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ABSTRACT 
This work deals with the performances of a refined shell model for modelizing cylindrical multilayered deep or 
shallow, thin or thick shells. To this end, new 3D analytical solutions are built from the well known Ren cylindrical 
shell panel and stand for reference solutions. Next, a parametric study varying the shell geometry (radius of 
curvature, thickness, curve side length of the panel) and the number of layers is carried out numerically using a C1 
finite element based on the present shell model. Numerical results are then compared to the new set of reference 
solutions established for laminates of 1, 2, 3 and 5 layers. Finally, use restrictions according to the shell geometry 
can be done. Moreover, indications about shell curvature can be obtained considering the ratio between radius and 
curve length. 
 
Keywords: multilayered shells, reference solutions, refined shell model, geometrical, parametric study, interlayer 
continuity conditions, C1 finite element. 

 
1.     INTRODUCTION 

Due to their exceptional specific stiffness and strength, composite materials are being increasingly used in advanced 
structural applications. Numerous computational models dedicated to multilayered plates and shells analysis have 
been developed; see [1 4]. A large part of models is dedicated to high-order theories [5 8] and zig-zag theories see 
the historical review paper [9], allowing suitable transverse shear effects representation. Based on previous models, 
finite elements have been elaborated to assess accurate displacement, strain and stress values for an efficient 
structural design; the following papers can be consulted for plate and shell finite element [10 15] but also hybrid 
solid-shell or 3D finite element [16 19]. 
In the present work, a refined shell model called sinus model is considered. A cosine transverse shear distribution 
satisfying both displacements and transverse shear stress continuities at interlayer and at free faces is assumed in this 
model. The associated C1 finite element [15,20] is used to perform the parametric study about thick-ness (from thin 
to thick), curvature (from shallow to deep), see Fig. 1, and lamination scheme of cylindrical panels. The main 
objective is to evaluate the range of validity for this high order model when geometrical Love [21,22] and Donnell 
[23,24] assump

 
After some geometrical considerations on shells, the refined sinus model is recalled and simplified strain expressions 
taking into account the geometrical hypotheses are presented. Secondly, cylindrical panel test configuration is 
reminded pointing out geo-metrical parameters kept for this study. New reference solutions for different geometrical 
parameters and stacking sequence are then obtained. In the following section, the parametric study is performed 
using the C1 6-node triangular shell finite element [15]. A homogeneous cylindrical panel is first considered. Results 
issued from different simplified strain field are compared with the new reference solutions so to select the most 
reliable model suitable for shallow to deep and thin to thick cylindrical shells. Multilayered cylindrical panels are 
then simulated using the selected model. Comparisons with reference solutions but also with Classical Shell Theory 
(CST) and First-order Shear Deformation Theory (FSDT) are then given, deducing the relevance of geometrical 
hypotheses for this refined shell model. Concluding remarks are finally proposed in the last section. 
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2.   GEOMETRIC CONSIDERATIONS ON SHELL 

A shell C with a middle surface S and a constant thickness e is defined by, see [26]: 
 

 
 
where the middle surface is described by a map  from a parametric bi dimensional  
 

 
 
For example, a cylindrical panel is obtained from the parametric space (  1 2) using Eq. (2) and the map is 
represented on Fig. 2. 
 

 
 
For a point on the shell middle surface, covariant base vectors are usually obtained as follows: 

 

 
In Eq.(3)and further on, latin indices i,j,... take their values in the set {1, 2, 3} while greek indices take their 
values in the set {1, 2}. The summation convention on repeated indices and the classic notation ( ) = ( )/  are 
used. For any point of the shell, covariant base vectors are now deduced as: 

 
 

The mixed tensor m  must be also introduced: 

 
 

Therefore, the covariant metric tensor a  , covariant b  and mixte b  curvature tensors can be deduced. These 
tensors and some relations between them are recalled hereafter: 

 
  

Finally, the elementary surface and volume, respectively dS and dV are classically given by: 
 

 
All these classic relations as well as more details for obtaining the Christoffel symbols and other differential 
geometrical entities can be found in Bernadou [26]. 
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3.  THE REFINED SHELL MODEL AND STRAIN FIELD SIMPLIFICATIONS 
 
3.1 The displacement field 
The refined displacement field is based on an assumed transverse shear stress distribution (as introduced in 

developed in [11] and extended in [20,15]. The classical plate/shell assumptions 33 = 0 is 
used. Continuity requirements for both displacements and transverse shear stresses at inter layers and at free faces 
are satisfied. The main steps of the procedure are summarized in Appendix A. For a layer (k), the displacement field 
components are expressed in the ai contravariant basis by: 

 
 

where t is the time and classical summation on repeated indices is used. In Eq. (8), 
 

 vi are the displacements of a point on the middle surface; 
  0 is the transverse shear strain at z = 0 defined by  
 

0  =    + b v   + v3  
 

where 1 = 2 and 2 = 1, being 1 and 2 the positive material fiber rotations about the a1 and a2 axis, 
respectively.  

