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Abstract 

Metal cutting is a highly complex thermo-mechanical process. The knowledge of temperature 

in the chip forming zone is essential to understand it. Conventional experimental methods 

such as thermocouples only provide global information which is incompatible with the high 

stress and temperature gradients met in the chip forming zone. Field measurements are 

essential to understand the localized thermo-mechanical problem. An experimental protocol 

has been developed using advanced infrared imaging in order to measure temperature 

distribution in both the tool and the chip during an orthogonal or oblique cutting operation. It 

also provides several information on the chip formation process such as some geometrical 

characteristics (tool-chip contact length, chip thickness, primary shear angle) and thermo-

mechanical information (heat flux dissipated in deformation zone, local interface heat 

partition ratio). A study is carried out on the effects of cutting conditions i.e. cutting speed, 

feed and depth of cut on the temperature distribution along the contact zone for an elementary 

operation. An analytical thermal model has been developed to process experimental data and 

access more information i.e. local stress or heat flux distribution. 

 

Keywords:  
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1. INTRODUCTION 

Temperature and heat generation in metal cutting have been intensively studied in the past. 

Measurement techniques as well as modeling have been and are still developed. Temperature has a 

major influence on machining performance such as tool life as well as workpiece surface integrity 
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and then machined parts resistance. Bacci da Silva and Wallbank [1] and Abukhshim et al. [2] review 

critically the main previous works focused on the development of experimental, analytical and 

numerical approaches devoted to the thermal problem of metal cutting. 

Analytical models are extensively reviewed by Komanduri and Hou, [3][4]; the main comments 

related to the analytical works are given in the following. These models are usually based on 

simplifying assumptions; they generally focus on a two-dimensional and steady state orthogonal 

cutting operation with simplified tool geometry.  The cutting edge is assumed to be perfectly sharp 

and the rake face is flat. Tool or chip or workpiece are regarded as semi-infinite or infinite media. 

The material on each side of the primary shear zone  is  often  supposed as two separate bodies in 

sliding contact; only few works assume it as the same body, [3] [5]. Both primary shear zone and 

secondary shear zone are considered as planes; tool-chip and tool-workpiece contact zones are 

currently supposed thermally perfect. Courbon et al. [6] propose an original approach for the tool-

chip interface; this one is thermally perfect only for the sticking part of the contact zone whereas a 

thermal contact resistance is introduced for the sliding part. Generally the plastic deformation in the 

chip is neglected and the chip is supposed to move as a rigid body. Both tool and chip and workpiece 

free surfaces are generally regarded as adiabatic or rarely as convective heat transfer. Temperature 

distributions are currently predicted using Jaeger moving heat sources model [7]. 

The complete thermo-mechanical problem of cutting can be solved using finite element method. This 

numerical approach includes large deformation formulation; requires relevant friction laws and 

thermo-viscoplastic material behavior relations available at high strain rate and high temperature, [2]. 

The obtained models have to solve the tool-chip contact, and to manage the generation of a new 

surface by considering a separation criterion. As pointed out by Filice et al. [8] and Umbrello et al. 

[9], a large number of elements are necessary with refinement and remeshing processes to achieve an 

accurate description of local variables such as deformation and temperature; and due to the 

calculation time only a limited cutting length may be simulated; thus the steady-state may not be 

easily reached.  

Finally, analytical models are easier to process and improvements are regularly proposed. Moufki et 

al. propose an analytical thermo-mechanical model of orthogonal and oblique cutting including a 

temperature dependent friction law at the tool-chip interface [10] [11]. The chip is assumed to be 

formed by shearing in a narrow straight band of constant thickness; the deformation in the secondary 

shear zone is neglected and the chip was supposed to be a rigid body sliding on the rake face of the 

tool along the contact length.  The chip heating is supposed due to the plastic deformation in the 

primary shear zone and the friction at tool-chip interface. They use a Coulomb law in which the 

friction coefficient is a decreasing function of the mean temperature at the tool-chip interface; thus, 

they have to determine the temperature distribution at this interface by solving the heat equation. 
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However, with the assumption of a single sliding zone at the tool-chip interface, the proposed model 

overestimates the interface temperatures. Bahi et al. [12] introduce a more complex friction law 

considering both sticking and sliding contacts and propose a pioneering hybrid analytical-numerical 

approach. Karpat et al. [13] or Li et al. [14] finally implement the tertiary shear zone i.e. the tool-

workpiece contact zone. 

