denote g − geq,

n = R
R

, and
∫
S2
dn denotes integration over the unit sphere.

The dimensionless kinetic equation (1) takes the follow-
ing form:
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and the dimensionless expression for σ (see Eq. 3) reads
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(11)

Both Eqs. 10 and 11 reduce to the corresponding equa-
tions appearing in Maı̂trejean et al. (2012) if the parameters
κ are equal to zero.
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Boundary conditions and the weak form of the kinetic
equation

In the R-space, we choose the same boundary conditions
as in Zmievski et al. (2005) and Maı̂trejean et al. (2012)
(i.e., g → 1 as R → ∞, and on the boundary R = 2a,
we require that the flow of the particles, in the direction per-
pendicular to it, vanishes). In the r-space, we assume that
g = 1 on its boundary. With these boundary conditions,
the weak form of the kinetic equation (the form that is then
discretized by using the standard finite element procedure
and subjected further to the separation procedure used in the
PGD method—for details, see Maı̂trejean et al. 2012) reads

∫

ω×�
drdR

(
g∗ ∂g
∂t

+ g∗v ∂g
∂r

+ g∗E0g − g∗E1
∂g

∂r

+ g∗E2
∂g
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E3
∂g

∂r

+∂g
∗

∂R
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∂g

∂R
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∂R
E5g

)

−
∫
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=
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where n = R/R, r ∈ ω, R ∈ �,
∫
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(
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geq + Rk
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∂Rj

(
∂uj
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geq

+ Rk
∂uj

∂rk

∂geq

∂Rj

)
. (13)

This formulation directly extends (by including the terms
proportional to the parameters κ) the formulation appearing
in Eqs. 23–28 in Maı̂trejean et al. (2012).

In the calculations leading to Eq. 12, we have neglected
the derivatives of Y(I),Y(II), and Y(III) with respect to r

(involving third derivatives of u(r) with respect to r).

Results

As the next step, we have to solve the kinetic equation (10)
in order to be able to see the morphology, the rheology, and
the migration that it implies. This is a rather difficult task.
In fact, due to the high dimensionality (seven in 3D and
five in 2D) of the variables on which we search the function
g(r,R, t) as a solution of the kinetic equation, the task is
practically unfeasible if approached with traditional numer-
ical methods. The dimensionality can be reduced by passing
to moments (in particular, in the R-variable). This strat-
egy has been used for the Smoluchowski kinetic equation in
Zmievski et al. (2005). The disadvantage of this approach
is that the dimensionality becomes reduced only if a finite
number of moments remains in the formulation. But for
this to be the case, one needs a closure (i.e., one needs to
know how to express all the higher moments in terms of the
finite number moments chosen to be explicitly followed).
An additional new physical insight is needed to specify clo-
sures. The physics expressed in the original kinetic equation
becomes therefore, at least in general, different from the
physics that is expressed in its finite-moment reformulation.
Consequently, we prefer to avoid the moment method.

It has been demonstrated in Maı̂trejean et al. (2012)
that with the PGD method, which was recently devel-
oped by Ammar et al. (2006, 2007, 2009) and Chinesta et
al. (2010, 2011), the problem of solving numerically the
Smoluchowski kinetic equation becomes feasible without
restoring to moments and closures. The new feature of the
kinetic equation appearing in this paper, namely the pres-
ence of additional terms involving higher order derivatives
with respect to the r-coordinate, makes the numerical cal-
culations longer but the PGD method remains perfectly
applicable. For details on how the PGD method is applied
to the Smoluchowski-type kinetic equations, we refer to
Maı̂trejean et al. (2012).

Poiseuille flow

Migration across the streamlines is not observed in simple
shear flows with a constant shear rate. This indeed agrees
with predictions of Eq. 1 since the Faxén forces Y all van-
ish for the flows with a constant velocity gradient. In order
to illustrate the migration and the morphology and rheol-
ogy associated with it, we turn therefore to another very
familiar flow, namely the Poiseuille flow. In two dimen-
sions, the case to which we restrict ourselves in this paper,
the imposed velocity field, is given by

v =
(

1 − y2

h2

0

)

(14)

where r = (x, y)T .
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Fig. 1 The domain ω and the
Poiseuille velocity field
(represented by the arrows)

Following the PGD method, we look for a solution of
the modified Smoluchowski equation (10) with the velocity
gradient (14) in the form

g(r,R) =
ng∑

i=1

F i (x)⊗ F i(y)⊗ F i(R). (15)

The x, y, and R-spaces are discretized with 41, 201, and
1,680 nodes. The points r i , i = 1, ..., 6, referred hereafter as
nodes 1 to 6 are depicted in Fig. 1. At these nodes, we shall
be presenting below the R dependence of the correlation
function g.

The boundary conditions are the following: g = 1 for
R > 5 for all r and g = 1 at the entrance and on the top
wall (see Fig. 1).

Below, we shall present solutions of Eq. 10 for ε = 0
appearing in Eq. 4, for the Péclet number Pe = 1, and for a
selection of the parameters κ, κ(I), κ(II), and κ(III).

No Faxén forces

We begin with the case when all the parameters κ are
equal to zero. In this case, the modified Smoluchowski
Eq. 10 becomes the classical Smoluchowski equation. In
Fig. 2, we present np(r) = ∫

dRg(r,R), where g(r,R)
is the steady-state solution of the classical Smoluchowski
equation.

We note that the distance for np(r) to reach its maximum
depends on the velocity gradient: near the top wall, where
the velocity gradient is high, we observe a short distance
between the flow inlet and the maximum. On the other hand,
at the center (i.e., the bottom line), the velocity gradient
vanishes and the pair correlation remains uncorrelated.

