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Abstract. The aim of this work is to propose a new finite element modeling for vibration of 

sandwich structures with soft core. Indeed, several approaches have been adopted in the 

literature to accurately model these types of structures, but show some limitations in certain 

configurations of high contrast of material properties or geometric aspect ratios between the 

different layers. In these situations, it is generally well-known that the use of higher-order or 

three-dimensional finite elements is more appropriate, but will generate a large number of 

degrees of freedom, and thereby, large CPU times. In this work, an alternative method is 

followed by considering the linear hexahedral solid-shell element previously developed by 

Abed-Meraim and Combescure [1]. This element is implemented into the commercial 

software ABAQUS via a User Element (UEL) subroutine. Numerical tests on various 

cantilever sandwich beams are performed to show the efficiency of this approach.  
 

 

1 INTRODUCTION 

Problems involving vibration occur in many areas of mechanical, civil and aerospace 

engineering. These vibrations are undesirable because they lead to noise and system 

dysfunction. An efficient passive solution to reduce vibrations is the use of sandwich 

structures with elastic faces and viscoelastic core [2,3]. 

Various kinematic models and numerical methods have been devoted to determine 

accurately the damping properties of viscoelastic sandwich structures under vibration. Hu et 

al. [3] have presented a review and assessment of existing models. Indeed, earlier classical 
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theories of laminated thin shell and plate approximations are based on the Kirchhoff–Love 

model. With these approaches, the deformation due to shear is neglected as compared to other 

strains. Then Reissner [4] and Mindlin [5] established first order theories that take into 

account this shear deformation. However, these studies have shown that the deformation 

varies at least in a quadratic form with the shear stress zero on the outer surfaces of the skins. 

Subsequent studies, Reddy [6] and Touratier [7] (to name only these), have made major 

contributions by proposing higher-order theories of the displacement field in the thickness 

(cubic and sinusoidal, respectively). The major advantage of these is to allow a parabolic 

description of the shear stress while ensuring the condition of zero shear stress on the free 

surface of the sandwich structures.  

All of these studies provide estimates of the accuracy, under various loads, of the overall 

stiffness, frequencies, loss factor and many other properties. However, the sandwich structure 

is treated as a single layer to facilitate analysis. Unfortunately, this assumption does not 

correctly describe some phenomena in a structure exhibiting high contrast of stiffness 

between different layers. To compensate these shortcomings, zigzag theories assuming 

continuity (IC-ZZT) or not (ID-ZZT) have been developed. These theories describe layer-by-

layer the displacement field ensuring continuity conditions of the displacement field imposed 

at the interfaces between the core and the faces (see, e.g., Boudaoud et al. [8], Bilasse et al. 

[9], Abdoun et al. [10]). 

These models have shown their limitations and an alternative approach could be the use of 

three-dimensional finite element assemblies, but this generally leads to a large number of 

degrees of freedom. Another approach proposed in this work can be the use of a solid-shell 

element based on a fully three-dimensional formulation. Such a solid-shell element has been 

developed in order to correctly take into account the through-thickness phenomena, while 

maintaining the CPU time at reasonable levels [1,11,12]. This is a linear isoparametric 

hexahedral element having only nodal displacements as degrees of freedom and provided with 

a set of integration points distributed along the thickness direction. To avoid locking 

phenomena, the fully three-dimensional elastic constitutive matrix was also modified in order 

to approach shell-like behavior. To eliminate the zero-energy hourglass modes due to the 

reduced integration, an effective stabilization technique was used following the “Assumed 

Strain” method of Belytschko and Bindeman [13]. Several benchmark tests were analyzed to 

show the effectiveness of this solid-shell element in linear and non-linear problems. Recently, 

Salahouelhadj et al. [14] successfully simulated sheet metal forming processes using the 

SHB8PS solid-shell element coupled with an anisotropic large strain elastic-plastic model. 

The purpose of the current work is to combine this solid-shell concept with sandwich 

structure modeling in order to evaluate its capabilities in analyzing vibration of sandwich 

structures. A number of representative applications will be shown. 

2 FORMULATION OF THE PROBLEM 

In this work, we consider the free vibration problem of sandwich structures with soft core 

pictured in Figure 1. 

