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Abstract
The correspondence principle is customarily used with the Laplace–Carson
transform technique to tackle the homogenization of linear viscoelastic
heterogeneous media. The main drawback of this method lies in the fact
that the whole stress and strain histories have to be considered to compute
the mechanical response of the material during a given macroscopic loading.
Following a remark of Mandel (1966 Mécanique des Milieux Continus (Paris,
France: Gauthier-Villars)), Ricaud and Masson (2009 Int. J. Solids Struct. 46
1599–1606) have shown the equivalence between the collocation method used
to invert Laplace–Carson transforms and an internal variables formulation. In
this paper, this new method is developed for the case of polycrystalline materials
with general anisotropic properties for local and macroscopic behavior.
Applications are provided for the case of constitutive relations accounting for
glide of dislocations on particular slip systems. It is shown that the method
yields accurate results that perfectly match the standard collocation method
and reference full-field results obtained with a FFT numerical scheme. The
formulation is then extended to the case of time- and strain-dependent viscous
properties, leading to the incremental collocation method (ICM) that can be
solved efficiently by a step-by-step procedure. Specifically, the introduction of
isotropic and kinematic hardening at the slip system scale is considered.

1. Introduction

The principal issue for the homogenization of linear viscoelastic heterogeneous media is due to
memory effects. Owing to the dependence of the local strain-rate on both local stress (viscous
response) and stress-rate (elastic response), standard homogenization methods developed for
elasticity or viscoplasticity do not apply directly. In particular, the whole stress and strain
histories have to be considered for determining the mechanical response at a given time. From
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the practical point of view of numerical applications, this property requires storing the stress
and strain in each mechanical phase for the whole loading path. This can be quite cumbersome
especially for polycrystals which are heterogeneous media containing a large number (typically
a few thousands) of constituent phases (i.e. crystalline orientations).

Approximate solutions based on properly chosen internal variables have been proposed,
e.g. see [1–4]. Internal variables aim to keep track of the whole stress/strain histories and to
summarize their effect on the material behavior. Since their number is limited, the amount
of information required to predict the next time step is by far smaller than with hereditary
approaches considering full memory effects (at the expense of less accuracy). An alternative
internal variable method, based on an incremental variational principle, has been proposed
by [5, 6]. By contrast with previous approaches, this method makes use of the recent
developments for the homogenization of nonlinear composites which rely on the use of both
first and second moments of the mechanical fields to define a linear comparison composite
(LCC) [7–9] and effective internal variables per phase.

The homogenization problem can be solved exactly by making use of the correspondence
principle [10]. Taking the Laplace–Carson (LC) transform of the problem, the linear visco-
elastic behavior is transformed into a symbolic linear elastic one in the LC space. Any linear
homogenization model can thus be applied to the fictitious elastic heterogeneous material.
Then, inverse LC transforms must be carried out to obtain the viscoelastic effective property
in the Cartesian space. Except for a few simple cases for which this inversion can be per-
formed exactly [11, 12] and besides a simple approximate solution (direct method) which is
only accurate for specific loading paths such as creep [13–15], numerical inversions are gen-
erally required. For this goal, approaches relying on Dirichlet series expansion of the original
time functions have been proposed, e.g. [13, 16–18]. Among them, the so-called collocation
method [13] has provided very good results for the homogenization of polycrystals [19–21].

Recently, Ricaud and Masson [22] have made use of a remark of [10] showing that an
internal variable formulation arises naturally from the collocation method. They illustrated the
potentiality of this new method for the case of a two-phase composite with isotropic phases.
The main attractive feature of this formulation is to keep the accuracy of integral approaches
while preserving the flexibility of an internal variable approach.

This study develops one step further the approach of Ricaud and Masson [22]. We
consider n-phase polycrystalline materials with general anisotropic properties for local and
macroscopic behavior and applications are provided for constitutive relations accounting for
glide of dislocations on particular slip systems. We recall in section 2 the basic equations for
the homogenization of thermoviscoelastic heterogeneous media and it is shown in section 3
how internal variables come out naturally from the collocation method, for both stress and
strain formulations. Applications are provided for a 2D isotropic polycrystal submitted to (i)
creep loading with stress discontinuities and (ii) complex loading path with strain harmonic
loading. In section 4, the method is extended to time- and strain-dependent viscous properties
(resulting from isotropic and kinematic hardening on slip systems), which can be solved with a
step-by-step procedure. The results obtained for a loading path containing a harmonic part are
compared with reference solutions obtained by the FFT full-field numerical approach of [23].

2. Homogenization of linear thermoviscoelastic heterogeneous media

2.1. Constitutive equation for local behavior

According to the Boltzmann superposition principle, the local stress (respectively strain)
response of a heterogeneous linear thermoviscoelastic medium can be expressed as a Stieltjes
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convolution of a viscoelastic stiffness (respectively compliance) tensor with strain (respectively
stress), with the addition of thermal stress (respectively strain), that is

σ(x, t) = [C � ε](x, t) + σ0(x, t),

ε(x, t) = [S � σ](x, t) + ε0(x, t)
(1)

with x and t the space and time variables, σ and ε stress and strain tensors, � the Stieltjes
convolution product, C the viscoelastic stiffness tensor (i.e. relaxation function) and S the
viscoelastic compliance (i.e. creep function). Stieltjes convolutions being defined as the time
derivative of Riemann convolutions, the constitutive law is obtained by considering the
superimposition of infinitesimal and finite strain increments, dε and [ε],

σ(x, t) = d

dt

[∫ t

0
C(x, t − u) : ε(u) du

]
+ σ0(x, t)

