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Diffusion model to describe osteogenesis within a porous titanium scaffold

M. Schmitta*, R. Allenaa, T. Schoumana,b, S. Frascac, J.M. Collombetc, X. Holyc and P. Roucha

aArts et Métiers ParisTech, LBM, 151 bd de l’hôpital, 75013 Paris, France; bDepartment of maxillofacial surgery, APHP –
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In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows
simulating osteogenesis within a porous titanium scaffold implanted in ewe’s hemi-mandible during 12weeks. The cell
activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to
(i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show
that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict
osteogenesis pattern.
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1. Introduction

Bone is a living tissue able to rebuild and restore its

physical and geometrical properties when injured.

Specifically, bone remodelling and bone ingrowth are

two important biological phenomena that successively

occur during fracture healing process, prosthesis osseoin-

tegration and distraction osteogenesis (Meyrueis and

Cazenave 2004). Nevertheless, when a defect exceeds a

critical size for spontaneous bone formation (Schmitz and

Hollinger 1986), a structural support such as a porous

implant (i.e. scaffold) is required to enhance bone

ingrowth and to ensure the mechanical loads transmission.

During the last decades,many invivo studies on rodents

(i.e. rabbits or rats) have evaluated the osseointegration of

porous implants (Karageorgiou and Kaplan 2005; Take-

moto et al. 2005; St-Pierre et al. 2005; Otsuki et al. 2006;

Lopez-Heredia et al. 2008). Nonetheless, besides the high

cost of experimentations, osteogenesis is a long process

with successive steps, which makes its experimental

observation very difficult. Therefore, mathematical and

numerical models have been proposed in the literature to

better understand the complex process of osteogenesis and

optimize the design of the scaffolds.

These models can be divided into two main categories:

the multi-physics and the multi-scale models. The former

consider the mechanoregulatory process that may take

place during bone ingrowth and osteogenesis. Different

theories emerged demonstrating that mechanics plays an

important role on the cellular activity. Pauwels (1960) was

the first to hypothesize that mechanical stresses and strains

could determine the differentiation pathways of mesench-

ymal stem cells (MSCs). Specifically, he found that during

bone fracture healing, bone formation only occurs once

fracture stabilization is ensured by fibrous tissues. Carter

et al. (1988) suggested that MSCs are more likely to

become osteogenic if they are submitted to low shear

strain and compressive hydrostatic stress. In Prendergast

et al. (1997), the coupling between the fluid–solid velocity

and the maximal shear strain is considered as a key factor

for the regulation of cell differentiation. Such an approach

has been widely used to predict tissue regeneration during

fracture healing (Lacroix and Prendergast 2002; Isaksson

et al. 2008), distraction osteogenesis (Isaksson et al. 2007)

and also tissue ingrowth within scaffolds (Kelly and

Prendergast 2006; Liu and Niebur 2008) or at bone–

implant porous interface (Huiskes et al. 1997; Andreykiv

et al. 2005; Andreykiv et al. 2008). Other mechanobio-

logical models have been proposed using different

techniques resulting in random walk models (Pérez and

Prendergast 2007; Byrne et al. 2007), lattice-based models

(Checa and Prendergast 2010; Sandino et al. 2010),

biological model (Moreo et al. 2009) and voxel finite

element (FE) models (Adachi et al. 2006; Sanz-Herrera

et al. 2008, 2009).

The multi-scale models distinguish between two

spatio-temporal scales at the tissue and at the pore-

scaffold level. Among these works, we mention those from

Prendergast et al. (1997), Kelly and Prendergast (2006)

and Sanz-Herrera et al. (2008, 2009) in which the influence

of both the cellular activity and the scaffold microstructure

is considered. In addition, some homogenization

approaches (Hollister et al. 2002, Taboas et al. 2003,
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Hutmacher et al. 2004) have been used to design and

control the scaffold porosity and pores size.

Most of the previous works are defined by a large

number of parameters, which are difficult to determine

experimentally, and therefore the results are only

qualitatively compared to the experimental observations.

An alternative approach was proposed by Roshan-Ghias

et al. (2011) according to which bone osteogenesis is

regulated by a diffusion phenomenon and the few

unknown variables of the model are identified through

in vivo micro-computed tomography (micro-CT).

