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Testing some implementations of a cohesive-zone model at

finite strain

Pierre Gilormini*, Julie Diani

Laboratoire PIMM, CNRS, Arts et Métiers ParisTech, 151 bd de l’Hôpital, 75013 Paris,
France

Abstract

This study shows how the results given by a cohesive-zone model at fi-
nite strain may depend strongly on its numerical implementation. A two-
dimensional four-node cohesive element is considered, which includes sev-
eral variants depending on a part of the strain-displacement matrix, on the
quadrature rule applied, and on the configuration chosen to perform integra-
tion. Finite element simulations combine these variants with a very simple,
bilinear, cohesive-zone model, in two tests. The first test involves a single
element and illustrates some features of the various implementations. The
other test simulates the peeling of an elastomer strip from a rigid substrate.

Keywords: Cohesive-zone model, Cohesive element, Peel test, Finite
element analysis

1. Introduction

Cohesive-zone models (CZM) have been used extensively in the last two
decades for the finite element simulation of crack propagation or interface
debonding. An abundant literature has been published, covering applica-
tions in several fields of the mechanics of deformable solids, including frag-
mentation of brittle solids, delamination in layered composites, particle-
matrix debonding, and fracture of adhesive joints. In these models, local
fracture occurs gradually in a process zone at the crack tip, where damage
develops and stresses keep finite. Barenblatt [1]-[2] introduced this concept
very early to include cohesive forces in the context of crack propagation
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in elastic solids, and thus avoided stress singularities in brittle fracture.
The idea was simultaneously extended to elastic-plastic media by Dugdale
[3]. Since these pionering works, many cohesive-zone models have been de-
veloped on physical or phenomenological grounds for diverse applications.
These models involved a large variety of force-displacement relationships
including cubic, exponential, trapezoidal, linear or bilinear softenings, as
reviewed for instance by Park and Paulino [4].

The development and practical applications of cohesive-zone models have
been closely related to the rapidly growing power of finite element analysis,
since analytical solutions are very limited [5]. Needleman [6]-[7], Tvergaard
[8], Tvergaard and Hutchinson [9], Xu and Needleman [10] were among the
first to implement cohesive-zone models in finite element codes, for inclu-
sion or fibre debonding and for crack growth. Since then, special efforts have
been devoted to various numerical aspects of cohesive-zone models regarding
in particular the stiffness involved, the fine mesh required, and convergence
issues. Among numerous studies, the effect of the numerical integration rule
(especially in the context of extremely stiff cohesive zones before damage
onset) has been studied by Schellekens and de Borst [11], the connection be-
tween the material parameters of the cohesive zone and mesh refinement has
been analyzed by Alfano and Crisfield [12], whereas de Borst and cowork-
ers [13]-[14] focused on the bias induced by the initial mesh design in crack
propagation. Practical rules have also been proposed by Turon et al. [15]
and by Harper and Hallett [16], among others, about the minimum number
of elements to be considered in the process zone. The present work also
considers numerical aspects of cohesive-zone models, by focusing on various
choices that can be made in the implementation and the variety of results
that are induced.

This paper is organized as follows. First, the two-dimensional four-node
cohesive element considered is described, which includes several variants de-
pending on a part of the strain-displacement matrix, on the quadrature rule
applied, and on the configuration chosen to perform integration. The gen-
eral weak formulation of [17] is used here, and is not repeated for brevity.
Then, the simple bilinear cohesive-zone model used is recalled, with em-
phasis put on some of its properties that are closely related to the cohesive
element variants. A first, very simple, test follows, where the cohesive-zone
model is combined with these variants, and this enlightens some of their
features. Finally, application to the peel test is described, which illustrates
the variety of results that can be obtained from a single cohesive-zone model
when various choices are made in its numerical implementation. The paper
by Paggi and Reinoso [18] (with a recent extension to three-dimensional el-
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Figure 1: Initial and current configurations of a two-dimensional linear cohesive element
illustrating the definition of the local basis vectors by using the middle segment (dashed).

ements [19]) is complementary, it has an analogous organization and follows
similar, though not identical, theoretical developments, but with different
implementations considered.

2. The cohesive elements considered

The four-node elements considered in this paper are suitable for the
two-dimensional plane strain problems studied. The formulation of Ortiz
and Pandolfi [20] is applied, which is relevant for large deformations and
which introduced the element middle surface. The latter concept, which
puts the two sides of the interface on the same footing in the formulation,
is illustrated in Figure 1. The linear cohesive element consists initially of
a straight segment, where the two sides P0Q0 and P ′

0
Q′

0
of the interface

coincide, which separate into PQ and P ′Q′ in the current configuration,
and the middle segment P ′′Q′′ is defined by the midpoints of the lateral
sides PP ′ and QQ′. Clearly, the orientation of the middle segment with
respect to the Cartesian axes is given by the angle

α = tan−1

[

Qy
0
− P y

0
+ (uy(Q0) − uy(P0) + uy(Q

′

0
) − uy(P

′

0
))/2

Qx
0
− P x

0
+ (ux(Q0) − ux(P0) + ux(Q′

0
) − ux(P ′

0
))/2

]

(1)

where ux and uy denote displacement components, P x
0
, P y

0
, Qx

0
, Qy

0
the

Cartesian coordinates of P0 and Q0, and thus the local element basis (
−→
t ,−→n )
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yields, with

tx = C ty = S nx = −S ny = C (2)

where C = cos α and S = sin α. The relative displacement
−→
δ of any point

of the P0Q0 segment is interpolated linearly between
−→
δ (P0) =

−−→
PP ′ and

−→
δ (Q0) =

−−→
QQ′, and therefore its local components δt and δn can be defined

from

δt(P0) = (−→u (P ′

0) −
−→u (P0)).