=
∫ t

0
C(x, t − u) : ε̇(u) du +

∑
d

C(x, t − td) : [ε]d + σ0(x, t). (2)

In this expression, strain discontinuities [ε]d are considered only for times td < t . Alternatively,
the constitutive behavior reads

ε(x, t) = d

dt

[∫ t

0
S(x, t − u) : σ(u) du

]
+ ε0(x, t)

=
∫ t

0
S(x, t − u) : σ̇(u) du +

∑
d

S(x, t − td) : [σ]d + ε0(x, t) (3)

with possible stress discontinuities [σ]d at times td < t .
The creep function of Maxwell viscoelastic behavior with general anisotropy reads

S(x, t) = Se(x) + Sv(x) t (4)

with Se and Sv the elastic and viscous compliance tensors. By definition, the relaxation
function C(x, t) obeys C � S = I (I is the identity tensor) but, unlike the creep function, its
analytical expression depends on the class of symmetry (appendix A).

2.2. Effective behavior

We consider the case of a polycrystal made of R mechanical phases (i.e. R crystalline
orientations) with χr the characteristic function of phase r and cr its volume fraction. The
local thermoviscoelastic behavior is Maxwellian and uniform in each phase, so that tensors
Ce, Cv, Se, Sv, C, S, σ0, ε0 are also uniform per phase, and denoted Ce

r , Cv
r , Se

r , Sv
r , Cr ,

Sr , σ0r , and ε0r (t). Thus

C(x, t) =
∑

r

χr(x) Cr (t), σ0(x, t) =
∑

r

χr(x) σ0r (t),

S(x, t) =
∑

r

χr(x) Sr (t), ε0(x, t) =
∑

r

χr(x) ε0r (t)
(5)

with Sr (t) = Se
r + Sv

r t and Cr � Sr = I. The average stress and strain (denoted 〈.〉r ) within
phase r obey the constitutive relation (1)

〈σ〉r (t) = [Cr � 〈ε〉r ](t) + σ0r (t),

〈ε〉r (t) = [Sr � 〈σ〉r ](t) + ε0r (t).
(6)



These phase average fields are linked to macroscopic ones by phase average stress and strain
localization tensors Br (t) and Ar (t)

4

〈σ〉r (t) = [Br � σ](t) + 〈σres〉r (t),

〈ε〉r (t) = [Ar � ε](t) + 〈εres〉r (t),
(7)

with σ and ε the overall (macroscopic) stress and strain (σ = 〈σ〉, ε = 〈ε〉, with 〈.〉 the average
over the polycrystal volume). In (7), 〈εres〉r and 〈σres〉r are the phase average residual stress
and strain defined by

〈σres〉r (t) = [Dr (t) � (̃ε0 − ε0r )](t),

〈εres〉r (t) = [Er (t) � (σ̃0 − σ0r )](t),
(8)

where Dr (t) and Er (t) are, respectively, eigenstrain and eigenstress average influence tensors.
The macroscopic behavior is given by the effective (denoted .̃ ) relaxation function, creep
function, thermal stress and stress-free strain, given by

C̃(t) = 〈Cr � Ar〉 (t), σ̃0(t) = 〈
TAr � σ0r

〉
(t),

S̃(t) = 〈Sr � Br〉 (t), ε̃0(t) = 〈
TBr � ε0r

〉
(t).

(9)

This homogenization problem can be solved by making use of the correspondence
principle [10]. Taking the LC transforms of previous equations, Stieljes convolution products
are transformed into simple scalar products, and therefore the original thermoviscoelastic
homogenization problem is transformed into a symbolic thermoelastic homogenization
problem for which standard homogenization techniques apply. Let f ∗ denote the LC transform
of function f , f ∗(p) = p

∫ ∞
0 f (t)e−ptdt with p the complex variable. The symbolic

thermoelastic behavior thus reads
C̃∗(p) = 〈

C∗
r (p) : A∗

r (p)
〉
, σ̃∗

0(p) = 〈
TA∗

r (p) : σ0
∗
r (p)

〉
,

S̃∗(p) = 〈
S∗

r (p) : B∗
r (p)

〉
, ε̃∗

0(p) = 〈
TB∗

r (p) : ε0
∗
r (p)

〉 (10)

with S∗
r , C∗

r , ε0
∗
r and σ0

∗
r symbolic thermoelastic property tensors. Once the homogenization

problem has been solved in the LC space, the solution has to be inverse transformed back to
the original time space. This inversion constitutes the main difficulty for thermoviscoelastic
homogenization. In this work, use will be made of the collocation method [13]. Following [22],
it will be shown that an internal variables formulation can be naturally derived from this
inversion procedure, without additional assumptions. It is also pointed out that this feature is
not restricted to this specific numerical inversion method.

3. A formulation based on internal variables inferred from the collocation method

3.1. The collocation method

It is assumed that the considered polycrystal is subjected to a given derivable stress loading
path σ(u), u ∈ [0; t] with additional discontinuities (i.e. stress jumps) [σ]d at times td , and
initial conditions σ(x, 0) = σ(0) = 0 ∀(x). The overall polycrystal response ε(t) reads

ε(t) =
∫ t

0
S̃(t − u) : σ̇(u)du +

∑
d

S̃(t − td) : [σ]d + ε̃0(t). (11)

The collocation method is based on an approximation of the effective creep function S̃ by a
Dirichlet series S̃ap

S̃(t) ≈ S̃ap(t) = S̃e + S̃vt +
Sc∑

s=1

Sτs
(1 − e

−t
τs ), (12)

4 Note that A and B are not necessarily uniform per phase.



which LC transform reads

S̃ap∗
(p) = S̃e +

1

p
S̃v +

Sc∑
s=1

Sτs

1

1 + τsp
. (13)

The Sc collocation times τs can be chosen optimally as in [24], but here they are supposed to
be determined a priori. Equation (13) defines a system of Sc linear equations, in which the Sc

unknown tensors Sτs
are determined from the purely elastic and purely viscous end member

solutions (that can be solved independently), and from the symbolic response S̃ap∗
(p) computed

at Sc collocation times p = 1/τs . The effective strain response can then be obtained analytically
with relation (11) for any loading path. This method has been used for polycrystalline materials,
e.g. in [19–21].

