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Abstract. The article presents the results of an experimental study on titanium alloy Ti17. The 

purpose of this study is to determine the degradation mechanisms of an uncoated carbide tool. Two 

conditions, roughing and finishing, have been studied under different lubrication conditions. The 

tests are accompanied by measurement of the cutting forces, the observation of the phenomena of 

wear (flank, crater, and notch) and EDS analysis. The results showed that the wear mechanisms 

with and without high pressure water jet assistance are not identical. Indeed, in the roughing 

condition and in conventional machining, tool deforms plastically and eventually collapses quickly 

because the temperature in the cutting zone becomes too high. In contrast, this problem disappears 

under water jet assisted machining and the flank wear is stabilized. Tool life is greatly increased but  

its sudden rupture is due to the propagation of notch. 

Introduction. 

Titanium alloys are known for their excellent mechanical properties, low density, and good 

corrosion resistance. Although they present many advantages for different applications, these alloys 

raise problems for machining as cutting conditions, namely the cutting speed and feed rate, are 

limited. Indeed, the machining of these alloys leads to a very important release of heat and high 

cutting forces that cause a rapid wear of the tool. To cope with these problems, various types of 

machining assistance are developed. In this study, we are interested in high pressure water jet 

assisted machining.  This type of assistance consists in projecting a high pressure water jet between 

the rake face of the tool and the chip. The efficiency of the process depends on the choice of the 

operating parameters of machining and water jet. 

Numerous studies have been conducted on the wear of carbide tools, especially in the context of 

machining titanium alloys and nickel-based alloys. According to the study of Hartung et al [1] 

tungsten carbide WC is the best material for machining titanium alloys after polycrystalline 

diamond (PCD). With these tools, a stable layer of titanium is formed between the rake face of the 

tool and the chip, one that protects against crater wear. The author insists that the wear mechanisms 

of titanium alloys differ from those of steel or Inconel. The work done by Venugopal et al [2-3] also 

proves that the uncoated carbide WC / Co presents the best solution for the machining of titanium 

alloys. The most important wear mechanisms in this case are adhesion, diffusion and plastic 

deformation of the cutting edge. Other studies on the wear under high pressure water jet assistance 

show a remarkable increase in the tool life. Indeed Machado et al [4] noted an increase of 300% of 

tool life during machining Ti6-Al-4V. Ezugwu et al [5] noticed an increase of 460% and 740% 

respectively when machining Inconel 718. Braham-Bouchnack et al [6] observed an increase of 

185% during the machining of Ti555-3. However, no specific mechanisms of wear under high 

pressure water jet machining were listed by the authors. This study aims to complement previous 

studies by contributing to the understanding of wear mechanisms in conventional lubrication and 

high pressure water jet assistance.  
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Experimental setup 

The machine used in these tests is a LEADAWELL LTC25iL lathe with a maximum power of 24 

kW. Force measurement is performed by means of a dynamometer type Kistler 9257B. Wear 

measurement is provided by a binocular microscope and a scanning electron microscope. 

Additional analyses were performed by EDS to identify visible deposits on the cutting zone of the 

tool. Three configurations of lubrication (conventional lubrication and high pressure assistance 100 

bar to 250 bar) and two cutting conditions (roughing and finishing) were tested.  

The parameters used for the two conditions are given in Table 1: 

 

Table 1. Cutting parameters 

 roughing finishing 

Cutting speed, Vc (m/min) 50 50 

Feed, f (mm/rev) 0.3 0.1 

Cut depth, ap (mm) 3 1.5 

 

The tool used is type C (80 ° rhombic) with an uncoated carbide grade H13A WC / Co. This type of 

carbides is recommended for machining titanium alloys. Table 2 shows the geometrical 

characteristics of the tool. 
 

Table 2. Geometrical parameters of the tool 

Geometrical parameters Values 

Nose radius (mm) 1.2 

Edge radius (µm) 30 

Rake angle (°) 7 

Flank angle (°) 6 

Inclination angle (°) -6 

Cutting edge angle (°) 95 
 

Results of the finishing tests 

The finishing tests are performed over a span of 20 minutes maximum. Fig. 1 shows the evolution 

of flank wear for the three lubrication conditions. After 15 min of machining, wear does not exceed 

0.13 mm for the three configurations. 

In conventional lubrication after the running-in phase, flank wear (VB) evolves linearly to 0.13 mm 

after 15 min. However, under high pressure water jet and after the running-in phase, flank wear 

remains stable over a significant period. After this step, the VB begins to increase in a manner 

similar to that observed in conventional lubrication. In both high-pressure lubrication conditions, 

the flank wear is about 0.1 mm after 15 min of machining. 

 
Fig. 1. Evolution of the flank wear 
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Figure Fig. 2 (a) shows the rake face and the flank face of a tool after a conventional machining of 

20 min. Deposit layers of material adhering to the cutting face of the tool are clearly visible. The 

existence of such layers can be explained by the high temperature in the cutting area, which results 

in the adhesion and bonding of the material on the tool. During the machining phase/process, these 

layers protect the tool against different wear types, Fig. 2 (b) shows traces of abrasion on the 

coating layer formed on the tool. The rake face does not present a significant crater wear. After 

some time, however, the adhering layers become unstable and come off by pulling the tool material. 