−→
t and δn(P0) = (−→u (P ′

0) −
−→u (P0)).

−→n (3)

with similar expressions for Q0. The matrix notation used in the numerical
implementation of the above equations involves a nodal displacement vector

[u]T = [ux(P0) uy(P0) ux(Q0) uy(Q0) ux(Q′

0) uy(Q
′

0) ux(P ′

0) uy(P
′

0)]
(4)

where superscript T denotes transposition, the 8× 8 orientation matrix [R̃]
where the only nonzero components belong to 4 identical [R] blocks along
the diagonal, with

[R] =

[

C S
−S C

]

, (5)

the [L] operator matrix

[L] =









−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0









, (6)

and the shape-function matrix [N ]

[N ] =

[

N1 0 N2 0
0 N1 0 N2

]

, (7)

where the values of N1 and N2, between 0 and 1, reflect the linear inter-
polation at the point considered and need not be more detailed here. As a
consequence, the vector of the components of the relative displacement on
the local element basis writes

[δ] =

[

δt

δn

]

= [N ][L][R̃][u] . (8)

The numerical implementation of the element also requires the relative
displacement vs. nodal displacement matrix [B], which can be deduced
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from the partial derivatives of [δ] with respect to the nodal displacements
[u], Bij = ∂δi/∂uj . This leads to

[B] = [N ][L][R̃] + [N ][L][R̃′][u][A] (9)

since matrix [R̃] depends on [u] through the angle α (see (1)). In the above
expression, [R̃′] is the derivative of [R̃] with respect to α and the components
of [A] are

[A] =
1

2 l

[

S −C −S C −S C S −C
]

(10)

where l = P ′′Q′′ denotes the current element length. The [B̃] = [N ][L][R̃]
matrix is now introduced; it is such that [δ] = [B̃][u], its components are
easily obtained as

[B̃] =

[

−CN1 −SN1 −CN2 −SN2 CN2 SN2 CN1 SN1

SN1 −CN1 SN2 −CN2 −SN2 CN2 −SN1 CN1

]

(11)
and were already given by Park and Paulino [17]. It may be noted that
the derivative of the first line of [B̃] with respect to α is equal to its second
line, and the derivative of the second line is equal to minus the first line.
Consequently, matrix [B] given in (9) can be rewritten more simply as

[B] = [B̃] + [δ̃][A] where [δ̃] =

[

δn

−δt

]

. (12)

The second term in the right-hand side of the above expression, which con-
veys that the element basis is not fixed but mobile, was omitted by Park
and Paulino [17]. It combines four quantities (products of δn and δt by C/l
and S/l), whereas only two appear in the expression (30) given by Reinoso
and Paggi [18]. In practice, this term can be neglected in the case of in-
finitesimal deformations, since the initially nonzero value of the [A] matrix
is multiplied by small δt and δn components.

The last term in (12) can also be neglected at finite strain in two note-
worthy cases. This is due to the [B] matrix being used actually to compute
the nodal forces as

[f ] =
li
2
[B(I1)]

T [T (I1)] +
li
2
[B(I2)]

T [T (I2)] (13)

when two equal-weight integration points I1 and I2 are used in the element,
as is the case in this work. In the above expression, [T (I1)] and [T (I2)] denote
the traction vectors (in the local element basis) given by the cohesive-zone
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model (as defined in the next section) from the relative displacements at I1

and I2. As a consequence of (13), the second term in the right-hand side
of (12) contributes to the nodal forces by the [A]T matrix multiplied by the
scalar product [δ̃]T [T ] = δnTt−δtTn. Therefore, this term is zero if the trac-
tions and the relative displacements are colinear, which may apply to some
cohesive-zone models. For instance, this is the case in Figure 6 of Reinoso
and Paggi [18], who merely noticed “minimal discrepancy” between small
and large displacement formulations, because this colinearity is assumed.
When such special relation does not apply, the [A] term in (12) can still
be neglected in the case of large relative displacements that keep the two
sides of the interface (PQ and P ′Q′) parallel, even if their areas vary. This
is due to both the S and C contributions of the [A] matrix to the work of
nodal forces being nullified by the resulting combinations of displacement
components.

It is worth noticing also that both terms of (12) are required in general
to ensure that an incremental rigid body rotation applied to a preliminarily
deformed cohesive element does result in a zero increment of external work.
For a rotation dα about the origin of Cartesian axes, obtained through incre-
mental nodal displacements [du], the first term leads to [B̃][du] = −dα [δ̃]
and the second one to [δ̃][A][du] = dα [δ̃]; therefore [B][du] = [0], lead-
ing to dW = [f ]T [du] = 0 whatever the traction [T ]. In the special case
where [T ] is colinear with [δ], dW is still zero if [A] is omitted, because
[T ]T [B̃][du] = −dα [T ]T [δ̃] = 0.