3.2. Stress formulation

Alternatively, the macroscopic strain can be obtained by substituting S̃(t) in (11) by its
approximation S̃ap(t). Integrating by parts and using condition ε(0) = 0 leads to

ε(t) = S̃e :

(
σ(t) +

∑
d

[σ]d

)
+ S̃v :

(
ξ(t) +

∑
d

(t − td) [σ]d

)

+
Sc∑

s=1

Sτs
:

(
βτs

(t) +
∑

d

(1 − e
−(t−td )

τs ) [σ]d

)
+ ε̃0(t), (14)

where two tensorial internal variables ξ(t) and βτs
(t) arise naturally. They only depend on the

macroscopic stress path

βτs
(t) = 1

τs

e
−t
τs

∫ t

0
e

u
τs σ(u) du, ξ(t) =

∫ t

0
σ(u) du, (15)

and are solutions of the following differential equations:

β̇τs
(t) +

1

τs

βτs
(t) = 1

τs

σ(t), ξ̇(t) = σ(t) (16)

with βτs
(0) = 0, ξ(0) = 0. Therefore ξ and βτs

are macroscopic variables. Remark that there
is a single ξ but as many βτs

as collocation times. It is also worth noting that equations (14)–(16)
could be written alternatively by incorporating stress discontinuities [σ]d into the definitions of
ξ and βτs

. If the overall polycrystal loading is performed in such a way that ε(t) is prescribed
and σ(t) is the wanted response, then σ(t) can be replaced in the above equations (16) by
its expression derived from (14). The effective thermal strain ε̃0(t) can be expressed by
approximating the phase average stress concentration tensors by a Dirichlet series, as in [21]

Br (t) ≈ Bap
r (t) = Bv

r +
Sc∑

s=1

Br τs
e

−t
τs (17)

leading to

Bap∗
r (p) = Bv

r +
Sc∑

s=1

Br τs

τsp

1 + τsp
, (18)

where Bv
r denotes stress concentration tensors for the purely viscous behavior. Tensors Br τs

can be easily determined from the knowledge of B
ap∗
r at collocation times p = 1/τs , and

satisfy Bv
r +

∑Q
s=1 Br τs

= Be
r with Be

r the stress concentration tensor for the purely elastic



behavior. Using this approximation with the initial condition ε0r (0) = 0, last relation in (9)
becomes

ε̃0(t) =
〈

TBe
r : ε0r (t) + TBv

r :
∑

d

[ε0r ]d

〉
+

〈∑
s

TBr τs
:

(∑
d

e
−(t−td )

τs [ε0r ]d − ηr τs
(t)

)〉
(19)

with the new internal variable ηr τs
depending only on the thermal stress-free strain and

satisfying

η̇r τs
(t) +

1

τs

ηr τs
(t) = 1

τs

ε0r (t), ηr τs
(0) = 0. (20)

Hence, ηr τs
is a local variable, and it is worth noting that it is homogeneous per phase due

to the homogeneity of ε0r . It is stressed that the three internal variables determined so far,
namely ξ, βτs

and ηr τs
, can be calculated in advance as far as the macroscopic stress and

thermal loadings are known and provided the necessary collocation times τs have been fixed.
An important consequence of these developments is that the integral expression (11) for the
thermoviscoelastic effective behavior has been replaced by the internal variable formulation
given by (14) and (19) that can be advantageously solved by means of an incremental numerical
procedure.

Similarly, the phase average stress defined by the integral equation (7) can be expressed
with respect to internal variables, using the approximation (17) and assuming a similar form
for the eigenstrain influence tensors Dr (t)

Dr (t) ≈ Dap
r (t) = Dv

r +
Sc∑

s=1

Dr τs
e

−t
τs . (21)

This leads to

〈σ〉r (t) = Be
r : σ(t) + Bv

r :
∑

d

[σ]d +
∑

s

Br τs
:

(∑
d

e
−(t−td )

τs [σ]d − βτs
(t)

)
+ 〈σres〉r (t),

(22)

〈σres〉r (t) = De
r : (̃ε0 − ε0r )(t) + Dv

r :
∑

d

[̃ε0 − ε0r ]d

+
∑

s

Dr τs
:

(∑
d

e
−(t−td )

τs [̃ε0 − ε0r ]d − λr τs
(t)

)
(23)

with the new local internal variable λr τs
verifying

λ̇r τs
(t) +

1

τs

λr τs
(t) = 1

τs

(̃ε0 − ε0r )(t), λr τs
(0) = 0. (24)

The phase average strain 〈ε〉r (t) can be eventually computed by solving incrementally the
local constitutive thermoviscoelastic relation.

