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New quadratic solid–shell elements and their evaluation
on linear benchmark problems

Abstract This paper is concerned with the development of a new family of solid–
shell finite elements. This concept of solid–shell elements is shown to have a number
of attractive computational properties as compared to conventional three-dimensional
elements. More specifically, two new solid–shell elements are formulated in this work
(a fifteen-node and a twenty-node element) on the basis of a purely three-dimensional
approach. The performance of these elements is shown through the analysis of var-
ious structural problems. Note that one of their main advantages is to allow com-
plex structural shapes to be simulated without classical problems of connecting zones
meshed with different element types. These solid–shell elements have a special direc-
tion denoted as the “thickness”, along which a set of integration points are located.
Reduced integration is also used to prevent some locking phenomena and to increase
computational efficiency. Focus will be placed here on linear benchmark problems,
where it is shown that these solid–shell elements perform much better than their
counterparts, conventional solid elements.
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1 Introduction

Nowadays, the numerical simulation at various scales has become widespread in the
industry, and concerns practically all key sectors (civil engineering, nuclear, aerospace,
automotive, packaging, etc). In computational mechanics, the most adopted approach
is certainly the finite element method. Despite the important progress achieved in terms
of computer resources, a number of nonlinear three-dimensional (3D) problems still
require long hours of calculation times. In this context, the efficiency of finite elements
becomes of crucial importance to speed up the design processes, for example, or to
reduce the simulation costs in general.

Over the past three decades, considerable effort has been devoted to the development
of efficient and reliable finite elements. In this regard, reduced-integration elements
have been developed for the efficient treatment of general continuum mechanics prob-
lems (see, e.g., [1–9]). Concurrently, for structural applications, a variety of efficient
plate and shell elements have been proposed on the basis of mixed formulations or
using enhanced assumed strain (EAS) methods in order to avoid locking phenomena
(see, e.g., [10–17]).

However, in real-life structures, coexistence of 3D zones with structural compo-
nents is very common, and both types of finite element technologies often need to be
simultaneously used. Therefore, finite elements that are effective in both thin structure
simulation and general 3D applications would considerably simplify the modeling of
such combined structures. Indeed, they would avoid arbitrary definitions of separation
zones between bulk and structural components, as well as the intricacies related to the
connection of different element types (e.g., solid and structural elements).

In addition, 3D element formulations have many other advantages: they avoid resort-
ing to complex shell kinematics, they use general fully 3D constitutive laws, they allow
evaluation of thickness variation through the calculation of strain components in that
direction, they enable an easier treatment for large rotations and the corresponding
configuration update, they make it automatic the connection between solid and struc-
tural elements since the displacements are the only degrees of freedom, and allow
natural contact conditions on both sides of the structure.

Consequently, significant attention has been paid to the development of a new con-
cept of solid–shell elements, specifically dedicated to the modeling of thin structures
(see [18–26]). Most of the methods previously developed were based on enhanced
assumed strain fields, and consisted of either the use of a conventional integration
rule with appropriate treatment for locking phenomena, or the adoption of a reduced-
integration scheme with effective control of zero-energy (hourglass) modes. Both
approaches have been extensively investigated and evaluated through a variety of
structural applications, as reported in [6,27–30].

A first solid–shell element that we have developed, based on some relatively sim-
ple principles, is an eight-node hexahedron denoted as SHB8PS [21,31]. This concept



aims to combine in a single formulation the well-recognized 3D element advantages
with several useful shell features. The evaluation of this element on a variety of bench-
mark problems confirmed its good performance in terms of accuracy and convergence
properties, while using only a single element layer along the thickness. However, with
the advent of free mesh generation tools that do not only generate hexahedrons and
in order to automatically mesh arbitrarily complex geometries, the development of
prismatic solid–shell elements has been made necessary. To this end, a six-node pris-
matic solid–shell designated as SHB6 has been proposed [32]. Although playing a
useful role as a complement to the SHB8PS, the SHB6 element exhibits some shear
and thickness-type locking, which is common in linear triangular elements where the
strain is constant. The latter limitation represents one of the main motivations behind
the current development of alternative complementary solid–shell elements. These
proposed elements have quadratic interpolation with both versions, hexahedral and
prismatic.

The remaining of the paper is outlined as follows. In Sect. 2, the formulation of the
proposed quadratic solid–shell elements, denoted as SHB15 and SHB20, is detailed.
In these derivations, the common aspects of the two formulations are emphasized
whenever possible. In Sect. 3, the resulting elements are evaluated on a set of selective
and representative benchmark problems. Finally, some concluding remarks are drawn
in Sect. 4.

2 Formulation of the SHB15 and SHB20 solid–shells

In this section, the formulation of the quadratic solid–shell finite elements SHB15 and
SHB20 is detailed. Because the adopted approach has a number of similarities for
the two elements, both formulations are conjointly presented to avoid repeating the
common aspects.