There are two possibilities for the length li used in (13), according to in-
tegration being performed on either the initial or the current configuration.
In the former case, which is considered by Needleman [6]-[7], Tvergaard
[8], Ortiz and Pandolfi [20], among many authors who use nominal trac-
tions, li = P0Q0. In contrast, li = P ′′Q′′ if integration is performed on the
current configuration, like in the work of Park and Paulino [17] or Spring
and Paulino [21]. This again makes a negligible difference if deformations
are infinitesimal, but not at finite strain, as shown below. Two integra-
tion schemes are considered in this work: either the Newton-Cotes scheme,
which corresponds to taking P ′′ and Q′′ as the positions of I1 and I2 in the
current configuration (or P0 and Q0 in the initial configuration), and the
Gauss scheme, where I1 and I2 are located on the middle segment P ′′Q′′ (or
P0Q0) at a fraction (1 − 1/

√
3)/2 of its length, from each end. Thus, N1

and N2 in (7) take the values of 1 and 0, respectively, at point I1 (and the
opposite at I2) in the Newton-Cotes scheme, whereas values of 0.211 and
0.789 apply to the Gauss scheme. Finally, the [B] matrix is also used to
compute the tangent matrix, which is central in the iterative procedure to
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solve the problem incrementally but needs not be detailed here (see [17], for
instance).

In what follows, the reference cohesive element will be a 4-node linear el-
ement using Gauss integration performed on the initial configuration, where
the [B] matrix is computed as in (12). This will be referred to as case C1.
Three variants will be studied: (i) using the Newton-Cotes scheme (case C2),
(ii) performing Gauss integration over the current configuration (case C3),
and (iii) additionally neglecting the last term in (12) (case C4). Moreover,
the 4-node linear cohesive element (COH2D4) provided by Abaqus will also
be used in the comparisons (case C5).

3. The cohesive-zone model considered

Since the aim of this study is to analyze the effects of variations in the
numerical implementation of a cohesive-zone model, a very simple one is
sufficient. Namely, a special case of the model of Tvergaard and Hutchinson
[9] is applied, where a bilinear law (no plateau) is used. One reason for
this choice is that 4 material parameters only are required, and another is
the availability of this cohesive-zone model in the Abaqus code. Only the
essential relations need be recalled here, in order to specify our notations.
A state variable λm is defined at any interface point, which is the largest
value between 0 and 1 reached by the following scalar quantity:

λ =

√

√

√

√

(

δt

δf
t

)2

+

(

δn

δf
n

)2

(14)

where δf
t and δf

n are the relative displacements for interface failure in pure
shear (δn = 0) and pure normal separation (δt = 0), respectively. As long as
λm is smaller than a critical value λc, the interface has an elastic behaviour
defined by a tangent stiffness (Kt) and a normal stiffness (Kn), which are
assumed to obey the following relation:

Kt/Kn = (δf
n/δf

t )2 . (15)

Beyond λc, the interface damages and the traction vector is given by

Tn = (1 − D)Kn δn and Tt = (1 − D)Kt δt (16)

where the damage variable D is defined as

D =
1

λm

λm − λc

1 − λc
(17)
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and local interface failure (D = 1) occurs when λm = 1, which generalizes
the special cases of pure shear and pure normal separation mentioned above.
Hence, an elastic response is obtained if λ < λm (i.e., unloading or partial
reloading), with Kt and Kn stiffnesses if D = 0 (0 ≤ λm ≤ λc), with
(1 − D)Kt and (1 − D)Kn stiffnesses if 0 < D < 1 (λc < λm < 1), and with
zero stiffnesses if D = 1 (λm = 1). Note that the above expressions exclude
δn < 0, which would correspond to one side of the interface going through
the other. One way to avoid such unwanted anomaly is to prescribe a very
large normal stiffness if δn happens to be negative (and δn = 0 must be used
formally in the above equations). Another method, which is applied in this
study where one side of the interface is a rigid body, takes advantage of the
contact algorithms implemented in the finite element code, by prescribing a
no-penetration condition.

When Kt = Kn, the model of Camanho et al. [22] is recovered if equal
energy release rates are assumed for total decohesion in pure shear and pure
normal separation. In these conditions, the traction vector is colinear with
the relative displacement according to (16), and therefore the [A] matrix
can be neglected in the element formulation, as mentioned in Section 2.
This explains why the tangent stiffness has been chosen different from the
normal stiffness in our numerical applications, since we want to test the
effect of neglecting the [A] term in (12). It may also be noted that Kt = Kn

corresponds to a simple model in which the two sides of the interface are
connected by damageable elastic strings where stretch only matters. This
may be a simplified model for polymer fibrils, and in the case of adhesion
on a rigid substrate, the number of fibrils per unit substrate surface would
play a prominent role, with integration over the initial configuration being
appropriate naturally.

