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The objective of this contribution is to establish a first-order computational homogenization
framework for micro-to-macro transitions of porous media that accounts for the size effects
through the consideration of surface elasticity at the microscale. Although the classical (first-
order) homogenization schemes are well established, they are not capable of capturing the
well-known size effects in nano-porous materials. In this contribution we introduce surface
elasticity as a remedy to account for size effects within a first-order homogenization scheme.
This proposition is based on the fact that surfaces are no longer negligible at small scales.

Following a standard first-order homogenization ansatz on the microscopic motion in
terms of the macroscopic motion, a Hill-type averaging condition is used to link the two
scales. The averaging theorems are revisited and generalized to account for surfaces. In the
absence of surface energy this generalized framework reduces to classical homogenization.
The influence of the length scale is elucidated via a series of numerical examples performed
using the finite element method. The numerical results are compared against the analytical
ones at small strains for tetragonal and hexagonal microstructures. Furthermore, numerical
results at small strains are compared with those at finite strains for both microstructures. Fi-
nally, it is shown that there exists an upper bound for the material response of nano-porous
media. This finding surprisingly restricts the notion of “smaller is stronger”.

1 Introduction

During the last three decades a significant research interest on nano-structured materials
has been developed, such as carbon nanotubes [1], nano-channel-array materials [2], nano-
beams [3], nano-wires [4], nano-crystalline metals [5], nano-belts [6] and thin films [7], with
their size in the order of a few to hundreds of nanometers. The significant electrical, thermal



or mechanical response of nano-materials is due to their dominant surface effects and the fact
that the surface-to-volume ratio is proportional to the inverse of the dimension and hence, very
large at the nano-scale.

Surface effects can be modeled using various continuum approaches. The study of the
behavior of surfaces dates back to the works of Laplace, Young and Gibbs, see e.g. the
reviews by Duan et al. [8] and Javili et al. [9] for further details. A phenomenological model
that accounts for surfaces with their own constitutive behavior by considering tensorial surface
stresses has been proposed by Gurtin and Murdoch [10] stemming from the work by Scrive
[11]. Central to the theory of surface elasticity is that the surface is energetic in the sense that
it possesses its own mechanical and constitutive structures which are, in general, independent
of those associated with the bulk. More details on surface elasticity theory and variants thereof
can be found in [12–17]. The overall response of continua due to the presence of surfaces with
their own constitutive law has been extensively investigated using the surface elasticity theory,
see e.g. [18–21]. Computational aspects of surface elasticity theory using the finite element
method are detailed in [22–24].

If one needs to identify the overall response of a composite with energetic surfaces in its
microstructure, then the developed phenomenological models for surfaces should be com-
bined with micromechanics and homogenization. The main principles of homogenization
were introduced by Hill [25] and Hill and Rice [26] as a consistent methodology to link
the macroscopic and microscopic scales. Homogenization forms the basis for computational
micro-to-macro transition and is a powerful tool to understand the response of heterogenous
materials. For further details on computational homogenization, see e.g. [27–47] and refer-
ences therein. Methods for obtaining effective properties for materials that contain energetic
surfaces have been developed recently using analytical homogenization [48–52].

This contribution deals with computational homogenization of porous materials accounting
for the surface elasticity of the pores. This works bears certain similarities to [53], however,
it provides a more elaborate study and answers several questions raised recently. The key
features and objectives of this manuscript are:

• to investigate the effect of pore-to-volume and surface-to-volume ratios in the presence
of surface elasticity,

• to compare tetragonal and hexagonal micro-structures,

• to study the response of the material with and without surface effects,

• to compare small strain with finite strain response,

• to compare analytical solutions with numerical results (in the case of small strains),

• to show the bounded response of nano-porous materials from both analytical and numer-
ical observations.

Structure of this manuscript

This manuscript is organized as follows. Notation and definitions are shortly introduced.
Section 2 deals with theoretical aspects of computational homogenization at finite strains ac-
counting for surfaces. The balance equations at the macroscale and the microscale are briefly



introduced and modified averaging theorems are proposed to link the two scales. The modified
averaging theorems reduce to the classical ones in the absence of surfaces. Also, the classical
Hill–Mandel condition is generalized to consistently establish an incremental energy equiva-
lence between the scales. Section 3 elucidates the developed theory by a series of numerical
examples. A well established analytical estimate for this type of problems is given and its
validity is assessed using numerical examples based on the finite element method. Numerical
simulations are carried out for various sizes, volume fractions, load cases and deformations,
and also for both tetragonal and hexagonal microstructures. Section 4 concludes this work,
discusses possible extensions and gives an outlook.

Notation and definitions

Direct notation is adopted throughout. At the microscale, quantities defined on the energetic
surface are distinguished from those in the bulk material by a hat placed above the quan-
tity. That is, {•̂} refers to a surface variable with its bulk counterpart being {•}. Moreover,
macroscopic quantities are differentiated from microscale quantities by the left super-script
“ M” placed next to the quantity. That is, M{•} refers to a macroscopic variable with its micro-
scopic counterpart being {•}.

The terms “macro” and “micro” are frequently used instead of macroscopic and micro-
scopic, respectively. In the discussion of the results, the terms “stronger” and “weaker” are
frequently used instead of “stiffer” and “softer”, respectively. This choice is made to com-
pare the material behavior with the familiar notion of “smaller is stronger” and should not be
confused with the classical definitions of these terms in mechanics.

Within the classical homogenization context, the term “size” usually refers to the size of
the window zoomed at the material microstructure. When this window is large enough such
that an apparent macroscopic property of interest converges, then the window becomes a
representative volume element abbreviated as “RVE” and its size defines the “RVE size”, see
for instance [54] for further details on the definition of the RVE.

First-order computational homogenization is missing a length-scale or physical size of
the RVE and therefore, “size” as defined above does not introduce any confusion. This is
not the case here. In this manuscript the terminology “size” and in particular “RVE size” is
used somewhat differently from its conventional meaning in computational homogenization,
but closer to its meaning in the general sense of (physical) size. In particular, we consider
perfectly periodic microstructures such that the unit cell is by definition representative and
hence “RVE”. In the discussions of the numerical results varying the “RVE size” indicates
varying the physical size or dimension of the “RVE” such that a size effect is observed.