2.1 Kinematics and interpolation

The SHB15 and SHB20 denote a fifteen-node prismatic element and a twenty-node
hexahedral element, respectively. Based on a 3D approach, they have only three dis-
placement degrees of freedom per node. However, a special direction is chosen, desig-
nated as the “thickness”, normal to the mean plane of these elements. Also, an in-plane
reduced-integration rule is used with 3 × nint and 4 × nint integration points for the
SHB15 and SHB20, respectively. In other words, the in-plane integration employs
only 3 points for the SHB15 and 4 for the SHB20, while the number of through-
thickness integration points is nint. Similarly to their linear counterparts SHB8PS and
SHB6 [31,32], nint is a user-defined number, taken equal to two in elasticity and five
in plasticity (see Fig. 1).

Note that the integration points for the SHB15 are located along three lines of respec-
tive equations: (ξ = 1/2, η = 1/2), (ξ = 0, η = 1/2), and (ξ = 1/2, η = 0), whereas
for the SHB20, they are located along the four lines: (ξ = −1/

√
3, η = −1/

√
3), (ξ =

1/
√

3, η = −1/
√

3), (ξ = 1/
√

3, η = 1/
√

3), and (ξ = −1/
√

3, η = 1/
√

3). The



5

1

2

3
4

ξ

η

ζ

3

5

1

12

1410

O

4

6

2
8

97

10

6

7

8
9

15

11

12
13

14

13

15

11

5

1

2

3

4

ξ

η

ς

1

2
3

4

5

6
7

8

10

9
11

14 15

16

20

19

18

17

13

12

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 1 Reference geometry for the SHB15 and SHB20 and location of integration points (nint = 5)

coordinates of the Gauss points along axis ζ and the associated weights are given in
[33] for the SHB15 and SHB20 for both cases: nint = 2 and nint = 5.

Within these two isoparametric elements, the spatial coordinates xi and displace-
ment field components ui are related to the nodal coordinates xi I and nodal displace-
ments ui I , respectively, using the quadratic shape functions NI as

xi = xi I NI (ξ, η, ζ ), ui = ui I NI (ξ, η, ζ ). (1)

In the equation above and hereafter, unless specified otherwise, the implied con-
vention of summation over repeated indices will be followed. Lowercase subscripts
i vary from 1 to 3 and represent the spatial coordinate directions, while uppercase
subscripts I vary from 1 to 15 for the SHB15 and from 1 to 20 for the SHB20 and
correspond to the element nodes. The explicit expressions of the classical quadratic
shape functions NI , corresponding to each of the elements SHB15 and SHB20, can
be found for instance in [33].

2.2 Discrete gradient operator

The interpolation of the displacement field, Eq. (1), will allow us to define the strain
field and to express the relationships relating the strain field to the nodal displacements.
By differentiating (1), the linear strain tensor is written as

εi j = 1

2

(
ui, j + u j,i

) = 1

2

(
ui I NI, j + u j I NI,i

)
.

Combining Eq. (1) with the expressions of the shape functions leads to the expan-
sion of the displacement field in the form of a constant term, linear terms in xi , and
nonlinear terms involving functions hα , with (α = 1, . . . , 11) for the SHB15, and
(α = 1, . . . , 16) for the SHB20. For the SHB15 element, this expansion reads



⎧
⎪⎪⎨

⎪⎪⎩

ui = a0i + a1i x1+ a2i x2+ a3i x3+ c1i h1+ c2i h2+ c3i h3+ c4i h4
+ c5i h5+ c6i h6+ c7i h7+ c8i h8+ c9i h9+ c10i h10+ c11i h11

h1 = ξζ, h2 = ηζ, h3 = ξη, h4 = ξηζ, h5 = ξ2, h6 = η2,

h7 = ζ 2, h8 = ξ2ζ, h9 = η2ζ, h10 = ξζ 2, h11 = ηζ 2

, i = 1, 2, 3.

(2)

Evaluating the above equation at the SHB15 element nodes leads to the following
three fifteen-equation systems:

{
di = a0i s+ a1i x1+ a2i x2+ a3i x3+ c1i h1+ c2i h2+ c3i h3+ c4i h4

+ c5i h5+ c6i h6+ c7i h7+ c8i h8+ c9i h9+ c10i h10+ c11i h11
, i = 1, 2, 3

(3)

where the fifteen-component vectors di and xi represent the nodal displacements and
nodal coordinates, respectively, and are defined as

dT
i = (ui1, ui2, ui3, . . . . ., ui15), xT

i = (xi1, xi2, xi3, . . . . ., xi15),

while s and hα (α = 1, . . . , 11) are constant vectors given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sT = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

2hT
1 = (0,−1,−2,−1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0)

2hT
2 = (0, 0, 0,−1,−2,−1, 0, 0, 0, 0, 0, 0, 1, 2, 1)

4hT
3 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

4hT
4 = (0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

4hT
5 = (0, 1, 4, 1, 0, 0, 0, 4, 0, 0, 1, 4, 1, 0, 0)

4hT
6 = (0, 0, 0, 1, 4, 1, 0, 0, 4, 0, 0, 0, 1, 4, 1)

hT
7 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1)

4hT
8 = (0,−1,−4,−1, 0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0)

4hT
9 = (0, 0, 0,−1,−4,−1, 0, 0, 0, 0, 0, 0, 1, 4, 1)

2hT
10 = (0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0)

2hT
11 = (0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1)