This study uses the following four material parameters to apply the
cohesive-zone model: the initial normal (Kn) and tangent (Kt) stiffnesses,
the critical traction value (T c

n) for damage initiation in pure normal sep-
aration, and the work of separation per unit area of interface (Γ). One
reason for choosing this specific set of constants is an easy application of
the Abaqus user interface, and the other parameters used above are then
given by δf

n = 2Γ/T c
n, δf

t = δf
n

√

Kn/Kt, and λc = 2Γ/(Kn(δf
n)2). The

following values are used in the numerical applications: Kn = 20 GPa/m,
Kt = 5 GPa/m, T c

n = 0.02 MPa, Γ = 1 J/m2. The latter value is repre-
sentative of the adhesion of an elastomer, and consequently the T c

n value is
associated with δf

n = 100 µm, which is typical of fibrils length at rupture
in elastomers. The stiffness ratio follows from the analysis of Geymonat et
al. [23] for an interface made of an isotropic elastic layer with a thickness
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tending to zero, namely Kn/Kt = 2(1 + νl)/(1 − 2νl), and a layer Poisson’s
ratio νl equal to 0.2 has been used here to keep the stiffness ratio within
reasonable and illustrative limits.

It can be checked easily that the traction components (16) when damage
increases (λm = λ between λc and 1) are the partial derivatives of the
following potential

φ(λ) = Γ −
Kn(δf

n)2

2

λc

1 − λc
(1 − λ)2 (18)

with respect to δt and δn, respectively, provided that condition (15) is sat-
isfied. Therefore, one has φ = (T c

n)2/(2Kn) at damage onset and φ = Γ at
rupture for any combination of tangent and normal relative displacements.
This independence with respect to mode mixity is a feature of the Tvergaard
and Hutchinson [9] model that will be very useful in the simulation of the
peel test in Section 5. Since the only source of energy dissipation here is the
damage process, the energy dissipated along a length dli of interface, per
unit out-of-plane thickness, is given by the difference between the current
value of the potential minus the elastic energy stored, times dli, i.e.,

dWD =

(

φ −
1

2

−→
T .

−→
δ

)

dli =
λ − λc

1 − λc
Γ dli (19)

when (18), (16) and (17) are used with λm = λ. Therefore, if dli keeps
equal to the initial length of the interface segment considered, the energy
dissipated at fracture (λ = 1) will be equal to Γ times this initial length. In
other words, the work to separate an interface is known in advance, before
the loading has started, by knowing the adhered area and Γ. In contrast,
if dli denotes the current length of the interface segment, which may vary
for instance when one side rotates with respect to the other as shown in
Section 4, the energy required for complete separation is hardly predictable.
This stresses a consequence of the configuration, either initial or current,
chosen when implementing the cohesive element. Another consequence may
be a more complex experimental procedure required to identify the param-
eters of a cohesive-zone model.

The equations defining both the cohesive element described in Section 2
and the cohesive-zone model detailed here have been implemented as a user
element routine in the Abaqus [24] code. The Fortran program given by
Park and Paulino [17] at the end of their paper, where a much more com-
plex cohesive-zone model was considered [25], has been very helpful in this
process. The latter program did not include the [A] term of (12) and used
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Figure 2: The wedge test, as applied to a single cohesive element.

the current configuration for Gaussian quadrature, but only a few lines had
to be added or modified to modify these points. This cohesive user element
will allow an easy comparison of the implementation variants listed at the
end of Section 2. It will also allow to mimic the COH2D4 cohesive element
of Abaqus in order to analyze its implementation.

4. The wedge test

All the considered variants of the cohesive user element, as well as the
Abaqus cohesive element, do give expected results when a single element
is considered and one side of the interface is translated with respect to the
other: the history of each traction component follows a triangular profile,
for any mode mixity, when the δt/δn ratio keeps constant. Moreover, the
dissipated energy at rupture (D = 1) equals Γ times the initial (constant)
element length per unit out-of-plane thickness, for any displacement history,
even if the δt/δn ratio is not constant, i.e., for non proportional loadings.
Clearly, such loadings allow to check basic requirements of the implemen-
tation of the cohesive-zone model, but they are not able to test its results
at finite strain, which requires to develop a significant angle between the
two sides of the interface. This is the purpose of the test applied in this
section, where a cohesive element with an initial zero thickness and a unit
out-of-plane thickness is transformed into a right triangle by moving a sin-
gle node, as shown in Figure 2. Thus, the interface opens widely to become
wedge-shaped. If the mobile node moves by a length u, (1) gives the simple
result α = tan−1(u/2l0), where l0 denotes the initial element length, and
thus

dα

du
=

l0
2(l2

0
+ u2/4)

(20)
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Figure 3: External work computed in the wedge test applied to an elastic cohesive zone
with 1 mm width and 1 mm out-of-plane thickness. Computations with a single cohesive
user element applying Gauss integration (over initial configuration: unbroken curve C1,
or over current configuration: lower dotted curve C3) with [A] term included, or neglected
(upper dotted curve C4, with Gauss integration over current configuration), or apply-
ing Newton-Cotes integration over initial configuration (upper dashed curve C2). Lower
dashed curve C5 corresponds to using a single Abaqus cohesive element. Red and blue
curves pertain to integrations over initial and current configurations, respectively.

decreases from 0.5 to 0.4 when u increases from 0 to l0, for instance. This
is what the [A] matrix of Section 2 reduces to in the present case. Simulta-
neously, the element length, as defined in Section 2, is given by

l =
√

l2
0

+ u2/4 (21)

and increases by 12% in the above conditions.
Consider first a purely elastic cohesive zone, i.e., with Kt and Kn as only

parameters. The increment of external work per unit out-of-plane thickness
induced by an increment of displacement du can be computed exactly from

dW =
u li
3

[

Kt sin2 α + Kn cos2 α + (Kt − Kn)
dα

du
sin α cos α

]

du = F du

(22)

where the integration of
−→
T . d

−→
δ has been performed along the length li, and

where F denotes the force applied at the moving end of the interface. This
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expression shows that the effect of dα/du is nullified if Kt = Kn, as expected
from Section 2. This expression also shows that taking li = l instead of
li = l0 multiplies merely the nodal force by