This paper proposes an analytical model to determine the temperature distribution in the tool and the 

work material during an orthogonal cutting process. The assumptions are very similar to those 

proposed by Komanduri and Hou [3], [4] and [15]. In addition, a parametric model is proposed for 

the heat source representing the secondary shear zone; it considers both sticking and sliding regions. 

Temperature distribution is then predicted in the whole cutting zone. Moreover orthogonal cutting 

experiments are performed; transient temperature distributions are collected using infrared 

thermography technique. In cutting process, the tool-chip interface is the most critical zone with high 

stresses and high temperatures values; results are focused on this area. Predicted and measured 

temperatures at tool-chip interface are thus correlated to provide some significant information about 

heat flux and heat partition ratio, the normal and shear stresses distributions are extracted then and 

discussed. 

2. EXPERIMENTAL PROCEDURE 

Orthogonal cutting tests were carried with a Sandvik Coromant turning tool using a TPUN 160308 

GC235 coated carbide insert and a CTFPR 2525 M16 tool holder. Rake angle  and relief angle  are 

respectively equal to 6° and 5°. The tested cutting conditions are given in Table 1. 



Cutting speed VC (m/min) 50 100 150 250 

Feed f or undeformed chip thickness t1 (mm/rev) 0.3 

Width of cut w (mm) 2 

Table 1 - Cutting conditions 

 

The work material was an AISI 1055 medium carbon steel. It is provided as 50 mm diameter hot rolled 

rods. Table 2 summarizes its main mechanical characteristics. 

Yield stress (MPa) Tensile strength (MPa) Hardness HV30 

370 700 200 

Table 2 – Work material mechanical characteristics 

Cutting forces were measured using a dynamometric table Kistler 9257A. Temperature distributions 

were measured using a FLIR SC7000 camera equipped with a G3 lens. The spatial resolution of the 
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images provided is about 15 µm x 15 µm per pixel. Further information should be found in Artozoul 

et al. [16]. Analytical calculations are based on assumed thermo physical values for both steel and 

carbide given in Table 3. 

 

 AISI 1055 Tool 

 Symbol Value Symbol Value 

Density (kg/m
3
) w 7,850 tool 11,100 

Thermal conductivity (W/m.K) w 55 tool 37.7 

Heat capacity (J/kg.K) cw 460 ctool 276 

Table 3 – Material thermo physical properties 

3. MODELING AND INVERSE APPROACH 

For an orthogonal cutting process, the tool cutting edge is parallel to the work surface and normal to 

the cutting direction. The feed f or undeformed chip thickness t1 is small compared to the width of cut 

w, and then the chip is formed under approximately plane strain conditions. The tool is perfectly 

sharp and assumed to be a rigid body; its width is larger than the width of cut w. The chip is formed 

by shearing in a narrow zone, the so-called Primary Shear Zone (i.e. PSZ). PSZ is reduced to a plane, 

of length L, according to the Merchant theory [17]; and its inclination in relation to the cutting 

direction is defined by the shear angle . Beyond this Primary Shear Zone, the chip is sliding on the 

tool rake face and is deformed in a Secondary Shear Zone (i.e. SSZ). This zone is assumed to be a 

plane of length lc, the tool-chip contact length, and width w, the width of cut. The two main heat 

sources are these two shear zones, Figure 1; they are due to plastic deformation and additionally to 

friction in the SSZ zone. The Tertiary Shear Zone at tool-workpiece contact is ignored. 

 

Figure 1 - Orthogonal cutting process. 

 The major sources of heat are the primary shear zone PSZ 

and the Secondary Shear Zone SSZ. 

The developed model is based on moving heat sources solutions recalled in appendix. Temperature 

distributions are analytically calculated in the tool, the chip and the workpiece superposing rises due 
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to PSZ and SSZ. The tool-chip contact is regarded as thermally perfect. A local heat partition ratio is 

introduced and values are calculated along the tool-chip contact zone to meet this assumption. All the 

free surfaces are considered as adiabatic boundaries which is acceptable assumption when dry 

cutting.  