To determine the unknown constants a ji and cαi in Eq. (2), the derivatives of the shape
functions, evaluated at the origin of the reference frame, are introduced:

bi = N,i (0) = ∂N
∂xi |ξ=η=ζ=0

i = 1, 2, 3 (4)

where vector N has as components the shape functions NI . Explicit expressions for
vectors bi can be derived by algebra, which allow us to demonstrate the following
orthogonality conditions:



bT
i · hα = 0, bT

i · s = 0, bT
i · x j = δi j , i, j = 1, . . . , 3

hT
1 · s = 0, hT

2 · s = 0, 2hT
3 · s = 1, hT

4 · s = 0, hT
5 · s = 4, hT

6 · s = 4,

hT
7 · s = 12, hT

8 · s = 0, hT
9 · s = 0, hT

10 · s = 4, hT
11 · s = 4

8hT
α · hβ =

⎡

⎢⎢⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

24 −4 0 2 0 0 0 20 2 0 0

−4 24 0 2 0 0 0 2 20 0 0

0 0 1 0 1 1 4 0 0 2 2

2 2 0 1 0 0 0 1 1 0 0

0 0 1 0 26 1 24 0 0 20 2

0 0 1 0 1 26 24 0 0 2 20

0 0 4 0 24 24 96 0 0 32 32

20 2 0 1 0 0 0 18 1 0 0

2 20 0 1 0 0 0 1 18 0 0

0 0 2 0 20 2 32 0 0 24 4

0 0 2 0 2 20 32 0 0 4 24

⎤

⎥⎥⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

The constants a ji and cαi can be then determined by the scalar product of (3) by
bT

j , sT , and hT
α , successively, and the use of orthogonality conditions (5):

a ji = bT
j · di , cαi = γ T

α · di , (6)

with

γ T
α = nα1

(
hT

1 −
(

hT
1 · x j

)
bT

j

)
+ nα2

(
hT

2 −
(

hT
2 · x j

)
bT

j

)

+ nα3

[(
hT

3 − 1

30
sT

)
−

((
hT

3 − 1

30
sT

)
· x j

)
bT

j

]

+ nα4

(
hT

4 −
(

hT
4 · x j

)
bT

j

)

+ nα5

[(
hT

5 − 4

15
sT

)
−

((
hT

5 − 4

15
sT

)
· x j

)
bT

j

]

+ nα6

((
hT

6 − 4

15
sT

)
−

((
hT

6 − 4

15
sT

)
· x j

)
bT

j

)

+ nα7

((
hT

7 − 4

5
sT

)
−

((
hT

7 − 4

5
sT

)
· x j

)
bT

j

)

+ nα8

(
hT

8 −
(

hT
8 · x j

)
bT

j

)
+ nα9

(
hT

9 −
(

hT
9 · x j

)
bT

j

)

+ nα10

((
hT

10 − 4

15
sT

)
−

((
hT

10 − 4

15
sT

)
· x j

)
bT

j

)

+ nα11

((
hT

11 − 4

15
sT

)
−

((
hT

11 − 4

15
sT

)
· x j

)
bT

j

)



and

[
nαβ

] =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢
⎣

17
2 0 0 −8 0 0 0 −9 0 0 0

0 17
2 0 −8 0 0 0 0 −9 0 0

0 0 256
17 0 36

17
36
17 2 0 0 − 58

17 − 58
17

−8 −8 0 24 0 0 0 8 8 0 0

0 0 36
17 0 316

187
146
187 1 0 0 − 324

187 − 171
187

0 0 36
17 0 146

187
316
187 1 0 0 − 171

187 − 324
187

0 0 2 0 1 1 3
2 0 0 − 3

2 − 3
2

−9 0 0 8 0 0 0 10 0 0 0

0 −9 0 8 0 0 0 0 10 0 0

0 0 − 58
17 0 − 324

187 − 171
187 − 3

2 0 0 505
187

585
374

0 0 − 58
17 0 − 171

187 − 324
187 − 3

2 0 0 585
374

505
187

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥
⎦

α, β = 1, 2, . . . , 11

In the case of the SHB20 element, repeating exactly the same steps results in

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = a0i + a1i x1 + a2i x2 + a3i x3 + c1i h1 + c2i h2 + c3i h3 + c4i h4 + c5i h5

+c6i h6 + c7i h7 + c8i h8 + c9i h9 + c10i h10 + c11i h11 + c12i h12 + c13i h13

+c14i h14 + c15i h15 + c16i h16

h1 = ξζ, h2 = ηζ, h3 = ξη, h4 = ξ2, h5 = η2, h6 = ζ 2, h7 = ξηζ, h8 = ξ2η,

h9 = ξ2ζ, h10 = η2ξ, h11 = η2ζ, h12 = ζ 2ξ, h13 = ζ 2η, h14 = ξ2ηζ, h15 = ξη2ζ,

h16 = ξηζ 2

which, evaluated at the element nodes, yields the three twenty-equation systems:

di = a0i s + a1i x1 + a2i x2 + a3i x3 + c1i h1 + c2i h2 + c3i h3 + · · · + c16i h16,

i = 1, 2, 3. (7)

As before, the twenty-component vectors di and xi indicate here the nodal displace-
ments and coordinates, while s and hα(α = 1, . . . , 16) are given by



⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sT = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

hT
1 = (1,−1,−1, 1,−1, 1, 1,−1, 0,−1, 0, 1, 0, 0, 0, 0, 0, 1, 0,−1)

hT
2 = (1, 1,−1,−1,−1,−1, 1, 1, 1, 0,−1, 0, 0, 0, 0, 0,−1, 0, 1, 0)

hT
3 = (1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0)

hT
4 = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1)

hT
5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0)

hT
6 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)

hT
7 = (−1, 1,−1, 1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

hT
8 = (−1,−1, 1, 1,−1,−1, 1, 1, 0, 0, 0, 0,−1,−1, 1, 1, 0, 0, 0, 0)

hT
9 = (−1,−1,−1,−1, 1, 1, 1, 1, 0,−1, 0,−1, 0, 0, 0, 0, 0, 1, 0, 1)

hT
10 = (−1, 1, 1,−1,−1, 1, 1,−1, 0, 0, 0, 0,−1, 1, 1,−1, 0, 0, 0, 0)

hT
11 = (−1,−1,−1,−1, 1, 1, 1, 1,−1, 0,−1, 0, 0, 0, 0, 0, 1, 0, 1, 0)

hT
12 = (−1, 1, 1,−1,−1, 1, 1,−1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 1, 0,−1)

hT
13 = (−1,−1, 1, 1,−1,−1, 1, 1,−1, 0, 1, 0, 0, 0, 0, 0,−1, 0, 1, 0)

hT
14 = (1, 1,−1,−1,−1,−1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

hT
15 = (1,−1,−1, 1,−1, 1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

hT
16 = (1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

In the same way, the introduction of the twenty-component vectors bi , defined by Eq.
(4), allows us to demonstrate the following orthogonality conditions:

bT
i · hα = 0, bT

i · s = 0, bT
i · x j = δi j , i, j = 1, . . . , 3

hT
1 · s = 0, hT

2 · s = 0, hT
3 · s = 0, hT

4 · s = 16, hT
5 · s = 16,

hT
6 · s = 16, hT

7 · s = 0, hT
8 · s = 0, hT

9 · s = 0, hT
10 · s = 0,

hT
11 · s = 0, hT

12 · s = 0, hT
13 · s = 0, hT

14 · s = 0, hT
15 · s = 0, hT

16 · s = 0

hT
α · hβ =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

12 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0
0 12 0 0 0 0 0 0 0 0 0 0 0 8 0 0
0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 8
0 0 0 16 12 12 0 0 0 0 0 0 0 0 0 0
0 0 0 12 16 12 0 0 0 0 0 0 0 0 0 0
0 0 0 12 12 16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 12 0 0 0 0 8 0 0 0
0 0 0 0 0 0 0 0 12 0 8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 12 0 8 0 0 0 0
0 0 0 0 0 0 0 0 8 0 12 0 0 0 0 0
0 0 0 0 0 0 0 0 0 8 0 12 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 0 12 0 0 0
0 8 0 0 0 0 0 0 0 0 0 0 0 8 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 8

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎥
⎥⎥
⎦



Using the above conditions along with the successive scalar product of (7) by bT
j , sT ,

and hT
α leads to the same expression (6) for the constants a ji and cαi ; however, the

corresponding vectors γ α must be replaced now by

γ T
α = nα1

(
hT

1 −
(

hT
1 · x j

)
bT

j

)
+ nα2

(
hT

2 −
(

hT
2 · x j

)
bT

j

)

+nα3

(
hT

3 −
(

hT
3 · x j

)
bT

j

)
+ nα4

[(
hT

4 − 4

5
sT

)
−

((
hT

4 − 4

5
sT

)
· x j

)
bT

j

]

+nα5

[(
hT

5 − 4

5
sT

)
−

((
hT

5 − 4

5
sT

)
· x j

)
bT

j

]

+nα6

[(
hT

6 − 4

5
sT

)
−

((
hT

6 − 4

5
sT

)
· x j

)
bT

j

]

+nα7

(
hT

7 −
(

hT
7 · x j

)
bT

j

)
+ nα8

(
hT

8 −
(

hT
8 · x j

)
bT

j

)

+nα9

(
hT

9 −
(

hT
9 · x j

)
bT

j

)
+ nα10

(
hT

10−
(

hT
10 · x j

)
bT

j

)

+nα11

(
hT

11−
(

hT
11 · x j

)
bT

j

)
+ nα12

(
hT

12−
(

hT
12 · x j

)
bT

j

)

+nα13

(
hT

13−
(

hT
13 · x j

)
bT

j

)
+ nα14

(
hT

14−
(

hT
14 · x j

)
bT

j

)

+nα15

(
hT

15−
(

hT
15 · x j

)
bT

j

)
+ nα16

(
hT

16−
(

hT
16 · x j

)
bT

j

)

with

[
nαβ

] =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

4 0
0 1

4 0 0 0 0 0 0 0 0 0 0 0 − 1
4 0 0

0 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0 − 1

4
0 0 0 3

8
1
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 1
8

3
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 1
8

1
8

3
8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3
20 0 0 0 0 − 1

10 0 0 0
0 0 0 0 0 0 0 0 3

20 0 − 1
10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3
20 0 − 1

10 0 0 0 0
0 0 0 0 0 0 0 0 − 1

10 0 3
20 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
10 0 3

20 0 0 0 0
0 0 0 0 0 0 0 − 1

10 0 0 0 0 3
20 0 0 0

0 − 1
4 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0
− 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 0