√

1 + (u/2l0)2, according to (21),
but the resulting increase in external work W is less simple. In contrast,
the external work has a closed-form expression if integration is performed
on the initial configuration:

W =
u2l0
6

Knl2
0

+ Ktu
2/4

l2
0

+ u2/4
(23)

per unit out-of-plane thickness. This is exactly what is obtained for the
unbroken curve C1 in Figure 3, i.e., when a single cohesive user element
with Gauss integration performed over the initial configuration is used in an
Abaqus simulation with very small increments. This happens because the
−→
T . d

−→
δ scalar product evolves quadratically along the element, and there-

fore Gauss integration provides the exact result. In contrast, Newton-Cotes
integration over a single element multiplies the exact result by 3/2 in these
conditions, which explains why the upper dashed curve C2 in Figure 3 is 50%
higher than C1. The lower dotted line C3 corresponds to Gauss integration
performed over the current configuration, i.e., taking li = l, which induces
an increase slightly lower than (21) would predict (recall the effect on the
external work is more complex than on the nodal force, as mentioned above,
because l varies with u during integration). In addition, the [A] term has
been neglected in the cohesive element used to compute the upper dotted
curve C4, which leads to an additional increase of external work. This is
consistent with the minus sign of the dα/du term in (22) when Kt < Kn,
as is the case in the numerical application. The lower dashed curve C5 cor-
responds to using the Abaqus cohesive element COH2D4 in the simulation.
We could reproduce this result exactly with the cohesive user element in
the following conditions: Newton-Cotes integration performed over the ini-
tial configuration, with the [A] term duely taken into account, but using a
uniform δt value equal to the average between the values taken at the two
element ends. The latter point explains a result close, but not equal, to
the upper dashed curve C2, and it is consistent with the general observa-
tion that uniform tangent strain values are displayed over each COH2D4
element in Abaqus contour maps, whereas other values (normal strain, for
instance) are not. The use of Newton-Cotes integration in the COH2D4 el-
ement is consistent with the Abaqus documentation, and has the effect that
a given integration point pertains to two neighbour cohesive elements, with
consequently two values available at the same place, which are different in
general. This may be confusing when damage is considered, for instance.
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Figure 4: External work computed in the wedge test applied to a damageable cohesive
zone with 1 mm width and 1 mm out-of-plane thickness. Computations with a single
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Upper dashed curve C5 corresponds to using a single Abaqus cohesive element. Red and
blue curves pertain to integrations over initial and current configurations, respectively.

The more realistic case of the damageable cohesive-zone model described
in Section 3 is considered now, and the corresponding external works com-
puted in the above five cases are shown in Figure 4. The reference case
C1 (Gauss integration over initial configuration and [A] term included) does
reach a plateau at the level W = l0Γ, as expected (unbroken curve), but in-
tegrating over the current configuration (lower dotted curve C3) gives now a
scarcely higher plateau (+ 0.2%), and similarly (+ 0.6%) when, in addition,
the [A] term is neglected (upper dotted curve C4). This is due to a rapidly
decreasing nodal force when damage proceeds, which weakens the concomi-
tant and moderate l increase. Since there is no relative displacement at one
end of the element, damage cannot develop at this integration point in the
Newton-Cotes scheme, and therefore the other integration point only is dam-
aged. This is the reason why the lower dashed curve C2 in Figure 4 rapidly
reaches a l0Γ/2 plateau. In contrast, the averaging of the δt components
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p
p

Figure 5: Notations used in the analysis of the peel test. For clarity, the view is linked to
the moving substrate and consequently the vertical direction of the applied force translates
horizontally. Of course, the opposite occurs in the framework of the testing machine.

in the Abaqus COH2D4 element induces damage at both Newton-Cotes
integration points, which explains that finally the upper dashed curve C5
reaches the l0Γ plateau.

The wedge test is very academic, inasmuch as a single cohesive element
is involved, but it has allowed to illustrate the effects of two typical features
of large deformations, namely the configuration used for integration and the
[A] term in (12). The effects are substantial if the cohesive zone remains
elastic, but they are weakened significantly when damage develops. The role
of the integration scheme also has been analyzed, with consequences that
keep significant for a damageable cohesive zone. These simulations have
allowed to check all the variants of the cohesive element that have been
implemented and to analyze how the Abaqus COH2D4 cohesive element
behaves. This is important for being confident in the following simulations
of the peel test.
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5. The peel test