2 Theoretical framework of homogenization

Consider a porous material where the pores are enclosed within material surfaces with a con-
stitutive response different to that of the bulk material. We assume throughout this work that
the common assumption of length-scale separation associated with homogenization holds.
Therefore, the macroscopic problem is large enough compared to the length scale associated
with the microscale problem. In this contribution, all relations are represented only in the
Lagrangian description, keeping in mind that it is straightforward to formulate the problem
in the Eulerian description. Recall that the primary objective of this work is to account for



size effects within a computational homogenization scheme through the consideration of sur-
faces. Therefore, we limit the discussion to major relations and definitions that are essential
for the paper to be self-contained. Further details on computational homogenization and its
underlying assumptions can be found in the extensive references listed in the introduction.

2.1 Macroscale

Consider a continuum body that takes the material configuration at time t = 0 and the spatial
configuration at any time t > 0, as shown in Fig. 1. At the macro level the body occupies
the domain MB0 with the boundary ∂MB0 at time t = 0 with outward surface unit normal MN .
The macroscopic spatial configuration is denoted MBt with the boundary ∂MBt and the surface
unit normal Mn. A material point in the macroscale is characterized by a position vector
MX and is mapped to its spatial counterpart Mx via the non-linear deformation map Mϕ, i.e.
Mx = Mϕ(MX). The corresponding macro deformation gradient MF maps (linearly) the line
element dMX in the material configuration to the spatial line element dMx according to

dMx = MF · dMX and MF = MGradMϕ with MGrad{•} =
∂{•}
∂MX

. (1)

The governing equations are balances of linear momentum and angular momentum. In the
absence of inertial effects, the balance of linear momentum reads

MDivMP + Mbp
0 = 0 in MB0 subject to MP · MN − Mtp

0 = 0 on ∂MBN
0 , (2)

with Mbp
0 as the macroscopic body force density in the material configuration and MP the

macro Piola stress. The prescribed traction per unit reference area in the material configuration
is denoted Mtp

0 and is applied on the Neumann boundary ∂MBN
0 . The local form of balance of

angular momentum in the material configuration is

MP · MF t = MF · MP t. (3)

2.2 Microscale

The material configuration at the microscale is denoted B0 and is assumed to be statistically
representative of the material. The configuration B0 defines the representative volume element
(RVE) in the material configuration and its external boundary is denoted ∂B0 with outward
unit normal N , see Fig. 2. The spatial configuration at the microscale is defined analogously.
The internal boundary of the RVE is the union of the surfaces of the pores within B0 and are
collectively denoted as S0 with its spatial counterpart denoted St. The surfaces of the pores
are assumed to be smooth. The outward unit normal to S0 is denoted N and the domain
surrounded by S0 is denoted V0 with its volume indicating the pore volume.
Remark: If the external boundary ∂B0 intersects with a pore, the intersection of S0 and ∂B0

forms a curve C0 := ∂S0 as the boundary of the surface of the pore. The normal to this curve
and tangent to S0 is denoted N̂ . In this manuscript, we assume that the pores are entirely
enclosed within the RVE and the external boundary of the RVE is chosen such that it has no
intersection with the surface S0 and therefore ∂S0 = ∅. This assumption only simplifies the
derivations and does not influence the fundamental concepts.



Fig. 1 (online colour at: www.gamm-mitteilungen.org) A graphical summary of computational homo-
genization. A macroscopic domain MB0 in the material configuration that maps to the spatial configura-
tion MBt via the non-linear deformation map Mϕ. The domain B0 corresponds to a RVE. The motion ϕ

of the microscopic RVE is associated with a macroscopic point MX within the bulk. Constitutive laws
at the micro-scale are known and the goal is to compute implicitly the macro stress from the response of
the underlying microstructure.

Classical continuum mechanics assigns the free energy only to the bulk material. The
same holds for available homogenization schemes. Surface elasticity theory, though, requires
additionally an independent surface energy assigned to the surfaces of the pores S0. In this
work at the micro level we employ the surface enhanced continuum theory while having the
classical continuum theory at the macro level. This is motivated by the fact that due to the
small dimensions and, consequently, large area to volume ratio of the micro problem, the
surface effects are not negligible at the microscale, however, they can be neglected at the
macro level. The free energy density Ψ and the surface free energy density Ψ̂ are assigned to
the bulk and to the surfaces of the pores at the microscale, respectively, as shown in Fig. 2.

In a near-identical fashion to the macroscopic problem, the kinematics of the micro prob-
lem are now presented. Let X be the position vector of a point in B0 that is mapped via the
non-linear deformation map to its counterpart x in the spatial configuration Bt. The points
on the material surface X̂ := X|S0 are mapped to x̂ := x|St

via ϕ̂ and since the surface
is material, ϕ̂ = ϕ|S0 . The material line elements dX ∈ B0 are mapped to dx ∈ Bt via
the linear deformation map F = Gradϕ with Grad{•} = ∂{•}/∂X . On the surface S0 the
material line elements dX̂ are mapped to the spatial (surface) line elements dx̂ via the surface
deformation gradient F̂ as

dx̂ = F̂ · dX̂ and F̂ = Ĝradϕ̂ with Ĝrad{•} =
∂{•}
∂X̂

= Grad{•} · Î , (4)

where Î = I −N ⊗N denotes the surface identity tensor or rather the surface projection.



Fig. 2 (online colour at: www.gamm-mitteilungen.org) Porous composite with material surface in
the microstructure, separating pores from the bulk material in the material configuration with its two-
dimensional illustration. Similar to the classical homogenization the constitutive response of the bulk
material is described by its free energy Ψ. In contrast to the classical homogenization the surface of
the pores are also endowed with their free energy ̂Ψ resulting in the size-effect missing in the classical
first-order schemes. The external and internal boundary of the RVE are denoted ∂B0 and S0, respectively.

For the microscale problem of interest, the governing equations are balances of linear and
angular momentum in the bulk and on the surface. Balance of linear momentum in the bulk
reads

DivP = 0 in B0 , (5)

subject to

P ·N − tp
0 = 0 on ∂BN

0 and D̂ivP̂ + tp
0 − P ·N = 0 on SN

0 , (6)

in which tp
0 denotes the prescribed traction on the Neumann portions of the boundaries ∂B0

and S0 denoted as ∂BN
0 and SN

0 , respectively. The prescribed traction on the surfaces of the
pores, i.e. tp

0 on SN
0 , often vanishes unless in the case of pore pressure or similar effects.