3.3. Strain formulation

We now consider that the polycrystal is subjected to a given derivable loading path ε(u), u ∈
[0; t] with additional discontinuities [ε]d at times td and initial conditions ε(x, 0) = ε(0) =
0 ∀(x). The stress response σ(t) obtained by the strain (or dual) formulation reads

σ(t) =
∫ t

0
C̃(t − u) : ε̇(u) du +

∑
d

C̃(t − td) : [ε]d + σ̃0(t). (25)



Approximating the effective relaxation function by a Dirichlet series in a form consistent
with (12)

C̃(t) ≈ C̃ap(t) =
Sc∑

s=1

Cτs
e

−t
τs ,

Sc∑
s=1

Cτs
= C̃e, (26)

the macroscopic stress reads

σ(t) = C̃e : ε(t) −
Sc∑

s=1

Cτs
:

(
ατs

(t) −
∑

d

e
−(t−td )

τs [ε]d

)
+ σ̃0(t) (27)

with the macroscopic internal variable ατs
verifying

α̇τs
(t) +

1

τs

ατs
(t) = 1

τs

ε(t), ατs
(0) = 0. (28)

The effective thermal stress σ̃0(t) can be expressed by using the following approximation for
the average strain concentration tensors

Ar (t) ≈ Aap
r (t) = Av

r +
Sc∑

s=1

Ar τs
e

−t
τs , (29)

where Av
r denotes the strain concentration tensors for the purely viscous behavior. Tensors

Ar τs
satisfy Av

r +
∑Q

s=1 Ar τs
= Ae

r with Ae
r the average strain concentration tensor for purely

elastic behavior. The second relation in (9) thus gives

σ̃0(t) =
〈

TAe
r : σ0r (t) + TAv

r :
∑

d

[σ0r ]d

〉
+

〈∑
s

TAr τs
:

(∑
d

e
−(t−td )

τs [σ0r ]d − �r τs
(t)

)〉
(30)

with �r τs
the new internal variable verifying

�̇r τs
(t) +

1

τs

�r τs
(t) = 1

τs

σ0r (t), �r τs
(0) = 0. (31)

As for the stress formulation, the integral expression (25) of the thermoviscoelastic constitutive
relation has been replaced by an internal variables approach defined by relations (27) and (30).

Detailed equations for the phase average strain are not given here for the sake of
conciseness, but they can be obtained using similar developments as those presented above for
the stress formulation. Approximating Er (t) by a Dirichlet series as Dr (t), see equation (21),
the expressions obtained for 〈ε〉r (t) and 〈εres〉r (t) have a very similar form to those given
above for 〈σ〉r (t) and 〈σres〉r (t).

3.4. Application

The capabilities of the new formulation with internal variables based on the collocation method
are now illustrated for the homogenization problem of a 2D polycrystal with local anisotropic
behavior. Two applications are provided below, the first for prescribed overall stress, and
the second for prescribed strain. The model has been implemented for both stress and strain
formulations in order to compare the relative merit and ease of the numerical implementations.
Results will be also compared with the original collocation method.

The chosen microstructure consists of two (R = 2) randomly mixed phases, and it is
deformed under antiplane shear. The choice of such a simple microstructure aims to obtain a
rapid validation of the method, but it is not a limitation. The viscoplastic behavior of similar



Figure 1. Response of the 2D polycrystal under the creep loading with stress jump (33). (a) Stress
response: ‘macro’ indicates the prescribed σ 13(t), ‘phase 1’ indicates 〈σ13〉1 (t), and ‘phase 2’
〈σ13〉2 (t). (b) Corresponding strain response (ε13(t), 〈ε13〉1 (t) and 〈ε13〉2 (t)). Results from the
original collocation method and for both stress and strain approaches are shown.

microstructures has been investigated, e.g. in [25–27]. Owing to this particular microstructure,
the self-consistent (SC) scheme has been chosen here to solve the symbolic linear thermoelastic
homogenization problem in the LC space. Local elastic and viscous compliances are given by

Se
r =

2∑
k=1

1

4µe(k)
R(k)

r ⊗ R(k)
r , Sv

r =
2∑

k=1

1

µv(k)
R(k)

r ⊗ R(k)
r (32)

with µe(k) and µv(k) the elastic and viscous shear compliances of slip system (k). The following
values have been considered for the computations: µe(1) = 1 MPa, µv(1) = 2 MPa s, µe(2) =
100 MPa, µv(2) = 20 MPa s, so that system (2) is stiff compared with system (1). The two
mechanical phases are rotated by 90◦ from each other, and slip is allowed on two perpendicular
slip planes along direction e3 so that the Schmid tensors read R

(k)
2 = 1

2 (ek ⊗ e3 + e3 ⊗ ek),

R
(1)
1 = R

(2)
2 and R

(2)
1 = −R

(1)
2 (see figure 3). From the numerical point of view, differential

equations appearing in the internal variables formulation have been solved by the Runge–
Kutta method. Collocation times τs have been distributed on a logarithmic scale between the
two extreme relaxation times µv(2)/µe(2) and µv(1)/µe(1); numerical applications have been
performed for different numbers of collocation times, 5 � Sc � 20, with no influence on
results.

Several macroscopic loadings have been tested. The first case of interest is a creep test
σ̄13 including a stress jump{

σ̄13 = 1 MPa for t � 2 s,
σ̄13 = 4 MPa for t > 2 s.