The peel test is a particularly simple and common technique to measure
the adhesion energy between a thin film and a substrate [26]. It consists in
peeling a thin strip of material at a constant angle from a substrate that is
free to translate, until a steady state is reached, i.e., the peel force Fp reaches
a plateau. As shown in Figure 5, peeling a strip length dL in the steady
state induces an increment of external work equal to Fp(λp−cos θ) dL, where
θ denotes the peel angle and λp the stretch ratio of the strip. A hyperelastic
elastomer strip is considered here, and therefore the incremental external
work is equal to the sum of the stored elastic strain energy Ub edL, where
U denotes the strain energy per unit undeformed strip volume, e the strip
thickness and b its width, plus the separation energy Γp b dL dissipated in
the peeling process. Therefore, the peeling separation work per unit surface
Γp, which may depend on such parameters as the peel angle through mode
mixity, for instance, can be derived exactly by equating the two evaluations
of the incremental external work:

Γp = (λp − cos θ)Fp/b − eU (24)

as obtained already by Lindley [27], who used this equation to deduce the
apparent peeling separation work exactly from the material (U), geometric
(θ, b, e), and measured (λp, Fp) data involved in the peel test performed
on a hyperelastic elastomer. In the special case of small-strain elasticity
and assuming the strip is under uniaxial tension, this equation recovers the
result obtained by Kendall [28] and, previously but in Japanese, by Hata et
al. [29]. For an inextensible strip (λp = 1 and U = 0), as applies well to
adhesive tapes for instance, the expression derived very early by Rivlin [30]
is recovered, which specializes to the simple relation Γp = Fp/b for a peeling
angle of 90◦, i.e., the work of adhesion per unit surface is equal to the peeling
force per unit strip width. It may be noted that if a cohesive-zone model is
used that involves a work of separation Γ independent of mode mixity and
referred to the initial configuration, the peeling separation work Γp will be
equal to Γ. In these conditions, (24) provides an exact analytical relation
between material data (Γ and U), process parameters (θ, b, e), and measures
(λp, Fp), which is rarely the case for problems involving large deformations.
When the strip is elastic-plastic [31]-[32] or viscoelastic [33], for instance, the
peel test is more complex and no analytical solution is available. Nerverthe-
less, it is worth mentioning that a hyperelastic behaviour may be realistic
for the peeling of an elastomer at very low speed, when viscous effects can be
neglected and the peel force becomes independent of the peel rate, as in the

15



elastomer

substrate
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free displacement
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120°

30°

free rotation

Figure 6: Initial (a), intermediate (b) and final (c) configurations in the finite element
simulation of a peel test at 120◦. Inset shows an enlarged view of the initially periodic
mesh used.

experiments of [26] for example. Of course, the present simulations of the
peel test are still oversimplified, since a very simple cohesive-zone model is
considered in addition to a hyperelastic elastomer, but they take advantage
of an exact analytical solution for a precise evaluation of numerical tests.
This analytical solution was not considered by Reinoso and Paggi [18] in
their analysis of the peeling of a hyperelastic elastomer with two different
cohesive-zone models.

Our finite element simulations of the peel test (see Figure 6) consider an
initially straight strip of elastomer, which adheres on a rigid substrate along
a fraction of its length, and which deforms in plane strain. The strip length
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is 25 mm, including an adhered length of 15 mm, which has been checked to
allow reaching a steady peel force with such free strip length and remaining
adhered length that strip end effects are negligible (note that the above an-
alytical solution assumes these length are infinite, in principle). The initial
structured mesh is periodic along the strip length, with an element length
of 10 µm, and the mesh size increases as a geometric sequence from 10 µm
to 21.5 µm in 17 layers through the 0.25 mm strip thickness (see Figure 6
inset). The 42,500 elements defining the strip use displacements and pres-
sure as unknown variables (CPE4RH Abaqus hybrid elements with reduced
integration), since the elastomer considered is almost incompressible. More
precisely, its behaviour is neo-Hookean, which is sufficient for the moderate
strains involved, with an elastic energy defined by

U =
E

4(1 + ν)

(

1

J2/3
tr(FFT ) − 3

)

+
E

6(1 − 2ν)
(J − 1) (25)

where F denotes the transformation gradient and J its determinant. E =
1 MPa and ν = 0.495 are the Young modulus and Poisson’s ratio that would
apply at small strain. A layer of 1500 identical zero-thickness cohesive ele-
ments (10 µm long) connects the elastomer strip to the rigid substrate, where
the cohesive-zone model described in Section 3 applies. Suitable boundary
conditions are applied to forbid penetration into the substrate and to allow
the free translation of the latter in the direction normal to the peel direction.
A displacement in the peel direction is applied to the free end of the strip,
which moves as a freely rotating rigid body. As illustrated in Figure 6, the
strip first bends, the force increases, then the peel angle stabilizes, separation
from the substrate begins and the force reaches a plateau. Three key quan-
tities are recorded: the peel force Fp conjugate to the displacement applied
to the strip end, the stretch ratio λp and the elastic energy per unit volume
U at sufficient distance (twelve times the strip thickness) from the strip end
in order to neglect end effects. No stabilization viscous scheme was used in
the simulations, which would have added an artificial dissipation that could
affect the peel force.