Balance of angular momentum results in the symmetry of Cauchy stresses in the bulk and on
the surfaces equivalently expressed as

P · F t = F · P t in B0 and P̂ · F̂ t = F̂ · P̂ t on S0 , (7)

with P the bulk Piola stress and P̂ the surface Piola stress. Note, in the absence of surfaces,
i.e. P̂ = 0, the balance equations recover their conventional form for the bulk only problem.
Remark: The boundary condition (6)2 is essentially the balance of linear momentum on the
surface S0 and is subject to the boundary condition P̂ · N̂ − t̃p

0 = 0 on CN
0 where t̃p

0 denotes



the prescribed traction on the Neumann portions of curve CN
0 . However, throughout this work

we assume ∂S0 = ∅ hence, CN
0 = ∅.

Finally, a Coleman–Noll procedure shows that the micro Piola stress in the bulk P and the
micro Piola stress on the surface P̂ for hyperelastic materials are given by

P =
∂Ψ

∂F
and P̂ =

∂Ψ̂

∂F̂
. (8)

Gurtin and Murdoch [10] assume that the surface Piola stress possesses the superficiality
property P̂ · N = 0. Javili et al. [55] explain how this condition can be explained by rank-
deficiency of F̂ and eventually they prove that the superficiality of the surface stress is a
consequence of a first-order bulk material, i.e. the stress is only a function of the deformation
gradient.

2.3 Connection between scales

In this section macroscopic quantities are related to their micro counterparts through volume
averaging over the RVE and fundamental reasoning. It proves convenient to define the follow-
ing averaging operator in the material configuration 〈{•}〉{◦} as the integral of {•} over the
domain {◦} divided by the volume V0 as

〈{•}〉{◦} =
1

V0

∫
{◦}

{•} d{◦} , (9)

and in particular

〈{•}〉B0 =
1

V0

∫
B0

{•} dV and 〈{•}〉S0 =
1

V0

∫
S0

{•} dA . (10)

The volume V0 is the total volume surrounded by the (external) boundary ∂B0 and can be
understood as the total volume of the domains B0 and V0, that is

V0 =

∫
B0

dV +

∫
V0

dV , (11)

where the first integral indicates the matrix volume and the second one the pore volume. The
identity ∫

∂B0

N ⊗X dA = V0 I , (12)

is proven in A.1. For a smoothly defined field {•} in both B0 and V0, we define the (classical)
average operator as the average over the whole RVE without any subscript as

〈{•}〉 = 1

V0

∫
B0

{•} dV +
1

V0

∫
V0

{•} dV . (13)

If the field {•} is not smoothly defined within the whole domain, the average operator can be
consistently redefined. In particular, for the Piola stress field P relation (13) reduces to

〈P 〉 = 1

V0

∫
B0

P dV +
1

V0

∫
V0

P dV =
1

V0

∫
B0

P dV = 〈P 〉B0 , (14)



as the stress field vanishes within the pores. Also, since the deformation gradient cannot be
defined within the pores, using the gradient theorem, the average operator (13) for F can be
written as

〈F 〉 = 1

V0

∫
B0

F dV +
1

V0

∫
S0

ϕ̂⊗N dA . (15)

2.3.1 Generalized average stress theorem

In order to relate the macro stress to the microscopic one, motivated by classical homogeniza-
tion, we develop an average stress theorem. However, the average stress theorem needs to be
generalized in order to account for surface stresses. In this section, we propose a generalized
average stress theorem and provide a proof. In the absence of surface stresses, this generalized
format recovers the classical average stress theorem.
Theorem: Let P c be a given constant stress tensor and ∂B0 be the external boundary of the
domain B0 with outward normal N as shown in Fig. 2. If P ·N = tp

0 = P c ·N is prescribed
on the entire ∂B0 and tp

0 = 0 holds on S0, then 〈P 〉B0 + 〈P̂ 〉S0 = P c.

P r o o f. In order to prove the generalized average stress theorem, we employ the identity

〈P 〉 = 1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA− 1

V0

∫
S0

P̂ dA (16)

which is proven in A.2. The second integral vanishes since the prescribed traction is zero on
S0. Also, 〈P 〉B0 = 〈P 〉 according to Eq. (14) as the pores are stress-free. Therefore, we have:

〈P 〉B0 + 〈P̂ 〉S0 =
1

V0

∫
∂B0

tp
0 ⊗X dA

=
1

V0

∫
∂B0

P c ·N ⊗X dA =
1

V0

P c ·
∫
∂B0

N ⊗X dA .

(17)

Using the identity (12), relation (17) simplifies to

〈P 〉B0 + 〈P̂ 〉S0 =
1

V0

P c · [V0 I] = P c .

The average stress theorem tells us when a body is subject to traction boundary conditions
as defined above, the stresses averaged over the entire body plus the surface stresses averaged
over the entire surfaces of the pores is the same as P c regardless the complexity of the stress
field within the RVE domain. In view of the micro-to-macro transition, the average stress
theorem motivates the macro stress to be defined by sum of the average bulk and surface
stresses as

MP := 〈P 〉+ 〈P̂ 〉S0 = 〈P 〉B0 + 〈P̂ 〉S0

=
1

V0

∫
B0

P dV +
1

V0

∫
S0

P̂ dA =
1

V0

∫
∂B0

tp
0 ⊗X dA .

(18)



Clearly, if P̂ = 0, the relation (18) reduces to the classical average stress theorem. More
interestingly, the definition of the macro stress as the surface integral

MP :=
1

V0

∫
∂B0

tp
0 ⊗X dA , (19)

is identical to its format in classical homogenization.

2.3.2 Generalized average deformation gradient theorem

In order to relate the macro deformation gradient to the micro deformation gradient, motivated
by the classical homogenization, we develop an average deformation gradient theorem. Note,
the term average strain theorem is frequently used due to the origins of this theory in linear
elasticity. In principle, the average deformation gradient theorem needs to be generalized in
order to account for the surface deformation gradients. However, it turns out that, in contrast
to the average stress theorem, the generalized format of the deformation gradient theorem
remains identical to the classical one. This can be explained by the fact that the classical theo-
rem neglects only the surface stresses but the surface deformations are intrinsically accounted
for.
Theorem: Let F c be a given constant deformation gradient tensor and ∂B0 be the external
boundary of the domain B0 with outward normal N as shown in Fig. 2. If ϕ = F c · X is
prescribed on the entire ∂B0, then 〈F 〉 = F c.

