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a b s t r a c t

In this work, a 5754 Al alloy and T40 were joined in butt configuration by focusing a fiber laser onto
the titanium side, close to the weld centerline (offset). The keyhole was made entirely of titanium, and
the fusion of the aluminum was achieved by heat conduction. Neither filler metal nor chamfering was
necessary to produce a sound, dissimilar weld. The assembly was free from porosity and spatter defects.
The mechanical properties were satisfactory. The energy input, the laser offset, and their interaction had
statistically significant effects on the ultimate tensile strength. The findings of this investigation prove
the robustness and suitability of fiber laser offset welding for Al–Ti weld fabrication.

1. Introduction

Joining processes of titanium with various materials are diffi-
cult to perform by conventional techniques, because of both the
presence of a tenacious oxide coating on its surface and the limited
titanium solubility in other metals. Mechanical processes such as
riveting, clinching, and screwing are currently the most widely used
joining techniques because they are not dependent on a metallur-
gical compatibility. Kreimeyer et al. (2005) obtained a structural
phase transition during solidification and cooling of the weld. Peyre
et al. (2014) proved that the formation of intermetallic compounds
affects the quality of the assembly. Poor chemical affinity and met-
allurgical compatibility between the two metals can result in a
non-homogeneous and brittle interface. Bondar et al. (2011) and
Tomashchuk et al. (2015) conducted chemical and mechanical
analyses on several intermetallic Al–Ti compounds to check their
strength and ductility.

Several authors have proposed solid state welding. Luo and
Acoff (2000) conducted an investigation of diffusion welding of Ti
and Al multi-laminated materials. They showed that TiAl3 inter-
metallic compounds form quite rapidly in the temperature range of
660–680 ◦C. During a study on friction stir welding (FSW) of Al–Ti,
Dressler et al. (2009) shifted the tool pin center towards the Al
plate. During the stirring action, the particles of Ti in the Al matrix
elongated less than the surrounding Al, leading to the formation of
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cavities in the nugget zone. Chen et al. (2011a,b) pointed out the
difficulties when performing FSW dissimilar butt welds because of
their tendency to crack and to form grooves, especially due to the
high rotation rate of the tool.

Other research showed good results related to laser fusion
brazing welding. With this method, the laser light irradiates the
aluminum that melts and wets the solid Ti surface. Alfieri et al.
(2013) performed a preliminary investigation and presented a
metallurgical characterization of the weld. Chen et al. (2010)
found that an insufficient interfacial reaction layer morphology
favors the initiation of cracks and reduces the mechanical prop-
erties of the joints. Song et al. (2013) demonstrated that the laser
offset influences the thickness of the interfacial layer and can
improve the mechanical properties of the weld but interfacial non-
homogeneity, weld porosity and spatter defects reduce the joint
quality. Chen et al. (2011a,b) showed that groove preparation and
a uniform energy distribution prevent a non-homogeneous inter-
facial chemical reaction. Pastor et al. (1999) demonstrated the loss
of magnesium, porosity and cracking during laser welding of the
5754 Al alloy. Therefore, focalization of the laser beam on the Al
side often resulted challenging and negatively affected the seam
quality.

To overcome the above-mentioned limitations, other authors
have recently proposed the use of the fiber laser. Lee et al. (2013)
investigated high-speed full penetration fiber laser welding of Ti
and Al lap joints. The fiber laser can reduce the formation of inter-
metallic compounds. Ming et al. (2014) proposed fiber laser-cold
metal transfer arc hybrid welding to join the Ti6Al4V Ti alloy and
AA6061 Al alloy in butt configuration. They identified the setting of
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Table 1
Chemical composition of the as-received materials (% weight).

Ti Al H Mg Fe Mn Si Cr O Cu N C

T40 Balance – <0.02 – <0.03 – – – <0.25 – <0.03 <0.10
5754 Al <0.15 Balance – 2.60–3.60 0.40 0.50 0.40 0.30 – 0.10 – –

Table 2
Mechanical properties of the as-received materials: ultimate tensile strength (UTS),
yield stress (YS), Young module (E), elongation to fracture (A%), Vickers microhard-
ness (HV).