 F (k)(z) are functions of the normal transverse co-ordinate z defining the distribution of the transverse shear 
stresses through the thickness. They are expressed by:  
 

 
 
In Eq. (9), the thickness functions f1, f2, g1

(k), . . . , g4
(k)  depend on the coefficients ai

(k), di
(k), b44, b55 and on the 

trigonometric functions as follows: 
 

 
where and N represents the number of layers. Fig. 3 illustrates the multilayered shell. 
The coefficients ai

(k), di
(k) on the one hand and b44, b55 on the other hand, are determined from the boundary 

conditions on the top and bottom faces of the shell and from both displacements and tranverse shear stresses 
continuity at interlayers, see Appendix A. 
 
The refined displacement field, see Eq. (8), can be seen as a high order development with respect to the transversal z 
co-ordinate. Classical shell models can be retrieved using f1, f2, g1

(k), . . . , g4
(k) functions as follows:  

 Kirchhoff-Love Koiter model (KL-K), called Classical Shell Theory (CST), is obtained with f1(z) = f2(z) = 0 and 
gi

(k)(z) = 0:  
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 Reissner-Mindlin Nagdhi model (RM-N), called First Order Shear Deformation Theory (FSDT), is obtained by 

setting f1(z) = f2(z) = z and gi
(k)(z) = 0:  

 

  
Hereafter, the superscript (k) for u( k) is omitted in order to lighten the strain field expressions and the finite element 
description of the model. 
 
 
3.2    The general strain field 
The general strain field directly issued from Eq. (8) is first presented using the total Green-Lagrange formulation. 
Simplified strain models based on specific geometrical assumptions are subsequently proposed. The resulting 
models will be assessed in Section 5. 
The linear strain components can be expressed in the covariant gi basis as: 

 
 
 
where u is the displacement vector. Using differential geometrical considerations see Section 2, and after some 
algebraic calculations, the covariant strain tensor components are obtained in the local contravariant basis ai as 
follows: 

 
 

where G (z)  =  F  (z)     z.  
For convenience, the following notation has been introduced in Eq. (14) to separate the characteristic contributions : 

 
 

where symbol  stands for the covariant derivative with respect to the curvilinear co-ordinate  .  
Furthermore, it is noted that the CST model gives F  (z) = 0 and G (z) =  with bending strain reduced to 2  . 
The FSDT model yields F  (z) = z and G (z) = 0 and the bending strain is represented by 1  . 
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3.3    The strain field simplifications 
The general strain field Eq. (14) is now simplified taking into account geometrical properties of the shell. The 
simplifications are shown to mainly affect the expression for the membrane-bending strains  . For transverse shear 
strain expressions 3 only the first term F (z) 0 is retained according to the continuity requirements, see Appendix 
A. 
The following three strain models can be directly derived from the general one: 
SIN-C model (SINus model with Continuity):  the membrane-bending strains are not changed while the transverse 
shear strains are reduced to the first order term, so: 
 
 
 
 

 
 
 
SIN-C/L model (SINus model with Continuity and Love hypothesis): this model is associated with the shallow shell 
hypothesis introduced by Love [21] using the fol-lowing geometrical assumption: 

 

 
 

Therefore, the membrane-bending strains become: 
 

 
Furthermore, the bending strain 2 expression becomes: 

  
SIN-C/L-D model (SINus model with Continuity and Love-Donnell hypothesis): in 
assumptions for which the membrane coupling effects in the transverse shear strain at the middle surface are 
neglected, are introduced into the SIN-C/L model. The following plate transverse shear strain components are then 
used: 
 

0  =    + v3   
A synthesis of the strain expressions for the three models is given in Table 1. 
 
 
4.     REN CYLINDRICAL PANEL: new 3D reference solutions 

The cylindrical panel test configuration of Ren is recalled in Fig. 4. Reference elastic solutions, see [25], are given 
for a homogeneous and a three layers shells with R/a = 3 and S = R/e = 4, 10, 50, 100. In this work, reference 
elastic solutions are extended to other shells with different ratios R/a, R/e (see Fig. 5) and for other lamination 
schemes.  
The configurations of the shell panel considered in this study are described below.  
Shell geometry (see Fig. 5):  

 1  [0, R ] and the panel is assumed to be infinite along the  2 direction. Three values of  angle are 
considered: = 30 , 60 , 120 ;  

  middle radius R is equal to 10;  
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 the curvature of the shell is controlled by the ratio R/a = 1/  where a is the length of the curve side. The smaller R/a 
ratio is, the deeper is the shell. For the parametric study, the ratio R/a takes the values 6  3  3/2 , corresponding 
to an angle  equal to 30 , 60 , 120 , respectively;  

 the thickness e of the shell is controlled by the ratio S = R/e; the shell is all the thinner as S ratio is high. Ratios S = 
R/e = 4, 10, 50, 100 are considered for this study.  
Material properties: 
one layer 0 , two layers (0 , 90 ), three layers (0 , 90 , 0 ) and five layers  
(0 , 90 , 0 , 90 , 0 ) of equal thickness are considered with the Pagano material properties [28]: 
 

E1  =  25E2  ;  G12  =  G13  =  0.5E2  ;  G23  =  0.2E2  ;  12  =  0.25 
 
 
Loading and boundary conditions: 
A sinusoidal pressure with respect to  1 is applied: q( 1) = q1 sin( 1/R ) where q1 is the maximum pressure value. 
The cylindrical panel is simply supported along its straight edges.  
The methodology to obtain analytical solutions based on the plane strain hypothesis is detailed in Appendix B. 
These analytical solutions, mentioned in bold character in tables 2 to 5, are taken as reference for the parametric 
study presented in the following section. 
 