0 0 − 1
4 0 0 0 0 0 0 0 0 0 0 0 0 1

8

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎥⎥⎥⎥
⎥⎥
⎥⎥
⎦

α, β = 1, 2, . . . , 16
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After these lengthy derivations, the following expressions for the displacement gradi-
ent ui, j and for the discrete gradient operator B, which relates the strain field to the
nodal displacements by the relationship ∇s(u) = B · d, are found:

ui, j =
(

bT
j + hα, jγ

T
α

)
· di , (8)

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT
x + hα,xγ

T
α 0 0

0 bT
y + hα,yγ

T
α 0

0 0 bT
z + hα,zγ

T
α

bT
y + hα,yγ

T
α bT

x + hα,xγ
T
α 0

0 bT
z + hα,zγ

T
α bT

y + hα,yγ
T
α

bT
z + hα,zγ

T
α 0 bT

x + hα,xγ
T
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9)

with

∇s(u) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

ux,x

uy,y

uz,z

ux,y + uy,x

uy,z + uz,y

ux,z + uz,x

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, d =
⎡

⎣
dx

dy

dz

⎤

⎦ .

Note that Eqs. (8) and (9) are common to both elements, provided that the summation
over subscript α is taken from 1 to 11 for the SHB15, and from 1 to 16 for the SHB20.
The compact expression (9) for the discrete gradient operator B is very convenient
because the γα vectors involved are shown to satisfy the following orthogonality
conditions:

γT
α · x j =0, γT

α · hβ = δαβ, j = 1, . . . , 3, (α, β = 1, . . . , 11) resp. (α, β = 1, . . . , 16).

This would allow each of the deformation modes to be separately handled in order to
build a simple form for an assumed-strain field. The formulation (9) also allows us to
check any stiffness matrix rank deficiency for these elements. It is noteworthy that no
projection for the corresponding discrete gradient operators has been applied to these
quadratic solid–shell elements, as no significant locking has been experienced so far
in the benchmark problems tested.

2.3 Variational principle

The Hu–Washizu mixed variational principle, which was used for the formulation of
the linear solid–shell elements SHB8PS and SHB6 [31,32], is considered here again.
More specifically, a simplified form of this principle, as described by Simo and Hughes
[34], is adopted, which can be written for a single finite element as



π(˙̄ε) =
∫

�e

δ ˙̄εT · σ d� − δḋT · fext = 0, (10)

where δ denotes a variation, ˙̄ε the assumed-strain rate, σ the stress field evaluated
from the constitutive equations, ḋ the nodal velocities, and fext the external nodal
forces. The well-known assumed-strain method consists of choosing a B̄ operator,
obtained by projection of the classical discrete gradient operator B, such as ˙̄ε = B̄ · ḋ.
The goal of this method is to eliminate most of the locking phenomena (e.g., shear
locking, membrane locking, etc) that can be encountered, especially in low-order
finite elements. Although this technique has been shown to be consistent, from a
variational perspective, with the Hu–Washizu variational principle [34], this variational
justification does not provide a general, systematic way to derive adequate assumed-
strain fields.

Substituting the stress tensor σ in Eq. (10) with the Hooke law σ = C · ε̄, where C
is the elasticity matrix, and using the relationship ˙̄ε = B̄ · ḋ yields

Ke =
∫

�e

B̄T · C · B̄d�, f int =
∫

�e

B̄T · σ(˙̄ε) d�, (11)

where Ke and f int denote the stiffness matrix and the internal force vector, respectively.
For the above-mentioned reasons related to the absence of locking for the proposed

quadratic solid–shell elements in the benchmark problems tested, no projection for
the corresponding discrete gradient operators has been applied here. This amounts to
taking B̄ = B in Eq. (11), which leads to the following classical expressions for the
stiffness matrix and internal forces:

Ke =
∫

�e

BT · C · Bd� =
Nint∑

In=1

ω(ζIn )J (ζIn )B
T (ζIn ) · C · B(ζIn ),

and

f int =
∫

�e

BT · σ d� =
Nint∑

In=1

ω(ζIn )J (ζIn )B
T (ζIn ) · σ(ζIn ).

In the above equations, which are common to both developed elements, J (ζIn ) is the
Jacobian of the transformation between the reference configuration and the current
configuration of the element, ω(ζIn ) is the weight associated with the Gauss point In ,
and the total number of integration points Nint is to adapt depending on the element
considered: Nint = 3 × nint for the SHB15, and Nint = 4 × nint for the SHB20.



Fig. 2 Test of admissible aspect ratios: Cantilever beam geometry and mesh description

3 Numerical tests and performance evaluation

In this section, the performance of the proposed solid–shell elements will be assessed
based on the analysis of a set of selective and representative linear benchmark prob-
lems. Recall that the formulation of the SHB15 and SHB20 is valid for any number
of through-thickness integration points nint, with a minimum number of two. This
user-defined number nint is taken equal to two in linear elastic problems, but can be
freely modified whenever required for a specific application. To illustrate the perfor-
mance of the proposed elements, the results obtained for each test problem will be
compared to the reference solution and also to the results yielded by other existing
finite elements having similar properties in terms of geometry, number of nodes and
degrees of freedom.