Diffusion in the r-space (κ 
= 0)

The next case that we investigate corresponds to κ 
= 0 (i.e.,
the diffusion in the r-space is taken into account) but κ(I) =

κ(II) = κ(III) = 0 (i.e., the Faxén forces are absent). We
choose κ = α

R2 .
Figure 3 depicts steady-state solutions of Eq. 10. We

no longer observe an uncorrelated zone at the center. This
means that the migration of the particles begins to occur. We
also observe a competition between the shear and the diffu-
sion forces. In the R-space, i.e., in the microscale ordering,
the influence of the diffusion is seen in the amplitude of
the pair correlation function. The orientation of correlations
remains the same for all values of α, only the distance
between the particles varies (Fig. 4).

Influence of κ(I), κ(II), and κ(III)

Now we proceed to investigate the influence of the param-
eters κ(I), κ(II), and κ(III). In this investigation, we have to
still keep the diffusion in the r-space (i.e., κ 
= 0 and thus
α 
= 0) in order to preserve the numerical stability (note that
the terms proportional to κ(I), κ(II), and κ(III) are convective
terms) (Figs. 5, 6, 7, 8, 9, and 10).

We shall comment about these results below in the
context of the comparison with results of experimental
observations.

Comparison with experimental results

The modified Smoluchowski (Eq. 1) takes into account the
migration but remains still limited to rather dilute suspen-
sions. It has been shown in Maı̂trejean et al. (2012) that
solutions to the original Smoluchowski equation are in good
agreement with the results of numerical simulations based
on the microhydrodynamic formulation reported in Brady
and Morris (1997) in simple flows. However, despite a good
agreement in the orientation of the pair correlation function
in the R-space, the results differ in magnitude. This differ-
ence has been attributed in Maı̂trejean et al. (2012) to the
fact that the suspension investigated in Brady and Morris
(1997) is dense (φ = 0.3).

Fig. 2 Steady state of np(r)
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Fig. 3 Steady state of np(r) and
g at nodes 1 to 6 with α = 0.01

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e) g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6

Also, in the case of particle migration, most of the
experimental work and the microhydrodynamic simula-
tions have been done for dense suspensions. As noted
in Frank et al. (2003), the effect of the particle migra-
tion in colloidal suspensions scales as φ2. Consequently,
for dilute suspensions, the migration is weak and its is

difficult to observe it experimentally. Nevertheless, the
local maxima of the particle density appear to be clearly
reproducible.

With this in mind, we compare the results implied by
the modified Smoluchowski model (1) to the experimen-
tal results reported in Frank et al. (2003). The experimental

Fig. 4 Steady state of np(r) and
g at nodes 1 to 6 with α = 0.1

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e) g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6
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Fig. 5 Steady state of np(r) and
g at nodes 1 to 6 with κ(I) = 0.5

R2

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e) g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6

setting is a microchannel of 2H × 20H cross section and
1,040H long withH = 25 µm. The suspensions are slightly
charged hard spheres of diameter a = 1.1 µm in a flow
characterized by the Péclet number Pe = 69. For more
details concerning the experimental setting, please refer to
Frank et al. (2003).

Below, all the geometrical dimensions are given in di-
mensionless form (by dividing byH which is the half of the
height of the channel). The numerical solutions of Eq. 10
are presented for the 2D Poiseuille flow with uncorrelated
pair correlation function at the entrance and at the top and
bottom walls. Experimental results are fitted by tuning the

Fig. 6 Steady state of np(r) and
g at nodes 1 to 6 with κ(I) = 1

R2

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e)g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6
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Fig. 7 Steady state of np(r) and
g at nodes 1 to 6 with
κ(II) = 0.005

R2

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e)g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6

parameters κ, κ (I), κ (II), and κ(III), which remain for the
sake of simplicity in the form presented previously, i.e., α

R2 .
The problem is solved by the PGD method with the same
separation as in Eq. 15, and the domains are discretized
with 40, 2,100 and 1,680 nodes, respectively, for x, y, and
R-spaces.

Figure 11 shows the normalized local volume fraction
of suspended particles as they appear in predictions and in
experimental observations. Both types of results appear to
be in relatively good agreement.

In order to see more how the parameters κ influ-
ence predictions of the model, we depict in Fig. 12 the

Fig. 8 Steady state of np(r) and
g at nodes 1 to 6 with
κ(II) = 0.01

R2

(a)np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e)g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6
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Fig. 9 Steady state of np(r) and
g at nodes 1 to 6 with
κ(III) = 0.005

R2

(a) n p (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e) g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) ατ νοδε 6

numerically calculated local volume fraction of particle.
We can clearly see that the Faxén forces, and in partic-
ular the force associated with the parameter κ (III), have
a strong influence on φ. The diffusion in the r-space
is kept (i.e., the force proportional to κ that drives the
diffusion in r-space is kept) in order to preserve the

numerical stability. In the case when no migration effects
are taken into account (neither r-space diffusion nor Faxén
forces are included), oscillations arising in the solution near
the wall (dotted line) emerge. The influence of the other
Faxén forces, namely those proportional to κ (I) and κ (II),
is somewhat smaller, and we use them to enhance slightly

Fig. 10 Steady state of np(r)

and g at nodes 1 to 6 with
κ(III) = 0.1

R2

(a) np (r )

(b) g(r , R ) at node 1 (c) g(r , R ) at node 2 (d) g(r , R ) at node 3

(e) g(r , R ) at node 4 (f) g(r , R ) at node 5 (g) g(r , R ) at node 6
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Fig. 11 Normalized local
volume fraction of particle for
both experimental results
(square, from Frank et al. 2003)
and modified Smoluchowski
model (circle) accounting for
migration effects. The
parameters used are
κ = 0.00075/R2 , κ (I) =
0.05/R2, κ(II) = 0.005/R2, and
κ (III) = −0.1/R2, and the initial
mean volume fraction of particle
is φ = 0.05

the fitting (especially near the walls where φ is seen to
decrease).

