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Abstract: In this paper, the analytical solution of the multiple - step homogenization problem for multi - rank
composites with generalized periodicity made of elastic materials is presented. The proposed homogenization
scheme is combined with computational homogenization for solving more complex microstructures. Two numerical
examples are presented, concerning a “chevron” composite and a wavy fiber reinforced composite.

1 INTRODUCTION

Materials may exhibit complex structures with more than one length scale, in a manner that a “hierarchical”
structure could be defined. This “hierarchy” plays a major role in determining the bulk material properties ([3])
with great technological importance ([7]). Microstructures with periodicity are often characterized by the repetition
of the same material element with respect to one or two or three - dimensional coordinate axis. However, there are
structures that can not be obtained by the repetition of the same micro - volume.

Following [4], one of the simplest composite, that called rank-one, is a stratified material where the material
properties vary only in one direction, called the direction of lamination. In multiple - rank laminates, there is a
large difference in the scales of the successive laminations, which are in different directions. The existence of
a sequence of scales of decreasing order allows for performing a succession of homogenization steps, in which
the “homogenized” material from every step acts as initial (“heterogeneous”) material for the next step. In every
step, the homogenization scheme requires the solution of a cell problem with data corresponding to the material
“homogenized” properties obtained from the previous step and to the volume fractions corresponding to the actual
size.

In Section 2 we define the problem that this paper treats while in Section 3 we present the analytical solution of the
microequation during a homogenization step, which is necessary in order to compute the effective elastic matrix.
In Section 4 we present two numerical examples.

2 FORMULATION OF THE PROBLEM

In mathematical homogenization at least two scales are introduced. The first one is the macroscale denoted by x
∈ Ωε, where Ωε is the volume occupied by the heterogeneous body, at which the heterogeneities, characterized by
ε, are very small compared to the whole structure. The second one is the microscale denoted by

x

ε
, which is the

actual scale for the heterogeneities. At every step of homogenization, the scale is much bigger than the scale of the
previous step.

The choice of the repeated unit cell (RUC) is made with respect to the generalized periodicity function %(x) (for



more details see [5]) and Y = [0, y1]× [0, y2]× [0, y3] is chosen to be the basic cell, where

y =
%(x)

ε
. (1)

The dependence of functions on the microcoordinate is performed (generally in a non - periodic way) via

ȳ =
x

ε
. (2)

We denote field variables σ0, ε0 and u1 as microscopic variables and Σ, E and u0 as the macroscopic variables
where the macroscopic quantities depend only on the macrocoordinate x. Both classes of deformation fields are
related to the RUC located at x. Away from the boundaries ∂Ω, stress and strain fields conform at the microlevel
to the generalized periodicity conditions:

σ0, ε0 are Y − periodic functions of y. (3)

The actual displacement u0 within Y located at x has two properties: it is oscillating and it has a generalized
periodicity. We assume that u0 can be expressed as a sum of a linear and a periodic part ([1],[2],[5])

u0
i (x, ȳ,y) = Eij ȳj + u1

i , (4)

where
u1
i = u1

i (x,y), (5)

is periodic with respect to y. We remind that the difference with [2] is that, there, the function u1
i is periodic with

respect to the microvariable ȳ, while here it is periodic only with respect to the generalized periodicity ([5]).

Microstrain is defined from (4) with respect to the microcoordinate,

ε0
ij = sym

(
∂ui
∂ȳj

)
=

1

2

(
∂ui
∂ȳj

+
∂uj
∂ȳi

)
, (6)

while the macrostrain is defined with respect to the macrocoordinate,

Eij = sym
(
∂u0

i

∂xj

)
=

1

2

(
∂u0

i

∂xj
+
∂u0

j

∂xi

)
. (7)

It was prooved ([6]) that

〈ε0
ij〉 = Eij . (8)

Two main hypotheses hold. The first is the perfect bonding among layers of the constituents (see in [8] the effect
of debonded fibers of a composite under traction). The second one is that there is no cracking in the structure. The
elastic coefficients are assumed of the form,