P r o o f. In order to prove the generalized average deformation gradient theorem, we em-
ploy the gradient theorem taking the orientations of surface normals carefully into account
as

〈F 〉 = 1

V0

∫
B0

F dV +
1

V0

∫
S0

ϕ̂⊗N dA

=
1

V0

∫
∂B0

ϕ⊗N dA+
1

V0

∫
S0

ϕ̂⊗N dA− 1

V0

∫
S0

ϕ̂⊗N dA︸ ︷︷ ︸
=0

=
1

V0

∫
∂B0

ϕ⊗N dA .

Next, we impose ϕ = F c ·X , use the identity (12) and the symmetry property of the identity
tensor as

〈F 〉 = 1

V0

∫
∂B0

ϕ⊗N dA =
1

V0

∫
∂B0

F c ·X ⊗N dA

=
1

V0

F c ·
∫
∂B0

X ⊗N dA =
1

V0

F c · [V0 I
t] = F c .

The average deformation gradient theorem tells us that when a body is subject to the linear
displacement boundary conditions defined above, with F c being a constant tensor, the defor-
mation gradient averaged over the entire body is the same as F c regardless the complexity of



the deformation within the RVE domain. In view of the micro-to-macro transition, the average
deformation gradient theorem motivates the definition of the macro deformation gradient as

MF := 〈F 〉 = 1

V0

∫
B0

F dV +
1

V0

∫
S0

ϕ̂⊗N dA =
1

V0

∫
∂B0

ϕ⊗N dA . (20)

2.3.3 Generalized Hill–Mandel condition

Motivated by the generalized stress and deformation gradient theorems, the macro stress MP
and the macro deformation gradient MF are defined by relations (18) and (20), respectively.
Next, we must impose an incremental energy equivalence between the macro and micro scales
in a generalized fashion to account for the surface stresses of the pores. The incremental
energy equivalence between the scales is known as Hill–Mandel condition. We propose the
following generalized Hill–Mandel condition

〈P : δF 〉+ 〈P̂ : δF̂ 〉S0 − MP : δMF
!
= 0 . (21)

The next task is to seek suitable boundary conditions on the RVE which satisfy the generalized
Hill–Mandel condition (21). In order to do so, we introduce the generalized Hill’s identity,
proven in A.3, which states that

〈P : δF 〉+ 〈P̂ : δF̂ 〉S0 − MP : δMF

=
1

V0

∫
∂B0

[δϕ− δMF ·X] · [tp
0 − MP ·N ] dA .

(22)

The generalized Hill’s identity (22) essentially expresses the left-hand side of the condition
(21) in terms of a surface integral over the external boundary of the RVE ∂B0. This has the
advantage that the generalized Hill–Mandel condition, which is essentially a volume integral,
can be transformed to a boundary integral and eventually identifies the appropriate boundary
conditions that guarantee the incremental energy equivalence between the scales. In order to
satisfy the generalized Hill–Mandel condition, the right-hand side of Eq. (22) should identi-
cally vanish. Here, we list several conditions, deduced from the right-hand side of Eq. (22),
that sufficiently satisfy the generalized Hill–Mandel condition.



Voigt � ϕ = MF ·X in B0 ,

linear displacement (Taylor) assumption ⇒ Voigt bound ,

DBC � ϕ = MF ·X on ∂B0 ,

linear displacement boundary condition (DBC) ,

PBC � [ϕ− MF ·X] : periodic , [tp
0 − MP ·N ] : anti-periodic on ∂B0 ,

periodic displacement and anti-periodic traction boundary condition ,

TBC � tp
0 = MP ·N on ∂B0 ,

constant traction boundary condition (TBC) ,

Reuss� tp
0 = MP ·N in B0 ,

constant traction (Sachs) assumption ⇒ Reuss bound .

Note, for the periodic boundary conditions (PBC), anti-periodic traction tp
0 satisfies the anti-

periodicity of [tp
0 − MP ·N ] since MP ·N is anti-periodic itself due to anti-periodicity of the

boundary normals. For classical homogenization without energetic surfaces at the microscale,
it is well-known that the Reuss condition results in the “most compliant” and the Voigt condi-
tion results in the “most stiff” response. In the remainder of this manuscript we limit ourselves
to the PBC in the numerical examples.
Remark: It can be shown that using the definitions of the macro stress (18)2 and macro
deformation gradient (20), all the aforementioned boundary conditions satisfy the balance of
angular momentum on the macroscale. The proof is straightforward and follows the same
steps as for classical homogenization [56].

2.4 Constitutive laws for the microscopic bulk and surface

In order to compute the microscopic response, constitutive laws on the RVE need to be speci-
fied for both the bulk and the surfaces of the pores. For the bulk at the microscale we consider
a hyperelastic neo-Hookean constitutive model with the free energy density

Ψ(F ) = 1
2 λ log2 J + 1

2 μ [F : F − 3− 2 log J ] , (23)

where λ and μ are the Lamé parameters and J := DetF > 0 is the Jacobian determinant.
Motivated by the material response of the bulk, we consider a neo-Hookean model for the
surface free energy density

Ψ̂(F̂ ) = 1
2 λ̂ log2 Ĵ + 1

2 μ̂ [F̂ : F̂ − 2− 2 log Ĵ ] , (24)



where λ̂ and μ̂ are the surface Lamé parameters and Ĵ := D̂et F̂ > 0 is the surface Jacobian
determinant [57]. We note that in the surface energy surface tension is neglected as, in solids,
it is generally small compared to elastic resistance of the surface.

Remark: We assume positive values for the surface elastic parameters in this work. It has
been observed experimentally and also in atomistic simulations [58, 59] that surface material
parameters could assume negative values. The admissible range for surface material parame-
ters have been studied in [60]. Having negative surface elastic parameters, does not change the
methodology or the conclusion of this work. The same framework can be employed by replac-
ing the surface parameters with the negative ones and also, the size effect will be observed.
However, negative surface parameters lead to a “smaller is weaker”response in contrast to the
more celebrated “smaller is stronger”response. From a mathematical point of view, positive
surface parameters guarantee the pointwise stability and ellipticity regardless of the pore size.
That is not the case for negative surface parameters as the overall response may show instabil-
ities for very small pores with negative surface parameters. Also, negative surface parameters
induce a sensitivity with respect to the mesh size of the finite element method. The response
of nano-porous materials with negative surface parameters shall be further investigated in a
subsequent contribution.