The basic equilibrium equations are obtained by using the virtual work principle as 

follows:  
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acc ext intP P P     (1) 

where 
accP  is the virtual work associated with the kinetic energy, and 

extP  and 
intP represent 

the virtual work of external loads and internal forces, respectively, for each layer.  

 

Figure 1: Sandwich beam structure 

One can show that Eq. (1) may be transformed into Eq. (2) to obtain the vibration 

eigenmodes, frequencies and equivalent loss factors: 

     2( ) 0e e eK M U    (2) 

where [Me] and [Ke] denote the element mass and stiffness matrices, respectively. Note that 

[Ke] is more detailed in [1,11,12,14] and [Me] is identical to that of a standard linear brick 

element. 

Unlike models in the literature of sandwich structures, we propose in this work a new finite 

element method to solve (2) for any geometrical and material configurations of the sandwich 

structures. To achieve this goal, the formulation of the SHB8PS solid-shell element is 

considered. More details of this kind of element can be found in [1,11,12,14]. As mentioned 

above, this is an eight-node hexahedral element with only displacement degrees of freedom. 

The associated integration points are arranged in a preferred direction (thickness) in the local 

coordinate frame (Figure 2). The classical plane-stress constitutive law, usually adopted in 

shell formulations, has been amended to take into account shear and membrane effects. 

Accordingly, the resulting elasticity matrix C
ele

 is expressed in this local coordinate frame in 

terms of the Young modulus E  and the Poisson ratio   as follows: 
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Figure 2: Reference element geometry and integration points 

 

3 NUMERICAL TESTS 

3.1 Validation of the present model 

Numerical analyses of a cantilever sandwich beam are first performed in order to validate 

the present model. Natural frequencies are computed, and the geometric and material 

properties considered in this preliminary study are reported in Table 1. 

The results of the SHB8PS element are compared with those of the Abaqus eight-node 

reduced integration element C3D8R and listed in Table 2. 

Table 1: Geometric and material properties 

E      L  h  b  

2.1E11 Pa 0.3 7800 kg.m
-3 

1 m 0.01 m 0.1 m 
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Table 2: Eigen frequencies of the cantilever beam 

Element 

type 
Mesh layout 

f1 ref = 8.4 f2 ref = 52.5 f3 ref = 83.8 f4 ref = 147.1 

f1/f1ref f2/f2ref f3/f3ref f4/f4ref 

C3D8R 

(30x3x1)=90 0.10 0.10 0.18 0.20 

(40x4x1)=160 0.10 0.10 0.18 0.20 

(80x8x1)=640 0.10 0.10 0.18 0.19 

(30x3x4)=360 0.94 0.97 0.94 0.97 

(40x4x4)= 640 0.98 0.98 0.96 0.98 

(80x8x4)=2560 0.98 0.98 0.99 0.99 

(30x3x5)=450 0.98 0.99 0.94 0.99 

(40x4x5)=800 0.99 0.99 0.96 1.00 

(80x8x5)=3200 1.00 1.00 0.99 1.00 

SHB8PS 
(2 Integration 

Points) 

(30x3x1)=90 1.00 1.01 1.00 1.01 

(40x4x1)=160 1.00 1.01 1.00 1.01 

 

3.2 Vibration analysis of sandwich beams 

In order to evaluate the solid-shell performance, finite element (FE) analyses of various 

cantilever sandwich beams have been performed using the FE code Abaqus/Standard. The 

results obtained with the SHB8PS element are compared to those given by other Abaqus 

formulations, namely a continuum plane-strain quadratic element CPE8R, a three-dimensional 

hexahedral quadratic element C3D20R, and a 3D hexahedral linear full-integration C3D8 

element. The results are also compared to those yielded by a 2D FE code of FSDT IC-ZZT 

developed in Matlab. The SHB8PS element has been implemented through an UEL 

subroutine. The sandwich beam consists of two face sheets made of aluminum and a core 

(Figure 2) whose mechanical and geometric properties are given in Table 3. 