UTS (MPa) YS (MPa) E (GPa) A% HV

T40 460 276 105 20 145
5754 Al 230 80 68 17 62

Table 3
Materials thermo-physical properties: thermal conductivity (K), fusion temperature
(Tf), density (�).

K (W/(m K)) Tf (◦C) � (g/cm3)

T40 17 1930 4.51
5754 Al 147 870 2.66

process parameters that maximized the mechanical properties of
the welds.

The aim of this paper is to study fiber laser offset welding (FLOW)
of the 5754 Al alloy and T40 in butt configuration. The approach
consisted in focusing an Yb–YAG laser onto the Ti side at a very
short distance from the weld centerline, which was called offset.
Unlike Möller et al. (2011), no filler material was used. Although
Möller et al. (2011) and Vaidya et al. (2010) adopted filler wire and
chamfering, respectively, the welding technique we propose does
not require additional metal and groove preparation. The effects of
the welding conditions on the intermetallic layer were studied by
both optical and electron microscopes. One of the findings was that
the solidified interface formed either from the Ti heat-affected zone
and Al liquid or a Ti liquid and Al liquid interaction. Tomashchuk
et al. (2015) presented the same result. The Vickers micro-hardness,
tensile test and fracture surface analysis were analyzed to evaluate
the mechanical behavior of the welds.

2. Experimental materials devices and procedure

2.1. Materials properties

The T40 and 5754 Al alloy plates were 1.5 mm thick. Tables 1–3
show the chemical composition, mechanical properties and
thermo-physical properties of the two alloys.

Plate edges were saw-cut at low speed (1–3 mm/s) and polished
with a 200 grit sandpaper in order to minimize the thermal con-
tact resistance. This ensured that the contact conditions were both
reproducible and uniform. Two parameters were determined to
define the roughness characteristics with accuracy:

• the average roughness Ra, which is calculated as the mean of the
absolute values of the deviation of the peaks from the midline;

• the maximum peak height Ry, which is determined as the maxi-
mum absolute value of the peaks.

Fig. 1(a) and (b) shows the roughness profile along the welding
direction detected on the Ti and Al welding edges, respectively. As
shown, Al sheet presented higher Ra and Ry than Ti.

Fig. 1. Average roughness (Ra) and maximum peak height Ry profiles at the weld
interface.

2.2. Laser equipment and welding set-up

A Yb–YAG laser (1.03 �m wavelength), was used in continuous
wave regime. The maximum power was 3 kW. The laser beam was
delivered to the workstation via a 200 �m diameter optical fiber
and focused through an optical head equipped with collimating
and focusing lenses with a 200 mm focal length. A slight defocusing
(−2 mm) was used, resulting in an approximately 300 �m diameter
(1/e2 width) near-Gaussian distribution on the top surface.

Fig. 2 shows a drawing of the welding layout. Top and bottom
Argon gas protection was employed. The 20 l/min debit shielding
gas sheltered the weld against air oxidation and contamination.
Two adhesive tapes improved the protection. The laser beam was
focused onto the Ti alloy plate. The offset between the center of
the laser spot and the weld centerline varied initially between 0.5
and 1.4 mm. However, since preliminary tests revealed a lack of
fusion between the welding edges, the offset upper-limit was set
at 0.75 mm.

2.3. Process parameters

The experiment comprised a preliminary trial and two succes-
sive experimental plans (Tables 4 and 5) whose process parameters
were determined according to the preliminary trial results. After
the preliminary trial, the offset was limited to 0.5–0.75 mm because
of lack of fusion between the welding edges. During the first experi-
mental plan (Table 4), the laser offset was kept constant at 0.75 mm
in order to assess the effect of the linear energy on the weld

Table 4
Process parameters for the first experimental plan (offset 0.75 mm).

Sample Laser power
(kW)

Welding speed
(m/min)

Linear energy
(J/mm)

1 1.50 1.60 56.24
2 2.00 1.80 66.67
3 1.75 2.00 52.50
4 1.75 1.80 58.33
5 1.50 2.00 45.00
6 1.50 1.80 50.00
7 2.00 2.00 60.00
8 2.00 1.60 75.00
9 1.75 1.60 65.62



Fig. 2. Drawing of the welding device.

characteristics. The ratio of the laser power (P) to the welding speed
(v) is the linear energy (LE).