 
5.   THE PARAMETRIC STUDY  
The different approximations for the strain field introduced in Section 3 are evaluated by means of a six node 
triangular FE. The main characteristics of this finite element, see [20,29], are briefly recalled. Using a conforming 
finite element approach, the displacement field given by Eq. (8) indicates that v3

h must be a C1-continuous function. 
The other generalized displacements v h and h have to be defined in the Sobolev space  
H 1 e) and be at least C0-continuous.  
Therefore, we choose the Argyris interpolation [30] for the deflection and the Ganev interpolation [31] for the other 
generalized displacements. Note that the Argyris interpolation is exactly of continuity C1 and the Ganev 
interpolation involves a semi-C1 continuity which is not needed here. The long expressions for these interpolations 
are omitted here, and the reader is referred to either the original papers [30] and [31] or to the book of Bernadou 
[26].  
The degrees of freedom (dof) associated with one finite element in the local curvilinear basis are given as:  

  for a corner node: 
 

 
 

  while, for a mid-side node: 
 

 
  
where ( ),n indicates the derivative with respect to the normal direction along element edge. 
 

First, simulations on homogeneous case involving different shell geometries (R/a; R/e) are performed. The aim is to 
evaluate present SIN model including Love and Donnell assumptions with respect to analytical reference solutions. 
Then, the most reliable model for shallow to deep and thin to thick shells is retained. Secondly, multilayered shell 
panels with 2, 3 and 5-plies are simulated using the selected model. Transverse displacement and stresses are 
compared with analytical solutions. CST and FSDT solutions, deduced respectively from Eq. (11) and Eq. (12), are 
also mentioned. 
 
For any case, only a quarter of the panel is modelized and the N = 4 mesh is retained, see Fig. 7. Non-
dimensional absolute values v¯ 3, ¯ 11 and ¯ 13 are defined by: 
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v¯ 3, ¯ 11 and ¯ 13 +  and summarized in 
tables 2 to 5. Relative errors between numerical values and reference solutions are finally given in Fig. 10 to 
Fig. 15 and Fig. 18. The stresses are computed from the constitutive law. Alternatively, a post-processing 
computation integrating the 3D equilibrium equations along the thickness has been used. 

 
5.1   Homogeneous case 
Results are summarized in Table 2. In this table, the geometry of the shell varies as follows:  

  from top to bottom, the 
thickness e is decreasing: the shell changes from thick to thin.  
 
5.1.1   Discussion on models pertinence according to S  =  R/e and R/a ratios  
The pertinence of the presented models for a shallow shell (R/a = 6 ), a deep shell (R/a = 3/(2 )) and a shell 
with intermediate curvature (R/a = 3 ) can be assessed by means of the results reported in Fig. 10, Fig. 11 and 
Fig. 12. Several remarks can be done:  
 for R/a = 6 , see Fig. 10, all the models give comparable results. Relative errors on ¯ 11 and ¯ 13 are 

respectively lower than 10% and 5% for all S values. Relative errors on v¯ 3 are significant but acceptable 
(between 12% and 19%) when the shell becomes thick (ratio S  =  4);  

 for R/a = 3/2 , see Fig. 12, some differences can be noticed on both stresses and transverse displacement:   
·  SIN/L-D model is not suitable.   
·  SIN/L model presents significant discrepancy on transverse displacement v¯ 3 varying from 29% for ratios (S = 

50, S = 100) to 41% for smaller S ratio and also on the transverse shear stress ¯ 13 which is about 16% for 
ratios (S = 50, S = 100) . 

·  SIN model gives best results.   
 for intermediate ratio R/a = 3 , see Fig. 11, interesting constatations can be done:   

·  v¯ 3, ¯ 11 and ¯ 13 estimated values using SIN model are good, whatever ratio S may be.   
·  SIN/L model gives smaller discrepancy than those observed for R/a = 3/2  : less than 17% on the 

transverse displacement v¯ 3, less than 7% on transverse shear  
¯ 13.   

·  for SIN/L-D model, v¯ 3, ¯ 11 and ¯ 13 obtained are far from the reference solution. Donnell assumption 
becomes very penalyzing for v¯ 3.   

Moreover, results issued from SIN model are presented in Fig. 13 in order to show the homogeneity of its 
behaviour for all R/a ratios and for S = R/e greater than 4. 
 
 
5.1.2    Synthesis from parametric study on the homogeneous case  

From the previous remarks, we can keep in mind:  
 SIN model clearly appears as the best one providing reliable results for all shell geometries;   
 indication about shell curvature can be obtained considering ratio R/a. Ratio R/a  1 seems to correspond 

to the limit between a shallow and a deep shell. In that way, ratio R/a <  1 rather characterizes a deep shell 
whereas ratio R/a >  1 is character-istic of a shallow shell;   

 for shallow shell, good results are obtained by all models when the shell is thin or thick. Love hypothesis, 1 
± zb   1, and Donnell one, 0 =  + v3  , can suit in this case.   