 
Fig. 2. (a) Rake and flank faces, (b) Adhering layers on the flank face, (c) Flank wear 

 

In the case of high pressure water jet assisted machining; the same mechanism of wear is noticed.  

By contrast, the water jet removes the adhering layers formed leading to an acceleration of the 

breakout area. Thus, the adhesive wear is more important. Moreover, the rake face is no more 

protected by the layers of deposits, which also increases the wear by abrasion and erosion. Fig. 3 

illustrates these findings with the observation of a crater formed after 20 min of machining under a 

pressure of 250 bars. 

Under these conditions, the thermal effects are greatly reduced [7], the wear mechanisms of thermal 

origins like diffusion and, especially, the plastic deformation, are not dominant. The main 

mechanism of wear in this case is the adhesive wear followed by abrasion and erosion. These 

findings confirm the results of other studies on the adhesive wear of nickel-based alloys made by 

Devillez et al [8], Bhatt et al [9] and Xue et al. [10] 

 

 

 
Fig. 3. Crater wear under high pressure water assistance (P=250 bar) 
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Results of the Roughing tests 

The roughing tests were conducted in the same manner as the finishing tests; the maximum duration 

of the tests is set at 5 min. 

In the case of conventional lubrication, the cutting edge collapses just after machining time of 75 s. 

The collapse of the edge is caused by severe plastic deformation wear. Indeed, the temperature at 

the cutting edge is very high, which causes the thermal softening of the tool. Cutting forces remain 

high and exceed 1900 N; the cutting edge begins to deform plastically and eventually collapses. Fig 

4 (a) shows the rake face of a tool after 60 sec of machining under conventional lubrication. Plastic 

deformation of the edge and significant flank wear that exceeds 0.6 mm is visible.  

At the pressure of 100 bars, a notch at the depth of cut and a crater on the rake face are visible. Fig. 

4 (b) shows the notch and the crater formed after 5 min of machining. 

The mechanism of notch wear is detailed by Xue et al. [10]. Indeed, the deposits of material stick 

and intersperse in the notch. During machining, these layers quickly become unstable and detached 

from the tool surface, thereby tearing carbide grains. As for crater wear, the action of the water jet 

loosens deposits formed more frequently, which accelerates wear by adhesion and thus the 

formation of the notch. 

At the pressure of 250 bars, the evolution of the notch wear is low. By contrast, the crater is 

relatively large. The high pressure water jet probably prevents the evolution of the notch by acting 

as a protection from adhesion at the depth of the cut. But this cannot be observed on the cut surface 

when crater wear is more pronounced. 

 

  

(a) (b) (c) 

Fig. 4. (a) Conventional lubrication, (b) 100 bar, (c) 250 bar 
 

For tests under high pressure water jet, other wear mechanisms are activated, particularly, adhesive 

wear. With high pressure water jet assistance, lifetime is significantly increased. In fact, after 5 min 

machining, flank wear does not exceed 0.24 mm at 250 bars. Figure 5 shows that water jet assisted 

machining can increase tool life by about four times. 

 

 
Fig. 5. Flank wear 
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EDS analysis 

In this study, EDS technique was used to analyze the deposits on the surface of the tool. EDS 

analysis shows the areas of titanium deposits and eroded areas on the tool rake face. For example, 

Fig. 6 shows the zones at the rake face in the case of finishing machining at the pressure of 100 

bars. 

 
Fig. 6. EDS analysis on the surface of the tool 

 

 

This analysis shows that the abundance of the titanium alloy elements decreases with the growing 

pressure of the water jet. This result proves that the water jet plucks titanium deposits from the tool 

surface. 

In addition, the width of the area which is rich in titanium makes it possible to determine the length 

of the contact chip / tool.   Results show that the length of the contact chip / tool decreases with the 

increasing pressure of the jet support. For testing, finish is estimated at respectively 180 microns, 

109 microns, and 74 microns for conventional lubrication, high pressure water jet at 100 bars, and 

250 bars. 

 

Conclusion 

The study allowed us to understand some of the mechanisms of carbide tool degradation under 

conventional lubrication and under high pressure water jet assistance. Whether for configuring 

roughing or finishing, high pressure water jet assistance can significantly increase the tool life. 

 

Indeed, for the finishing condition the dominant wear mechanisms are: 

- For conventional machining: flank wear by abrasion, 

- High pressure water jet assistance: adhesion wear followed by abrasion and erosion at the rake 

face (crater). 

After 15 min of machining, the flank wear of 0.13 mm with conventional lubrication is reduced to 

only 0.1 mm with water jet pressure assistance. 

For the roughing condition, the dominant wear mechanisms are: 

- For conventional machining: the tool collapses through plastic deformation. 

- High pressure water jet (100 bars): notch wear and crater are important. 

- High pressure water jet (250 bars): low evolution of notch wear. Only the crater wear is important. 
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