3 Examples

The objective of this section is to elucidate the theory via a series of numerical examples. For
simplicity, we limit this study to two-dimensional examples keeping in mind that the devel-
oped theory is based on a fully three-dimensional setting. Details of the finite element imple-
mentation of surfaces for two-dimensional and three-dimensional problems are given in [22]
and [23], respectively. Furthermore, we present an analytical estimate for two-dimensional
linear elasticity and compare it with the numerical results. For the microscopic bulk response,
the material parameters are set to λ = 12.1667 and μ = 8. The radius of the pore is denoted
r and the volume fraction f . The surface material property is chosen as μ̂/μ = 1e−6. Since
for the two-dimensional theory the surface simplifies to a line, one surface material parameter
suffices to describe the elastic response of the surface and therefore, λ̂ = 0 is assumed.

3.1 Analytical approach

The analytical solution for a material which has cylindrical nano voids with energetic surfaces
has been studied by Duan et al. [51] under small strain and linear elasticity assumptions.
For an analytical homogenization framework that accounts for size effects with applications
to multilayered orthotropic composite, see [61]. In [51] the authors compute four effective
properties (in-plane bulk modulus, axial shear modulus, axial Young’s modulus and axial
Poisson’s ratio) using an extension of the composite cylinders method [62] and for the fifth
(in-plane shear modulus) they utilize the self-consistent composite cylinders method [63].
Using the formulas and methodology of Duan et al. [51] we obtain the effective in-plane bulk



and shear modulus as

κeff =
[λ+ μ+ fμ][μ̂/r] + [1− f ][1− ν̂][λ+ μ]μ

[1− f ][μ̂/r] + [1− ν̂][μ+ fλ+ fμ]
, (25)

μeff = μ[1− f ]3[λ+ μ]
[2λ+ 3μ+ 2fλ+ 5fμ][μ̂/r] + [1− f ][1− ν̂][λ+ μ]μ

α[μ̂/r] + [1− f ][λ+ μ][1− ν̂]βμ+ [λ+ 2μ]
√
γ

,

(26)

respectively, where

α := 2f [λ+ μ][2f2λ+ 6f2μ− λ− 3fμ]− μ[2λ+ 3μ] + f4μ[2λ+ 5μ] ,

β := [4f2 − 2f ]λ+ [f3 + 5f2 − f − 1]μ ,

γ :=
[
[2λ+ 3μ+ 2f4λ+ 5f4μ][μ̂/r] + [1− f4][1− ν̂][λ+ μ]μ

]2
− 12f2 [[λ+ μ+ fμ][μ̂/r] + [1− f ][1− ν̂][λ+ μ]μ]

2
,

with ν̂ = λ̂/[λ̂+ 2μ̂] being the surface Poisson’s ratio [23].
Based on the analytical solution we estimate the response of the microstructure at two

extremes of (i) no surface effect and (ii) strong surface effect.

(i) For extremely low surface to volume ratio (r → ∞), the effective response tends asymp-
totically to

κeff =
μ[1− f ][λ+ μ]

μ+ fλ+ fμ
, (27)

μeff =
μ[1− f ]3[λ+ μ]

β + [λ+ 2μ]
√
[f3 + f2 + f + 1]2 − 12f2

. (28)

(ii) For extremely high surface to volume ratio (r → 0), the effective response tends asymp-
totically to

κeff =
λ+ μ+ fμ

1− f
, (29)

μeff =
μ[1− f ]3[λ+ μ][2λ+ 3μ+ 2fλ+ 5fμ]

α+ [λ+ 2μ]
√
[2λ+ 3μ+ 2f4λ5f4μ]2 − 12f2[λ+ μ+ fμ]2

. (30)

Note that the no-surface-effect limit furnishes the classical solution and we expect intuitively
the effective behavior to be independent of the surface elastic parameters. The analytical so-
lution agrees with this intuition. For the strong-surface-effect limit, we expect that the surface
parameters determine the material response. However, the solution is rather counter-intuitive
as for extremely strong surface effect, the overall behavior of the material is independent of the
surface parameters. This finding can be explained by the fact that extremely strong surfaces
“roughly speaking” function similar to rigid inclusions and therefore the overall response does
not depend on the surface. Surprisingly, this implies that there is a limit to the response of
nano-porous materials and to the notion of “smaller is stronger”. This conclusion is extremely
important when fabricating nano-porous materials since it could suggest an optimal size for
the pores where the strongest response for the lowest fabrication cost is achieved.



Fig. 3 Illustration of tetragonal and hexagonal microstructures.

3.2 Numerical approach

In this section we run several numerical examples to illustrate the influence of surfaces on
the overall material response. All studies are performed for two different microstructures with
tetragonal and hexagonal RVE arrangements, shown in Fig. 3. We investigate two different load
cases of simple extension and simple shear with the associated macro deformation gradient
applied on the RVE

MF =

[
1 + ξ 0
0 1

]
and MF =

[
1 ξ
0 1

]
(31)

where ξ indicates the amount of deformation.
Remark: The motivation to study two different microstructures is that the analytical approx-
imation is based on concentric cylinders which suggests a better agreement for hexagonal
microstructure compared to the tetragonal one. The results show that this is correct only for
the load case of simple extension.

3.2.1 Comparison between analytical and numerical approaches

The first example compares the overall response from the analytical solution to the numerical
one for both tetragonal and hexagonal microstructures. Figure 4 gathers all the results for
different volume fractions. The graphs show a macroscopic apparent property versus pore
radius. The apparent property of interest here is the macro Piola stress in xx-direction and
xy-direction for the extension and shear load cases, respectively. The results correspond to
ξ = 2% with macro deformation gradients (31). The numerical results are computed based
on the linearized elasticity model associated with the material response (23) and (24). The
linearized material response for the bulk associated with the free energy (23) is standard and
leads to the isotropic Hookean material model of linear elasticity theory. However, this is not
the case for the surface. Linearization of the stress associated with the free surface energy (23)
is non-standard and care must be taken when linearizing. In particular, the surface linear strain
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Fig. 4 Comparison between analytical and (linear) numerical solutions for overall response of the
microstructure in two different cases of simple extension and simple shear at 2% deformation. The
graphs show the overall Piola stress (xx-component and xy-component in extension and shear case,
respectively) versus pore radius of the RVE. Numerical results are obtained for both tetragonal and
hexagonal microstructures and for different pore to volume ratios f .

tensor is not the symmetric part of the surface displacement gradient. For further details and
derivations, see [24].