Figure 13 presents np(r) normalized by its value at rest
for the whole geometry. We can indeed observe the migra-
tion of the suspended particles toward the center of the
channel.

In order to compare the experimental profile with the one
predicted by Eq. 1, we reproduce numerically the exper-
iment reported in Semwogerere et al. (2007) (which is
very similar to the one presented in Frank et al. 2003).

The flow is characterized by the Péclet number Pe =
129, and the suspended particles are slightly charged hard
spheres of diameter a = 1.4 µm. The values chosen for
κ, κ(I), κ(II), and κ (III) are 0.00075/R2, 5/R2, 0.005/R2,
and −0.1/R2, respectively. Since the initial mean volume
fraction φ of suspended particles is, in this case, φ =
0.26, the kinetic theory of semidilute suspensions discussed
in this paper is, strictly speaking, not applicable. Nev-
ertheless, we can see a qualitative agreement (Figs. 14
and 15).

Fig. 12 Influence of the
parameters κ, κ (I), κ (II), and
κ (III) on the numerically
calculated local volume fraction
of particles. The parameter
κ 
= 0 (i.e., a small diffusion in
the r-space is kept) in order to
preserve the numerical stability
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Fig. 13 Normalized np(r) for
the whole channel. Note that for
the sake of clarity, different
scales are adopted for x- and
y-axes of the picture

We make several comments about the results presented
above:

– In both the experimental and the numerical results,
we observe a decrease in the volume fraction of par-
ticles near the wall. This means that even if the
theoretical boundary condition on the wall (uncor-
related pair correlation function) is likely not com-
pletely realistic, it seems to represent at least a good
approximation.

– Smoluchowski model supplemented with Faxén
forces exhibits also a transition phase between the
velocity inlet and the developed microstructure. Thus,
with this transition phase, both the numerical profiles
at x/H = 80 and x/H = 1,360 and the whole channel
plot picture, as the experimental ones, were obtained.

– As expected, the magnitude reached in a dense sus-
pension cannot be reproduced by the modified Smolu-
chowski model.

Summing up, we note that the pair correlation function
obtained by solving Eq. 1 is in good agreement with the
experimental data, particularly when considering that only
a simple form of the parameters κ has been used.

Finally, we comment about the numerical calculations.
The systems, discretized with 40, 2,700, and 1,680 nodes,
have more than 180 millions of degrees of freedom and are
solved with the PGD method in less than 1 h.

Concluding remarks

It has been suggested by Lhuillier (2009) that the forces
that play an important role in driving the experimen-
tally observed across-the-streamline particle migration
in colloidal suspensions are the Faxén-type forces involv-
ing second-order derivatives of the velocity with respect
to the position coordinate. In this paper, we follow this-
insight and implement the Faxén forces into the-
Smoluchowski kinetic equation for the pair correlation-
function and also into the corresponding expression for the
stress tensor. With such complete formulation, we are then
in the position to investigate both morphology (i.e., the
pair correlation function and the migration) and rheology-
(the stress tensor). The way we derive the kinetic equation
is based on the requirement that its solutions are compat-
ible with mechanics and thermodynamics. This approach,
called top-down, is explained in the “Introduction” section
and in the Appendix. The main results of this paper are-
the following:

1. We show that in the context of the top-down approach
to kinetic theory, the hydrodynamic interactions that
are responsible for creating the flow-induced pair cor-
relations enter as friction forces participating in bring-
ing the relative velocity of two particles to zero and the
overall velocity to a uniform velocity.

Fig. 14 Normalized local
volume fraction of particle for
both experimental results
(square, from Semwogerere et
al. 2007) and the modified
Smoluchowski model (circle)
accounting for migration effects.
The parameters used in the latter
case are
κ = 0.00075/R2 , κ (I) =
5/R2, κ (II) = 0.005/R2, and
κ (III) = −0.1/R2, and the initial
mean volume fraction of particle
is φ = 0.26

(a) Profile at H/x = 80 (b) Profile at H/x = 1360
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Fig. 15 Normalized np(r) for
the whole channel. Note that for
the sake of clarity, different
scales are adopted for x- and
y-axes of the picture

2. We show that in the context of the top-down approach
to kinetic theory, the Faxén forces are among the fric-
tion forces participating in bringing the velocity of the
center of mass of two particles to the overall veloc-
ity and the overall velocity to a velocity with uniform
gradient.

3. We show, by solving numerically the modified Smolu-
chowski equation, that the Faxén forces indeed bring
about the particle migration observed experimentally.

The numerical solution cannot be found by standard
numerical methodssince the unknown function (the pair
correlation function)that we want to find depends on five
independent variables in 2D and seven in 3D.It has been
demonstrated in Maı̂trejean et al. (2012) that the PGD
method,developed recently by Ammar et al. (2006, 2007,
2009)and Chinesta et al. (2010, 2011), makes theprob-
lem of finding numerical solutions to the Smoluchowski
kinetic equation feasible.Although the experimental obser-
vations and the microhydrodynamics (Stokesian dynamics)
numerical simulations have mainly been donefor rather
dense suspensions that lie outside the domain of validity
of the modified Smoluchowski kinetic theory developed
in this paper,we observe a qualitative agreement between
theoreticalpredictions and experimental observations.

Appendix: Derivation of Eqs. 1 and 3

The way the Faxén forces enter the modified Smoluchowski
kinetic Eq. (1) and the expression (Eq. 3) for the stress ten-
sor (i.e., the terms involving the parameters κ, κ(I), κ(II),
and κ (III)) can only be explained in the context of their full
derivation. We now proceed to do it. The original Smolu-
chowski kinetic equation has been, of course, derived many
times before, but its derivation presented below is differ-
ent from the previous derivations. It offers a new viewpoint
of hydrodynamic interactions, and most importantly, it is
directly extendable to the modified Smoluchowski kinetic
involving Faxén forces and migration.