(33)

The predicted macroscopic behavior, phase average stress and phase average strain are shown
in figure 1. These results have been obtained by means of the original collocation method
and the new stress (section 3.2) and strain (section 3.3) formulations. They are all plotted in
figure 1. It can be seen that results obtained with those three formulations are in perfect match
with each other at both macroscopic and local levels, which validates the numerical resolution
of present developments. It is worth recalling that those three formulations are equivalent, as



Figure 2. Response of the 2D polycrystal under the harmonic loading given by (34). Macroscopic
and phase average (a) stress and (b) strain responses, as in figure 1. Results from the original
collocation method and from both stress and strain approaches are shown, together with those
obtained by the FFT full-field numerical method.

discussed above. In particular, the stress jumps at t = 0 s and t = 2 s and subsequent recovery
of both phases are nicely captured.

Another example of a challenging test is the response under harmonic loading. We have
studied the case of a strain imposed antiplane shear with a constant strain-rate stage followed
by a sinusoidal overall strain stage, as in [5]{

ε13 = Aωt for t � t0,

ε13 = A sin[ω(t − t0)] for t > t0
(34)

with numerical values A = 0.04, ω = 15 s−1 and t0 = 1 s. As for the previous example, it is
found that the three approaches, namely standard collocation method, stress formulation and
strain formulation, provide the same results (figure 2) for the macroscopic behavior, but also
for phase average stress and strain. At large time, the overall specimen has relaxed from the
first loading stage and therefore macroscopic stress and phase average stresses tend to periodic
oscillations around 0 MPa.

To check the validity of these results, reference solutions were generated with a full-field
numerical approach based on Fourier transforms. The method is described in [23, 28] for
elastic or viscoplastic composites and polycrystals, and in [29] (with numerical details in [30])
for elasto-viscoplastic behavior. The FFT-based full-field formulation is conceived for periodic
unit cells deformed under periodic boundary conditions, and it provides the ‘exact’ (within
numerical accuracy) solution of the governing equations. Here, we considered a periodic
tile microstructure formed by square grains (see figure 3) which has been found to provide
numerical results in very good agreement with theoretical solutions [31] (with which the linear
SC scheme also coincides). For linear viscoelastic behavior, the relaxation spectrum of this
microstructure exhibits an infinite number of relaxation times. With macroscopic loading (34),
the detailed distribution of stress and strain is thus obtained. For the purpose of comparison
with mean-field homogenization models, stress and strain fields have been spatially averaged
to evaluate phase average quantities. Comparison is provided in figure 2. It turns out that
results from the internal variable approaches are virtually indistinguishable from FFT ones,



Figure 3. Periodic 2D microstructure considered for FFT numerical computations. Arrows indicate
the normals of slip planes. Slip direction is along e3.

which proves the accuracy of the proposed method for anisotropic linear viscoelastic behavior
although the method only accounts for a finite (and small) number of relaxation times.

4. Extension to time- and strain-dependent viscous properties

The above formulation has been provided for constant elastic Se
r and viscous Sv

r compliances.
An important consequence of this feature is that coefficients Sτs

in (12) have to be determined
only once, independently of the macroscopic prescribed loading. We are now extending the
formulation to situations for which this is no longer the case. For illustrative purpose, we are
considering the case of local constitutive relations including isotropic and kinematic hardening,
the latter being time-dependent due to static relaxation mechanisms.

4.1. Local constitutive behavior law including hardening and revovery

We consider a local constitutive relation (proposed in [30]) with constant elastic properties,
but with a viscous part depending on strain due to isotropic and kinematic hardening and on
time due to static relaxation. We consider a Voce-type law for isotropic hardening and a simple
saturating expression for kinematic hardening as in [32]. The complete constitutive relation
reads (spatial position x has been omitted)

ε̇ = Se
r : σ̇ + ε̇v, (35)

ε̇v =
K∑

k=1

γ̇ (k)R(k)
r , (36)

γ̇ (k) = γ̇0
τ (k) − X(k)

τ
(k)
0

, (37)

τ (k) = R(k)
r : σ, (38)

τ̇
(k)
0 = (τ

(k)
sta − τ

(k)
0 )

K∑
l=1

H(k,l)|γ̇ (l)|, (39)



Ẋ(k) = cγ̇ (k) − dX(k)|γ̇ (k)| − e|X(k)|msign(X(k)) (40)

with ε̇v the local viscous strain-rate, γ̇ (k) the shear-rate on slip system (k), τ (k) the resolved
shear stress on that system and γ̇0, c, d and e constant coefficients. With this law, the reference
shear stress τ

(k)
0 for system (k) evolves from an initial value to a saturation value τ

(k)
sta due to

isotropic hardening, H being the (constant) interaction matrix between slip systems. Kinematic
hardening is due to the backstress X(k) that includes static recovery (coefficient e). This
viscoelastic behavior can also be written

ε̇ = Se
r : σ̇ + Sv : σ + ε̇0 (41)

with

Sv =
K∑

k=1

γ̇
(k)
0

R(k)
r ⊗ R(k)

r

τ
(k)
0

, ε̇0 = −
K∑

k=1

γ̇
(k)
0

X(k)R(k)
r

τ
(k)
0

. (42)

It is worth noting that the above constitutive relation is defined at any point x within the
polycrystal. Therefore, τ̇

(k)
0 (x) and Ẋ(k)(x) should be heterogeneous within each mechanical

phase due to the intraphase heterogeneity of γ̇ (k)(x). A consequence of this is that the
compliance Sv(x) and the stress-free strain ε̇0(x) are also heterogeneous within phases, but
then standard homogenization techniques do not apply. To circumvent this difficulty, we have
replaced γ̇ (k)(x) in equations (39) and (40) by its phase average value

〈
γ̇ (k)

〉
r

so that, starting

with phase uniform τ̇
(k)
0 and Ẋ(k) (now denoted τ̇

(k)
0r and Ẋ(k)

r ), Sv and ε̇0 remain phase uniform
(denoted Sv

r and ε̇0r ) so that mean-field homogenization can be carried out. The phase average
behavior thus reads

〈ε̇〉r = Se
r : 〈σ̇〉r + Sv

r : 〈σ〉r + ε̇0r . (43)

The consequence of this approximation will be discussed below.