Mesh convergence has been checked by testing various mesh sizes along
the strip length, and Figure 7 presents the oscillating peel force obtained
when using the reference implementation (C1). These oscillations, which
keep the peel force with the same average value, are related to an element
of the periodic mesh entering or leaving the process zone where separation
proceeds, and it can be checked that the period is equal to the length of
an element indeed. It can also be observed in Figure 7 that the amplitude
of the oscillations is substantially reduced (2.21 %, 0.53 %, 0.02 % of the
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Figure 7: Peel forces per unit out-of-plane thickness obtained with a mesh size of 100 µm
(dotted curve), 50 µm (dashed curve), and 10 µm (unbroken curve) along the strip length,
using the reference implementation (C1). Peel angle: 90◦.

average force value) when the mesh size is finer, and a 10 µm mesh size can
be considered as providing a very good approximation of the exact solution.
Very similar results were obtained with the other implementations (C2 to
C5), with slightly different average values because different implementations
may lead to different peel forces. It is worth noting that no fluctuation was
found along the process zone of such quantities as stress or damage, whatever
the implementation considered. This differs from what Schellekens and de
Borst [11] observed and may be due to the specific set of values chosen for
the material parameters.

The results obtained by combining the finite element simulations and
(24) are reported in Table 1, where the normalized difference (Γp − Γ)/Γ is
given in percent. This table illustrates the diversity of values that can be
obtained with various numerical implementations of a given cohesive-zone
model, with fixed material parameters. A large span of peel angles is stud-
ied, and the four variants of the cohesive user element already considered
in Section 4 are used (cases C1 to C4), as well as the Abaqus COH2D4 co-
hesive element (case C5). In addition, the surface-based cohesive behaviour
also available in Abaqus is considered, where the line of cohesive elements
is removed and the cohesive-zone model (with the same parameters) is ap-
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Peel angle 30◦ 60◦ 90◦ 120◦ 150◦

Gauss on initial config., [A] included (C1) 0.00 0.00 0.00 0.00 0.00
Newton-Cotes on initial config., [A] included (C2) −0.02 0.00 0.01 0.00 0.00

Abaqus COH2D4 cohesive element (C5) 0.02 0.01 0.05 0.02 0.00
Gauss on current config., [A] included (C3) 3.57 3.98 4.32 4.56 4.79
Gauss on current config., [A] neglected (C4) 6.84 7.47 8.08 8.56 9.00
Abaqus surface-based cohesive behaviour 8.19 9.33 10.16 10.74 11.31

Table 1: Relative difference, in percent (100×(Γp − Γ)/Γ), between the peeling works of
adhesion obtained from finite element simulations and the work of separation assumed by
the cohesive-zone model, for various peel angles, using different types of cohesive elements
or a surface-based cohesive behaviour.

plied directly between the bottom face of the elastomer strip and the rigid
substrate. Since this appears as a convenient alternative to using cohesive
elements in the peel test, it seemed important to test its effects on the re-
sults.

As expected from the mesh convergence analysis and from the mode-
mixity independence of Γ, the first line of Table 1 gives Γp = Γ with the
excellent precision of less than a hundredth of one percent for all peel an-
gles. Comparison with the second line shows that Newton-Cotes and Gauss
quadratures give very similar results in the simulation of the peel test, a fact
that may be due to using a very fine mesh and was not expected from the
wedge test of Section 4. Moreover, no convergence problem was observed
with either quadrature scheme. The Abaqus COH2D4 element (third line of
Table 1) also is consistent with the results given by these two variants of the
cohesive element, which is interesting because such values as damage can
be plotted from the COH2D4 elements, which is not possible with Abaqus
when user elements are employed. One drawback of the COH2D4 element is
a slower convergence, though, since using the automatic time-stepping pro-
cedure of Abaqus required significantly larger numbers of increments, with
more iterations, than for the cases in the first two lines of Table 1, resulting
in much longer computing times. This may be due to the computation of
the stiffness matrix but has not been analyzed further in the present work.

The values reported in the last three lines of Table 1 are significantly
larger than in the first three lines, and this is related to their use of the
current configuration to integrate the cohesive-zone model. As already men-
tioned, using the current configuration may lead to unexpected values of the
effective work of adhesion, but the results of Section 4 did not anticipate
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the rather large values reported in the fourth line of Table 1, where only
the configuration used for integration has changed with respect to the first
line. Figure 8 illustrates the mode-mixity that takes place in the process
zone, where the cohesive elements are both elongated and sheared, but in-
terpreting the variations in the fourth line of Table 1 as an effect of the
peel angle on the work of separation per unit surface due to mode mixity
would be erroneous, since there is no such influence in the cohesive-zone
model used. Figure 8 shows that the length of the process zone decreases
when the peel angle increases and, since its height (related to the largest
relative displacement at failure) is almost constant, the stretch ratio of the
middle surface also increases. This explains the apparent effect of the peel
angle in the fourth line of Table 1 by purely geometrical reasons. Based
on our convergence study, we emphasize the accuracy of the values in the
third line of Table 1 (as well as in the whole table), which do reflect the
confounding effect of using the current configuration in the implementation
of the cohesive-zone model.

The fifth line of Table 1, i.e., when the implementation choices made
in [17] are applied, shows that neglecting the mobility of the local element
basis almost doubles the values obtained in the fourth line, where this is ac-
counted for. Therefore, neglecting the [A] matrix is clearly not admissible in
these simulations of the peel test. It has been checked with additional simu-
lations that the fourth and fifth lines of Table 1 do become interchangeable if
Kt is taken equal to Kn, i.e., when the tractions and relative displacements
become colinear, as expected from Section 2.