3.1 - Primary shear zone 

Following Komanduri and Hou [3], the shear plane can be considered as a band heat source moving 

continuously and obliquely in the surface layer of the workpiece (the layer under the workpiece free 

surface of thickness t1 equal to the feed f ) with the cutting velocity VC, see Figure 2a. In the same 

way, the shear heat band is assumed to be moving continuously and obliquely in the chip with the 

chip flow velocity VChip , see Figure 2b.  

The workpiece and the chip are assumed to be semi-infinite bodies. The frame (X,z) is always 

associated to the heat source; the X-axis is along the heat source velocity direction. The heat velocity 

V is the velocity relative to the workpiece (V =VC ), Figure 2a, or to the chip (V =VChip ), Figure 2b. 

 

 

(a) (b) 

Figure 2 - Primary Shear Zone PSZ assumed to be a band heat source moving continuously and obliquely 

(a) in the workpiece with the cutting velocity VC , and (b)  in the chip with the chip flow velocity VChip,. 

The length of the PSZ in the (z,X) is L. The coordinate system (X,Y,Z) is associated to the moving source. 

 

Surfaces aOe, for the workpiece, and bOg for the chip are assumed to be adiabatic. The method of 

image sources will help in working out temperature distribution as described in appendix. In Figure 

2, the image sources are represented with dashed lines. Increase in temperature in the workpiece and 

in the chip is worked out using formula (A-11) for a heat source moving obliquely in a semi-infinite 

medium with an adiabatic boundary surface, they are given by the following expressions: 
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With     
2 2

sin cosR X l z l        and       
2 2

' sin cosR X l z l       

 

which R and R' are respectively the distances of a point M(X,z) of the workpiece (or of the chip) from 

an element dl of the band heat source and of the its corresponding image, figure 2. 
wa  is the thermal 

diffusivity of the workpiece; PSZq  is the heat flux generated in the primary shear zone and flowing 

into both the chip and the workpiece. It can be calculated using the following formula: 

 

1

sinS S S S
PSZ

V F V F
q

wL w t
f   (3) 

 

It is assumed that all shear energy is converted into heat. 
SV  and 

SF  are respectively the shear velocity 

and the shear force component: 

 
cos

cos
S CV V



f 



 cos sin S C FF F Ff f  (4) 

CF  and 
FF  are the measured cutting and feed force components, f  is the shear angle determined 

experimentally, see Figure 3. The temperature distributions on the imaginary sides are not valid and 

hence are not taken into consideration. 

It must be noted that in this approach no heat partition coefficient is necessary and that a single body 

is considered to model the material in each side of the primary shearing zone. The temperature 

distributions below and beyond the shear band are determined with the same heat flux PSZq . 
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Figure 3 - Cutting forces and hodograph for orthogonal cutting. 

3.2 Secondary shear zone 

3.2.1 Increase in temperature 

 For the chip 

As previously mentioned, the Secondary Shear Zone (SSZ) may be considered as a band heat source 

moving obliquely ( with 2  ) along the tool-chip interface, with a velocity equal to the chip 

velocity VChip, see Figure 4. The chip is assumed to be a semi-infinite medium (X>0), with an 

adiabatic boundary surface at 
2z t . Once more, an image heat source is added; it is located at a 

distance of 2t2 from the tool-chip interface.  

The increase of temperature at a point M(X,z) of the chip due to the SSZ is then determined using the 

expression (A-10). Following here Trigger and Chao [18], it is multiplied by two to consider the case 

of a semi-infinite medium. It is then integrated along the contact zone (for l = 0 to lC), and finally an 

image heat source is introduced due to the adiabatic surface boundary: 
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following. 
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Figure 4 - Secondary shear zone SSZ. The chip is assumed to be a semi-infinite medium X>0, with an adiabatic 

boundary surface 
2z t . The heat source is a band moving along the tool-chip interface. 