We derive Eqs. 1 and 3 by following the top-down method
(described in the “Introduction” section) with the mathemat-
ical structure in the Hamiltonian form. We now formulate
the structure. Let x denote state variables, E denote energy,
and the symbol S, the entropy. Both energy and entropy are
real-valued sufficiently regular functions of x. By x∗, we
denote conjugate of x∗ (considered initially as being inde-
pendent of x but eventually equated to Sx ). The symbol

� stands for another potential, called a dissipation poten-
tial, that is a real-valued sufficiently regular function of x
and x∗. The equation governing the time evolution of x is
given by

∂x

∂t
= L(x)Ex +�(x, x∗)x∗ |x∗=Sx . (16)

By Ex , we denote a derivative of E with respect to x; sim-
ilarly, Sx denotes a derivative of S with respect to x and
�(x, x∗)x∗ , a derivative of � with respect to x∗. The sym-
bol |x∗=Sx denotes that the expression appearing on the left
of | is evaluated at x∗ = Sx . The symbol L(x) denotes an
operator, depending in general on x, that transforms a cov-
ector into a vector. Both the dissipation potential � and
the operator L are required to satisfy certain properties that
will be listed below in the particular context of the time
evolution discussed in this paper (for a general presenta-
tion, see Grmela 2010a). The abstract Eq. 16 has arisen
gradually in Dzyaloshinskii and Volovick (1980), Grmela
(1984a, b), Kaufman (1984), Morrison (1984), Beris and
Edwards (1994), Grmela and Öttinger (1997), and Öttinger
and Grmela (1997). It has been called GENERIC in Grmela
and Öttinger (1997) and Öttinger and Grmela (1997). An
investigation of Eq. 16 leading to a further illumination of its
physical content and to extensions represents a very active
domain of research (see, e.g., Grmela 2010a, 2012a where
its thermodynamic content is explored and Grmela 2005,
2010 where its quantum mechanical version is developed).
Below, we shall use it in the form appearing in Grmela and
Öttinger (1997).

As for the physical content of Eq. 16, we recall (see the
“Introduction” section and references cited therein) that so-
lutions to Eq. 16 are guaranteed to be compatible with
mechanics and thermodynamics. The first term on the right-
hand side of Eq. 16 expresses the compatibility with mecha-
nics. Indeed, we recall that Newton’s equations, if written in

the Hamiltonian form, are dx
dt

= L(x)Ex , where x =
(
r

v

)

and L =
(

0 1
−1 0

)
; v is the momentum and r position

coordinate. We recall that ( ar, av )

(
0 1

−1 0

)(
br
bv

)
is the

classical canonical Poisson bracket (a and b are real-valued
sufficiently general functions of r and v), and we thus
require that < ax, Lbx >, where a and b are real-valued
sufficiently regular functions of x and <,> denotes the
scalar product, has all the properties required from the Pois-
son bracket (denoted hereafter by the symbol {a, b}). The
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operator L(x) and the its associated Poisson bracket can
be physically interpreted as quantities kinematics of x is
expressed. The second term on the right-hand side of Eq. 16
addresses the compatibility with thermodynamics. It makes
the entropy S(x) to increase in time and guarantees the
approach of x to equilibrium states. Due to our limitation
to isothermal suspensions, Eq. 16 can be immediately sim-
plified. Instead of two potentials, namely the energy E and
the entropy S, we need only one potential � = E − kBT S,
called a free energy; kB is the Boltzmann constant and T is a
constant temperature. Equation 16 takes, for the isothermal
systems, the form

∂x

∂t
= L�x −�(x, x∗)x∗ |x∗=�x . (17)

Our objective now is to construct a particular realization
of Eq. 17 in which the physics of suspensions under consid-
eration is expressed. We recognize in Eq. 17 four modules:
the state variables x, their Hamiltonian kinematics L(x), the
dissipation potential �(x, x∗), and the energy �(x). By a
particular realization of Eq. 16, we mean Eq. 16 in which all
the four modules acquire a concrete form. Below, we shall
make the specifications.

State variables x

As we have already recalled in the “Introduction” section,
the morphology of suspensions of rigid spheres is expressed
in the pair correlation function. Such function, denoted by
g(r,R) (see the text below, Eq. 1 has to be thus a part of
fields included in state variables. The remaining two fields
that we shall include are ρ(r) and u(r), which denote the
overall mass density and the overall momentum of the sus-
pension. The complete set of state variables that we suggest
is thus

x = (ρ(r),u(r), g(r,R)). (18)

These are indeed the fields whose time evolution is gov-
erned by the kinetic Eq. 1 and the standard fluid mechanics
equations ρ and u, with the stress tensor given by Eq. 3.

In the investigation of the other modules, in particu-
lar already in the investigation of the next modulus that
addresses kinematics, it turns out that it is convenient to start
with another set of state variables, namely with

x = (ρ(r),u(r), g(r,R),U(r,R),W (r,R)). (19)

The two extra fields U (r,R) and W (r,R)) denote the
momentum and the relative momentum of the two parti-
cles, respectively. Only at the end (see the “Reduction from
the state variables (19) to the state variables (18)” section),
when we have already written down a complete set of the
time evolution equations for Eq. 19, we eliminate the fields
U and W by assuming that the material parameters in the
equations are chosen in such a way that the fields U and W

evolve more rapidly than the fields (18) and by restricting
ourselves to the stage in the time evolution in which U and
W become completely enslaved to the fields (18).