Cijkh(y) = Cijkh

(
%(x)

ε

)
, Cijkh(y) Y − periodic, Cijkh ∈ L∞(Rm), (9)

% ∈ C2(Rm), m ≤ 3, (10)

Cijkhξijξkh ≥ λξijξij , ∀ ξ symmetric, Cijkh = Cjikh = Cijhk = Ckhij , (11)

n∑
i=1

(
m∑
k=1

∂%k(x)

∂xi
η2
k)2 ≥ β

n∑
k=1

η2
k, ∀ η. (12)



We note that, at every scale
1

ε
, the generalized periodicity is related only to the actual scale. The sequentially

formed composite allows for a succession of homogenization steps based on one - dimensional cell problems.

We study the elasticity problem

∂σεij
∂xj

+ f εi (x) = 0 in Ωε, (13)

uεi = 0 on Sd, (14)

σεijnj = ti(x) on St, (15)

σεij(x) = Cεijkh(x)εkh(uε), (16)

where ε(u) = 1
2 (∇u+t ∇u) is the infinitesimal strain tensor.

By putting

V = {v ∈ (H1(Ω))3|v|Sd
= 0}, (17)

where v|Sd
is the value of v on the boundary Sd, the equations of equilibrium (13), in weak formulation, are written

∫
Ω

∇jσεijωidΩ +

∫
Ω

f εi ωidΩ = 0, ∀ ωi ∈ V. (18)

We apply the asymptotic expansion homogenization technique and we conclude ([5]) that the microstress satisfies
the equation of equilibrium,

∂σ0
ij

∂ȳj
= 0, (19)

or
∂σ0

ij

∂ym

∂%m
∂xj

= 0. (20)

The microequation or cell equation (19) or (20) is written as

∂

∂yl

(
∂%l
∂xj

Cijkz
∂%m
∂xz

∂wφθk
∂ym

+
∂%l
∂xj

Cijφθ

)
= 0 (21)

with respect to the unknowns wkhl (where the indices l,m take the value 1, the indices i, k take the values 1,2,3
and the indices j, z take the values 1,2) under appropriate periodicity and continuity conditions.

3 THE SOLUTION OF THE MICROEQUATION

By expanding (13) for l, m, j, z, and k, and after intergration [10] we conlude to the following equation in matrix
form

 (mat)a1
1

(mat)a1
2

(mat)a1
3

(mat)a2
1

(mat)a2
2

(mat)a2
3

(mat)a3
1

(mat)a3
2

(mat)a3
3




(mat) ∂w
a
1

∂y
(mat) ∂w

a
2

∂y
(mat) ∂w

a
3

∂y

 =


(mat)cona1 −

∂%
∂x1

(mat)
C1a − ∂%

∂x2

(mat)
C6a

(mat)cona2 −
∂%
∂x1

(mat)
C6a − ∂%

∂x2

(mat)
C2a

(mat)cona3 −
∂%
∂x1

(mat)
C5a − ∂%

∂x2

(mat)
C4a

 ,



where
ai1(x1, x2) =

∂%

∂x1

∂%

∂x1
Ci111 +

∂%

∂x1

∂%

∂x2
Ci112 +

∂%

∂x2

∂%

∂x1
Ci211 +

∂%

∂x2

∂%

∂x2
Ci212

ai2(x1, x2) =
∂%

∂x1

∂%

∂x1
Ci121 +

∂%

∂x1

∂%

∂x2
Ci122 +

∂%

∂x2

∂%

∂x1
Ci221 +

∂%

∂x2

∂%

∂x2
Ci222

ai3(x1, x2) =
∂%

∂x1

∂%

∂x1
Ci131 +

∂%

∂x1

∂%

∂x2
Ci132 +

∂%

∂x2

∂%

∂x1
Ci231 +

∂%

∂x2

∂%

∂x2
Ci232,

(22)

from where we solve with respect to (mat) ∂w
a
1

∂y
, (mat) ∂w

a
2

∂y
and (mat) ∂w

a
3

∂y
.