 

 For the tool 

The tool is considered as a semi-infinite medium z >0 and the secondary shear and frictional zone at 

the tool-chip interface is assumed to be a rectangular heat source. The length of the heat source 

corresponds to the tool-chip contact length lc and its width w  is equal to the width of cut, Figure 5. In 

appendix, the solution for a continuous point heat source is presented, formula (A-5). It may be used 

for an elementary surface dl db  of the SSZ and increased twofold to get the elementary rise in 

temperature for the semi-infinite medium z >0: 

 

2
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q dl db
dT

R 
  (6) 

To take into account of the adiabatic tool clearance face, an image source is added. It is represented by 

the dashed line in Figure 5. The elementary rise in temperature of the tool is thus given by: 
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Figure 5 - Secondary shear zone SSZ. The tool is considered as a semi-infinite medium z >0, the clearance 

face is assumed adiabatic. The frame Bxyz is linked to the fixed heat source with respect to the tool. 

 

The temperature rise at a point  , ,M x y z  of the tool is calculated by integrating the previous 

expression along the contact length (from 0l   to 
Cl l ) and along the width equal to twice the 

width of cut (or for b w   to b w  ) to consider a semi-infinite medium y>0 : 
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2 22

' cos2 sin 2C C CR x l l l y b z l l                     

tool

SSZq  is the heat flux due to the secondary shear and frictional zone and transmitted to the tool. In the 

following, this heat flux is considered as a function of the coordinate x.  

3.2.2 Heat partition 

It must be noted that 
tool

SSZq  corresponds to a fraction  1 SSZB  of local heat flux 
SSZq  produced at 

the secondary shear and frictional zone evacuated by the tool, while the fraction 
SSZB is transferred 

into the chip: 

 ; 1  chip tool

SSZ SSZ SSZ SSZ SSZ SSZq B q q B q  (9) 

At tool-chip interface, where the velocity is ChipV and the tangential force (also called friction force) is 

TF , it is assumed that all the power Chip TV F  is converted into heat; thus per unit surface the mean 

heat flux is calculated using : 
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with 
 

sin

cos

C
Chip

V
V

f

f 



 and sin cos T C FF F F   according to Figure 3. (11) 

Heat flux is assumed to be uniformly distributed along the width-direction of tool-chip interface and 

variable along the direction of its length: 

 
0

cl

SSZ Chip Tw q l dl V F  (12) 

with   0SSZ cq l l   (13) 

 

A mathematical expression for heat flux is proposed in the following, it describes the sticking and 

sliding contact involving in the tool-chip interface: 

 1( )                when 0 0,1   SSZ cq l q l k l and k  (14) 

( )

2( ) ( 1) when 0


    cn l l

SSZ c cq l q e k l l l and n  (15) 

 

Along the sticking zone the heat flux is assumed to be constant; this assumption is coherent with the 

fact that in this zone the shear stress is usually considered as constant. In the sliding zone, heat flux is 

assumed to decrease exponentially.  

The boundary condition (13) is verified by the expression (14); thus the constants q1 and q2 may be 

found by using relation (12) and the continuity of heat flux 
SSZq  at the junction of the two zones 

(sticking and sliding zones). Only two coefficients have to be introduced: the constant k which 

defines the decomposition of the tool-chip contact length into sticking contact and sliding contact; 

and the coefficient n which characterizes heat flux decreasing in the sliding zone. 

Equations (14) and (15) are able to describe a large range of distributions: uniform heat flux 

distribution when k = 1 (full sticking zone), or exponential one when k = 0 (full sliding zone), and 

various others between these two particular cases.  

The heat partition, for the secondary shear zone, given by the value of the coefficient
SSZB , 

expression (9), is defined as a function of the coordinate l. Following Komanduri and Hou [4], the 

evolution of the heat partition coefficient is given by the formula: 

 
1 2

1 2

1 2 1 2

2
    
        
      

n n

SSZ

c c

c cl l
B l B B B

c c l c c l
 (16) 

where B is calculated to equalize mean tool-chip interface temperature; and, the parameters B , ci 

and ni are determined to obtain the same temperature rise on both sides of the tool-chip interface.  
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To illustrate the previous propositions, Figure 6 and Figure 7 present examples of calculation for the 

distributions of heat flux and of heat partition ratio 
SSZB  at the secondary shear zone, for three sets of 

k and n parameters (k=0.1 n=3,000, k=0.3 n = 1,000, k=0.8 n = 300). It must be noted that the ratio 

SSZB  corresponds to the fraction of heat transmitted to the chip and it regularly decreases from the 

cutting edge to the end of the tool-chip contact.  