We end this subsection by relating the fields
(g(r,R),U(r,R),W (r,R)) to the two-particle correla-
tion function ψ(r1, v1, r2, v2), where (r1, r2) and v1, v2)

are position vectors and momenta of the two particles,
respectively. First, we introduce the new coordinates

r = 1

2
(r1 + r2); R = r2 − r1;

v = v1 + v2; V = 1

2
(v2 − v1) (20)

which transform ψ(r1, v1, r2, v2) into ψ(r, v,R,V ) (note
that the Jacobian of the transformation (20) equals 1) and
then introduce

g(r,R) =
∫
dv

∫
dVψ(r, v,R,V )

Uα(r,R) =
∫
dv

∫
dVVαψ(r, v,R,V )

Wα(r,R) =
∫
dv

∫
dV vαψ(r, v,R,V ). (21)

Kinematics L

The Poisson bracket expressing the kinematics of the state
variables (19) is given by

{a, b} = {a, b}(hyd)+{a, b}(g,U,W)+{a, b}(hyd,g,U,W) (22)

where

{a, b}(hyd) =
∫
drρ

(
∂aρ

∂ri
bui − ∂bρ

∂ri
aui

)

+
∫
druj

(
∂auj

∂ri
bui − ∂buj

∂ri
aui

)
, (23)

{a, b}(g,U,W) =
∫
dr

∫
dR

[
g

(
∂ag

∂rj
bWj − ∂bg

∂rj
aWj

)

+ Uk

(
∂aUk

∂rj
bWj − ∂bUk

∂rj
aWj

)

+ Wk

(
∂aWk

∂rj
bWj − ∂bWk

∂rj
aWj

)

+ g

(
∂ag

∂Rj
bUj − ∂bg

∂Rj
aUj

)

+ Uk

(
∂aUk

∂Rj
bUj − ∂bUk

∂Rj
aUj

)

+ Wk

(
∂aWk

∂Rj
bUj − ∂bWk

∂Rj
aUj

)]
,

(24)
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and

{a, b}(hyd,g,U,W)

=
∫
dr

∫
dR

[
2g

(
∂aρ

∂rj
bWj − ∂bρ

∂rj
aWj

)

+ g

(
∂ag

∂rj
buj − ∂bg

∂rj
auj

)

+ Uk

(
∂aUk

∂rj
buj − ∂bUk

∂rj
auj

)

+ Wk

(
∂aWk

∂rj
buj − ∂bWk

∂rj
auj

)

+ gRl

(
∂ag

∂Rj

∂buj

∂rl
− ∂bg

∂Rj

∂auj

∂rl

)

+ RlUk

(
∂aUk

∂Rj

∂buj

∂rl
− ∂bUk

∂Rj

∂auj

∂rl

)

+ RlWk

(
∂aWk

∂Rj

∂buj

∂rl
− ∂bWk

∂Rj

∂auj

∂rl

)

− Ul

(
aUi

∂bul

∂ri
− bUi

∂aul

∂ri

)

− Wl

(
aWi

∂bul

∂ri
− bWi

∂aul

∂ri

)]
. (25)

With this Poisson bracket, Eq. 17 without the second term
on its right-hand side takes the form (by ()rev we denote the
reversible and nondissipative part of the time evolution—
i.e., the time evolution governed by Eq. 17 without the
second term on its right-hand side)
(
∂ρ

∂t

)

rev
= −∂

(
ρ�uj

)

∂rj
− 2

∂
(∫
dRg�Wj

)

∂rj
(
∂ui

∂t

)

rev
= −∂

(
ui�uj

)

∂rj
− ∂p

∂ri
− ∂σij

∂rj
(
∂g

∂t

)

rev
= −∂

(
g�uj

)

∂rj
− ∂

(
g�Wj

)

∂rj

−∂
(
g�Uj

)

∂Rj
−
∂
(
gRl

∂�uj
∂rl

)

∂Rj
(
∂Ui

∂t

)

rev
= −∂

(
Ui�uj

)

∂rj
− ∂

(
Ui�Wj

)

∂rj

−∂
(
Ui�Uj

)

∂Rj
−
∂
(
RlUi

∂�uj
∂rl

)

∂Rj

−g ∂�g
∂Ri

− Ul
∂�ul

∂ri
− Ul

∂�Ul

∂Ri
−Wl

∂�Wl

∂Ri
(
∂Wi

∂t

)

rev
= −∂

(
Wi�uj

)

∂rj
− ∂

(
Wi�Wj

)

∂rj
− ∂

(
Wi�Uj

)

∂Rj

−
∂
(
RlWi

∂�uj
∂rl

)

∂Rj
− g

∂�g

∂ri
− 2g

∂�ρ

∂ri

−Wl
∂�ul

∂ri
− Ul

∂�Ul

∂ri
−Wl

∂�Wl

∂ri
(26)

where p(r), the scalar hydrostatic pressure, is given by

p = −ϕ+ρ�ρ+uj�uj +
∫
dR
[
g�g+Uj�Uj +Wj�Wj

]
.

(27)

ϕ(r) is the density of the free energy (i.e., � = ∫
drϕ(r)),

and the stress tensor σ (r) is given by

σij = −
∫
dR

[
gRj

∂�g

∂Ri
+ RjUk

∂�Uk

∂Ri
+ RjWk

∂�Ek

∂Ri

−Ui�Uj −Wi�Wj

]
. (28)

Two questions remain to be answered.

Question 1 How did we arrive at Eq. 22 and what is the
physics behind it?

and

Question 2 Is (22) indeed a Poisson bracket?

As for the first question, we can answer it in two ways.
First, we just accept it as a guess and look for the answer in
its consequences. For instance, we shall see below that with
this bracket, we arrive at the classical Smoluchowski equa-
tion that has been derived previously in the bottom-up way
from microhydrodynamics. This constitutes indeed an indi-
rect proof of the physical significance of Eq. 22. The second
way to answer the first question is to provide its bottom-up
derivation.

In the rest of this subsection, we shall first answer the sec-
ond question (see the “Mathematical aspects of the bracket
(22)” section) and then interpret the mathematical proof
as the bottom-up derivation of Eq. 22 (see the “Physical
aspects of the bracket (22)” section).