  Love and Donnell hypothesis cannot be used for deep shells.   
In the following, SIN model is conserved including continuity requirements for multilayered case: it is now 
called SIN-C. 
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5.2    Multilayered case 
 
5.2.1    Two layers case  

Results are summarized in Table 3 and plotted on Fig. 14 for ratios R/a = 6  3  3/2 . For this two-layer case, 
¯ 13 , L/2, e/ , L/2, 0)  

one like for others cases. Relative errors on v¯ 3 and ¯ 11 remain satisfactory whereas ¯ 13 relative error does 
not appear acceptable. In this particular case where the maximum transverse shear stress ¯ 13 occurs on the 
middle of the bottom layer but not on the middle shell surface, the prediction of the transverse shear stress 
by a cosine function through the shell thickness is not very good. Improvements are significant integrating 
equilibrium equations at post processing level, see Fig. 8. 

 
5.2.2    Three layers case  
Comparisons with classical CST and FSDT shell models in Table 4 and on plots Fig. 15 show reliable results 
obtained using SIN-C model. Relative errors are logically more significant for thick shell (S = 4) when the shell 
draws near to a 3D solid.  
¯ 11 and ¯ 13 through the thickness distributions are plotted on Fig. 16, Fig. 9, Fig. 17 for ratio R/a = 3  and 

different ratios S. A good behavior is obtained excepted for S = 4 where distribution of 13 is sensitive to 3D effect, 
while Sinus model gives always symmetric ¯ 13 distribution. As seen before, this point can be advantageously 
improved by integrating the equilibrium equations. 

 
5.2.3    Five layers case  
Results are summarized in Table 5 and plotted on Fig. 18. Same constatations as for three-layer case can be done 
and the homogeneity of the results can also be observed for all ratios R/a. Relative errors obtained remain very 
acceptable for all tested geometries. 

 
 
 

6.    CONCLUSION 

In this paper, a refined shell model to analyze cylindrical multilayer deep or shallow, thin or thick shells have been 
evaluated. The effects of the well known Love and Donnell shell hypotheses were particularly looked at in order to 

cylindrical shell eference solutions have been established varying the thickness R/e, the 
curvature R/a and the number of layers for laminates. Next, a parametric study has been performed numerically 
using a C1 6-node triangular finite element based on the present refined shell model and numerical results have been 
compared to reference solutions. 
 
The parametric study on homogeneous case has revealed that:  
 the shell curvature can be measured by the ratio R/a. The R/a =   1 seems to be representative of the limit 

between a shallow and a deep shell;  
 Donnell assumption is acceptable only for shallow shells;  
 Love assumption 1 ± zb   1 is not suitable for semi-thick shells and for deep shells;   
 the Sinus model provides reliable results for all considered shell geometries.  

 
Furthermore, numerical simulations on multilayered cases have proved that:  

 the SIN-C model gives good results for both semi-thick shells (S >  4) and deep shells (R/a <  1);   
 an accurate transverse shear stresses distribution is obtained. In the case of the two layers shell, the use of the 

equilibrium equations is efficient to recover the distribution but the maximal value of the transverse shear stress 
is well evaluated using the constitutive law.  

 
 
 
 
 
 
 
 



IJRRAS 4 (2  Dau & al. Solutions & Parametric Study for Multilayered Cylindrical Shell 

  

141  
 

REFERENCES 
 

[1] A. Noor, W. Burton, Assessment of computational models for multilayered composite shells, App. Mech. Rev. 
43 (4) (1990) 67 97.  

[2] A. Noor, W. Burton, C. Bert, Computational models for sandwich panels and shells, App. Mech. Rev. 49 (3) 
(1996) 155 199.  

[3] E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch. 
Comput. Meth. Engng. 9 (2) (2002) 87 140.  

[4] V. G. Piskunov, A. O. Rasskazov, Evolution of the theory of laminated plates and shells,   
J. Comp. Materials 4 (1970) 330 343.  

[5] J. Reddy, C. Liu, A higher-order shear deformation theory of laminated elastic shells, Int.   
J. Eng. Sci. 23 (1985) 319 330.  

[6] M. Touratier, A refined theory of laminated shallow shells, Int. J. Solids Struct. 29 (11) (1992) 1401 1415.  
[7] X.-P. Shu, A refined theory of laminated shells with higher order transverse shear deformation, Int. J. Solids 

Struct. 34 (6) (1997) 673 683.  
[8] C. Ossadow, M. Touratier, P. Muller, Deep doubly curved multilayered shell theory, AIAA J. 37 (1) (1999) 

100 109.  
[9] E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, App. Mech. Rev. 56 (2003) 

287 308.  
[10] M. D. Sciuva, A third-order triangular multilayered plate finite element with continuous interlaminar stresses, 

Int. J. Num. Meth. Eng. 38 (1995) 1 26.  
[11] A. Béakou, M. Touratier, A rectangular finite element for analysing composite multilayered shallow shells in 

statics, vibration and buckling, Int. J. Num. Meth. Eng. 36 (1993) 627 653.  
[12] P. Gaudenzi, A. Mannini, R. Carbonaro, Multi-layer higher-order finite elements for the analysis of free-edge 

stresses in composite laminates, Int. J. Num. Meth. Eng. 41 (1998) 851 873.  
[13] B. Brank, E. Carrera, A family of shear deformable shell finite elements for composite structures, Comput. 