3.1 Test of the maximum aspect ratios

This linear test is specifically designed to evaluate the aspect ratio limits of the elements
on a beam bending problem. It was previously applied to the linear solid–shell SHB8PS
[35] in order to assess the behavior of the element when non-structured, irregular
meshes are employed and to analyze potential locking phenomena in the limit of high
aspect ratios. The corresponding cantilever beam geometry is shown in Fig. 2, where
regular and irregular mesh data are specified.

In this analysis, the length and the width of the beam are fixed: L = 100, l = 10;
while the thickness t is a varying parameter. The elastic properties are E = 68.25×106



Table 1 Normalized displacement at point A for the regular mesh

Aspect ratio (r = l/t) HEX20 SHB20 PRI15 SHB15

uz
/

ure f
z uz

/
ure f

z uz
/

ure f
z uz

/
ure f

z

1 1.005 1.009 1.000 1.009

10 0.984 0.998 0.975 0.997

100 0.951 0.997 0.967 0.995

200 0.959 0.996 0.953 1.019

333 0.998 0.860 0.988

500 1.004

Table 2 Normalized displacement at point A for the irregular mesh

Aspect ratio (r = l/t) HEX20 SHB20 PRI15 SHB15

uz
/

ure f
z uz

/
ure f

z uz
/

ure f
z uz

/
ure f

z

1 0.981 1.010 0.974 0.985

10 0.682 0.997 0.871 0.945

100 0.345 0.995 0.832 0.944

200 0.294 1.002 0.832 0.944

333 0.251 0.984 0.878 0.926

and ν = 0.3. A bending load, P = 4, is applied to the free end of the beam, and the
results are normalized using the reference solution, which is here analytical, given by
beam theory.

For the hexahedral elements, a fixed mesh of 10 elements with a single element
along the thickness is used in both regular and irregular meshes. For the regular mesh,
each element is a 10 × 10 square (i.e., l = 10 is the side of the square, and r = l/t
represents the varying aspect ratio). A similar aspect-ratio definition is adopted for
the irregular mesh (see Fig. 2). For the prismatic elements, the same procedure as
before is followed; then each hexahedron is divided into two prismatic elements,
while maintaining a single element layer along the thickness. The normalized vertical
displacement at point A for different aspect ratios is reported in Table 1, for the regular
mesh, and in Table 2 for the irregular mesh.

In Tables 1 and 2, the proposed solid–shells are compared to their conventional
3D counterparts denoted as PRI15 and HEX20. The latter designate the standard
full-integration solid elements with fifteen and twenty nodes, respectively. We can
observe that the proposed solid–shells perform much better than their 3D counterparts,
especially for the irregular meshes. In this test and for the regular mesh, the admissible
aspect ratio is about 500 for the SHB20 and 333 for the SHB15. By contrast, the quality
of the results for the standard solid elements starts declining for much lower aspect
ratios, and this is more remarkable for distorted meshes (see Table 2).
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Fig. 3 Test of the pinched hemispherical shell: a example of a 3 × (4 × 4 × 1) mesh, and b initial and
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3.2 Test of the pinched hemispherical shell

This doubly-curved shell problem, which is often used to assess the three-dimensional
inextensional bending behavior of shells, has become very popular and has been
adopted by many authors since it was proposed by MacNeal and Harder [36]. This test
is known to be severe because the transverse shear and membrane locking phenomena
are dominant and are further accentuated by the particular geometry of the problem
(distorted, skewed elements). Figure 3 shows the geometry, loading, and boundary
conditions for this elastic thin shell problem (R/t = 250). The radius is R = 10, the
thickness is t = 0.04, Young’s modulus is E = 68.25 × 106, and the Poisson ratio is
ν = 0.3.

Owing to the symmetry of the test (i.e., planes (xz) and (yz)), only one quarter
of the hemisphere is meshed using a single layer of elements through the thickness
and with two unit loads along the directions Ox and Oy. According to the reference
solution (MacNeal and Harder [36]), the displacement of point A along the x-direction
is ure f

x = 0.0924 (see Fig. 3).
The convergence results are reported in Tables 3 and 4 in terms of normalized

displacements at point A in the x-direction versus the number of elements. For the
hexahedral elements, the mesh nomenclature consists of a 3 × (N × N × 1) mesh, in
which the quarter of the hemisphere is divided into three zones containing (N × N ×1)

elements each (see Fig. 3 for an example of a 3 × (4 × 4 × 1) mesh). For the prismatic
elements, by dividing each hexahedron into two prismatic elements, while maintaining
a single element layer through the thickness, the mesh nomenclature becomes (3 ×
(N × N × 1)) × 2.

The results in Table 3 reveal that the triangular-based elements, SHB15 and PRI15,
have a similar convergence in this test problem. Table 4 shows, however, that the
quadrangular-based elements converge more rapidly, with a markedly improved per-
formance for the SHB20 as compared to the HEX20.