Mathematical aspects of the bracket (22)

We recall that Eq. 22 is a Poisson bracket if {a, b} = −{b, a}
and the Jacobi identity {{a, b}, c}+{{b, c}, a}+{{c, a}, b} =
0 holds. While the first property is manifestly visible in
Eq. 22, the second property is more difficult to prove. The
proof can be made either directly (a computer-assisted way
to verify the Jacobi identity for brackets of the type Eq. 22
is described in Kröger and Hütter (2010)) or indirectly. We
shall take the latter route.

First, we present two lemmas that we shall use in the
proof.

Lemma (A) Let a and b be sufficiently regular real-valued
functions of x and {a(x), b(x)} a Poisson bracket. Let x ↔
y be a one-to-one and sufficiently regular transformation.
Then, {a(y), b(y)} is also a Poisson bracket.
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Proof This property is, of course, essential for the role that
the Poisson bracket plays in geometry.

Lemma (B) Let a and b be sufficiently regular real-valued
functions of x and let D be a set of all such functions. Let
{a(x), b(x)} be a Poisson bracket. By ã and b̃, we denote
functions belonging to a subset C ⊂ D. If the bracket
[{a(x), b(x)}]C (i.e., the bracket {a(x), b(x)} in which a and
b are restricted to only those that lie in C) involves only
functions belonging to C, then [{a(x), b(x)}]C is a Poisson
bracket.

Proof The proof is obvious. In most applications of this
lemma, x is a function, say f (r), and the subset C is com-
posed of functions a(f ) that depend on f only through their
dependence on selected moments of f (e.g., on the moment
aij = ∫

drrirj f (r)).

Now, we begin to prove that Eq. 22 is a Poisson bracket.
As the point of departure, we take

x = (f1(1), f2(1, 2)). (29)

We use the shorthand notations (1) = (r1, v1) and (1, 2) =
(r1, v1, r2, v2), where r1, r2 and v1, v2 are position coor-
dinates of particles 1 and 2 and their momenta, respectively.
By f1(1), we denote a 6-form (the volume element) f1d1,
and similarly, f2(1, 2) is a 12-form f2d1d2.

The Poisson bracket expressing the kinematics of Eq. 29
is given by

{a, b}(I) = {a, b}(1) + {a, b}(2) (30)

where

{a, b}(1) =
∫
d1

(
∂a

∂r1,i

∂b

∂v1,i
− ∂b

∂r1,i

∂a

∂v1,i

)
(31)

and

{a, b}(2) =
∫
d1
∫
d2

(
∂a

∂r1,i

∂b

∂v1,i
− ∂b

∂r1,i

∂a

∂v1,i

)

+
∫
d1
∫
d2

(
∂a

∂r2,i

∂b

∂v2,i
− ∂b

∂r2,i

∂a

∂v2,i

)
. (32)

The brackets Eqs. 31 and 32 are Poisson brackets (they are
the Poisson brackets arising in the Liouville representation
of classical Poisson brackets of particle mechanics—see
Arnold 1989; Marsden and Ratiu 1999), and thus, also
Eq. 30 is a Poisson bracket.

As the first step in the passage from Eq. 30 to Eq. 22, we
introduce the transformation

(f1(1), f2(1, 2)) ↔ (φ1(1), φ2(1, 2)) (33)

φ1(1) = f1(1)+
∫
d2
∫
d3f2(2, 3)

[
δ(1−3)+δ(1−2)

]
,

φ2(1, 2) = f2(1, 2). (34)

The transformation (33) is clearly one to one, and thus
under this transformation, the Poisson bracket {a, b}(I)
transforms (by virtue of Lemma (A)) into another Poisson
bracket that we shall denote {a, b}(II). The calculations lead-
ing from {a, b}(I) to {a, b}(II) are routine, and we shall omit
them as well as the explicit form of {a, b}(II).

In the second step, we introduce another transformation:

(φ1(1), φ2(1, 2)) → (ρ(r),u(r), ψ(1, 2)) (35)

ρ(r) =
∫
d1φ1(1)δ(r1 − r),

ui(r) =
∫
d1viφ1(1)δ(r1 − r).

ψ(1, 2) = φ2(1, 2). (36)

The transformation (35) is not one to one, but it turns out
that if we restrict the functions a and b in {a, b}(II) to those
that depend on (φ1(1), φ2(1, 2)) only through their depen-
dence on (ρ(r),u(r), ψ(1, 2)) (the subset of functions of
this type forms the subset C in Lemma (B)), then we obtain
a bracket that we shall denote {a, b}(III), involving only the
functions in C. The bracket {a, b}(III) is thus, by virtue of
Lemma (B), a Poisson bracket.

In the third step, we introduce the transformation

(ρ(r),u(r), ψ(1, 2)) ↔ (ρ(r),u(r), ψ(r, v,R,V )) (37)

where (r1, v1, r2, v2) are related to (r, v,R,V ) by Eq. 20.
The transformation (37) is clearly one to one, and thus, by
virtue of Lemma (A), the Poisson bracket {a, b}(III) trans-
forms into another Poisson bracket that we shall denote
{a, b}(IV).

Finally, we make the fourth step in which we make the
transformation (21)

(ρ(r),u(r), ψ(r, v,R,V )) → (ρ(r),u(r), g(r,R),

U (r,R),W (r,R)). (38)

This transformation is not one to one, but as in the sec-
ond step, by virtue of Lemma (B), we arrive at the Poisson
bracket (22).

This concludes the proof.

Physical aspects of the bracket (22)

As we have already suggested in the text following (28), we
can see the physics behind (22) (about which we know now
that it is indeed a Poisson bracket) in its consequences. In
particular, we can see it in the fact that Eq. 22 together with
an appropriately chosen dissipation potential (discussed
below in the “Dissipation potential �” section) implies the
classical Smoluchowski kinetic equation whose microhy-
drodynamic background is well known and well established
on the bottom-up path.
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But we can also see the physics behind (22) by
reinterpreting the mathematical analysis presented in the
“Mathematical aspects of the bracket (22)” section above as
its bottom-up derivation. We now proceed to provide such
interpretation.