Struct. 76 (2000) 287 297.  
[14] H. Yang, S. Saigal, A. Masud, R. Kapania, A survey of recent shell finite elements, Int. J. Num. Meth. Eng. 47 

(2000) 101 127.  
[15] F. Dau, A doubly curved c1 finite shell element based on a refined model for multilayered/sandwich shell 

structures, Ph.D. thesis, ENSAM Engineering School, Paris-France (2004).  
[16] S. Klinkel, F. Gruttmann, W. Wagner, A continuum based three dimensional shell element for laminated 

structures, Comput. Struct. 71 (1999) 43 62.  
[17] K. Sze, L. Yao, T. Pian, An eighteen-node hybrid-stress solid-shell element for homogeneous and laminated 

structures, Fin. Elem. Anal. Des. 38 (2002) 353 374.  
[18] K. Y. Sze, Three dimensional continuum finite element models for plate/shell analysis, Prog. Struct. Eng. 

Mater. 4 (2002) 400 407.  
[19] H. Sheng, J. Ye, A three dimensional state space finite element solution for laminated composite cylindrical 

shells, Comput. Methods Appl. Mech. Eng. 192 (2003) 2441 2459.  
[20] F. Dau, O. Polit, M. Touratier, An efficient c1 finite element with continuity requirements for 

multilayered/sandwich shell structures, Comput. Struct. 82 (2004) 1989 1899.  
[21] A. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Edition, Dover Publications, New York, 

1944.  
[22] V. Novozhilov, The theory of thin shells, Groningen : Noodhoff .  
[23] L. H. Donnell, Stability of thin walled tubes under torsion, NACA Report 479 .  
[24] K. M. Mushtari, On the stability of cylindrical shells subjected to torsion, Trudy Kazanskego aviatsionnugo 

inatituta .  
[25] J. G. Ren, Exact solutions for laminated cylindrical shells in cylindrical bending, Comp. Sci & Tech. 29 (1987) 

169 187.  
[26] M. Bernadou, Finite Element Methods for Thin Shell Problems, John Wiley and Sons, 1996.  
[27] J. Whitney, The effect of transverse shear deformation on the bending of laminated plates,  

J. Comp. Materials 3 (1969) 534 547.  
[28] N. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates,   

J. Comp. Materials 4 (1970) 20 34.  
[29] O. Polit, F. Dau, M. Touratier, C1 plate and shell finite element for geometrically non-linear analysis of 

multilayered structures, Comput. Struct. 84 (2006) 1264 1274.  
 



IJRRAS 4 (2  Dau & al. Solutions & Parametric Study for Multilayered Cylindrical Shell 

  

142  
 

[30] J. Argyris, I. Fried, D. Scharpf, The tuba family of plate elements for the matrix displacement method, Aero. J. 
Royal Aeronaut. Soc. 72 (1968) 701 709.  

[31] H. Ganev, T. Dimitrov, Calculation of arch dams as a shell using an ibm-370 computer and curved finite 
elements, in: Theory of shells, North-Holland, Amsterdam, 1980, pp. 691 696.  

[32] L. Doxsee, A higher order theory of hygrothermal behaviour of laminated composite shells, Int. J. Solids 
Struct. 25 (1989) 339 355. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Different geometries for the shell panel 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The bidimensional domain and the shell panel using a geometrical map. 
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Fig. 3. Laminations and deformed normal material fiber in homogeneous case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The Ren laminated cylindrical shell panel - Reference configuration. 
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Fig 5. R/e and R/a ratios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. The Ren laminated cylindrical shell panel: plane strain state. 
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Fig. 7. Meshes in parametric space. 
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Fig. 8. Two layers case - Comparison of ¯ 13 distribution. 
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Fig. 10. Homogeneous case ; ratio R/a  =  6 . Comparisons between SIN, SIN/L, SIN/L-D models 
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Fig. 11. Homogeneous case ; ratio R/a = 3  (R/a  1). Comparisons between SIN, SIN/L, SIN/L-D models. 
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Fig. 12. Homogeneous case ; ratio R/a = 3/2 . Comparisons between SIN, SIN/L, SIN/L-D models. 
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Fig. 13.Homogeneous case-SIN model performances when R/a = 6 3 3/2 and S = 4, 10, 50, 100
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Fig.  14.  Two layers case - SIN model performances when  R/a =6  3  3/2   and S  =  4, 10, 50, 100.
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Fig. 15.Three layers case  Relative errors on ¯ v /2, L/2, 0), ¯ /2, L/2 2) and ¯ , L/2, 0). 
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Fig. 16.Three layers case - ¯ 11 and ¯ 13 distributions- R/a = 3 and S = 10. 