Subsequently, the statistical significance of the linear energy
and the laser offset and their interaction was tested by a two fac-
tors experimental design (DOE), whose parameters are reported in
Table 5.

2.4. Sample preparation

Each weld was cross-sectioned perpendicularly to the welding
direction, then polished and chemically etched in order to ana-
lyze the microstructure. Keller’s reagent solution (1% HF, 1.5% HCl,
2.5% HNO3 and 95% H2O) was used for etching. Pictures of the
microstructures were taken by optical (OM) and scanning electron
microscope (SEM), which was equipped with an energy-dispersive
X-ray spectrometer (EDS) to analyze the chemical composition.

Vickers micro-hardness was measured with a 400 g load. The
hardness was taken at the mid thickness of the joint. The distance
between two points was 0.25 mm. The dwell time was 10 s.

The tensile test was conducted using the INSTRON 5881 machine
(Fig. 3) with a 10−4 s−1strain rate. Three samples for each joint were
cut perpendicularly to the welding direction. The tensile specimen
had a 20 mm width and 200 mm length (Fig. 4). The mechanical
strength and ductility were evaluated, as well as their robustness
according to the welding conditions.

3. Results and discussion

3.1. Weld appearance

Fig. 5(a) and (b) shows the crown and root, respectively. The
crown and root dimensions were in the range of 1.50–2.00 mm.

Table 5
Process parameters for the second experimental plan (laser power 1.5 kW).

Sample Linear energy
(J/mm)

Laser offset
(mm)

Welding Speed
(m/min)

10 36 0.75 2.5
11 36 0.50 2.5
12 30 0.50 3
13 30 0.75 3

The seam was regular and the amount of spatter was very low
in comparison with the case in which the laser beam was focused
on the Al side (Song et al., 2013; Alfieri et al., 2013)). Either the
condensation of nanometer-size particles, which are contained in
the vapor metal cloud during the keyhole regime, and the oxida-
tion, which is due to the insufficient shielding of the molten pool,
can explain the dark color of the region close to the interface. Fur-
ther investigation by X-ray photoelectron spectroscopy can settle
the issue. Despite the great affinity of Ti to oxygen, nitrogen and
hydrogen, the local Ar shielding gas was useful to prevent the pool
contamination.

Fig. 3. Tensile test machine.



Fig. 4. tensile test specimens.

3.2. Microstructural characterization

3.2.1. Optical microscope analysis
Two different re-solidification conditions were observed in the

Al after the keyhole formation in Ti.
In the first condition, the key-hole did not reach the Al. In this

case, the heat was transmitted to the Al through the Ti HAZ. The
re-solidification of the Al produced a straight, linear interface layer
and continuity between the Ti HAZ and the Al FZ. However, the
temperature was so high as to cause the diffusion of Ti in the Al
matrix and the formation of intermetallic compounds. Fig. 6 shows
the cross section of sample 5. The linear energy was 50.00 J/mm and
the offset was 0.75 mm. The interface was Ti HAZ and the Al FZ and
had a linear shape.

Fig. 6. Cross section of sample 5 (50.00 J/mm, 0.75 mm).

Fig. 7. Cross section of sample 11 (36 J/mm, 0.50 mm).

In the second condition, the heat input produced a keyhole in
the Ti, whose fusion wall reached and melted the Al. This condition
produced continuity between the Ti and the Al fusion zones (FZ) and
a curvilinear interface layer. The curvilinear and irregular interface
in Fig. 7 refers to sample 11. It was obtained with 36 J/mm linear
energy and 0.50 mm offset. Moreover, macro-porosities formed in
the Al sheet side, which drastically reduced the weld properties.

Fig. 5. Sample 6 (50 J/mm, 0.75 mm): (a) crown, (b) root.



Fig. 8. Cross section of sample 3 (52.50 J/mm, 0.75 mm).

Ti isles formed in the Al FZ due to the direct liquid-liquid contact
and the material convection flow, as shown in Fig. 8. After solidi-
fication, the agglomerates of Ti did not solubilize in the Al solid
solution. Small Ti isles were also present on the Al side of the joint
at a close distance from the interface (Fig. 6). This was probably due
to the spattering of melted Ti that poured down on the Al side and
remained caught up in the Al during its solidification.