 

Figure 6 – Examples of heat flux distributions along the tool-chip contact for 

 three values of k defining the repartition between sticking and sliding zones 

and three values of n characterizing the decreasing of heat flux in the sliding zone.  

 

 

Figure 7 – Examples of distribution of the heat partition ratio BSSZ, along the tool-chip contact 

for various values of k and n. 

 

Using the equations (5) and (8), the temperature rise at the tool-chip interface is determined for the 

three sets of coefficients k and n values and the corresponding distribution at the tool-chip interface 

are presented in Figure 7. It is interesting to note that the maximum temperature always appears in 
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the sliding zone, just after the boundary between sticking and sliding area. With the experimental 

determination of the temperature repartition at the tool-chip interface and by using the presented 

modeling, it will be now possible to have an idea of the contact conditions at the tool-chip interface 

and more precisely to know the decomposition of this zone between sticking and sliding. 

 

Figure 8 – Resulting temperature distributions along the tool-chip interface 

for the three sets of k and n values.  

 

The model equalizes temperatures on the both sides of the tool-chip interface and implicitly assumes 

a perfect thermal contact. Moreover it proposes a local heat partition ratio between tool and chip; 

and, the heat flux varies all along the tool-chip interface depending on the contact conditions.  

3.3 Superposition 

From the previous modeling, the temperature at any point  , ,M x y z of the tool is, in a first step, 

obtained with the temperature rise  , ,tool

SSZT x y z , Equation (8), due to the secondary shear zone: 

   0, , , ,tool
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the temperature at any point  ,M X z  of the workpiece is determined with the temperature rise 

workpiece

PSZT , Equation (1 ), due the primary shear zone: 

   0, ,workpiece

workpiece PSZT X z T T X z   (18) 

and considering the both effects of primary and secondary shear zones, the temperature at any point 

 ,M X z of the chip, is calculated with temperature rises 
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PSZT , Equation (2) , and 
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     0, , ,Chip Chip

Chip PSZ SSZT X z T T X z T X z    (19) 

In this first step of calculation, the influence of the secondary shear zone SSZ in the workpiece and of 

primary shear zone PSZ in the tool are not considered. The cutting speed is high enough to neglect 

heat conduction in the opposite direction to the cutting speed, due the secondary shear zone. On the 

contrary, the influence of PSZ in the tool has to be taken into account, and a fictitious heat source 

distribution 
tool

PSZq  is added at the tool-chip interface. This heat flux distribution 
tool

PSZq  is determined in 

such a way to obtain, at the tool-chip interface, the same temperature rise, due to the primary shear 

zone, in the chip and in the tool. The rise in temperature in the chip is calculated with Equation (2); 

and, the temperature rise in the tool is determined with Equation (8), where the heat flux 
tool

SSZq is 

replaced by the fictitious heat flux 
tool

PSZq : 

 
0

1 1 1
, ,

2 '





 
   

 
 

Cl w
tool tool

PSZ PSZ
w

tool

T x y z q dl db
R R 

 (20) 

 

Finally, the temperature at any point of the tool, due to heat generation in both primary and 

secondary shear zones, is given by:  

     0, , , , , ,tool tool

tool SSZ PSZT x y z T T x y z T x y z    (21) 

It is now possible to combine the experimental and the modeling approaches to obtain information 

about the contact conditions at the tool-chip interface and to predict the temperature fields in the tool, 

the chip and the workpiece. 

 

4. RESULTS AND DISCUSSION 

Cutting forces are measured using a Kistler dynamometric table. Experimental values are given in the 

Table 4. Analysis of images provided by the IR camera provides chip thickness and then actual chip 

velocity Vchip based on mass flow conservation (see Equation (10)). 