 

 

Fig. 17.Three layers case - ¯ , L/2, 0) distributions for ratio R/a = 3 and S = 4, 100. 
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Fig. 18.Five layers case Relative errors on ¯ v3 /2, L/2, 0), ¯ 11 /2, L/2 2) and ¯ 13 , L/2, 0). 
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Model Strain components in contravariant ai  basis  

SIN-C 2z    =   0 + 0 + F  (z)  1  + F  (z)  1 + G (z)  2  + G  (z)  2 

  +z ( (b    2 ) ( 0 + F  (z)  1 + G (z)  2) +  

  (b    2 ) ( 0 + F  (z)  1 + G  (z)  2)))  

 2 3  =  F  (z) 0      

 with 0  ,   1  ,   2  et   0   defined in Eq. (15)  

SIN-C/L 2    =  0    + 0   + F  (z) 1    + F  (z) 1   + G (z) 2    + G  (z) 2  

 2 3  =  F  (z) 0      

 with  2
 = v3   and  0  ,    1  , 0 unchanged  

SIN-C/L-D 2     =   0    + 0   + F  (z)   1    + F  (z)   1   + G (z)   2    + G  (z)   2  

 2   3  =  F  (z) 0      

 with 
0  =     + v3    ,  2    =  v3  and  0  ,   1  unchanged 

 
 
        

     
Table 1 Strains expressions for simplified models.
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 R/a  6     3     3/2   
             

S =  
R/e Models v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13 

                

 
Ref. 
Sol. 0.048 0.427 0.450 0.231  0.312 1.331 1.079 0.572  6.216 6.928 5.397 1.943 

 SIN 0.042 0.526 0.409 0.228  0.277 1.248 0.971 0.557  5.199 6.081 4.715 1.838 

4 SIN/L 0.041 0.474 0.465 0.225  0.260 1.140 1.096 0.537  3.671 5.2794 5.012 1.518 

 SIN/L-D 0.039 0.454 0.455 0.221  0.219 0.986 0.987 0.495  1.604 3.001 2.992 1.021 
                

 Ref. Sol. 0.0112 0.238 0.221 0.253  0.115 0.890 0.807 0.579  3.643 5.415 4.900 1.877 

 SIN 0.0108 0.236 0.214 0.258  0.108 0.849 0.769 0.576  3.409 5.142 4.653 1.854 

10 SIN/L 0.0106 0.227 0.223 0.256  0.102 0.813 0.795 0.560  2.431 4.596 4.493 1.549 

 SIN/L-D 0.0101 0.218 0.219 0.251  0.085 0.719 0.720 0.512  1.052 2.720 2.720 1.030 
                

 Ref. Sol. 0.0042 0.177 0.174 0.259  0.0770 0.768 0.752 0.568  3.111 4.901 4.804 1.818 

 SIN 0.0042 0.175 0.172 0.265  0.0762 0.757 0.747 0.580  3.078 4.846 4.765 1.857 

50 SIN/L 0.0041 0.173 0.172 0.263  0.0720 0.743 0.744 0.563  2.198 :4.437 4.427 1.555 

 SIN/L-D 0.0039 0.168 0.169 0.257  0.0602 0.666 0.670 0.516  0.950 2.667 2.672 1.032 
                

 Ref. Sol. 0.0040 0.174 0.172 0.258  0.0755 0.758 0.751 0.565  3.083 4.849 4.801 1.809 

 SIN 0.0039 0.172 0.171 0.265  0.0751 0.749 0.752 0.580  3.068 4.815 4.793 1.857 

100 SIN/L 0.0039 0.171 0.171 0.263  0.0711 0.738 0.746 0.563  2.191 4.426 4.434 1.555 

 SIN/L-D 0.0037 0.167 0.167 0.258  0.0594 0.663 0.671 0.516  0.947 2.665 2.673 1.032 
                

 
Table 2: Results for homogeneous Ren cylindrical panel  Adimensionned displacements and stresses for ratios 

 and S=R/e=4,10,50,100. 
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 R/a  6     3     3/2   
                

R                

S =   e Model v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13 

 Ref. Sol. 0.0929 0.1086 0.7490 0.1406  0.8535 0.3840 2.5110 0.3022  24.7960 2.2156 15.0096 0.9350 

 SIN-C 0.0676 0.0476 0.7703 0.1836  0.6889 0.2632 2.4038 0.4411  21.1539 1.7863 13.6450 1.4458 

4 FSDT 0.0873 0.0641 0.4427 0.2423  0.7546 0.2806 1.9361 0.5291  21.4741 1.7981 12.3912 1.6919 

 CST 0.0237 0.0640 0.4409   0.4512 0.2800 1.9299   18.3712 1.7973  12.3669  
                

 Ref. Sol. 0.0336 0.0688 0.5371 0.1211  0.4931 0.2772 2.2452 0.2559  18.6367 1.7303 14.2125 0.8097 

 SIN-C 0.0299 0.0547 0.5372 0.2017  0.4607 0.2498 2.1676 0.4479  17.6764 1.6172 13.5900 1.4397 

10 FSDT 0.0323 0.0575 0.4713 0.2420  0.4690 0.2519 2.0632 0.5289  16.1384 1.6147 13.2200 1.6935 

 CST 0.0221 0.0575 0.4711   0.4204 0.2519 2.0622   17.1506 1.6149  13.2150  
                

 Ref. Sol. 0.0217 0.0552 0.4959 0.1076  0.4087 0.2404 2.1655 0.2349  16.6814 1.5368 13.8531 0.7511 