The periodicity conditions for the first and the last material in the RUC read

at y = 0, (1)wφθk = 0 and at y = 1, (n)wφθk = 0. (23)

The continuity conditions at the material interfaces in the RUC read

[|wφθk |] = 0, [| ∂%
∂xj

Cijlm
∂%

∂xm

∂wkhl
∂y

+
∂%

∂xj
Cijφθ|] = 0, (24)

where [|...|] denotes the difference at both sides of an interface.

In [6] we showed that the effective elastic matrix is given by

Ceffijφθ = 〈Cijφθ + Cijmn
∂wφθm
∂y

∂%

∂xn
〉, (25)

or by using Voigt notation in a comprehensive form

Ceffpa = 〈Cpa +

(
Cp1

∂%

∂x1
+ Cp6

∂%

∂x2
+ Cp5

∂%

∂x3

)
∂wa

1

∂y

+

(
Cp6

∂%

∂x1
+ Cp2

∂%

∂x2
+ Cp4

∂%

∂x3

)
∂wa

2

∂y
+

(
Cp5

∂%

∂x1
+ Cp4

∂%

∂x2
+ Cp3

∂%

∂x3

)
∂wa

3

∂y
〉.

(26)

In many cases, the first step of homogenization procedure requires the solution of a three - dimensional cell prob-
lem. In this case, cell equations form a system of three partial equations. Contrarily to the one - dimensional
problem, this problem has no analytical solution (see [10]). In order to be able to solve that kind of problems
we use FEA commercial softwares, such as DS Simulia Abaqus. By using DS Simulia Abaqus we can solve it
completely, but in this case we should take under consideration the computational cost. As an alternatice solution,
we propose an other way in order to solve this problem. According to this, we combine the commercial software
with the homogenization method mentioned before, following a two - step strategy. This homogenization scheme
will be clarified in the example of the next section.

4 NUMERICAL EXAMPLES.

4.1 “Chevron” structure

The first example is the two - dimensional, two - phase, second - rank laminate shown in Fig. 1. The widths
εII

2
of the slabs should be much larger than the thicknesses of the layers within each slab. The layers within each slab
form angles θ1 and θ2, not necessarly equal. One case is considered: θ1 = 30o, θ2 = 60o. The constituents are
assumed isotropic with mechanical properties shown in Tables 1 and 2.

We follow a two - steps homogenization procedure. According to this procedure, the problem will be solved first
to the direction normal to the layers of the initial composite and as a result we will obtain a “new intermediate”



composite. Next we will apply the same procedure along x1 axis for the constituents of the “new intermediate”
composite, resulting from the first step. It is obvious that two generalized functions are required. The generalized

periodicity function for the first step of the homogenization is %I = x2 − x1 tan θ with gradients
∂%I

∂x1
= − tan θ

and
∂%I

∂x2
= 1. The generalized periodicity function for the second step is %II = x1 with gradients

∂%II

∂x1
= 1 and

∂%II

∂x2
= 0.

Figure 1: “Chevron” structure. Two microscale composite with laminate structure, forming angles θ1 and θ2 with
x1 axis in the macrocoordinate system, the one - dimensional cell in the framework of generalized periodicity in
microcoordinate system of the first step and the corresponding of the second step. The material to be homogenized
of the second step is a two - phase stratified material.

The RUC of the first step of homogenization (parameter of heterogeneity εI ) consists of 90% metal and 10%
ceramic, while the volume fractions for the second step are 75% for the slab forming angle θ1 with the x1 axis and
25% for the slab forming angle θ2 with the x1 axis. We compute the effective elastic matrix from equation (26)
using a MATLAB code that we have developed.

This is the simplest case since in both steps only two materials (the initial constituents in the first step and the
results of the first step as constituents in the second step) are used.