A reduction in both the Ti and Al plate section occurred. For the
Ti, the phenomenon was due to the keyhole formation. For the Al,
it was due to the molten Al, which crept onto the Ti surface (Fig. 6).

Fig. 9 shows a micrograph of the cross section of weld 8, which
was produced with a higher linear energy (75 J/mm). Some voids
and microvoids formed at the intermetallic layer, from which cracks
originated during the tensile test.

Pictures Fig. 10(a) and (b) shows two close-ups of the interface
layer for different welding conditions. Fig. 10(a) refers to sample
1 that had a linear intermetallic layer. Some Ti lamellae protruded
from the interface, starting towards the Al side. This phenomenon
can be due to an enhanced local diffusion (short circuit-like) of the
Ti into the molten Al. Fig. 10(b) shows a micrograph of sample 9,
whose intermetallic layer was curvilinear. The Ti invaded the Al side
in the proximity of the interface between the metals. Ti lamellae
were also present at the Ti–Al uneven interface.

3.2.2. SEM and EDS analysis
Fig. 11(a) and (b) shows the microstructure observed at the

SEM, with magnification factors of 2000× and 4000×, respectively.

Fig. 9. Cross section of sample 8 (75 J/mm, 0.75 mm).

Table 6
Chemical composition (atom percentage) at points indicated in Fig. 11a.

Point Mg Al Ti Other

A 1.2 56.6 41.6 0.6
B 1.6 68.0 29.9 0.5
C 2.9 63.0 33.6 0.5

Fig. 11(a) shows the location of the chemical analysis and Table 6
presents the correspondent EDS output.

The observation revealed that the chemical composition at point
A, which contained both the Ti lamella and a small part of the
surrounding Al alloy matrix, was 40% Ti and 60% Al. Points B and
C were located approximately at the interface between the two
alloys. Chemical analysis revealed 70% Al and 30% Ti. The higher
percentage of Al in the examined points supports the formation of
IMC, mostly made of TiAl3.

Ti lamellae were produced under different welding conditions
(Fig. 12(a) and (b), magnification 2000×). Higher linear energy
tended to increase the dimension of Ti-based lamellae, which
nucleated at the interface and grew towards the melted Al. The
amount of Ti agglomerate in the Al side increased with the linear
energy. The explanation is that the thermo-convective flow pushed
semi-liquid Ti into the molten Al. The Ti does not mix with the Al
because of the large surface tension and the viscosity difference
between the two metals, i.e., the surface tension of molten Al is
about 0.8 N/m (Bainbridge and John Andrew Taylor, 2013), while
that of molten Ti is about 1.4 N/m (Man, 2000).

Fig. 10. Close-up of the intermetallic layer: (a) sample 1 (56.24 J/mm, 0.75 mm) with straight intermetallic interface, (b) sample 9 (65.62 J/mm, 0.75 mm) with irregular
growth of the intermetallic layer.



Fig. 11. SEM pictures of IM (a) sample 2 (66.67 J/mm, 0.75 mm), (b) sample 5 (45 J/mm, 0.75 mm).

Fig. 12. SEM Micrograph: (a) sample 1 (56.24 J/mm, 0.75 mm), (b) sample 5 (45.00 J/mm, 0.75 mm).

3.3. Mechanical properties and fracture analysis

3.3.1. Micro-hardness
Fig. 13 represents the micro-hardness at the middle-thickness of

the transverse cross section of sample 5. The Al fusion zone showed
a micro-hardness that was slightly higher than the base material.
The micro-hardness rose slightly because the grain was refined dur-
ing the rapid solidification. Molten Ti produced local hardening. The
hardness was greater in the FZ than in the Ti base material (250–300
HV0.2 versus 180–200 HV0.2). Because of the ˛1 martensite phase,
the Ti hardness increased up to 50% of that of the base metal (175
to 260 HV0.2).

Fig. 13. Microhardness profile of sample 5 (45 J/mm, 0.75 mm).

Measurement of the micro-hardness within the intermetallic
layer was impossible because the dimension of the impression was
larger than the IM layer itself, which was ∼1 �m (Fig. 14).