In the present paper, we introduce a two-dimensional

(2D) FE model derived from a specific animal study. Our

main goal is to propose a new numerical approach to

describe osteogenesis within a titanium scaffold implanted

in a ewe’s hemi-mandible. The key feature of the model

lays on the link between mechanics and biology, which is

stronger than those proposed in previous works. In fact, the

cellular activity (i.e. migration and proliferation) is defined

through diffusion equations, which are coupled twice with

the mechanical framework of the problem through (i) the

principal stresses and (ii) the principal directions. At the

end of the bone-remodelling process, which takes

12weeks in our specific case (Den Boer et al. 1999), the

numerical results are compared to the experimental ones in

two different ways. First, we qualitatively correlate the cell

density and colonization patterns to the histological data

obtained on an implanted hemi-mandible. Secondly, we

quantitatively assess the consistence of the same results

by performing a cantilever bending simulation on the

colonized hemi-mandible and comparing it to the

corresponding experimental deflection.

2. Methods

2.1 Scaffold and experimental set up

In this present study, an 18-mm long titanium scaffold

with a porosity of 53% was placed after resection of the

non-toothed part of ewes’ hemi-mandibles. To anchor the

scaffold to the bone, 10 titanium screws were used

(Figure 1(b)). The scaffold was designed and produced by

OBLw using a selective laser melting (SLM) technique

(Barbas et al. 2012).

Three ewes’ hemi-mandibles were tested:

. a non-implanted (NI-0, Figure 1(a)) and an

implanted (I-0, Figure 1(b)) hemi-mandibles com-

ing from the same ewe sacrificed right after scaffold

implantation (t ¼ 0);
. an implanted (I-12, Figure 2(a)) hemi-mandible

coming from a ewe sacrificed 12 weeks after

scaffold implantation (t ¼ 12weeks).

Both ewes were approximately 2 years old. A cantilever

bending test was performed on each hemi-mandible using

a universal traction machine (INSTRON 5500-R).

Before the test, a black and white speckle pattern was

painted on the hemi-mandible in order to perform digital

images correlation (DIC). The proximal boundary of the

hemi-mandible was embedded into polymethylmetacry-

late (PMMA), while the distal boundary was submitted to

a displacement of 2mm/min, which was applied until

failure through a cylinder load nose. The resultant force

was measured using a load cell of 1KN.

During the test, the hemi-mandible was kept wet to

avoid the drying of the bone, which could have altered its

mechanical properties (Evans and Lebow 1952; Blackburn

et al. 1992). Finally, frontal images of the set-up were

captured every 2 s using a digital camera.

2.2 Histological evaluation

After micro-CT, defect areas including a 5-mm edge of

native bone at both the anterior and posterior margins were

excised from the hemi-mandible I-12. The segments were

fixed for at least 7 days in 10% phosphate-buffered

formaldehyde solution.

Undecalcified segments were sectioned with a

diamond saw (Secotom, Struers) along the antero-

posterior direction thereafter dehydrated with methanol,

and then embedded in methyl-methacrylate-based resin.

The hardened specimen blocks were cut in the longitudinal

Figure 1. The NI-0 (a) and I-0 (b) hemi-mandible coming from
the same ewe sacrificed right after scaffold implantation (t ¼ 0).
In (b), the 18-mm-long titanium scaffold placed after resection of
the non-toothed part of the I-0 hemi-mandible and anchored to
the bone with 10 titanium screws is noticeable.
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direction along the axis of the implant. Sections of interest

were sawn off with the diamond saw, ground and finally

polished up with a Buelher micro-grinding device to reach

100mm thickness.

Finally, sections were stained with modified Masson–

Goldner’s trichrome dye to evaluate bone healing

efficiency by histomorphometry and examined under a

light microscopy (DMRB Leica, DXC930 Camera Sony).

2.3 Mechano-biological FE model

The mechano-biological framework of the FE model

allows simulating the bone ingrowth within the titanium

scaffold implanted in the hemi-mandible. Because the

mandible is considered as a flat bone, here we only take

into account intramembranous ossification, which, in

contrast to endochondral ossification, does not require

cartilaginous tissue.

The 2D geometry representing a sagittal view of the

hemi-mandible (Figure 2(b)) has been obtained from the

frontal digital images through DIC. The hemi-mandible is

constituted by a proximal and a distal bone domains, Sb;p

and Sb;d, respectively. In addition, it includes a central

domain composed of the scaffold Ss, which is placed

between the two gaps, Sg, between the periosteum and the

scaffold, and four interfaces Sij (the subscript j indicates

the interface number) between the scaffold and the bone.