4.2. The incremental collocation method (ICM)

In section 3, both stress and strain approaches have been treated and applied simultaneously,
and we have shown that both provide identical results. In the following, for the sake of clarity,
only the stress formulation is presented (but we have checked that the strain approach still
provides equivalent results) and stress jumps are not included.

The main issue comes from the evolution of the viscous local behavior with time and
strain. As a consequence, the coefficients Sτs

and the homogenized viscous compliance S̃v

evolve so that the homogenization procedure cannot be applied the same way as previously.
This issue can be solved with an incremental resolution, assuming that coefficients Sτs

are
constant during a sufficiently small time increment. Then, equation (14) becomes

�ε̄ = S̃e : �σ̄ + S̃v|1/2 : �ξ +
S∑

s=1

Sτs
|1/2 : �βτs

+ �ε̃0 (44)

with � denoting the increment between times tn and tn+1, e.g. �ε̄ = ε̄(tn+1) − ε̄(tn). In (44),
values for Sτs

and S̃v are taken for half the time increment, e.g. Sτs
|1/2 = (Sτs

(tn)+Sτs
(tn+1))/2.

The evolution laws for ξ and βτs
are the same as in section 3, see equation (16). Similarly, the

macroscopic thermoelastic strain given in equation (19) is computed using

�ε̃0 =
〈

TBe
r : �ε0r −

∑
s

TBr τs
|1/2 : �ηr τs

〉
(45)



Table 1. Parameters of the constitutive relation.

Slip system k µe (MPa) τ0(t = 0) (MPa) τsta (MPa)

1 1 2 4
2 100 20 30

and the phase average stress

� 〈σ〉r = Be
r : �σ −

∑
s

Br τs
|1/2 : �βτs

+ De
r : (�ε̃0 − �ε0r )

−
∑

s

Dr τs
|1/2 : (�θτs

− �ηr τs
), (46)

where the new macroscopic internal variable θτs
= λrτs

+ ηr τs
is introduced for numerical

purposes (see appendix B)

θ̇τs
(t) +

1

τs

θτs
(t) = 1

τs

ε̃0(t), θτs
(0) = 0. (47)

Phase average strain increments can then be computed with (41). Note that if hardening is
discarded (c = d = e = H = 0), the types of behavior given by (44) and (14) are strictly
equivalent.

When used with the original integral approach, the standard collocation method applied
to polycrystals with local behavior (35)–(40) requires calculation of coefficients Sτs

at each
time step. This is also the case for the proposed incremental approach. However, unlike
the present formulation, the integral approach requires keeping record of the whole history
of S̃ and Br from the very first loading stage for the evaluation of integrals (9), which is
cumbersome especially when dealing with polycrystals with a large number of mechanical
phases and loading steps. With the proposed approach (denoted ICM), the numerical resolution
is incremental. A step-by-step procedure can be applied, in which the aim of internal variables
is to summarize the effects of the whole stress and strain history. This allows studying the
polycrystal response for any complex loading with much more ease and flexibility. The
algorithm for numerical implementation of the ICM is detailed in appendix B.

4.3. Application

To show the potentiality of the proposed ICM, the microstructure introduced in section 3.4 is
investigated for deformation under complex loading (34). Results are compared with reference
solutions generated by the full-field FFT method, as in section 3. The local behavior (35)–(40)
has been implemented with coefficients indicated in table 1 and γ̇0 = 1 s−1, m = 1, and
H(k,l) = 2 ∀k, l. Figure 4 shows the effective stress response for two cases: (i) when both
isotropic and kinematic hardening are considered (with parameters c = 5 MPa, d = 10, e = 0)
and (ii) with isotropic hardening only (c = d = e = 0). It can be seen that, for both cases, the
ICM matches well FFT solutions at the very first loading stage, but then the effective behavior
becomes softer than the FFT one, the largest stress discrepancy σ̄ FFT

13 − σ̄ INC
13 being observed

close to the stress peak t ≈ 1 s. At greater time after several loading cycles, the discrepancy
decreases until both responses coincide again.

It is recalled that the step-by-step numerical resolution of the ICM provides the same
results as the internal variable approach of section 3 when hardening is discarded. Therefore,
observed discrepancies are associated with the treatment of hardening. This is now illustrated
with the case for which only isotropic hardening has been considered. Here, the main difference



Figure 4. Viscoelastic homogenization with (a) both isotropic and kinematic hardening and (b)
isotropic hardening only. Comparisons between incremental collocation and FFT methods for the
macroscopic stress response σ̄13.

with results presented in section 3 is that τ
(k)
0 is evolving. As discussed above, γ̇ (k)(x) had to

be replaced by 〈γ̇ (k)〉r in the hardening law for the ICM to be solved with standard mean-field
homogenization techniques. Hence, instead of correctly predicting intraphase fluctuations for
τ

(k)
0 as with the FFT approach, the ICM requires uniform phase values. Consequences of

this limitation have been investigated in [33] for viscoplastic polycrystals. Here, the ICM
underestimates the average value of 〈τ (k)

0 〉r compared with FFT reference results. At the same
time, the overall behavior for the ICM is softer than for FFT predictions; this can originate
from lower 〈τ (k)

0 〉r but also from the intraphase heterogeneity of τ
(k)
0 , not predicted by ICM.