Fig. 14 shows the metals microstructure close to the inter-
metallic layer. Al FZ was made up of small-size grains with an
inter-granular Mg precipitate. The microstructure of Ti was �1
martensite, which produce during fast cooling. The intermetallic
interface presented discontinuities.

Fig. 14. Microstructure and interface of sample 5 (45 J/mm, 0.75 mm).



Fig. 15. Tensile test (samples A, B, C Fig. 4) for sample 4 (58.53 J/mm, 0.75 mm).

3.3.2. Tensile test results
Figs. 15 and 16 show the tensile strength curves for samples 4

and 6, which had J/mm linear energies of 58.00 and 50.00, respec-
tively. Three specimens for each welding condition were analyzed

Fig. 16. Tensile test (samples A, B, C Fig. 4) for sample 6 (50.00 J/mm, 0.75 mm).

and the means of the tensile strength and the elongation were
measured (see Fig. 4 for the tensile sample appearance).

Figs. 17 and 18 present at-a-glance results of the tensile test for
the experimental plans (Tables 4 and 5). The histograms also show
the error bars, which display the maximum and minimum values
for each measurement.

Fig. 17. Tensile strength of the samples of the (a) first and the (b) second experimental plan.

Fig. 18. Elongation % of the samples of the (a) first and the (b) second experimental plan.



Fig. 19. Relation between the tensile strength and linear energy for 0.75 mm laser offset.

The process showed robustness in terms of ultimate tensile
strength (UTS mean 160 MPa) and elongation (mean 1.5%). Simul-
taneous analysis of the microstructural characteristics of the welds
and mechanical resistances values showed that joints with a
curved interface layer tended to be less resistant. Phenomena
involved near the interface, such as mixing of melted materi-
als, alteration of the linearity of the interface and growth of
Ti agglomerates and lamellae led to a reduction of the tensile
strength.

Analysis of the tensile test revealed that the linear energy had a
remarkable effect on the joint mechanical properties. A lower linear
energy led to a significant increase of mechanical properties. Higher
linear energy produced a liquid-liquid interaction that caused the
growth of Ti agglomerates and lamellae that led to a reduction of
the tensile strength and plasticity.

The reduction of mechanical properties was mainly due to the
formation of IM compounds and mixing of materials during the pro-
cess. Song et al. (2013) indicated a similar reduction of the tensile
strength for Al–Ti joints, compared with as-received Al alloys.

The tensile strength achieved a peak of 191 MPa, which is almost
80% of the 5754 Al alloy UTS. That result was associated to a linear
interface layer, low mix of materials and reduction of Ti lamellae
in the Al FZ, which also slightly improved the ductility. In order to
restore some ductility to the weld, a tailored heat treatment should
act on the Ti lamellae dimension.

Figs. 19 and 20 show the variation of tensile strength and elon-
gation values versus the linear energy for the first experimental
plan (Table 4).

As shown in Figs. 19 and 20, low linear energy values increased
the joint resistance and elongation. The explanation is that there

Fig. 20. Relation between the elongation and the linear energy for 0.75 mm laser offset.



Fig. 21. Main effects plot for UTS.

was a decrease of the heat input, which led to a straight interface
between the two metals. On the other hand, higher linear energy
values resulted in a drastic reduction, which was due to a critical
mixing and stirring of Ti and Al. The maximum resistance (191 MPa)
and elongation (2.5%) were obtained with 50.00 J/mm linear energy.

Thomas and Bacos (2011) have suggested a microstructural
refinement through a heat treatment to achieve higher mechanical
properties for Ti–Al based alloys.

3.3.3. Tensile test statistical analysis
The second experimental plan (Table 5), was implemented in

the form of the two-levels factorial design to study the effects of
the linear energy, the laser offset and their interaction on the UTS.
As Montgomery (2001) describes in his book, such an experimental
plan must have two factors (linear energy and laser offset). Table 7
shows the levels and their design notation. In particular, symbol
−1 marks a low level of the factor and symbol 1 a high level. Three
repetitions of the tensile test were performed and the means of
UTS were calculated for every welding condition. The results were
statistically tested against the hypothesis that the welding factors
had no significant relevance on the UTS.