Cutting speed VC 

(m/min) 

Chip velocity Vchip 

(m/min) 

Cutting force FC 

(N) 

Feed force FF 

(N) 

50 

100 

150 

250 

40±5 

85±15 

125±25 

220±35 

1,300±40 

1,190±60 

1,150±80 

1,090±50 

640±30 

480±40 

430±70 

380±70 

Table 4 - Cutting parameters extracted from the experimental approach 

 



 14 

A post-processing technique has been developed to locate, with accuracy and objectivity, the cutting 

tool contour on the camera recordings and then provide relevant estimation of shear angle f and tool 

chip contact length lc. Shear angle values are extracted for each cutting test repeated twice, and a 

mean value and standard deviation are calculated.  

 is the friction angle determined from the experimental cutting and feed forces results through:  

 

tan
tan

tan


  



C FT

N C F

F FF

F F F


 


 (22) 

where  is the apparent friction coefficient, and the rake angle. 

Figure 9 gives all the experimental results: the cutting and feed forces 
CF  and 

FF measured with the 

dynamometric table; the evolution of the apparent friction angle µ calculated with relation (22); the 

shear angle f and the tool-chip contact length lc obtained from the camera recordings. 

 

 

 

Figure 9 - Experimental results for cutting and feed forces, shear angle, apparent friction coefficient, and tool-

chip contact length, for the three tested values of cutting speed and for a feed f=0.3 mm/rev. 
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Figure 10 - Temperature computed and measured with IR Camera, 

for the three tested values of cutting speed and for a feed f=0.3 mm/rev.  

 

Using temperature fields and tool-chip contact length experimental value, it is then possible to extract 

the temperature distribution along the tool-chip interface. Figure 10 gives the distribution for the 

three tested cutting speed values. The following operation consists in applying the thermal model to 

obtain a probable heat flux distribution by inverse model fitting. The coefficients k and n, introduced 

in equations (14) and (15), are adjusted to fit experimental temperature distributions with the model 

ones. This operation is done for all the cutting conditions and leads to estimated heat flux 

distributions, Figure 11. They correspond to k = 0 (total sliding zone), and a value of n of about 3200 

m
-1

, for the three cutting tested conditions. As no sticking zone is found at the tool-chip interface, the 

chip is assumed to slide on the rake face with an uniform velocity Vchip ; and, from the knowledge of 

local heat flux 
SSZq  it is then possible to determine the shear stress from : 

 

 cos

sin

SSZ
SSZ

Chip C

q
q

V V

f 


f


   (23) 

 

Based on the 
SSZq  distribution, it is then possible to process the shear stress distribution at the tool-

chip interface. As it can be seen, Figure 11, the shear stress at the tool-chip interface is maximal on 

the cutting edge and is decreasing to 0 at the end of the contact length. The obtained shear stress 

levels for the two lower cutting speeds (i.e. 50 and 150 m/min) appear very close and is much higher 

for the cutting speed of 250 m/min. It is interesting to note that using this method; it was possible to 

get information about stress distribution, which is usually very difficult to obtain by direct 

measurement. 
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Figure 11 - Heat flux and shear stress distribution, 

for the three tested values of cutting speed and for a feed f=0.3 mm/rev. 

It has been pointed out that temperature fields in metal cutting can be properly measured using infrared 

thermography [1][2][19]; but the measurements are relevant only for the tool, because the tool is 

immobile relatively to the camera while the work material continuously flows. In the other hand, 

thermal modeling provides information on the full cutting area as well in the tool, the chip or even 

the workpiece. In Figure 12, only chip and tool temperature fields, due to primary and secondary 

shear zones, are plotted in order to compare them with experimental results (see Figure 10). As the 

cutting speed increases, temperature rise in the chip, due to secondary shear zones, appears more 

confined at the vicinity of the tool chip contact zone. 

  
 

(a) (b) (c) 

f =0.3 mm/rev , 

(a) Vc = 50, (b) Vc = 100 and (c) Vc = 250 m/min 

Figure 12 - Temperature fields computed from modeling in both tool and chip. 

 

The main differences are found at the cutting edge. First, the real edge geometry was not taken into 

account as the model used a perfectly sharp edge approximation. Then, the tertiary shear zone, which 

is due to the contact between tool and workpiece, was neglected. It may explain the small 

discrepancies between the temperature fields. The rough comparison between the temperature fields 

should be avoided but isotherms position and level show similar trends.  