Table 3 Normalized
displacement at point A of
pinched hemispherical shell
(prismatic elements)

Mesh PRI15 SHB15

ux
/

ure f
x ux

/
ure f

x

(3 × (5 × 5 × 1)) × 2 0.229 0.168

(3 × (10 × 10 × 1)) × 2 0.795 0.708

(3 × (15 × 15 × 1)) × 2 0.954 0.934

(3 × (20 × 20 × 1)) × 2 0.981 0.974

(3 × (25 × 25 × 1)) × 2 0.993 0.992

Table 4 Normalized
displacement at point A of
pinched hemispherical shell
(hexahedral elements)

Mesh HEX20 SHB20

ux
/

ure f
x ux

/
ure f

x

3 × (1 × 1 × 1) 0.001 0.115

3 × (2 × 2 × 1) 0.014 0.564

3 × (3 × 3 × 1) 0.065 0.927

3 × (4 × 4 × 1) 0.177 0.985

3 × (5 × 5 × 1) 0.342 0.997
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Fig. 4 Test of the pinched cylinder with diaphragms: a geometry and data specifications, and b example
of a (10 × 10 × 1) × 2 mesh with prismatic elements

3.3 Test of the pinched cylindrical shell with end diaphragms

A cylindrical shell loaded with a pair of concentrated vertical forces on its middle
section is considered here. Both ends of the cylinder are covered with rigid diaphragms
that allow displacements only in the axial direction (see Fig. 4). This test has been
treated by many authors, among them Belytschko et al. [37] and Chen and Wu [23].
It is considered as a selective test problem since they have shown that shear locking is
more severe than membrane locking. The geometric and material parameters for this
problem are described in Fig. 4.



Table 5 Normalized
displacement at point A of the
pinched cylinder (prismatic
elements)

Mesh PRI15 SHB15

uz
/

ure f
z uz

/
ure f

z

(10 × 10 × 1) × 2 0.625 0.646

(15 × 15 × 1) × 2 0.838 0.913

(20 × 20 × 1) × 2 0.919 0.951

(25 × 25 × 1) × 2 0.956 0.996

Table 6 Normalized
displacement at point A of the
pinched cylinder (hexahedral
elements)

Mesh HEX20 SHB20

uz
/

ure f
z uz

/
ure f

z

4 × 4 × 1 0.140 0.883

6 × 6 × 1 0.328 0.961

8 × 8 × 1 0.523 0.979

10 × 10 × 1 0.675 0.990

Owing to the symmetry of the problem, only one eighth of the cylinder is modeled
using different N × N × 1 meshes for the hexahedral elements, and (N × N × 1) × 2
meshes for the prismatic elements. For illustration, an example of a (10 × 10 × 1)× 2
mesh is shown in Fig. 4.

The displacement at the load point A in the loading direction is normalized with
respect to the reference solution ure f

z = −0.18248 × 10−4, and reported in Tables 5
and 6 for each mesh discretization.

The results in Table 5 reveal once again a similar convergence for the prismatic
elements SHB15 and PRI15, with slightly better performance for the SHB15. For the
hexahedral elements, Table 6 shows, on the one hand, that their performance is much
better than that of the prismatic elements, and on the other hand, that the SHB20
displays a convergence rate significantly better than that of the HEX20.

3.4 Test of buckling of a cylinder under external pressure

This test represents a linear stability analysis of a thin cylinder, which is free at its
ends and subjected to a uniformly distributed external pressure. This problem also
allows us to verify the formulation of the geometric stiffness matrix Kσ. Indeed, in
this linear buckling analysis, the Euler critical pressure is determined along with the
corresponding buckling mode. This critical state is associated with the lowest pressure
that makes the global stiffness matrix singular and is classically obtained by solving
the following eigenvalue problem:

(Ke + λcKσ) · Xc = 0 (12)
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Table 7 Normalized critical pressure for the thin cylinder under pressure (prismatic elements)

Mesh Mode 2 Mode 4 Mode 6

P(2)
cr /P(2)

cr(re f )
P(4)

cr /P(4)
cr(re f )

P(6)
cr /P(6)

cr(re f )

PRI15 SHB15 PRI15 SHB15 PRI15 SHB15

(10 × 10 × 1) × 2 1.31 1.43 1.35 1.45 1.42 1.50

(12 × 10 × 1) × 2 1.14 1.17 1.16 1.18 1.20 1.20

(14 × 10 × 1) × 2 1.07 1.08 1.08 1.08 1.11 1.09

(16 × 10 × 1) × 2 1.03 1.03 1.04 1.04 1.06 1.04

(20 × 10 × 1) × 2 1.00 1.00 1.01 1.00 1.02 1.00

in which λc is the critical buckling load and Xc is the associated buckling mode. The
geometric and material parameters for this test are (see, e.g., Fig. 5): the length L = 2,
the radius R = 2, the thickness e = 0.02, Young’s modulus E = 2 × 1011, and the
Poisson ratio ν = 0.3.

The reference solutions used for comparison are analytical, given by Timoshenko
and Gere [38] and Brush and Almroth [39]. Owing to the symmetry, only one eighth of
the cylinder is modeled, and symmetry boundary conditions are applied, which in turn
restrict the analysis to symmetric buckling modes (i.e., modes 2, 4, and 6 as shown in
Fig. 5). The corresponding critical pressure Pcr is given by the following analytical
expression:

Pcr = En2

12
(
1 − ν2

)
( e

R

)3
, n = 2, 4, 6.