The domains Ss and Sij have been represented through

specific characteristic functions hs and hij.

Here, we consider that each domain is made of an

isotropic linear elastic material. For Sb;p and Sb;d,

homogenized Young’s moduli (Eb,p and Eb,d, respectively)

have been deduced from the experimental deflection curve

of the neutral axis of the hemi-mandible. For Ss, Sij and

Sg, we assume that, at the initial configuration, they are

filled with a granular tissue, which will be gradually

replaced by bone during the 12weeks. Consequently,

Es, Eij and Eg vary with respect to time and bone

mineralization and are defined as follows:

Es ¼ Es;0 12Bs;0

� ��

þ Bs;0 Et 12 cmhtm
� �þ Ebcmhtm

� ��
hs;

ð1Þ

Eij ¼ Et 12 cmhtm
� �þ Ebcmhtm

� �
hij; ð2Þ

Eg ¼ Et 12 cmhtm
� �þ Ebcmhtm ; ð3Þ

where Es;0 is the initial Young’s modulus of the scaffold, Et

and Eb are the Young’s moduli of the granular tissue and

the newly formed bone, respectively, Bs;0 is the scaffold

initial porosity and cm is the MSCs concentration, which is

Figure 2. (a) The I-12 hemi-mandible. (b) The FE model geometry: dimensions, boundary conditions and subdomains of the implanted
hemi-mandible. A, B and C indicate the three points used to evaluate cm for the sensitivity analysis (see Appendix).
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defined as the fraction of MSCs inside the scaffold. htm is a

characteristic function allowing to initiate the mineraliz-

ation process. In fact, as the osteoblasts activity is not

directly modelled, we assume that the mineralization starts

after a maturation time tm of the MSCs of about 2weeks

(Malaval et al. 1999) and takes approximately 3weeks

to complete (Eriksen et al. 1986). Thus, the fraction of

mineralized bone mb inside the scaffold is defined as

mb ¼ cmhtm : ð4Þ
We assume that both cm and mb are normalized and vary

between 0 and 1.

During the simulation, the proximal boundary of the

hemi-mandible is allowed to translate along the y-axis

(except for the upper point which is completely blocked),

while the distal boundary is submitted to a constant force

to simulate the ewes’ mastication (Thomason et al. 2001)

(Figure 2(b)).

In the following, the diffusion equations used to

describe the evolution of the MSCs concentration cm
within the different domains of the system are presented.

Inside Sb;p and Sb;d, we consider that cm is constant with

respect to time, while a Robin condition on ›Sb;p and ›Sb;d

is applied to reproduce the cell proliferation outside the

system. Thus, the diffusion equation reads

›cm
›t

¼ div Dm;b grad cm
� �

on Sb;p and Sb;d; ð5Þ
ðDm;b grad cm; nÞ ¼ 2g cm;0 2 cm

� �

on ›Sb;p and ›Sb;d;
ð6Þ

where div and grad represent the divergence and the

gradient, respectively, (a,b) defines the scalar product

between two vectors, g is a constant, cm;0 is the initial

concentration of the MSCs inside the domains and n is the

outward normal vector along the external boundaries. Dm,b

is a tensor which couples the concentration cm with the

principal stresses and directions as follows:

Dm;b ¼abIþ bb

ffiffiffiffiffiffiffiffi
sIj j

p
BsI^BsI

þ
ffiffiffiffiffiffiffiffiffi
sIIj j

p
BsII

^BsII

� �
;

ð7Þ
where ab and bb are specific constants, I is the identity

matrix andBsI
andBsII

are the principal directions of the

principal stresses sI and sII. j·j and^ indicate the absolute

value and the tensorial product, respectively.