A fictitious heat source is used to avoid temperature differences between chip and tool due to primary 

shear zone according to relation (20); it is distributed along tool-chip interface, Figure 13. Heat is 

supposed to flow either in the tool and the chip. Heat flux distribution is similar for all the tested 
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cutting conditions. Values are pretty close despite the change in cutting conditions. Mean value and 

standard deviation are then computed. It tends to increase with regards to cutting speed. However 

values remain lower than 5 W/mm². A ratio of fictitious heat flux to secondary shear zone heat flux is 

also computed. The correction due to the primary shear zone remains negligible since ratio is 

systematically lower than 5%.  

 

 
 

(a) (b) 

Figure 13 – Typical fictitious heat source distribution – Evolution with regards to cutting speed 

 

BSSZ values are computed in an unconstrained way for the whole cutting conditions (see Table 1). It 

means that BSSZ can take values outside the range [0, 1]; negative values as well as values greater than 1 

could then appear. A value greater than 1 (see Figure 14-a) is currently related to heat sinks on the 

tool side; it is commonly seen in the vicinity of the cutting edge [18]. Once more BSSZ values are very 

close despite the changes in cutting conditions since cutting speed varies from 50 to 250 m/min. It is 

hard to get an overview of the heat partitioning trend based on BSSZ distributions. It may be easier to 

get it through B   or mean value of BSSZ. B  is used to equalize the two mean temperatures at the 

tool-chip interface : the one computed on tool side and the other computed on chip side. Similar 

approach is proposed by Shaw [20] but with more basic assumptions about secondary shear zone heat 

rate. B  is then computed according to Shaw [20] in order to compare trends and values.  

BSSZ depends on the distance to the cutting edge. Numerical values of BSSZ are rather different along 

the tool-chip interface: from 0.7 to 1.4 for the lower cutting speed. A mean value of BSSZ is computed 

and compared to the different values of B . Trends as well as values are pretty similar: heat partition 

ratio tends to increase with the cutting speed regardless the criterion. 
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(a) (b) 

Figure 14 – Heat partition ratio distribution – Evolution with regards to cutting speed 

 

5. CONCLUSIONS AND PERSEPECTIVES 

This paper proposes an analytical thermal model of metal cutting based on the initial approach of 

Komanduri and Hou [3][4][15]. It follows the experimental work of Artozoul et al. [16]. Both modeling 

and experimental approaches are combined to analyze the thermo-mechanical aspects of the tool-chip 

contact.  

The main results can be summarized as follows: 

1. From the thermal images of the cutting zone recorded for different integration times and for 

various cutting speed values, it is possible to determine shear angle, tool-chip contact length 

as well as chip velocity. Temperature fields in the tool and then temperature distribution at the 

tool-chip interface are extracted. 

2. From the measured temperature at the tool-chip interface, and from the experimental cutting 

forces, it is possible through inverse analysis to identify both heat flux distribution and heat 

partition ratio between tool and chip. Results agree with previous literature results. 

3. The global heat partition ratio at the tool-chip interface can be processed from experimental 

data and compared with theoretical values processed from previous research works. Values 

are rather different but trend is clearly consistent with what is expected. An increase in 

cutting speed induces an increase in the heat removed by the chip. 

4. The heat flux distribution is considered as an image of the local shear stress distribution; and, 

the shear stress evolution at the tool-chip contact can be determined. The division into 

sticking and sliding contact is clearly identified. 
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7. APPENDIX - ANALYTICAL THERMAL MODELING  

The classical approach developed by Carslaw and Jaeger is used in this work; and in the following. 

Starting from the solution for an instantaneous point heat source to the one for a infinite band heat 

source moving obliquely used to determine the temperature field in the chip and workpiece, the 

necessary basic solutions for the proposed thermal problem are recalled [21]. For determining the 

temperature field in the tool, only the solution for a continuous fixed point heat source is necessary. 

7.1 Instantaneous point heat source 

Consider a fixed point heat source located at S (, , ) in the reference frame of an infinite media, 

the heat flux Q  is instantaneously released at time t=0. The temperature rise at point M (x, y, z) is 

described by the heat equation: 

 
2 2 2

2 2 2
,

T T T T
M t a

t x y z

    
   

    
 (A-1) 

where a is the thermal diffusivity a c  ,   is the thermal conductivity,   is the material 

density, c is the specific heat capacity. The temperature rise distribution is given by: 

 
 

2 4

1 3 2
, , ,

8

R atQ
T x y z t e

c a t 

   (A-2) 

where      
2 2 2

R x y x         represents the distance from the heat point source. 