Figure 4 clearly identifies the bounds to the material response for all the load-cases and
volume fractions. The lower bound corresponds to the classical solution where the surface
elasticity of the pores is neglected. The classical solution (lower bound) is only a function
of the volume fraction and properties of the matrix material. Taking surface elasticity into
account, we observe a stronger material response for smaller dimensions which proves the
ability of the proposed methodology to capture the size effect. At very small dimensions,
the material response is strongly influenced by surfaces. In the limit of an extremely strong
surface effect, the pores behave similar to rigid inclusions. This leads to the saturation of the
overall behavior and defines an upper limit to the material response as a function of volume
fraction and matrix properties.

Further analysis of the results in Fig. 4 show that for the simple extension load case, the
analytical solution underestimates both numerical solutions associated with the tetragonal and
hexagonal arrangements but, overall it closely estimates the numerical solution. In the case
of simple shear, the analyical solution lies between the two different microstructures and for
lower volume fractions it is closer to the hexagonal microstructure while it better estimates the
tetragonal microstructure for higher volume fractions. Overall, in the case of simple shear, a



very distinct difference in the response is observed between the two different microstructures
and the analytical solution is far less accurate compared to the simple extension.

3.2.2 Stress distribution for various sizes and volume fractions

Figures 5–6 show the stress distribution within the RVE for the tetragonal microstructure for
the simple extension and simple shear load cases, respectively. The numerical simulations
are performed for different volume fractions and also for various sizes of the RVE. For all the
examples, the results correspond to ξ = 5% with the macro deformation gradients given in
(31). Analogous studies have been carried out on hexagonal microstructure in Figs. 7–8. The
first column in Figs. 5–8 correspond to a pore radius of r = 1e−4 indicating a relatively large
RVE and thus a relatively small surface effect. The results for r = 1e−4 resemble the classical
solution with no surface effect. The pore radius for the results in the second column is chosen
as r = 1e−6 resulting in a moderate influence of the surface on the overall response of the
material. A very strong surface response is illustrated in the last column with r = 1e−8.
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Fig. 5 (online colour at: www.gamm-mitteilungen.org) Stress distribution of a tetragonal micro-
structure under simple extension for various sizes of RVE and pore-to-volume ratio.

The stress distribution in Figs. 5–8 is normalized by the corresponding component of the
resultant macro stress for better clarity. Overall, we observe the same trend for tetragonal and
hexagonal microstructures. For a given volume fraction and size, the stress distributions as



1.720
1.432
1.144
0.855
0.567

[P]xy/[MP]xy

[MP]xy = 0.366

2.382
1.882
1.383
0.883
0.383

[P]xy/[MP]xy

[MP]xy = 0.269

3.836
2.694
1.553
0.411
-0.731

[P]xy/[MP]xy

[MP]xy = 0.141

7.250
4.544
1.838
-0.869
-3.575

[P]xy/[MP]xy

[MP]xy = 0.041

1.815
1.447
1.078
0.710
0.341

[P]xy/[MP]xy

[MP]xy = 0.379

2.055
1.627
1.199
0.771
0.343

[P]xy/[MP]xy

[MP]xy = 0.319

2.719
2.046
1.373
0.700
0.027

[P]xy/[MP]xy

[MP]xy = 0.225

5.060
3.423
1.787
0.150
-1.487

[P]xy/[MP]xy

[MP]xy = 0.115

2.329
1.688
1.047
0.406
-0.235

[P]xy/[MP]xy

[MP]xy = 0.386

2.626
1.885
1.145
0.404
-0.337

[P]xy/[MP]xy

[MP]xy = 0.342

3.275
2.349
1.424
0.498
-0.428

[P]xy/[MP]xy

[MP]xy = 0.271

5.238
3.693
2.147
0.602
-0.944

[P]xy/[MP]xy

[MP]xy = 0.173

f
=

3.
14

%
f
=

12
.5

7%
f
=

28
.2

7%
f
=

50
.2

6%

r = 10−4 (almost no surface effect) r = 10−6 r = 10−8 (strong surface effect)

decreasing size of the RVE

in
cr

ea
si

ng
po

re
to

vo
lu

m
e

ra
tio

Fig. 6 (online colour at: www.gamm-mitteilungen.org) Stress distribution of a tetragonal micro-
structure under simple shear for various sizes of RVE and pore-to-volume ratio.

well as the macro stresses are roughly the same for both microstructures. The two microstruc-
tures show more similarities in the case of simple extension load case compared to the simple
shear load case though. Figures 5–8 contain a lot of information and several conclusions can
be drawn. In the following, we address a few important aspects.

Consider the first column of the results shown in Fig. 5 and Fig. 7 in the case of simple
extension. Increasing the volume fraction decreases the overall response, here the macro stress
in the xx-direction. This result is rather intuitive since larger volume fractions correspond to
less solid material and hence, less resistance. Note, the macro stress for f = 50.26% is 70%
smaller than the one for f = 3.14%. The second column of Figs. 5 and 7 show a similar
trend. We observe the overall response becomes softer by increasing the volume fraction f .
However, the macro stress for f = 50.26% is only about 40% less than the one for f = 3.14%.
That can be explained by the fact that increasing the volume fraction reduces the bulk material
but increases the surface material. Since the middle column has moderate surface effects, the
overall response has decreased, but less than the first column. In the third column a very strong
surface effect is observed as the pores are extremely small. Increasing the volume fraction,
reduces the bulk material but increases the surface material. In fact, the surface effect is so
strong that increasing the volume fraction stiffens the overall material behavior. The macro
stress for f = 50.26% is about 100% more than the one for f = 3.14%. These results clearly
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Fig. 7 (online colour at: www.gamm-mitteilungen.org) Stress distribution of a hexagonal micro-
structure under simple extension for various sizes of RVE and pore-to-volume ratio.

show that in the third column the overall response is dominated by the surfaces of the pores
and indicates the importance of surfaces when the pore size is very small. It also explains why
nano-porous materials are very good candidates for light-weight structures.