The evolution of cm within the scaffold is also defined

by a diffusion equation as follows:

›cm
›t

¼ div Dm;s grad cm
� �þ Pm; ð8Þ

where the first and the second terms on the right-hand side

describe the migration and the proliferation processes,

respectively. As in Equation (6), Dm;s is coupled with the

mechanics of the problem and reads

Dm;s ¼asIþ bs

ffiffiffiffiffiffiffiffi
sIj j

p
BsI^BsI

þ
ffiffiffiffiffiffiffiffiffi
sIIj j

p
BsII

^BsII

� �
;

ð9Þ
where as and bs are specific constants. The MSCs

proliferation Pm is expressed as

Pm ¼ Pm;0ð12 cmÞcm; ð10Þ
with Pm;0 the MSCs production rate. MSCs migrate from

the proximal and the distal bone domains but also from

the periosteum. Thus, the previous diffusion equation is

coupled with a Robin condition on the periosteum

boundaries ›Sp:

ðDm;s grad cm; nÞ ¼ 2g cm0 2 cmð Þ on ›Sp: ð11Þ

3. Results

3.1 Experimental results

As mentioned in Section 2.1, a cantilever bending test was

performed on three hemi-mandibles: NI-0, I-0 and I-12.

The experimental deflection curves are represented in

Figure 3.

First, it is possible to observe a clear difference

between the two curves NI-0 and I-0. In fact, for NI-0 the

curve is mostly straight, while for I-0 the curve presents

two local changes in slope corresponding to the proximal

and distal bone–scaffold interfaces, respectively.

Secondly, by comparing the curve of I-0 at t ¼ 0 to the

curve of I-12 at t ¼ 12weeks, it is possible to notice that

the deflection is less important for the latter than for the

former.

These outputs confirm that (i) the scaffold does not

support the entire load and (ii) the cell colonization and

mineralization do affect the global mechanical response of

the system via the increase in the Young modulus inside

the scaffold and at the interfaces of the scaffold with the

proximal and distal bones.

3.2 Numerical osteogenesis

The numerical simulation has been run using the FE

software COMSOL 3.5a. The main parameters associated

with the constitutive behaviour of the system and the

cellular activity are reported in Table 1.

In Figure 4, the results at the end of the process (i.e.

12weeks) are represented. The MSCs concentration cm
varies between 0.3 and 1, respectively, at the centre and

along the external boundaries of the scaffold (Figure 4(a)).

More specifically, at points A, B and C (Figure 2(b)), cm is

equal to 0.61, 0.36 and 0.6, respectively. Because the

M. Schmitt et al.4



mineralization process starts after 2weeks of maturation

and takes approximately 3weeks to complete (Section

2.3), we observe a complete cellular mineralization (i.e.

equal to 1) at about 5 weeks after maturation (Figure 4(b)).

We notice that the colonization and the mineralization

patterns are very similar and occur from the outer

boundaries towards the central region of the scaffold.

In addition, the four interfaces Sij, which were initially

filled by a granular tissue, are now completely

mineralized. Thus, according to Equation (1), the global

stiffness of the scaffold is increased by the end of the

simulation.

In Figure 5(a), a sagittal view of the middle section of

the scaffold histological examination is reported.

We distinguish between the mineralized bone (blue)

and the fibrous tissue (purple), which are mostly

distributed at the periphery and at the centre of the

scaffold, respectively. The histological analysis provided

a ratio bone volume (BV)/total volume (TV) equal to

62%. The direct comparison with our numerical results

is not possible due to the fact that (i) the FE model is

2D and (ii) the scaffold pores are not physically modelled

here. Nevertheless, thanks to the specific in-house

Matlab software, we have been able to evaluate the ratio

bone surface (BS)/total surface (TS) on Figure 5(a) and a

value of 27% was obtained. For the FE model, we

considered that bone is mineralized when mb (Equation 4)

is higher than 0.8. Then, the numerical value of BS/TS

after 12 weeks is equal to 29% (Figure 5(b)). Therefore,

we may conclude that our numerical results are

qualitatively and quantitatively in agreement with the

histological data.

Figure 3. Experimental deflection curves of the neutral axis of NI-0 and I-0 at t ¼ 0 and of I-12 at t ¼ 12weeks.

Table 1. Model parameters.