7.2 Continuous fixed point heat source, steady state solution 

If heat is liberated at the rate  ' 'q t  per unit time from t’ = 0 to t at point S  , ,   , the 

temperature rise at M (x,y,z) is obtained by integrating relation (A-2): 

 
 

   

 

2 4 '

2 3 2 3 20

1 '
, , , ' '

8 '

t R a t t dt
T x y z t q t e

c a t t 

 
 


  (A-3) 

with      
2 2 2

R x y x         .  

If  ' 'q t is constant and equal to q  that leads to: 

 
 

 
2 2 1 24

2 3 2 1
on putting  , , ,   '

8

4 4

R a

t

q
T x y z t e d t t

c a

q R
erfc

R a t
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 

 

    

 
  

 
 



 (A-4) 

When t  , this reduces to: 
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 2 , ,
4

q
T x y z

R 
   (A-5) 

which is the steady rise temperature distribution for a constant supply of heat continually introduced 

at S  , ,    in an infinite solid. 

7.3 Moving point source  

The heat initially at   0,0,0  is now emitted for times t > 0 at the rate q  per unit time, and moving 

along the x-axis with a velocityV . A coordinate system  , ,X Y Z  is associated to the moving 

source with X x Vt  , Y y  ,and Z z . From solution (A-2) the temperature rise at  , ,X y z  

and time t is given by: 

 
 

 

 

2 2 2' 4 '

3 3 2 3 20

'
X, , ,

'8

with  ' '

t X Vt y z a tq dt
T y z t e

tc a

x V t t X Vt

 

       

   


 (A-6) 

When t  , a steady state is established and the temperature is then: 

    2

3 X, ,
4

V R X aq
T y z e

R

 
   (A-7) 

With 2 2 2R X y z    

7.4 Moving infinite line heat source, steady solution 

The heat is now emitted at the rate q  per unit time along the Y-axis moving along the x-axis with a 

velocity V . The temperature rise in the steady state at point  ,X z  is found by integration of 

relation (A-7). 

 
 

 
2 2 2' 2

2

4 0
2 2 2

'
, 2

4 2'

V X y z X a
VX aq dy q

T X z e e K VR a
X y z 
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


  

 
  (A-8) 

where  0 2K V R a is the modified Bessel function of the second kind and 
2 2R X z   

represents the distance from the moving heat source in the (X-z) plane, Figure A1. 
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(a) (b) 

Figure A1 - (a) Moving infinite (along y-axis) line heat source; (b) Infinite band heat source moving 

obliquely 

7.5 Infinite band heat source moving obliquely, steady solution 

Consider a band heat source moving obliquely at an angle   along the x-axis with a velocityV , 

figure A2. The temperature rise in the steady state at point  ,X z  due to a moving infinite line 

along y-axis and extended to an elementary segment of length dl (element part of the band heat 

source), at the rate q  per unit time and unit surface along the inclined line L  is found from the 

previous solution (A-8): 

     sin 2

5 0, 2
2

V X l aq dl
dT X z e K VR a





 
  (A-9) 

With    
2 2

sin cosR X l z l     ; The temperature rise at point  ,X z  due to all the band 

is then obtained by integration of relation (A-9): 

     sin 2

5 0
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, 2
2

L V X l aq
T X z e K VR a dl


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7.6 Band heat source moving obliquely in an infinite medium with an adiabatic boundary 

surface 

For application to metal cutting process, an infinite medium must be considered with an adiabatic 

boundary. Following Komanduri and Hou [3][4][15] in their study, the method of image sources is 

employed. With respect to the adiabatic boundary surface, an image heat source is added with the 

same heat flux, see figure A3. The temperature rise at point  ,X z  is due to the combined effect of 

the primary and image heat sources: 
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With    
2 2

sin cosR X l z l      and    
2 2

' sin cosR X l z l      

 

Figure A2 - Method of image sources for a band heat source moving obliquely in an infinite medium 

with an adiabatic boundary surface 
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