 SIN-C 0.0214 0.0543 0.4928 0.2061  0.4057 0.2376 2.1474 0.4509  16.5672 1.5202 13.7632 1.4444 

50 FSDT 0.0215 0.0544 0.4885 0.2434  0.4055 0.2375 2.1362 0.5320  16.5434 1.5190 13.7036 1.7032 

 CST 0.0211 0.0544 0.4886   0.4035 0.2375 2.1363   16.5230 1.5190  13.7036  
                

 Ref. Sol. 0.0211 0.0542 0.4936 0.1064  0.4031 0.2369 2.1583 0.2326  16.4967 1.5156 13.8117 0.7443 

 SIN-C 0.0210 0.0540 0.4923 0.2062  0.4023 0.2357 2.1503 0.4506  16.4648 1.5077 13.8270 1.4498 

100 FSDT 0.0211 0.0540 0.4907 0.2435  0.4020 0.2357 2.1454 0.5319  16.4517 1.5070 13.7980 1.7079 

 CST 0.0209 0.0540 0.4907   0.4015 0.2356 2.1454   16.4461 1.5070  13.7980  
                

 
 

Table 3: Two layers case  Comparisons of SIN-C, FSDT and CST models. Ratios  and 
S=R/e=4,10,50,100. 
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 R/a  6     3     3/2   
             

S =  R/e Model v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13 
                

 Ref. Sol. 0.0693 0.6125 0.5875 0.1654  0.4581 1.7715 1.3671 0.4757  8.0750 8.0003 6.1251 1.7452 

 SIN-C 0.0601 0.6974 0.5424 0.1479  0.4009 1.6504 1.2827 0.4617  6.8803 7.0056 5.4240 1.6583 

4 FSDT 0.0511 0.2116 0.1462 0.0877  0.3478 0.9247 0.6381 0.1913  5.9578 5.9422 4.0823 0.6136 

 CST 0.0420 0.2117 0.1463   0.0781 0.9189 0.6346   3.2325 5.9359 4.0700  
                

 Ref. Sol. 0.0163 0.3020 0.2736 0.2176  0.1440 0.9949 0.8972 0.5251  4.0411 5.7250 5.1919 1.7296 

 SIN-C 0.0156 0.2983 0.2699 0.2229  0.1377 0.9458 0.8552 0.5247  3.8036 5.4437 4.9190 1.7186 

10 FSDT 0.0132 0.1907 0.1646 0.0877  0.1221 0.8330 0.7184 0.1913  3.6355 5.3523 4.6120 0.6146 

 CST 0.0042 0.1909 0.1648   0.0777 0.8321 0.7178   3.1993 5.3523 4.6130  
                

 Ref. Sol. 0.0046 0.1860 0.1824 0.2390  0.0808 0.7982 0.7831 0.5253  3.2361 5.0836 4.9880 1.6831 

 SIN-C 0.0046 0.1840 0.1805 0.2461  0.0804 0.7902 0.7753 0.5404  3.2129 5.0284 4.9444 1.7317 

50 FSDT 0.0045 0.1801 0.1750 0.0878  0.0798 0.7887 0.7666 0.1922  3.2060 5.0436 4.9128 0.6153 

 CST 0.0041 0.1801 0.1751   0.0776 0.0089 0.0066   3.1885 5.0436 4.9128  
                

 Ref. Sol. 0.0042 0.1807 0.1789 0.2390  0.0786 0.7866 0.7791 0.5234  3.1996 5.0278 4.9804 1.6754 

 SIN-C 0.0042 0.1796 0.1781 0.2471  0.0785 0.7824 0.7758 0.5407  3.1937 4.9915 4.9709 1.7306 

100 FSDT 0.0042 0.1789 0.1765 0.0878  0.0783 0.7829 0.7726 0.1919  3.1919 5.0011 4.9569 0.6147 

 CST 0.0041 0.1787 0.1765   0.0779 0.7828 0.7727   3.1876 5.0010 4.9572  
                

 
Table 4: Three layers case  Comparisons of SIN-C, FSDT and CST models. Ratios  and 

S=R/E=4,10,50,100. 
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 R/a  6     3     3/2   
             

S =  R/e Model v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13  v¯ 3 ¯ 11 ¯ 13 
                

 Ref. Sol. 0.0763 0.6444 0.5904 0.2608  0.4834 1.7808 1.3920 0.5512  8.6511 8.7093 6.7994 1.7406 

 SIN-C 0.0672 0.6964 0.5417 0.2051  0.4306 1.6147 1.2555 0.5053  7.3945 7.6825 5.9626 1.6718 

4 FSDT 0.0637 0.2538 0.1772 0.2239  0.3760 1.1103 0.7742 0.4893  6.7438 7.1206 4.9536 1.5675 

 CST 0.0050 0.2533 0.1768   0.0959 1.1041 0.7698   3.8795 7.1181 4.9420  
                

 Ref. Sol. 0.0171 0.3110 0.2839 0.2359  0.1579 1.1214 1.0170 0.5118  4.6838 6.7602 6.1371 1.6341 

 SIN-C 0.0164 0.3022 0.2735 0.2345  0.1505 1.0688 0.9659 0.5233  4.4188 6.4436 5.8157 1.6879 

10 FSDT 0.0144 0.2292 0.1986 0.2236  0.1398 1.0028 0.8676 0.4886  4.3093 6.4407 5.5637 1.5684 

 CST 0.0050 0.2291 0.1986   0.0950 1.0012 0.8662   3.8509 6.4424 5.5610  
                

 Ref. Sol. 0.0054 0.2214 0.2172 0.2249  0.0967 0.9590 0.9406 0.4918  3.8923 6.1218 6.0005 1.5737 