Figs. 21 and 22 show the main effects and the interaction
plots for UTS, respectively. The main effects plot shows the mean
outcome, combining the effects of the other variables as if all vari-
ables were independent. The interaction plot illustrates the effects
between dependent variables. The graphs proved the statistical sig-
nificance of the main factors and their interaction, which means
that a relationship between factors and UTS is real and not chance.
The p-values, which is the probability that the factors had no effects
on the UTS, are very low, see Table 8.The UTS means were higher
for high levels of both the linear energy and the laser offset (Fig. 21).

Table 7
Two levels factorial design notation.

Sample Linear energy (J/mm) Laser offset (mm)

10 36 (1) 0.75 (1)
11 36 (1) 0.50 (−1)
12 30 (−1) 0.50 (−1)
13 30 (−1) 0.75 (1)

Table 8
p-Values for the statistical relevance of the effects.

Factor p-Value (%)

Linear energy 0.024
Laser off-set 0.000
Interaction 0.004

Fig. 22. Interaction plot for UTS.

Fig. 23. Intermetallic layer.

When it comes to the interaction plot, the gain in terms of UTS was
bigger for high level linear energy (1), than for low linear energy
(−1) (Fig. 22).

3.3.4. Fracture surfaces analysis
The mode of fracture of Ti–Al welds depends on the morphol-

ogy and phase composition of the contact interface (Tomashchuk
et al., 2015). Several fractured surfaces were analyzed by SEM
and EDS. The fracture occurred at the interface. Table 9 reports
the chemical composition at some spots of the fractured surfaces.
Observing the fracture surface, an opening fracture mode is infer-
able. Microvoids, which formed during the solidification, acted as
stress raisers (Fig. 23).

Transgranular cleavage facets characterized the fracture surface
(Fig. 24). Secondary microcracks were oriented perpendicularly to
the major crack (Fig. 25). At point D, the Ti content was as high
as 77.4% and Ti–Al compounds formed. High local tensile stress

Table 9
Chemical composition (atomic %, EDS) of some spots of fractured surface (Figs. 23
and 25).

Spot Mg Al Ti

1 1.1 73.5 24
2 3.1 88 8.5
3 0.9 53.6 43.2
4 1.5 55.2 40.9
D 2.6 69.6 27.5
E 1.9 20.4 77.4



Fig. 24. Transgranular cleavage facet.

Fig. 25. Secondary microcrack (near point E).

was due to dislocation pile-up ahead of the Ti–Al compounds and
contributed to the global final failure.

More microvoids, which formed at inclusions, intermetallic or
second-phase particles and grain boundaries, coalesced. Growth
and coalescence of those microvoids progressed as an intergranular
crack (Fig. 26).

Based on these observations, it can be inferred that the brit-
tle fracture initiation connected with the intergranular decohesion
was the fracture micromechanism. Therefore, the fracture had
both intergranular and trasgranular characteristics.The causes and
characteristics governing the intergranular fracture initiation and
occurrence of the fracture micromechanism in competition with
the cleavage mechanism could be addressed in future work,

Fig. 26. Coalesced microvoids.

following the example of Dlouhy et al. (2011), which studied the
quantification of the transgranular/intergranular fracture by the
relation of cleavage fracture and critical stresses.

4. Conclusions

Al–Ti fiber laser offset welding (FLOW) consists in focusing a
fiber laser beam onto the Ti side of the weld, close to its centerline.
Neither filler metal nor groove preparation was necessary.

The investigation produced the following results.

• No occurrence of porosity and spatter in the Al alloy, as reported
in several previous studies, was observed.

• The morphology analysis revealed linear and curvilinear IM lay-
ers, which depended on the energy input and laser offset. IM layer
thickness was as small as1 �m, which has a negligible effect on
the weld mechanical properties.

• The fracture occurred in the intermetallic layer with an opening
fracture mode. Transgranular and intergranular fractures were
observed.

• Mechanical properties decreased with the curvilinear inter-
metallic profile and increased with the linear profile. The linear
energy, the laser offset and their interaction had statistical sig-
nificance on UTS. In the present investigation, the maximum UTS
was obtained with the 0.75 mm laser offset and 50 J/mm linear
energy. It was as high as 191 MPa, which is in line with the best
published results.

Therefore, the FLOW technique was demonstrated to be capable
of producing a good quality and robust T40 and AA5754 weld, not
requiring filler metal and chamfering.
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