Figure 5(a) shows an example of result for slip system k = 1 of phase r = 1 (similar trend is
observed for other slip systems). Interestingly, the stress discrepancy σ̄ FFT

13 − σ̄ INC
13 is found to

be correlated with the standard deviation
√

〈τ (k)
0 τ

(k)
0 〉 − 〈τ (k)

0 〉2 (computed with FFT) of τ
(k)
0 .

As shown in figure 5(b), the highest stress discrepancy at stress peak coincides with the largest
standard deviation. Then, as the number of loading cycles increases, 〈τ (k)

0 〉r becomes closer to
the stationary value and at the same time τ

(k)
0 becomes more uniform within phases. At large

time, ICM and FFT predictions coincide again.

5. Concluding remarks

In this paper, the equivalence between the collocation method used for inverse Laplace–Carson
transforms and an internal variables formulation has been developed for the case of linear
thermoviscoelastic polycrystalline materials exhibiting general anisotropic properties for local
and macroscopic behavior. The method has been applied to 2D polycrystals with two slip
systems per phase, deformed under antiplane shear, for macroscopic loading including stress
discontinuities and for complex strain loading including a cyclic stage. It has been shown
that the internal variable method yields accurate results that perfectly match the standard
collocation method. Excellent agreement has also been obtained with reference solutions
provided by the full-field FFT numerical scheme. The formulation has been extended to
the case of time- and strain-dependent constitutive viscous properties. In that case, an ICM



Figure 5. Viscoelastic homogenization with isotropic hardening predicted by the incremental

collocation and FFT methods. (a) Evolution of
〈
τ

(1)
0

〉
1
. (b) Difference between the overall stresses

σ̄13 obtained with FFT and ICM as a function of the standard deviation of τ
(1)
0 .

is proposed. It can be efficiently solved numerically using a step-by-step procedure, and a
general algorithm has been proposed. The capability of the method has been illustrated on
a 2D polycrystal, but it is worth noting that solving similar problems with 3D polycrystals
exhibiting a few thousand phases requires only a few minutes on a standard laptop. The new
method is therefore especially efficient for solving complex loading paths. Moreover, the
introduction of isotropic and kinematic hardening at the slip system level has been considered.
Some discrepancies with reference FFT results have been observed. They are likely due to
the approximation made in considering phase uniform hardening variables within mean-field
homogenization. Finally, it is pointed out that the obtained ICM offers a simple framework to
address the case of nonlinear behavior, e.g. using a linearization procedure similar to the one
proposed by [21].
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Appendix A. Relaxation function for anisotropic Maxwell behavior

For general anisotropy, tensors C and S verify

C � S = I, C∗ : S∗ = I. (A.1)

For Maxwell behavior, the creep function is S(t) = Se + Sv t and the LC transform of the
relaxation function thus reads

C∗(p) =
(

Se +
1

p
Sv

)−1

. (A.2)

For general anisotropy, an analytic expression for the relaxation function C(t), given by the
inverse transform of C∗, cannot be obtained. However, a closed-form expression can be



found for particular symmetry classes by using the spectral decomposition of the fourth-order
symmetric tensors [34]. For isotropic behavior, local properties read

Se = 1

3ke
J +

1

2µe
K, Sv = 1

3kv
J +

1

2µv
K (A.3)

and thus

C∗(p) = 3ke

(
τk p

1 + τk p

)
J + 2µe

(
τµ p

1 + τµ p

)
K (A.4)

with τk = kv/ke and τµ = µv/µe two characteristic relaxation times. The corresponding
relaxation function is given by

C(t) = 3ke exp(−t/τk)J + 2µe exp(−t/τµ)K. (A.5)

For cubic symmetry, the local properties read

Se = 1

3ke
J +

1

2µe
a

Ka +
1

2µe
b

Kb, Sv = 1

3kv
J +

1

2µv
a

Ka +
1

2µe
b

Kb (A.6)

and thus

C∗(p) = 3ke

(
τk p

1 + τk p

)
J + 2µe

a

(
τµa

p

1 + τµa
p

)
Ka + 2µe

b

(
τµb

p

1 + τµb
p

)
Kb (A.7)

with τk = kv/ke, τµa
= µv

a/µ
e
a and τµb

= µv
b/µ

e
b three characteristic relaxation times. The

corresponding relaxation function thus reads

C(t) = 3ke exp(−t/τk)J + 2µe
a exp(−t/τµa

)Ka + 2µe
b exp(−t/τµb

)Kb. (A.8)

Similar expressions can be obtained for other symmetry classes.

Appendix B. Numerical resolution of the incremental collocation method

We provide here the algorithm for the step-by-step resolution of the ICM described in section 4.
The case of loadings with prescribed σ̄ is presented first. Assuming that the homogenization
problem has been solved for times 0 � t � tn, we seek to find the mechanical response at time
tn+1 associated with stress and time increments �σ̄ and �t . The algorithm consists essentially
of 3 loops, in addition to the time loop: the outer loop (index i) for solving ε̃0 and Sv, the inner
loop (index j ) for �σr and a loop for the symbolic homogenization problem.