Finally, the sixth line of Table 1 shows the results obtained when the
surface-based cohesive behaviour was used instead of a cohesive element. In
order to assess that integration was performed over the current configura-
tion, a single hyperelastic element in contact with a plane rigid surface was
considered in a preliminary test. The deformable element has been either
elongated or contracted parallel to the interface until complete contact rup-
ture in pure shear mode, and it was then returned to its original shape in
order to deduct its strain energy from the external work. Therefore, the lat-
ter gave direct access to the energy dissipated by the contact rupture and,
using the same cohesive-zone parameters as above, these simple simulations
lead to effective adhesion energies 13.5 % larger or smaller than Γ, accord-
ing to wether the deformable element had been first elongated or contracted.
When applied to a cohesive user element with Newton-Cotes quadrature per-
formed on the current configuration (not considered further in this study,
for brevity), the same procedure lead to half these values. This is consistent
with the Abaqus surface-based cohesive behaviour using the nodes of the
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Figure 8: Enlarged views of the deformed strip (dark gray) and of the deformed cohesive
elements in the process zone (light gray, where 0 < D < 1), for peel angles of (a) 30◦,(b)
90◦, and (c) 150◦. These simulations used COH2D4 cohesive elements.
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“master” surface to define the local coordinates in an asymmetric formula-
tion based on a master-slave pair, rather than the middle surface used by
cohesive elements. This also explains why the last line of Table 1 shows
the largest values, and the big differences with the third line initiated our
systematic study of the effect of numerical implementations, actually.

6. Conclusions

This study has shown how the results given by a cohesive-zone model
at finite strain may depend strongly on some details of its numerical imple-
mentation. It is important for the user to be aware of such possibly implicit
details if a cohesive-zone model has to be implemented, which would use
cohesive elements available in a finite element code, for instance. By using a
very simple cohesive-zone model, which is accessible in the Abaqus finite el-
ement code, combined with a suitable and versatile user element, this study
has demonstrated the following points:

1. Although less precise for the elastic part of the cohesive-zone model,
Newton-Cotes integration has given results in very good agreement
with Gauss quadrature for the peeling of an elastomer adhered on a
rigid substrate. Moreover, both schemes lead to similar convergence
and computing times.

2. Neglecting the mobility of the local basis in the element formulation
has no consequence when tractions and relative displacements are co-
linear in the cohesive-zone model, but this may lead to large errors
with more general models, especially in the peel test. This is a typical
feature that is negligible when deformations keep small.

3. Integrating the cohesive-zone model on the current configuration rather
than on the initial configuration may lead to large differences in the
work of separation per unit surface involved in the peel test, and this
may be confusing about the effect of the peel angle, for instance. The
choice of the configuration used for the integration of a cohesive-zone
model must be physically justified, and this must be explicitly specified
to the user. This is another typical feature of finite strain.

4. The simplest cohesive element available in the Abaqus code, which
includes the mobility of the local basis and performs integration on the
initial configuration, has given very satisfactory results for the peeling
of an elastomer adhered on a rigid substrate, although it averages
the tangential components of the relative displacement. One should
nevertheless be careful when other applications are considered, as the
wedge test presented in this study has shown.
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5. The surface-based cohesive behaviour that is also available in the
Abaqus code is not equivalent to the cohesive element, since it inte-
grates the cohesive-zone model on the current configuration and does
not use the middle surface concept but rather an asymmetric master-
slave formulation. It should be used very cautiously when precise
results are expected and it is not recommended for the simulation of
the peel test.

This approach based on critical tests can be extended to more complex
cohesive elements (with nonlinear interpolation or three-dimensional, for in-
stance) and to more elaborate cohesive-zone models, in order not to spoil
the complexity of a refined physical theory by an improper numerical im-
plementation in a finite element code.
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[15] Turon A, Dàvila CG, Camanho PP, Costa J. An engineering solution
for mesh size effects in the simulation of delamination using cohesive
zone models. Engng Fract Mech 2007;74:1665-1682.

[16] Harper PW, Hallett SR. Cohesive zone length in numerical simulations
in composite delamination. Engng Fract Mech 2008;75:4774-4792.

[17] Park K, Paulino GH. Computational implementation of the PPR
potential-based cohesive model in ABAQUS: Educational perpective.
Engng Fract Mech 2012;93:239-262.

[18] Reinoso J, Paggi M. A consistent interface element formulation for geo-
metrical and material nonlinearities. Comput Mech 2014;54:1569-1581.

[19] Paggi M, Reinoso J. An anisotropic large displacement cohesive zone
model for fibrillar and crazing interfaces. Int J Solids Struct 2015;69-
70:106-120.

[20] Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements
for three-dimensional crack-propagation analysis. Int J Numer Meth
Engng 1999;44:1267-1282.

[21] Spring DW, Paulino GH. A growing library of three-dimensional cohe-
sive elements for use in ABAQUS. Engng Fract Mech 2014;126:190-216.

[22] Camanho PP, Dávila CG, De Moura MF. Numerical simulation of
mixed-mode progressive delamination in composite materials. J Com-
posite Mater 2003; 37:1415-1438.

24



[23] Geymonat G, Krasucki F, Lenci S. Mathematical analysis of bonded
joint with a soft thin adhesive. Math Mech Solids 1999;4:201-225.

[24] Abaqus. Version 6.9. Dassault Systèmes Simulia Corp.; 2009.
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