 

Table 3: Sandwich beam parameters 

f
E  f

  
c

  h  f
  

c
  

6.9E10 Pa 2766 kg.m
-3

 1600 kg.m
-3

 0.05 m 0.3 0.49 

 

Three dimensionless beam parameters are used in this comparative study, namely, the ratio 

of core to face Young modulus (Ec/Ef), the ratio of beam length to beam total thickness (L/h), 

and the ratio of core to skin thickness (hc/hf). Let us remark that under these considerations 

and by using material parameters as listed in Table 1, all sandwich beam possible 

configurations can be represented. For these purposes, eigen frequencies evaluations are made 

in three configurations: 

Case 1.  Thin/thick core: 0 1 100hc hf . /           (
520 2 10/ ; /L h Ec Ef    ) 

Case 2.  Short/long beam: 4 100L h /              (
51 2 10/ ; /hc hf Ec Ef    ) 
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Case 3.  Soft/rigid core: 0 0001 100Ec Ef . /      ( 1 20/ ; /hc hf L h  ) 

The results of these cases are shown in Tables 4, 5, and 6, by providing the first eigen 

frequencies corresponding to different formulations, where NDOF and NIP denote the 

number of degrees of freedom per layer and the number of integration points per element, 

respectively. It appears from all of these tables that the solid-shell element formulation gives 

accurate results for the different configurations within reasonable CPU times. 

 

 

Table 4: Influence of hc/hf (L/h = 20, Ec/Ef = 2.10-5) 

 SHB8PS C3D8 C3D20R CPE8R 
FSDT IC-

ZZT 

NDOF/layer 2160 384000 48000 4320 3000 

NIP/element 2 8 8 4 - 

0 1c

f

h

h
 .  

21.186 21.140 21.205 21.205 21.505 

125.96 125.30 125.73 125.73 121.90 

349.99 346.24 347.46 347.46 335.25 

1c

f

h

h
  

13.006 13.146 13.015 13.015 13.032 

78.581 79.279 78.433 78.433 75.634 

219.38 220.12 217.73 217.73 209.08 

40c

f

h

h
  

3.0638 3.3325 3.0640 3.0640 4.2148 

9.3719 10.868 9.3607 9.3607 12.794 

16.256 20.835 16.193 16.193 21.958 

100c

f

h

h
  

2.9512 3.1409 2.9506 2.9506 4.0496 

8.900 9.8452 8.8891 8.8891 12.249 

15.134 17.798 15.086 15.086 21.108 

 

Table 5: Influence of L/h (hc/hf = 1, Ec/Ef = 2.10-5) 

 SHB8PS C3D8 C3D20R CPE8R 
FSDT IC-

ZZT 

NDOF/layer 2160 384000 48000 4320 3000 

NIP/element 2 8 8 4 - 

4
L

h
  

309.43 310.73 300.82 309.06 297.27 

1884.0 1772.1 1735.2 1792.0 1857.1 

10
L

h
  

47.823 50.224 48.509 50.294 48.636 

290.22 309.55 298.34 309.97 298.34 

40
L

h
  

3.6378 4.2195 3.6397 3.6399 0.4538 

20.157 24.134 20.118 20.120 1.0208 

100
L

h
  

0.83588 1.2253 0.83612 0.83617 0.2432 

3.6786 6.6111 3.6721 3.6724 0.4240 



F. Kpeky, H. Boudaoud, H. Chalal, F. Abed-Meraim and E.M. Daya. 

 7 

Table 6: Influence of Ec/Ef (hc/hf = 1, L/h = 20)  

 SHB8PS C3D8 C3D20R CPE8R 
FSDT IC-

ZZT 

NDOF/layer 2160 384000 48000 4320 3000 

NIP/element 2 8 8 4 - 

410c

f

E

E

  
16.939 16.908 16.947 16.947 16.815 

84.161 83.718 84.011 84.011 81.328 

224.48 222.11 222.97 222.97 214.41 

0 1.c

f

E

E
  

44.397 44.468 44.440 44.440 42.675 

263.24 262.97 262.79 262.79 260.79 

684.75 681.10 680.59 680.59 703.46 

100c

f

E

E
  

105.91 102.96 106.71 106.71 125.88 

662.01 642.25 665.74 665.74 788.19 

1847.8 1786.1 1851.6 1851.6 2203.9 

 

5 CONCLUSIONS 

An efficient analysis of sandwich beam vibrations has been proposed using a solid-shell 

formulation. The presented results show the interest in adopting solid-shell elements in this 

type of applications. The study can be extended to the modeling of multilayer structures using 

a single element with the possibility of assigning various material responses at different 

integration points. 
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