(1) Computation of �βτs
and �ξ following (16)

(2) Initializations: (Sv)i=0
tn+1

= (Sv)tn ; (Sτs
)i=0
tn+1

= (Sτs
)tn ; (S̃v)i=0

tn+1
= (S̃v)tn ; (Brτs

)i=0
tn+1

=
(Brτs

)tn ; (Drτs
)i=0
tn+1

= (Drτs
)tn

(3) Computation of � 〈σ〉r :

(a) Initialization of (� 〈σ〉r )j=0

(b) Computation of (�X)j and (�τ0)
j following (39)–(40)

(c) Computation of (�ε0r )
j and (� 〈ε〉r )j following (41)–(42)

(d) Computation of (�ηr τs
)j following (20)

(e) Computation of (�ε̃0)
j following (45)

(f) Computation of (�θτs
)j following (47)

(g) Actualization of (� 〈σ〉r )j+1 following (46)
(h) Compute convergence error δ1 = ∣∣(� 〈σ〉r )j+1 − (� 〈σ〉r )j

∣∣
If δ1 < threshold then go to (4), else j ← j + 1 and return to (3(b))

(4) Actualization of (̃ε0)
i+1
tn+1

and (Sv)i+1
tn+1

following (42)



(5) Homogenization of the symbolic thermoelastic problem ⇒ (Sτs
)i+1
tn+1

; (S̃v)i+1
tn+1

; (Brτs
)i+1
tn+1

;
(Drτs

)i+1
tn+1

(6) Compute convergence error δ2 = ∣∣(Sv)i+1
tn+1

− (Sv)itn+1

∣∣
If δ2 < threshold then go to (4), else i ← i + 1 and return to (3(b))

(7) Output macroscopic and local responses at time tn+1, and go to (2) for the next time step

In cases of loading with prescribed ε̄ (instead of σ̄ as above), the algorithm has to be
slightly changed since �βτs

and �ξ cannot be calculated in advance.

(1) Initializations: (Sv)i=0
tn+1

= (Sv)tn ; (Sτs
)i=0
tn+1

= (Sτs
)tn ; (S̃v)i=0

tn+1
= (S̃v)tn ; (Brτs

)i=0
tn+1

=
(Brτs

)tn ; (Drτs
)i=0
tn+1

= (Drτs
)tn

(2) Computation of �βτs
, �ξ and ε̃0

(a) Initialization: (�βτs
)j = (�βτs

)0, (�ξ)j = (�ξ)0 and (�ε̄0)
j = (�ε̄0)

0

(b) Computation of (�σ̄)j from (44)
(c) Computation of (�βτs

)j+1 and (�ξ)j+1 following (16)
(d) Computation of (�ε̃0)

j+1

1. Initialization of (� 〈σ〉r )k=0

2. Computation of (� 〈σ〉r )k+1 with steps (3(b)) to (3(g)) above
3. Compute convergence error δ1 = ∣∣(� 〈σ〉r )k+1 − (� 〈σ〉r )k

∣∣
If δ1 < threshold then (�ε̃0)

j+1 = (�ε̃0)
k and go to (2.e), else k ← k + 1 and

return to (2(d)2)
(e) Compute convergence error δ2 as the max of normalized value of |(�βτs

)j+1 −
(�βτs

)j |, |(�ξ)j+1 − (�ξ)j |, and |(�ε̃0)
j+1 − (�ε̃0)

j |
If δ2 < threshold then go to (3), else j ← j + 1 and return to (2(b))

(3) Reactualization of (Svsct )i+1
tn+1

following (42)

(4) Homogenization of the symbolic thermoelastic problem ⇒ (Sτs
)i+1
tn+1

; (S̃v)i+1
tn+1

; (Brτs
)i+1
tn+1

;
(Drτs

)i+1
tn+1

(5) Compute convergence error δ3 = ∣∣(Sv)i+1
tn+1

− (Sv)itn+1

∣∣
If δ3 < threshold then go to (6), else i ← i + 1 and return to (2)

(6) Output macroscopic and local responses at time tn+1 , and go to (2) for the next time step
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[3] Wang H, Wu P D, Tomé C N and Huang Y 2010 A finite strain elastic–viscoplastic self-consistent model for
polycrystalline materials J. Mech. Phys. Solids 58 594–612

[4] Coulibaly M and Sabar H 2011 New integral formulation and self-consistent modeling of elastic–viscoplastic
heterogeneous materials Int. J. Solids Struct. 48 753–63

[5] Lahellec N and Suquet P 2007 Effective behavior of linear viscoelastic composites: a time-integration approach
Int. J. Solids Struct. 44 507–29

[6] Lahellec N and Suquet P 2007 On the effective behavior of nonlinear inelastic composites: I. Incremental
variational principles J. Mech. Phys. Solids 55 1932–63
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hétérogènes C. R. Acad. Sci. Paris 316 1517–22

[12] Beurthey S and Zaoui A 2000 Structural morphology and relaxation spectra of viscoelastic heterogeneous
materials Eur. J. Mech. A 19 1–16

[13] Schapery R A 1962 Approximate methods of transform inversion for viscoelastic stress analysis Proc. 4th US
National Congress of Applied Mechanics ASME vol 2, pp 1075–85
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[25] Ponte Castañeda P and Nebozyhn M V 1997 Variational estimates of the self-consistent type for the effective
behavior of some model nonlinear polycrystals Proc. R. Soc. Lond. A 453 2715–24

[26] Milton G W 2002 The Theory of Composites (Cambridge: Cambridge University Press)
[27] Lebensohn R A, Castelnau O, Brenner R and Gilormini P 2005 Study of the antiplane deformation of linear 2-d

polycrystals with different microstructure Int. J. Solids Struct. 42 5441–59
[28] Lebensohn R A 2001 N -site modeling of a 3D viscoplastic polycrystal using fast Fourier transform Acta Mater.

49 2723–37
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