Table 1: “Chevron” structure. Mechanical properties of constituents.
Property Metal Ceramic

Young Modulus (GPa) 72.4 420
Poisson Ratio 0.33 0.25

Table 2: “Chevron” structure. Elastic (symmetric) matrix coefficients of the two constituents (in GPa).
Mechanical Properties Metal Ceramic

C11, C22, C33 107.271 504
C12, C13, C23 52.835 168
C44, C55, C66 27.218 168
C14, C15, C16 0 0
C24, C25, C26 0 0
C34, C35, C36 0 0

The results of the first step of homogenization are depicted in Tables 3 and 4, while the effective elastic matrix for
the whole RUC is depicted in Table 5. Comparing Table 5 with Table 6, we conclude that the results of the present
approach are in very good agreement with the results of the DIPH (see [9]).

4.2 Matrix reinforced by wavy fibers in two directions

Wavy fiber reinforced composite exhibit a nice mechanical behavior. In this example we consider a three - di-
mensional, two - phase composite consisting of a matrix reinforced by wavy fibers in two directions (see Fig. 2),
parallel to x2− and x1− axis respectively, ordered vertically to x3− axis and forming two successive layers of



Table 3: “Chevron” structure. Effective elastic matrix for θ1=30o from the first step of homogenization (in GPa).

Ceff I θ1 =


131.579 61.306 60.210 0 0 9.403
61.306 117.610 57.067 0 0 2.694
60.210 57.067 144.373 0 0 2.722

0 0 0 32.605 5.018 0
0 0 0 5.018 38.399 0

9.403 2.694 2.722 0 0 35.518



Table 4: “Chevron” structure. Effective elastic matrix for θ2=60o from the first step of homogenization (in GPa).

Ceff I θ2 =


117.610 61.306 57.067 0 0 −2.694
61.306 131.579 60.210 0 0 −9.403
57.067 60.210 144.373 0 0 −2.722

0 0 0 38.399 −5.018 0
0 0 0 −5.018 32.605 0

−2.694 −9.403 −2.722 0 0 35.518



Table 5: “Chevron” structure, θ1 = 30o, θ2 = 60o. Effective elastic matrix from the second step of homogenization
by the proposed method (in GPa).

Ceff I =


127.017 60.536 59.010 0 0 6.119
60.536 120.330 57.506 0 0 −0.328
59.010 57.503 144.202 0 0 1.303

0 0 0 33.499 2.189 0
0 0 0 2.189 36.766 0

6.119 −0.328 1.303 0 0 35.291



Table 6: “Chevron” structure, θ1 = 30o, θ2 = 60o. Effective elastic matrix by DIPH (in GPa) ([9]).

C̃eff I =


128.087 61.306 59.424 0 0 6.379
61.306 121.102 57.853 0 0 −0.330
59.424 57.853 144.373 0 0 1.361

0 0 0 35.053 2.509 0
0 0 0 2.509 36.950 0

6.379 −0.330 1.361 0 0 35.518





thickness εII much larger than the distance εI between the wavy fibers. Then, the composite can be considered as
a multilayered with two types of successive reinforced layers.

Each layer consists of a matrix reinforced by fibers of waviness 0.20. The volume fraction of fiber into each layer
is 10%. The first layer is piled with angle 0o and the other with angle 90o and so on. The properties of both matrix
and fiber are shown in Tables 7 and 8.

Table 7: Matrix reinforced by wavy fibers in two directions. Mechanical properties of the two constituents.
Property Fiber Matrix

Young Modulus (GPa) 276 3
Poisson Ratio 0.3 0.3

Table 8: Matrix reinforced by wavy fibers in two directions. Elastic (symmetric) matrix coefficients of the two
constituents (in GPa).

Mechanical Properties Fiber Matrix
C11, C22, C33 371.538 4.038
C12, C13, C23 159.231 1.731
C44, C55, C66 106.154 1.154
C14, C15, C16 0 0
C24, C25, C26 0 0
C34, C35, C36 0 0

In order to solve this problem, we follow a two - step strategy. In the first step, we compute the effective elastic
modulus in the RUC of each layer, that consists of a fiber reinforced matrix cube (see Fig. 3, 4, 5 and 6). This is a
three - dimensional problem that has no analytical solution. In this case, we use the FEA commercial software DS
Simulia Abaqus v.13 − 1 in order to solve the cell problem.