We briefly perform the same analysis for the simple shear load case, i.e. Figs. 6 and 8. As
for the simple extension case, we observe a softer material response for higher volume frac-
tions in the absence of surface effect, i.e. first column. In the second column, i.e. a moderate
surface effect, the macro stress is decreased less compared to the first column. Interestingly,
and in contrast to the simple extension load case, even in the third column we observe an
overall softening response by increasing the volume fraction. This can be justified by the fact
that the surface elastic response resist the area change and in these two-dimensional examples
tends to retain the original perimeter of the pore. In the case of simple extension, we observe a
very strong surface effect as applying an extension to the bulk increases the length (perimeter)
of the pore. However, prescribing simple shear on the RVE deforms the original configuration
roughly in a volume-preserving manner and therefore, the perimeter of the pores change less
leading to a weaker surface influence on the overall response.

Next, we study the overall response for a fixed volume fraction f , i.e. we consider rows
instead of columns in Figs. 5–8. For both microstructures and for both load cases, decreasing
the size of the RVE results in increasing the overall response for all volume fractions. That is,
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Fig. 8 (online colour at: www.gamm-mitteilungen.org) Stress distribution of a hexagonal micro-
structure under simple shear for various sizes of RVE and pore-to-volume ratio.

for a given row in Figs. 5–8, we observe a successive increase of the overall response when
moving from the first column to the third column. This can be interpreted by the fact that
decreasing the size, increases the surface influence. The overall response of the third column
is increased more compared to the first column for higher volume fractions. Also, similar to
the previous discussion, the simple extension load case shows a more dominant surface effect
compared to the simple shear load case. In particular, for the simple extension and at volume
fraction of f = 50.26% the overall response of the third column is almost 9 times stronger
than the first column. Since the third column can be understood as a nano-porous material
and the first column resembles the classical response, this example explains the importance of
nano-materials and the need for computational homogenization to capture such size effects.

3.2.3 Stress distribution for various strains

The purpose of the last examples is to study the overall response of nano-porous material
undergoing finite strains and compare it with the classical solution having no surface effects.
Figures 9 and 10 illustrate the stress distributions on the RVE for two load cases of simple
extension and simple shear, respectively. All simulations are carried out for ξ = 1%, ξ =
10%, ξ = 20% and ξ = 40% with macro deformation gradients (31).
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These results prove the robustness of the proposed framework at finite strains. For all the
simulations the asymptotically quadratic rate of convergence associated with the Newton–
Raphson scheme has been observed. The volume fraction of f = 50.26% is chosen for all
the simulations since, from the previous examples, we know that at higher volume fractions
a more pronounced surface effect is observed. Similar to the previous examples, the results
show that nano-porous materials show a much stronger response compared to the classical
homogenization. Also, increasing the deformation for a given column shows an increasing
overall stress as expected, and importantly this trend is non-linear. For instance, although the
deformation in the last row is 40 times the deformation in the first row, the macro stress of the
last row is not 40 times the macro stress of the first row. In fact, for the simple extension load
case the macro stress of the last row is around 30 times larger than the first row, but for the
simple shear load case the macro stress of the last row is around 100 times larger the macro
stress of the first row.

4 Conclusion

The effective properties of heterogeneous materials can be estimated from the response of the
underlying microstructures using the computational homogenization procedure. The core idea
of computational homogenization is to compute implicitly the unknown material response at
the macroscale via homogenizing the response at the microscale where the constitutive behav-
ior of each constituent is known. It is well-known that the size of the microstructure influences
the material response, this is often termed as size-effect phenomenon. Nevertheless, standard
first-order computational homogenization cannot capture the size-effect since the microscale
lacks a length scale. In order to introduce a length scale to the computational homogeniza-
tion, Kouznetsova et al. [35] have introduced higher gradients. Here, we propose a different
strategy by including the surface energies at the microscale. This framework is physically mo-
tivated by the fact that the surface energies of the pores are no longer negligible at small scales.
Davydov et al. [59] have recently shown an excellent agreement between this enhanced com-
putational homogenization and atomistic simulations. Clearly, a distinct advantage of this en-
hanced model over its atomistic counterpart is the greatly increased computational efficiency.
Also, this framework is computationally straightforward as it is intrinsically still a first-order
homogenization and does not involve higher gradients.

One advantage of this framework is that it furnishes a more accurate solution compared
to the analytical estimate for this problem. Furthermore, the analytical approximation is lim-
ited by the assumption of small strains linear elasticity whereas the current framework is
developed for finite strains. It is shown that there exists an upper bound for the response of
nano-porous materials which restricts the notion of “smaller is stronger”and has important
applications in fabrication of nano-materials. This contributions deals with academic exam-
ples and parametric studies to better understand the problem and the methodology. Equipped
with this framework, our immediate objective is to focus on specific physical applications and
quantitatively assess the validity of this scheme and its advantages over analytical estimates.
Further extensions of this work include studying nano-porous materials with negative surface
parameters and perform instability analysis on the overall material response.

In summary, this manuscript presents our attempt to elucidate first-order computational
homogenization accounting for size effects via the consideration of surfaces at the microscale.



This allows one to precisely predict the overall response of nano-porous materials. We believe
that this generic framework is broadly applicable to enhance our understanding of the behavior
of materials with a large variety of applications to nano-materials.
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A Identities useful the generalized averaging theorems

A.1 Proof of identity 1:

In order to prove the identity∫
∂B0

N ⊗X dA = V0 I ,

for the particular case of porous media, we first note that ∂B0 indicates the external boundary
of the RVE. Due to opposite orientations of the external and internal surfaces from Fig. 2 and
using the gradient theorem,∫

∂B0

N ⊗X dA =

∫
B0

[GradX]t dV −
∫
S0

N ⊗ X̂ dA

=

∫
B0

[GradX]t dV +

∫
V0

[GradX]t dV

=

∫
B0

I dV +

∫
V0

I dV

= I [

∫
B0

dV +

∫
V0

dV ]

= V0 I .

A.2 Proof of identity 2:

In order to prove the identity

〈P 〉 = 1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA− 1

V0

∫
S0

P̂ dA ,

we start from the relation

〈P 〉 = 1

V0

∫
B0

P dV +
1

V0

∫
V0

P dV .



Since we consider only porous materials, the second integral vanishes as the stresses are zero
within the pores.