Variable Symbol Value Unit Reference

Young’s modulus of the proximal bone Eb;p 6500 MPa Deduced from DIC
Young’s modulus of the distal bone Eb;d 300 MPa Deduced from DIC
Initial Young’s modulus of the scaffold Es;0 60 GPa Deduced from Barbas et al. (2012)
Young’s modulus of granular tissue Et 0.2 MPa Andreykiv et al. (2008)
Young’s modulus of newly formed bone Eb 200 MPa Deduced from Nafei et al. (2000)
Initial porosity of the titanium scaffold Bs;0 0.53 Barbas et al. (2012)
Robin constant g 1e27 m2/s
The initial concentration of the MSCs cm;0 0.98
Diffusion constant in the bone domain ab 1e220 m2/s
Diffusion constant in the bone domain bb 3e213 m2/s
Diffusion constant in the scaffold domain as 1e220 m2/s
Diffusion constant in the scaffold domain bs 3e215 m2/s
The MSCs production rate Pm,0 2e29 s21

MSCs maturation time tm 14 days Malaval et al. (1999)
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3.3 Comparison of the FE model to the
experimental results

The cantilever bending test performed on the ewe’s hemi-

mandible 12weeks after implantation (I-12) allows us to

show the consistency of the FE model. In Figure 6, the

experimental and the FEmodel deflection curves of the hemi-

mandible’s neutral axis at 12weeks are represented. For both,

the maximum deflection is reached at the distal boundary

where the force is applied. Nevertheless, we obtained a

maximal displacement of 1.62mm for the former and of

1.46mm for the latter. Furthermore, there are two local

changes of the curve’s slope which correspond to the

proximal and distal bone–scaffold interfaces, respectively.

Such a behaviour is mainly due to the low stiffness of the

newly formed with respect to the proximal and distal bones.

Finally, in Figure 6, the FE model deflection curve of

the hemi-mandible’s neutral axis at the initial configur-

ation is also represented. We notice that the maximum

deflection after osteogenesis is about four times lower than

the one obtained at the initial configuration (1.46mm

versus 5.65mm, respectively). Such a difference is mainly

due to the bone ingrowth within the scaffold and also at the

bone–scaffold interfaces, which increase the global

stiffness of the structure.

4. Discussion

In the literature, most of the models have not been

validated (Andreykiv et al. 2005; Adachi et al. 2006;

Andreykiv et al. 2008; Byrne et al. 2007: Liu and Niebur

2008) or validated through experimental tests on small

animals (i.e. rabbits or rats) because their size and cost

make the experimental protocol easier (Sanz-Herrera et al.

2008, 2009; Roshan-Ghias et al. 2011). Nevertheless, their

bone properties are quite different than human’s (Pearce

et al. 2007). For instance, their characteristic time for bone

remodelling is four times shorter (Sanz-Herrera et al.

2008). Therefore, our model is directly derived from an

animal experiment done on bigger animals such as ewes.

Indeed, the ovine model has been widely used in bone

defect repair, distraction osteogenesis, osteoporosis and

osteoarthritis research (Willie et al. 2004), and has been

indicated as a valid model for the study of human bone

remodelling and turnover (Den Boer et al. 1999; Pearce

et al. 2007). The 2D FE model we have proposed allows

simulating osteogenesis within a porous titanium scaffold

implanted in a ewe’s hemi-mandible for 12weeks.

Cells migration and bone ingrowth within the scaffold

are described through diffusion equations as previous

authors did (Andreykiv et al. 2005; Kelly and Prendergast

2006; Liu and Niebur 2008; Andreykiv et al. 2008; Sanz-

Herrera et al. 2008, 2009; Roshan-Ghias et al. 2011).

Furthermore, the cells activity is directly coupled to the

mechanics of the problem because MSCs migration

follows the principal stresses and principal directions.

Such a hypothesis results in bone ingrowth occurring from

the external boundaries to the centre of the scaffold, which

is in agreement with a previous study (Fujibayashi et al.

2003). The model has been correlated to the experimental

Figure 4. Time evolution of normalized MSCs concentration
cm (a) and of the fraction of mineralized bone mb (b) within the
scaffold predicted by the numerical simulation.

Figure 5. (a) Histological examination of the scaffold: stained middle section with modified Masson–Goldner’s trichrome dye
(mineralized bone in blue and fibrous tissues in purple). (b) Fraction of mineralized bone mb at t ¼ 12weeks in the numerical model.

M. Schmitt et al.6



data. For the former, a qualitative comparison between our

numerical results and the histological observations has been

done in terms of osteogenesis pattern. For the latter, the

numerical and the experimental results obtained fromaquasi-

static bending test done on the 12weeks ewe’s hemi-

mandible have been quantitatively compared. Although such

a comparison has been doneusing the data fromonly one ewe

andat a single timepoint, theFEmodel can still be considered

as a useful and consistent tool to predict osteogenesis within

the scaffold because the numerical results appear to be in

agreement with the experimental ones.