We begin on the microscopic level of description on
which we use particle distribution functions as state vari-
ables; f1 denotes a one-particle distribution function and
f2, a two-particle distribution function. At this point, we
are not introducing any restrictions (as, for example, a
normalization) on these functions.

The physical interpretation of the transformations (35),
(37), and (38) is clear. We are just replacing, following the
standard procedure developed in kinetic theory, the distri-
bution functions with first two moments that represent the
mass and momentum fields.

The most important and the key transformation is Eq.
33. Its main purpose is to introduce a description with two
types of state variables: one characterizing overall macro-
scopic features of the suspension (characterized by the
overall momentum field u(r)) and the other, an additional
microstructure (characterized by the particle pair correlation
function g(r,R)). At this point, we are only concentrat-
ing on the kinematics of the state variables. Constraints
placed on them, as for example various normalizations (if
distribution functions are among the state variables) or real-
valued functions of the state variables with required physical
meanings, will be discussed later.

We begin with two descriptions: one in which f1 serves
as the state variable and the other in which f2 plays the
same role. These two levels of description, denoted by L1

and L2, respectively, are completely independent. The level
L2 takes into account more details (is more microscopic)
than the level L1. On both levels, we know the Poisson
brackets expressing the kinematics. We now consider our
system under investigation simultaneously from both lev-
els of description (we construct a new level of description
L1×2). If we use the state variables (29) on L1×2, then
the combined description is simply a superposition of two
independent viewpoints. The transformation (33) mixes the
viewpoints. The one-particle distribution function φ1 repre-
sents now the less detailed description but with an additional
information coming from the original level L2. It char-
acterizes the overall macroscopic behavior in L1×2. The
two-particle distribution function φ2 provides only the extra
information about the system that is impossible to see with
only the one-particle distribution function. Since the trans-
formation (33) is one to one, the Poisson bracket (30)
representing the kinematics in L1×2 transforms (by Lemma
(A)) into a Poisson bracket representing the kinematics of
(φ1, φ2).

The physical interpretation of (φ1, φ2) is further speci-
fied by specifying potentials (i.e., real-valued functions of

the distribution functions) with specific physical interpreta-
tions (mass, number density of suspended particles, energy,
and entropy (see Eq. 2) and the potentials introduced in the
“Free energy” section).

To the best of our knowledge, the first example of
coupling different levels of description that appeared in sta-
tistical mechanics is that of Green’s interpretation of the
grand canonical ensemble in equilibrium statistical mechan-
ics (see Green and Jancovici 1966). In this analysis, the
starting point is an infinite number of levels of descriptions
that are at first completely independent. These levels differ
by the number of particles composing the macroscopic sys-
tem under considerations. The macroscopic system is the
same in all levels, the only difference is in the number of
particles in it. The point of departure is the state variable
x = (f0, f1, f2, ...), where f0, f1, f2, ... denote the dis-
tribution functions of the system composed of 0, 1, 2, ...
number of particles, respectively. The next step in Green’s
analysis is the one-to-one transformation of the type (22)
that couples the levels. The distribution function φi then pro-
vides only the information that cannot be described by the
distribution functions φj for j < i.

The coupling of different levels of description introduced
originally in Green and Jancovici (1966) in equilibrium
statistical mechanics has been extended to the dynamics
in Section 2 in Grmela (2001) to write for instance the
grand canonical version of the BBGKY hierarchy or the
governing equations of particle mechanics coupled to fluid
mechanics that are needed in direct numerical simulations—
see also Grmela (2010a)—and later to write for exam-
ple kinematics of complex fluids and complex solids
(Grmela 2013).

Before leaving the investigation of kinematics, we note
that the fact that the kinematics of the state variables (19)
has appeared to be rigorously separated from the kine-
matics of other microscopic state variables is an argument
supporting their choice.

Dissipation potential �

In order to be able to continue the rigorous bottom-up
analysis toward the irreversible and dissipative part of the
time evolution, we have to investigate not only the vec-
tor fields (i.e., the time evolution equations) but also the
trajectories that they generate (i.e., we have to investigate
also solutions to the time evolution equations). From the
trajectories, we have to then extract information that is per-
tinent to the chosen level of description. We shall not follow
this route. Instead, we shall let ourselves be guided by
nonequilibrium thermodynamics, in particular by the struc-
ture expressed in the second term on the right-hand side of
Eq. 16. At the end, we shall be able, at least in some particu-
lar situations, to relate our phenomenological analysis to the
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microhydrodynamic analysis of the motion of fibers sus-
pended in a fluid.

Following the classical nonequilibrium thermodynamics
(see, e.g., De Groot and Mazur 1984), we consider the dis-
sipation, and thus also the approach to equilibrium states,
to be driven by thermodynamic forces (we shall use the
symbol X and Y to denote them). At equilibrium, the ther-
modynamic forces disappear. We propose the following six
dissipative thermodynamic forces:

X (1)
i = �Ui

X (2)
i = RkDik

Y(1)i = �Wi

Y(2)i = R2Djji
Y(3)i = RjRkDijk
Y(4)i = RiRkDjjk (39)

where

Dij = 1

2

(
∂�ui

∂rj
+ ∂�uj

∂ri

)
(40)

and

Dijk = 1

3

(
∂Djk

∂ri
+ ∂Dik

∂rj
+ ∂Dij

∂rk

)
. (41)

We note that all six of them are vectors and that they all have
the physical dimension of velocity. From the physical point
of view, the force X (1) represents the friction in the relative
motion (in the R-space) of the particles andY(1), the friction
in the motion of the particles in the r-space. The force X (2)

is the force bringing about the hydrodynamic interactions,
and the forces Y(2), Y(3), and Y(4) are the Faxén-type forces
(Lhuillier 2009) bringing about the across-the-streamline
migration of suspended particles.