〈P 〉 = 1

V0

∫
B0

P dV =
1

V0

∫
B0

P · I dV =
1

V0

∫
B0

P · GradX dV

using the identity P · GradX = Div(P ⊗X) − DivP ⊗X with [P ⊗X]ijk = [P ]ik [X]j
and since DivP = 0 inside B0,

=
1

V0

∫
B0

Div(P ⊗X) dV

applying the divergence theorem and considering the orientations of the surface normals,

=
1

V0

∫
∂B0

[P ⊗X] ·N dA+
1

V0

∫
S0

[P ⊗ X̂] ·N dA

=
1

V0

∫
∂B0

P ·N ⊗X dA+
1

V0

∫
S0

P ·N ⊗ X̂ dA

from balance equations (6)1 and (6)2,

=
1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA+

1

V0

∫
S0

D̂ivP̂ ⊗ X̂ dA

using the relation D̂ivP̂ ⊗ X̂ = D̂iv(P̂ ⊗ X̂) − P̂ · ĜradX̂ = D̂iv(P̂ ⊗ X̂) − P̂ · Î =

D̂iv(P̂ ⊗ X̂)− P̂ ,

=
1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA

− 1

V0

∫
S0

P̂ dA+
1

V0

∫
S0

D̂iv(P̂ ⊗ X̂) dA

with the aids of the surface divergence theorem and denoting the surface curvature as κ̂ the
last term is rewritten,

=
1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA

− 1

V0

∫
S0

P̂ dA+
1

V0

∫
S0

κ̂ P̂ ·N ⊗ X̂ dA+
1

V0

∫
∂S0

P̂ · N̂ ⊗ X̂ dL

the last term vanishes as we are considering closed surfaces entirely within the domain. the
second last term vanishes due to the superficial characteristic of the surface Piola stress tensor
and finally,

=
1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA− 1

V0

∫
S0

P̂ dA



or alternatively,

〈P 〉B0 + 〈P̂ 〉S0 =
1

V0

∫
∂B0

tp
0 ⊗X dA+

1

V0

∫
S0

tp
0 ⊗ X̂ dA .

A.3 Generalized Hill’s Lemma

In order to prove the identity

〈P : δF 〉+ 〈P̂ : δF̂ 〉S0 − MP : δMF

=
1

V0

∫
∂B0

[δϕ− δMF ·X] · [tp
0 − MP ·N ] dA ,

the right-hand side is expanded and manipulated until it eventually results in the left-hand
side. Since equality operator is used exclusively, all the steps are also valid in the reverse
order. First, we use the relation tp

0 = P ·N on ∂B0 and expand the right-hand side.

∫
∂B0

[δϕ− δMF ·X] · [tp
0 − MP ·N ] dA

=

∫
∂B0

[δϕ− δMF ·X] · [P ·N − MP ·N ] dA

=

∫
∂B0

δϕ · [P ·N ] dA−
∫
∂B0

δϕ · [MP ·N ] dA

−
∫
∂B0

[δMF ·X] · P ·N dA+

∫
∂B0

[δMF ·X] · MP ·N dA

=

∫
∂B0

[δϕ · P ] ·N dA−
∫
∂B0

MP : [δϕ⊗N ] dA

−
∫
∂B0

δMF : [[P ·N ]⊗X] dA+

∫
∂B0

[δMF t · MP ] : [X ⊗N ] dA

Using the generic relation
∫
∂B0

{•} · N dA =
∫
B0

Div{•} dV − ∫
S0
{•} · N dA on the first

integral, with {•} denoting any arbitrary vector or tensor quantity, and taking the constants
out of the integral operators,

=

∫
B0

Div(δϕ · P ) dV −
∫
S0

[δϕ̂ · P ] ·N dA− MP :

∫
∂B0

δϕ⊗N dA

− δMF :

∫
∂B0

[[P ·N ]⊗X] dA+ [δMF t · MP ] :

∫
∂B0

X ⊗N dA



The first integral is simplified with the relation Div(δϕ · P ) = δϕ · DivP + P : Gradδϕ =

P : δF since DivP = 0 inside B0. The relation D̂ivP̂ = P · N is applied on the second
integral. The third integral is rewritten motivated by the definition of macro deformation
gradient (20) as

∫
∂B0

δϕ⊗N dA = V0 δ
MF . The fourth integral is indeed the first term on the

right-hand side of the identity 2 since tp
0 = P ·N on ∂B0 and therefore it can be expressed as∫

∂B0
[[P ·N ]⊗X] dA = V0 [〈P 〉+ 〈P̂ 〉S0 ] as tp

0 = 0 on S0. The last integral simplifies using
the identity (12) in its transposed format as

∫
∂B0

X ⊗N dA = V0 I .

=

∫
B0

P : δF dV −
∫
S0

δϕ̂ · D̂ivP̂ dA− V0
MP : δMF

− V0 δ
MF :

[
〈P 〉+ 〈P̂ 〉S0

]
+ [δMF t · MP ] : [V0 I]

The second integral is expanded using the relation δϕ̂ · D̂ivP̂ = D̂iv(δϕ̂ · P̂ )− P̂ : Ĝradδϕ̂.

= V0 〈P : δF 〉B0 −
∫
S0

D̂iv(δϕ̂ · P̂ ) dA+

∫
S0

P̂ : Ĝradδϕ̂ dA− V0
MP : δMF

− V0 〈P 〉 : δMF − V0 〈P̂ 〉S0 : δ
MF + V0 [δ

MF t · MP ] : I

The second integral can be further expanded using the surface divergence theorem and even-
tually vanishes due to the superficiality of the surface Piola stress and considering closed
surfaces similar to the proof of the identity (16).

= V0 〈P : δF 〉B0 + V0 〈P̂ : δF̂ 〉S0 − V0
MP : δMF

−
[
V0 〈P 〉 : δMF + V0 〈P̂ 〉S0 : δ

MF
]

︸ ︷︷ ︸
V0 [〈P 〉+ 〈P̂ 〉S0 ] : δ

MF

+V0
MP : δMF

The third term vanishes together with the last term. Also, from the definition of the macro
Piola stress (18) we have MP = 〈P 〉B0 + 〈P̂ 〉S0 = 〈P 〉+ 〈P̂ 〉S0 and therefore,

= V0 [〈P : δF 〉B0 + 〈P̂ : δF̂ 〉S0 − MP : δMF ] .
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