 SIN-C 0.0054 0.2190 0.2148 0.2411  0.0962 0.9494 0.9312 0.5285  3.8641 6.0544 5.9524 1.6912 

50 FSDT 0.0053 0.2168 0.2108 0.2239  0.0958 0.9500 0.9238 0.4905  3.8597 6.0748 5.9220 1.5705 

 CST 0.0050 0.2169 0.2108   0.0940 0.9500 0.9239   3.8413 6.0748 5.9220  
                

 Ref. Sol. 0.0050 0.2171 0.2150 0.2237  0.0945 0.9472 0.9381 0.4894  3.8539 6.0581 6.0000 1.5659 

 SIN-C 0.0050 0.2158 0.2138 0.2415  0.0944 0.9421 0.9338 0.5285  3.8463 6.0136 5.9878 1.6928 

100 FSDT 0.0050 0.2155 0.2126 0.2241  0.0943 0.9433 0.9310 0.4906  3.8452 6.0251 5.9737 1.5717 

 CST 0.0049 0.2155 0.2126   0.0938 0.9432 0.9310   3.8406 6.0251 5.9738  
                

 
Table 5: Five layers case  Comparisons of SIN-C, FSDT and CST models. Ratios  and 

S=R/e=4,10,50,100. 
 

A.    Details about the refined shell model 

For a layer (k), transverse shear stresses versus strains are expressed by: 
 

 
 
Where, 



IJRRAS 4 (2  Dau & al. Solutions & Parametric Study for Multilayered Cylindrical Shell 

  

159  
 

 
with f (z) = df (z)/dz et f (z) = d2f (z)/dz2, first and second derivatives of Sinus shear function f (z). 1

0 and 2
0 

standing for the two transverse shear strains on the middle surface of the shell. 
 

 

 
where Cij (k) are 3D elastic coefficients before including 33 = 0. Symmetric or un-symmetric monoclinic layers can 
be considered in Eq. (A.1) and Eq. (A.3). 
 
On the other hand, a44, a45, a54, a55 and b44, b55 coefficients in Eq. (A.1) and Eq. (A.2) are introduced to satisfy 
transverse shear stresses 3 continuity at inter layers and on top and bottom faces of the shell. 
 The next step consists in considering the transverse strains z 3 given in [32,11] for shallow shells:   

 
 
Using flexibility material coefficients Sij , for (i, j)=(4,5), 3 can be written as: 

 
 

From Eq. (A.4) and Eq. (A.5) and by respect of 3(k) distribution given in Eq. 
 
(A.1), it can be easily deduced: 

 
 

putting down, 

 
 
 Finally, bending and transverse shear components of displacement can be obtained by integration of Eq. 

(A.7) according to z co-ordinate.   
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Adding µ v    so that classical Koiter model could be retrieved, the final displacement field can be achieved: 
  

 
  
Thickness functions g(k) 1 (z), . . . ,g(k) 4 (z) are linear functions defined by: 
 

 
 

depending on a(
i
k), d(

i
k) coefficients. d(

i
k) allows to ensure displacements continuity at interlayer and on the middle 

surface of the shell.  
Trigonometric functions 

 

  
defined through the shell thickness e depend on b44  and b55  constant. 
 Previous coefficients a(

i
k), d(

i
k) on one hand and b44 and b55 on the other hand, are respectively determined from 

boundary conditions on top and bottom faces of the shell and from both displacements and tranverse shear 
stresses continuity at inter-layer. The identification method is detailed in [11].  

 
B.    Details about the reference solution 

 
In this part, the Ren approach is briefly recalled using its own notations.  
Step 1: Using ( ) as in plane cylindrical coordinates, Fig. 6, constitutive equations are given by: 
 

 
 
 
where R11, R12, R22, R66 are reduced flexibility coefficients obtained putting down zzz = 0 (plane strain hypothesis). 
They are defined by Rij = Sij Si3Sj3/S33 for i, j = 1, 2, 6 where Sij are flexibility coefficients of material. 
Step 2:  Equilibrium equations without body forces are: 
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and strain relations are defined by: 

 
u and v are respectively the displacements in the r-direction and -direction. Furthermore, the in-plane strain state 
expressed by zzz = 0 involves the additional stresses relation:  

 
Step 3: The F( ) function is then introduced satisfying Eq.(B.2) and it follows: 

 
Step 4: Issued from Eq. (B.3), the compatibility equation can be written as: 

 
From Eq. (B.6) and constitutive relations Eq. (B.1), the following differential equation must be satisfied by F: 

 
step 5: Following step consists in finding F function satisfying:  

  differential equation Eq. (B.7),   
  boundary conditions on the top and bottom surfaces  

  
where ri and ro are respectively inner and outer radius for the cylindrical panel.  simply supported boundary 
conditions 

 
 interface continuity conditions such that and v are equal at each interface. The stress function F is 

searched under the form: 

 
assuming a pressure loading on the Fourier series form 

 
 

  
q( 1) introduced in Section 4 can be easily related to q  putting down 1 = and n = 1. 
 

 