In order to be able to write down the second term on
the right-hand side of Eq. 17, we shall now combine the
thermodynamic forces (39) into the following dissipation
potential:

� =
∫
dr

∫
dR(X (1), X (2), Y(1), Y(2), Y(3), Y(4) )

×1

2
g�

⎛

⎜⎜⎜⎜⎜⎜
⎝

X (1)

X (2)

Y(1)
Y(2)
Y(3)
Y(4)

⎞

⎟⎟⎟⎟⎟⎟
⎠

(42)

where

� =

⎛

⎜⎜⎜⎜⎜⎜
⎝

�̂(1) λ̂ 0 0 0 0
λ̂ �̂(2) 0 0 0 0
0 0 κ̂11 κ̂12 κ̂13 κ̂14

0 0 κ̂21 κ̂22 0 0
0 0 κ̂31 0 κ̂33 0
0 0 κ̂41 0 0 κ̂44

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

The symbols �̂, λ̂, and κ̂ denote 3×3 matrices called mate-
rial parameters. The intrinsic consistency of the final time
evolution (17) restricts these matrices only by requiring that
the large matrix � is positive definite. We shall postpone
their specification to the later stage of the analysis. It would,
of course, be possible to propose a more general � (for
example, involving coupling between X and Y forces), but
at present, we do not have any microhydrodynamic argu-
ment that would support such generalization. In fact, we do
have microhydrodynamic arguments only for the X forces
and for the choice of �̂(1), �̂(2), and λ̂ (see Zmievski et al.
2005) but we do not have any additional arguments to sup-
port the choice of the forces Y and the matrices κ than those
advanced in Lhuillier (2009).

By inserting (42) into (17), we can now write explicitly
the second term on the right-hand side, and thus, if we com-
bine it with the first term (26), we arrive at the complete set
of the time evolution equations.

Reduction from the state variables (19) to the state
variables (18)

Next, we shall pass to a reduced description by making
assumptions about solutions of these equations. We assume
that the material parameters entering �, and also the still
unspecified free energy �, are such that both U and W

relax to their equilibrium values (that are U = W = 0),
much more rapidly than the rest of the state variables. We
shall consider now the pseudo-equilibrium state at which
∂U
∂t

= ∂W
∂t

= 0. If we write these two equations and keep
only the leading terms (i.e., neglect all the terms quadratic
and higher order in U and W ), we obtain

− g

(
∂�g

∂R
+ �̂(1)X (1) + λ̂X (2)

)
= 0

− g

(
∂�g

∂r
+ κ̂11Y(1)+ κ̂12Y(2) + κ̂13Y(3)+ κ̂14Y(4)

)
= 0.

(43)

If these equations are inserted into the third equation in
Eq. 26, we obtain the kinetic Eq. 1 with

X = X (2); Y(I) = Y(2); Y(II) = Y(3); Y(III) = Y(4)
� = (�̂(1))−1; λ = (�̂(1))−1λ̂;
κ = (κ̂11)

−1; κ (I) = (κ̂11)
−1κ̂12; κ(II) = (κ̂11)

−1κ̂13;
κ (III) = (κ̂11)

−1κ̂14. (44)
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This concludes the derivation of the extended Smoluchowski
-typed kinetic Eq. 1.

Stress tensor and material parameters

It remains to derive the expression (3) for the stress ten-
sor σ and to explain the choices (5) and (8) of the material
parameters �, κ, κ(I), κ(II), and κ (III).

We begin with the stress tensor σ . Expression (28) is
not, of course, anymore applicable since we have reduced
the full set of equations governing the time evolution of
g,U ,W just to one equation (1) which governs the time
evolution of g. The argument of the compatibility with ther-
modynamics, namely the requirement that the free energy
� remains unchanged in the externally unforced reversible
time evolution (see Grmela 1985, 2008; Grmela et al. 2011),
is still however applicable. The expression (3) arises from
the equation

(
d�

dt

)

rev
=
∫
dr

[
�ρ

(
∂ui

∂t

)

rev
+�ui

(
∂ui

∂t

)

rev

+
∫
dR�g

(
∂g

∂t

)

rev

]

=
∫
dr
∂�ui

∂rj

[
σij + (• • •)] = 0. (45)

Integration by parts (with the boundary conditions guar-
anteeing disappearance of the integrals over the boundaries)
is made in the step leading to the second equality. The
expression (3) is the equation [σij + (• • •)] = 0. Note that
the reversible part of the time evolution of g is governed
by the kinetic equation (1) with the last two terms on its
right-hand side missing.

We now turn to the material parameters. Microhydro-
dynamic analysis of hydrodynamic interactions has been
carried in Batchelor and Green (1972) and Batchelor (1977)
(see also the other references cited in Zmievski et al.
2005) to the Smoluchowski-type equation. (1) without the
terms involving the matrices κ, κ (I), κ (II), and κ (III). The
material parameters �, λ have thus a clear microhydrody-
namic interpretation. The microhydrodynamic derivation of
the Smoluchowski-type kinetic equation provides us also
with the estimate of its domain of validity (semidilute
suspensions).

The Faxén-type forces Y and the parameters κ have
been introduced in Lhuillier (2009) phenomenologically
with a very limited microhydrodynamic background. In
this paper, we remain, as far as Y and κ are concerned,
on the same phenomenological level. Our goal is only
to incorporate Y and κ into the full context of morphol-
ogy and rheology of suspensions. The choice of κ made
in Eq. 8 is completely phenomenological, directed mainly
by the requirement of simplicity. Our results (numerical

solutions of the governing equations), seen as a map-
ping κ → morphology & rheology, provide an indirect
insight into the physical meaning and the significance of the
coefficients κ .
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