Nevertheless, some assumptions have been done to

develop the present work. First, a simplified 2D geometry

has been employed to represent the implanted hemi-

mandible. However, a 3D representation of the system

may lead to a more realistic strain–stress distribution,

which could influence the cells activity and thus the bone

matrix distribution. Indeed, histological observations have

pointed out that there might be more newly formed bone

on the lingual region of the hemi-mandible than on the

external region.

Second, the MSCs differentiation into either fibro-

blasts or osteoblasts is not regulated here by any

biophysical stimulus derived from the interstitial flow

and the shear strain (Prendergast et al. 1997) or the strain

energy (Sanz-Herrera et al. 2008, 2009). Such stimulus

would allow us to take into account all the cells types (i.e.

fibroblasts and osteoblasts) involved in the intramembra-

nous ossification.

Finally, we have not yet implemented the intrinsic

properties of the implant such as its osteoconductive and

osteoinductive characteristics.
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Pérez MA, Prendergast PJ. 2007. Random-walk models of cell
dispersal included in mechanobiological simulations of
tissue differentiation. J Biomech. 40(10):2244–2253.

Prendergast PJ, Huiskes R, Søballe K. 1997. Biophysical stimuli
on cells during tissue differentiation at implant interfaces.
J Biomech. 30(6):539–548.

Roshan-Ghias A, Vogel A, Rakotomanana L, Pioletti DP. 2011.
Prediction of spatio-temporal bone formation in scaffold by
diffusion equation. Biomaterials. 32(29):7006–7012.

Sandino C, Checa S, Prendergast PJ, Lacroix D. 2010. Simulation
of angiogenesis and cell differentiation in a CaP scaffold
subjected to compressive strains using a lattice modeling
approach. Biomaterials. 31(8):2446–2452.

Sanz-Herrera JA, Garcı́a-Aznar JM, Doblaré M. 2008. Micro-
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Appendix

Sensitivity analysis

According to Table 1, the model presents 14 parameters. Among
them, two have been determined from DIC (Eb;p and Eb;d) and
five have been found (Et , Bs;0 and tm) or deduced (Es;0 and Eb)
from the literature. As for cm;0, since we have assumed that both
the proximal and the distal bone regions are completely fulfilled
of MSCs throughout the simulation, a value of 0.98 has been
fixed.

Therefore, to determine which parameters most influence the
results and in particular the final value of the MSCs concentration
cm, a sensitivity analysis has been performed by letting vary of
^10% the remaining six parameters: g, ab, bb, as, bs and Pm;0.
The value of cm at t ¼ 12weeks has been evaluated at points A,
B and C (Figure 1) and has been compared to the value obtained
at the same points for the standard simulation (Section 3.2). The
results are reported in Table 2.

As expected, the most influencing parameter is the diffusion
constant in the scaffold domain bs. In fact, as bs increases or
decreases, cm increases (between 3.9% and 10%) and decreases
(between 6% and 12%), respectively. However, when g, ab, as,
bb and Pm;0 change, the final value of cm only undergoes a
variation between 0.23% and 1.1%.

Table 2. Numerical results for the sensitivity analysis.

Constant
Variation

(%) Value

Deviation of cm with
respect to the values in

Section 3.2

Point
A (%)

Point
B (%)

Point
C (%)

g þ10 1.1e27 m2/s 21.0 20.77 þ0.52
210 0.9e27 m2/s 21.1 20.83 þ0.23

ab þ10 1.1e220 m2/s 20.83 20.71 þ0.44
210 0.9e220 m2/s 20.89 20.74 þ0.51

bb þ10 3.3e213 m2/s 20.77 20.56 þ0.55
210 2.7e213m2/s 20.89 20.78 þ0.33

as þ10 1.1e220 m2/s 21.0 20.83 þ0.44
210 0.9e220 m2/s 20.69 20.64 þ0.49

bs þ10 3.3e215 m2/s þ3.9 þ10 þ6.0
210 2.7e215 m2/s 26.3 212 26.0

Pm,0 þ10 2.2e29 s21 20.78 20.53 þ0.45
210 1.829 s21 20.85 20.76 þ0.56

Note: The value of cm at t ¼ 12weeks has been evaluated at points A,
B and C (Figure 1) and the deviations with respect to the reference values
(Section 3.2) are reported.
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