Figure 2: Matrix reinforced by wavy fibers in two directions. Laminate stucture consists of fiber reinforced layers,
piled with angles 0o (layer A) and 90o (layer B).

In the second step, where we will use the result of the first step as input data and we will apply the homogenization
method as has been mentioned above (see “chevron” example). The volume fraction for the layer A is 70.0% and
for the layer B is 30.0%. This is an one - dimensional problem with two equal volume phases. The generalized

periodicity function for the second step is %II = x3 with gradients
∂%II

∂x1
= 0 and

∂%II

∂x3
= 1. The results of the

first step of homogenization are shown in Tables 9 and 10 while the results of the second step are shown in Table
11.

It should be remarked that, contrarily of the corresponding example in [10], the usage of not equal volume fractions
for the layers in the second step, lead to a non symmetrical improvement of the effective elastic matric (see Ceff11

vs Ceff22 ).

This example illustrates the advantages of the proposed method, namely the lower computational cost, the flexi-
bility and the great adaptativity to many cases of “hierarchical” multi - scale composites, comparing to a full FE
method.

5 CONCLUSIONS

In this paper, we presented a multi - step homogenization scheme for a sequentially laminated composite made
of elastic isotropic materials. We formulated the microproblem and gave the analytical solution of it, as well as
the effective coefficients at every step of the homogenization process. We confirm that homogenization causes



Figure 3: Matrix reinforced by wavy fibers in two directions. Meshing of the fiber for the first step of homogeniza-
tion.

(a) (b)

Figure 4: Matrix reinforced by wavy fibers in two directions. (a) Displacement loading of the fiber and (b) the
corresponding shear stress field of the fiber for the first step of homogenization.

Table 9: Matrix reinforced by wavy fibers in two directions. Layer A (angle 0o). Effective elastic matrix from the
first step of homogenization by DS Simulia Abaqus (in GPa).

Ceff I A =


20.320 2.010 2.260 0 0 0
2.010 4.810 2.000 0 0 0
2.260 2.000 5.040 0 0 0

0 0 0 1.390 0 0
0 0 0 0 1.620 0
0 0 0 0 0 1.500



Table 10: Matrix reinforced by wavy fibers in two directions. Layer B (angle 90o). Effective elastic matrix from
the first step of homogenization by DS Simulia Abaqus (in GPa).

Ceff I B =


4.810 2.010 2.000 0 0 0
2.010 20.320 2.260 0 0 0
2.000 2.260 5.040 0 0 0

0 0 0 1.620 0 0
0 0 0 0 1.390 0
0 0 0 0 0 1.500



Table 11: Matrix reinforced by wavy fibers in two directions. Effective elastic matrix from the second step of
homogenization (in GPa).

Ceff II =


15.667 2.010 2.182 0 0 0
2.010 9.463 2.078 0 0 0
2.182 2.078 5.040 0 0 0

0 0 0 1.459 0 0
0 0 0 0 1.551 0
0 0 0 0 0 1.500





Table 12: Matrix reinforced by wavy fibers in two directions. Percent improvement of the effective elastic matrix
comparing to pure matrix.

+287.989% +16.118% +26.054% 0 0 0
+16.118% +134.349% +20.046% 0 0 0
+26.054% +20.046% +24.814% 0 0 0

0 0 0 +26.430% 0 0
0 0 0 0 +34.402% 0
0 0 0 0 0 +29.983%



Figure 5: Matrix reinforced by wavy fibers in two directions. Meshing of the RUC for the first step of homoge-
nization.

(a) (b)

Figure 6: Matrix reinforced by wavy fibers in two directions. (a) Displacement loading of the fiber and (b) the
corresponding shear stress field of the RUC for the first step of homogenization.



anisotropy. We presented a combination of this method with computational homogenization techniques in order
to reduce the computational cost of three - dimensional problems. The advantages of the proposed method are
the lower computational cost, the flexibility and the great adaptativity to many cases of multiscale composites,
comparing to a full FEA method. Finally, we presented two numerical examples, a “chevron” composite and a
matrix reinforced with wavy fibers in two directions.
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