The results obtained for the three modes (n = 2, 4, and 6) are reported in Tables 7
and 8 in terms of critical pressure, normalized with respect to the analytical reference
solution.

Similar to the previous discussion, Table 7 reveals that the SHB15 exhibits a con-
vergence rate comparable to that of the PRI15 on this test problem. On the contrary,
Table 8 shows that the SHB20 has remarkable coarse-mesh accuracy and performs
much better than its standard solid counterpart HEX20.



Table 8 Normalized critical pressure for the thin cylinder under pressure (hexahedral elements)

Mesh Mode 2 Mode 4 Mode 6

P(2)
cr /P(2)

cr(re f )
P(4)

cr /P(4)
cr(re f )

P(6)
cr /P(6)

cr(re f )

HEX20 SHB20 HEX20 SHB20 HEX20 SHB20

3 × 3 × 1 53.33 1.00 70.58 1.05 51.73 1.26

4 × 4 × 1 17.27 0.99 21.14 1.01 25.92 1.07

5 × 5 × 1 7.60 0.99 8.76 0.99 10.48 1.02

6 × 6 × 1 4.16 0.98 4.61 0.99 5.31 1.00

7 × 7 × 1 2.70 0.98 2.91 0.99 3.24 0.99

Fig. 6 Geometry and boundary
conditions for a quarter of a
single ring: an example of a
mixed mesh using 260
hexahedral elements for the
stiffener and 360 prismatic
elements for the main shell
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3.5 Test of buckling of a stiffened cylindrical ring

This last benchmark problem also deals with linear elastic stability. The corresponding
buckling analysis is based on the eigenvalue equation (12), which allows the formula-
tion of the geometric stiffness matrix Kσ to be checked once again. The test consists
of a portion of a submarine hull subjected to external pressure, as illustrated in Fig. 6.

This test was previously used in [40], while in [41] the submarine was modeled in
its entirety. The current analysis only considers a single ring, as described in Fig. 6,
and the geometric and material data are reported in Table 9.

Note that due to its symmetry, only one quarter of the ring is modeled and subjected
to the corresponding symmetry boundary conditions (see Fig. 6). A linear buckling
analysis is performed to determine the Euler critical pressure, based on the eigenvalue
analysis of the global stiffness matrix (see Eq. (12)). The SHB8PS element is first used
to determine a reference solution for the first critical load (i.e., dead load buckling



Table 9 Geometric and
material properties for the
stiffened ring under external
pressure

Frame spacing Ls 0.6

Mean radius R 2.488

Shell thickness e 0.024

Web height hw 0.156

Flange width W f 0.120

Web thickness ew 0.010

Flange thickness e f 0.024

Young’s modulus E 200 × 109

Poisson’s ratio ν 0.3

Table 10 Normalized critical
buckling pressure for the
stiffened cylindrical ring

Mesh Pcr /Pcr(re f )

300 PRI15 elements 1.01

300 SHB15 elements 1.00

100 HEX20 elements 1.01

100 SHB20 elements 0.99

Fig. 7 Illustration of the first
Euler buckling mode for the
stiffened cylindrical ring under
pressure

pressure). A converged solution obtained with a fine mesh of 440 SHB8PS elements
is 7.06 × 106, which is in good agreement with previously reported results [40,41].
The obtained results for the critical pressure, after normalization with respect to the
reference solution, are reported in Table 10. The corresponding Euler buckling mode
is illustrated in Fig. 7.



The results in Table 10 reveal, as also observed previously, that the hexahedral
solid–shell SHB20 is more efficient in terms of accuracy and convergence than the
prismatic solid–shell SHB15.

4 Conclusions

In this paper, the formulation of two new quadratic solid–shell finite elements, denoted
as SHB15 and SHB20, has been given in detail. The SHB15 is a fifteen-node prism and
the SHB20 is a twenty-node hexahedron, both having only three translational degrees
of freedom per node. The key idea of the derivation is the convenient combination of
a 3D approach with some essential shell features. For instance, the integration points
are distributed along a special direction, designated as the thickness. The correspond-
ing in-plane reduced integration contributes to alleviate several locking phenomena,
while increasing the computational efficiency of the elements. To further enhance the
element immunity with regard to shear and thickness-type locking, shell-like behavior
is intended by adopting a local physical coordinate system for the specification of the
constitutive matrix. In such a local frame, the x − y plane corresponds to the element
mid-plane defined by the ζ -coordinate of the considered integration point.

The performance of the resulting solid–shell elements has been assessed, based on
the analysis of various linear benchmark problems. The obtained simulation results
have been compared to the reference solutions and also to existing conventional 3D
solid elements. In all of the benchmark problems tested, the proposed elements showed
very good convergence and accuracy. The performance of the SHB15 solid–shell is
often found comparable to that of the standard 3D element PRI15; however, the SHB15
admits larger aspect ratios. The SHB20 solid–shell shows remarkable performance
both in terms of coarse-mesh accuracy and computational efficiency. Because these
elements have only three degrees of freedom per node, they can automatically be
combined to mesh arbitrarily complex structural shapes. This possible combination
of effective hexahedral and prismatic elements is useful for many applications, and
becomes necessary when free mesh generation tools are employed.
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